qed: Add link support
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39
40 #define RT_FL_TOS(oldflp4) \
41 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42
43 #define DRV_NAME "vrf"
44 #define DRV_VERSION "1.0"
45
46 #define vrf_master_get_rcu(dev) \
47 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
48
49 struct slave {
50 struct list_head list;
51 struct net_device *dev;
52 };
53
54 struct slave_queue {
55 struct list_head all_slaves;
56 };
57
58 struct net_vrf {
59 struct slave_queue queue;
60 struct rtable *rth;
61 struct rt6_info *rt6;
62 u32 tb_id;
63 };
64
65 struct pcpu_dstats {
66 u64 tx_pkts;
67 u64 tx_bytes;
68 u64 tx_drps;
69 u64 rx_pkts;
70 u64 rx_bytes;
71 struct u64_stats_sync syncp;
72 };
73
74 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
75 {
76 return dst;
77 }
78
79 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
80 {
81 return ip_local_out(net, sk, skb);
82 }
83
84 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
85 {
86 /* TO-DO: return max ethernet size? */
87 return dst->dev->mtu;
88 }
89
90 static void vrf_dst_destroy(struct dst_entry *dst)
91 {
92 /* our dst lives forever - or until the device is closed */
93 }
94
95 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
96 {
97 return 65535 - 40;
98 }
99
100 static struct dst_ops vrf_dst_ops = {
101 .family = AF_INET,
102 .local_out = vrf_ip_local_out,
103 .check = vrf_ip_check,
104 .mtu = vrf_v4_mtu,
105 .destroy = vrf_dst_destroy,
106 .default_advmss = vrf_default_advmss,
107 };
108
109 /* neighbor handling is done with actual device; do not want
110 * to flip skb->dev for those ndisc packets. This really fails
111 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
112 * a start.
113 */
114 #if IS_ENABLED(CONFIG_IPV6)
115 static bool check_ipv6_frame(const struct sk_buff *skb)
116 {
117 const struct ipv6hdr *ipv6h = (struct ipv6hdr *)skb->data;
118 size_t hlen = sizeof(*ipv6h);
119 bool rc = true;
120
121 if (skb->len < hlen)
122 goto out;
123
124 if (ipv6h->nexthdr == NEXTHDR_ICMP) {
125 const struct icmp6hdr *icmph;
126
127 if (skb->len < hlen + sizeof(*icmph))
128 goto out;
129
130 icmph = (struct icmp6hdr *)(skb->data + sizeof(*ipv6h));
131 switch (icmph->icmp6_type) {
132 case NDISC_ROUTER_SOLICITATION:
133 case NDISC_ROUTER_ADVERTISEMENT:
134 case NDISC_NEIGHBOUR_SOLICITATION:
135 case NDISC_NEIGHBOUR_ADVERTISEMENT:
136 case NDISC_REDIRECT:
137 rc = false;
138 break;
139 }
140 }
141
142 out:
143 return rc;
144 }
145 #else
146 static bool check_ipv6_frame(const struct sk_buff *skb)
147 {
148 return false;
149 }
150 #endif
151
152 static bool is_ip_rx_frame(struct sk_buff *skb)
153 {
154 switch (skb->protocol) {
155 case htons(ETH_P_IP):
156 return true;
157 case htons(ETH_P_IPV6):
158 return check_ipv6_frame(skb);
159 }
160 return false;
161 }
162
163 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
164 {
165 vrf_dev->stats.tx_errors++;
166 kfree_skb(skb);
167 }
168
169 /* note: already called with rcu_read_lock */
170 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
171 {
172 struct sk_buff *skb = *pskb;
173
174 if (is_ip_rx_frame(skb)) {
175 struct net_device *dev = vrf_master_get_rcu(skb->dev);
176 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
177
178 u64_stats_update_begin(&dstats->syncp);
179 dstats->rx_pkts++;
180 dstats->rx_bytes += skb->len;
181 u64_stats_update_end(&dstats->syncp);
182
183 skb->dev = dev;
184
185 return RX_HANDLER_ANOTHER;
186 }
187 return RX_HANDLER_PASS;
188 }
189
190 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
191 struct rtnl_link_stats64 *stats)
192 {
193 int i;
194
195 for_each_possible_cpu(i) {
196 const struct pcpu_dstats *dstats;
197 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
198 unsigned int start;
199
200 dstats = per_cpu_ptr(dev->dstats, i);
201 do {
202 start = u64_stats_fetch_begin_irq(&dstats->syncp);
203 tbytes = dstats->tx_bytes;
204 tpkts = dstats->tx_pkts;
205 tdrops = dstats->tx_drps;
206 rbytes = dstats->rx_bytes;
207 rpkts = dstats->rx_pkts;
208 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
209 stats->tx_bytes += tbytes;
210 stats->tx_packets += tpkts;
211 stats->tx_dropped += tdrops;
212 stats->rx_bytes += rbytes;
213 stats->rx_packets += rpkts;
214 }
215 return stats;
216 }
217
218 #if IS_ENABLED(CONFIG_IPV6)
219 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
220 struct net_device *dev)
221 {
222 const struct ipv6hdr *iph = ipv6_hdr(skb);
223 struct net *net = dev_net(skb->dev);
224 struct flowi6 fl6 = {
225 /* needed to match OIF rule */
226 .flowi6_oif = dev->ifindex,
227 .flowi6_iif = LOOPBACK_IFINDEX,
228 .daddr = iph->daddr,
229 .saddr = iph->saddr,
230 .flowlabel = ip6_flowinfo(iph),
231 .flowi6_mark = skb->mark,
232 .flowi6_proto = iph->nexthdr,
233 .flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
234 };
235 int ret = NET_XMIT_DROP;
236 struct dst_entry *dst;
237 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
238
239 dst = ip6_route_output(net, NULL, &fl6);
240 if (dst == dst_null)
241 goto err;
242
243 skb_dst_drop(skb);
244 skb_dst_set(skb, dst);
245
246 ret = ip6_local_out(net, skb->sk, skb);
247 if (unlikely(net_xmit_eval(ret)))
248 dev->stats.tx_errors++;
249 else
250 ret = NET_XMIT_SUCCESS;
251
252 return ret;
253 err:
254 vrf_tx_error(dev, skb);
255 return NET_XMIT_DROP;
256 }
257 #else
258 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
259 struct net_device *dev)
260 {
261 vrf_tx_error(dev, skb);
262 return NET_XMIT_DROP;
263 }
264 #endif
265
266 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
267 struct net_device *vrf_dev)
268 {
269 struct rtable *rt;
270 int err = 1;
271
272 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
273 if (IS_ERR(rt))
274 goto out;
275
276 /* TO-DO: what about broadcast ? */
277 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
278 ip_rt_put(rt);
279 goto out;
280 }
281
282 skb_dst_drop(skb);
283 skb_dst_set(skb, &rt->dst);
284 err = 0;
285 out:
286 return err;
287 }
288
289 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
290 struct net_device *vrf_dev)
291 {
292 struct iphdr *ip4h = ip_hdr(skb);
293 int ret = NET_XMIT_DROP;
294 struct flowi4 fl4 = {
295 /* needed to match OIF rule */
296 .flowi4_oif = vrf_dev->ifindex,
297 .flowi4_iif = LOOPBACK_IFINDEX,
298 .flowi4_tos = RT_TOS(ip4h->tos),
299 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
300 FLOWI_FLAG_SKIP_NH_OIF,
301 .daddr = ip4h->daddr,
302 };
303
304 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
305 goto err;
306
307 if (!ip4h->saddr) {
308 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
309 RT_SCOPE_LINK);
310 }
311
312 ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
313 if (unlikely(net_xmit_eval(ret)))
314 vrf_dev->stats.tx_errors++;
315 else
316 ret = NET_XMIT_SUCCESS;
317
318 out:
319 return ret;
320 err:
321 vrf_tx_error(vrf_dev, skb);
322 goto out;
323 }
324
325 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
326 {
327 /* strip the ethernet header added for pass through VRF device */
328 __skb_pull(skb, skb_network_offset(skb));
329
330 switch (skb->protocol) {
331 case htons(ETH_P_IP):
332 return vrf_process_v4_outbound(skb, dev);
333 case htons(ETH_P_IPV6):
334 return vrf_process_v6_outbound(skb, dev);
335 default:
336 vrf_tx_error(dev, skb);
337 return NET_XMIT_DROP;
338 }
339 }
340
341 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
342 {
343 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
344
345 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
346 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
347
348 u64_stats_update_begin(&dstats->syncp);
349 dstats->tx_pkts++;
350 dstats->tx_bytes += skb->len;
351 u64_stats_update_end(&dstats->syncp);
352 } else {
353 this_cpu_inc(dev->dstats->tx_drps);
354 }
355
356 return ret;
357 }
358
359 #if IS_ENABLED(CONFIG_IPV6)
360 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
361 {
362 return dst;
363 }
364
365 static struct dst_ops vrf_dst_ops6 = {
366 .family = AF_INET6,
367 .local_out = ip6_local_out,
368 .check = vrf_ip6_check,
369 .mtu = vrf_v4_mtu,
370 .destroy = vrf_dst_destroy,
371 .default_advmss = vrf_default_advmss,
372 };
373
374 static int init_dst_ops6_kmem_cachep(void)
375 {
376 vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
377 sizeof(struct rt6_info),
378 0,
379 SLAB_HWCACHE_ALIGN,
380 NULL);
381
382 if (!vrf_dst_ops6.kmem_cachep)
383 return -ENOMEM;
384
385 return 0;
386 }
387
388 static void free_dst_ops6_kmem_cachep(void)
389 {
390 kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
391 }
392
393 static int vrf_input6(struct sk_buff *skb)
394 {
395 skb->dev->stats.rx_errors++;
396 kfree_skb(skb);
397 return 0;
398 }
399
400 /* modelled after ip6_finish_output2 */
401 static int vrf_finish_output6(struct net *net, struct sock *sk,
402 struct sk_buff *skb)
403 {
404 struct dst_entry *dst = skb_dst(skb);
405 struct net_device *dev = dst->dev;
406 struct neighbour *neigh;
407 struct in6_addr *nexthop;
408 int ret;
409
410 skb->protocol = htons(ETH_P_IPV6);
411 skb->dev = dev;
412
413 rcu_read_lock_bh();
414 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
415 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
416 if (unlikely(!neigh))
417 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
418 if (!IS_ERR(neigh)) {
419 ret = dst_neigh_output(dst, neigh, skb);
420 rcu_read_unlock_bh();
421 return ret;
422 }
423 rcu_read_unlock_bh();
424
425 IP6_INC_STATS(dev_net(dst->dev),
426 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
427 kfree_skb(skb);
428 return -EINVAL;
429 }
430
431 /* modelled after ip6_output */
432 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
433 {
434 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
435 net, sk, skb, NULL, skb_dst(skb)->dev,
436 vrf_finish_output6,
437 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
438 }
439
440 static void vrf_rt6_destroy(struct net_vrf *vrf)
441 {
442 dst_destroy(&vrf->rt6->dst);
443 free_percpu(vrf->rt6->rt6i_pcpu);
444 vrf->rt6 = NULL;
445 }
446
447 static int vrf_rt6_create(struct net_device *dev)
448 {
449 struct net_vrf *vrf = netdev_priv(dev);
450 struct dst_entry *dst;
451 struct rt6_info *rt6;
452 int cpu;
453 int rc = -ENOMEM;
454
455 rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
456 DST_OBSOLETE_NONE,
457 (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
458 if (!rt6)
459 goto out;
460
461 dst = &rt6->dst;
462
463 rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
464 if (!rt6->rt6i_pcpu) {
465 dst_destroy(dst);
466 goto out;
467 }
468 for_each_possible_cpu(cpu) {
469 struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
470 *p = NULL;
471 }
472
473 memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
474
475 INIT_LIST_HEAD(&rt6->rt6i_siblings);
476 INIT_LIST_HEAD(&rt6->rt6i_uncached);
477
478 rt6->dst.input = vrf_input6;
479 rt6->dst.output = vrf_output6;
480
481 rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
482
483 atomic_set(&rt6->dst.__refcnt, 2);
484
485 vrf->rt6 = rt6;
486 rc = 0;
487 out:
488 return rc;
489 }
490 #else
491 static int init_dst_ops6_kmem_cachep(void)
492 {
493 return 0;
494 }
495
496 static void free_dst_ops6_kmem_cachep(void)
497 {
498 }
499
500 static void vrf_rt6_destroy(struct net_vrf *vrf)
501 {
502 }
503
504 static int vrf_rt6_create(struct net_device *dev)
505 {
506 return 0;
507 }
508 #endif
509
510 /* modelled after ip_finish_output2 */
511 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
512 {
513 struct dst_entry *dst = skb_dst(skb);
514 struct rtable *rt = (struct rtable *)dst;
515 struct net_device *dev = dst->dev;
516 unsigned int hh_len = LL_RESERVED_SPACE(dev);
517 struct neighbour *neigh;
518 u32 nexthop;
519 int ret = -EINVAL;
520
521 /* Be paranoid, rather than too clever. */
522 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
523 struct sk_buff *skb2;
524
525 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
526 if (!skb2) {
527 ret = -ENOMEM;
528 goto err;
529 }
530 if (skb->sk)
531 skb_set_owner_w(skb2, skb->sk);
532
533 consume_skb(skb);
534 skb = skb2;
535 }
536
537 rcu_read_lock_bh();
538
539 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
540 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
541 if (unlikely(!neigh))
542 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
543 if (!IS_ERR(neigh))
544 ret = dst_neigh_output(dst, neigh, skb);
545
546 rcu_read_unlock_bh();
547 err:
548 if (unlikely(ret < 0))
549 vrf_tx_error(skb->dev, skb);
550 return ret;
551 }
552
553 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
554 {
555 struct net_device *dev = skb_dst(skb)->dev;
556
557 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
558
559 skb->dev = dev;
560 skb->protocol = htons(ETH_P_IP);
561
562 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
563 net, sk, skb, NULL, dev,
564 vrf_finish_output,
565 !(IPCB(skb)->flags & IPSKB_REROUTED));
566 }
567
568 static void vrf_rtable_destroy(struct net_vrf *vrf)
569 {
570 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
571
572 dst_destroy(dst);
573 vrf->rth = NULL;
574 }
575
576 static struct rtable *vrf_rtable_create(struct net_device *dev)
577 {
578 struct net_vrf *vrf = netdev_priv(dev);
579 struct rtable *rth;
580
581 rth = dst_alloc(&vrf_dst_ops, dev, 2,
582 DST_OBSOLETE_NONE,
583 (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
584 if (rth) {
585 rth->dst.output = vrf_output;
586 rth->rt_genid = rt_genid_ipv4(dev_net(dev));
587 rth->rt_flags = 0;
588 rth->rt_type = RTN_UNICAST;
589 rth->rt_is_input = 0;
590 rth->rt_iif = 0;
591 rth->rt_pmtu = 0;
592 rth->rt_gateway = 0;
593 rth->rt_uses_gateway = 0;
594 rth->rt_table_id = vrf->tb_id;
595 INIT_LIST_HEAD(&rth->rt_uncached);
596 rth->rt_uncached_list = NULL;
597 }
598
599 return rth;
600 }
601
602 /**************************** device handling ********************/
603
604 /* cycle interface to flush neighbor cache and move routes across tables */
605 static void cycle_netdev(struct net_device *dev)
606 {
607 unsigned int flags = dev->flags;
608 int ret;
609
610 if (!netif_running(dev))
611 return;
612
613 ret = dev_change_flags(dev, flags & ~IFF_UP);
614 if (ret >= 0)
615 ret = dev_change_flags(dev, flags);
616
617 if (ret < 0) {
618 netdev_err(dev,
619 "Failed to cycle device %s; route tables might be wrong!\n",
620 dev->name);
621 }
622 }
623
624 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
625 struct net_device *dev)
626 {
627 struct list_head *head = &queue->all_slaves;
628 struct slave *slave;
629
630 list_for_each_entry(slave, head, list) {
631 if (slave->dev == dev)
632 return slave;
633 }
634
635 return NULL;
636 }
637
638 /* inverse of __vrf_insert_slave */
639 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
640 {
641 list_del(&slave->list);
642 }
643
644 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
645 {
646 list_add(&slave->list, &queue->all_slaves);
647 }
648
649 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
650 {
651 struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
652 struct net_vrf *vrf = netdev_priv(dev);
653 struct slave_queue *queue = &vrf->queue;
654 int ret = -ENOMEM;
655
656 if (!slave)
657 goto out_fail;
658
659 slave->dev = port_dev;
660
661 /* register the packet handler for slave ports */
662 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
663 if (ret) {
664 netdev_err(port_dev,
665 "Device %s failed to register rx_handler\n",
666 port_dev->name);
667 goto out_fail;
668 }
669
670 ret = netdev_master_upper_dev_link(port_dev, dev);
671 if (ret < 0)
672 goto out_unregister;
673
674 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
675 __vrf_insert_slave(queue, slave);
676 cycle_netdev(port_dev);
677
678 return 0;
679
680 out_unregister:
681 netdev_rx_handler_unregister(port_dev);
682 out_fail:
683 kfree(slave);
684 return ret;
685 }
686
687 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
688 {
689 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
690 return -EINVAL;
691
692 return do_vrf_add_slave(dev, port_dev);
693 }
694
695 /* inverse of do_vrf_add_slave */
696 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
697 {
698 struct net_vrf *vrf = netdev_priv(dev);
699 struct slave_queue *queue = &vrf->queue;
700 struct slave *slave;
701
702 netdev_upper_dev_unlink(port_dev, dev);
703 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
704
705 netdev_rx_handler_unregister(port_dev);
706
707 cycle_netdev(port_dev);
708
709 slave = __vrf_find_slave_dev(queue, port_dev);
710 if (slave)
711 __vrf_remove_slave(queue, slave);
712
713 kfree(slave);
714
715 return 0;
716 }
717
718 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
719 {
720 return do_vrf_del_slave(dev, port_dev);
721 }
722
723 static void vrf_dev_uninit(struct net_device *dev)
724 {
725 struct net_vrf *vrf = netdev_priv(dev);
726 struct slave_queue *queue = &vrf->queue;
727 struct list_head *head = &queue->all_slaves;
728 struct slave *slave, *next;
729
730 vrf_rtable_destroy(vrf);
731 vrf_rt6_destroy(vrf);
732
733 list_for_each_entry_safe(slave, next, head, list)
734 vrf_del_slave(dev, slave->dev);
735
736 free_percpu(dev->dstats);
737 dev->dstats = NULL;
738 }
739
740 static int vrf_dev_init(struct net_device *dev)
741 {
742 struct net_vrf *vrf = netdev_priv(dev);
743
744 INIT_LIST_HEAD(&vrf->queue.all_slaves);
745
746 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
747 if (!dev->dstats)
748 goto out_nomem;
749
750 /* create the default dst which points back to us */
751 vrf->rth = vrf_rtable_create(dev);
752 if (!vrf->rth)
753 goto out_stats;
754
755 if (vrf_rt6_create(dev) != 0)
756 goto out_rth;
757
758 dev->flags = IFF_MASTER | IFF_NOARP;
759
760 return 0;
761
762 out_rth:
763 vrf_rtable_destroy(vrf);
764 out_stats:
765 free_percpu(dev->dstats);
766 dev->dstats = NULL;
767 out_nomem:
768 return -ENOMEM;
769 }
770
771 static const struct net_device_ops vrf_netdev_ops = {
772 .ndo_init = vrf_dev_init,
773 .ndo_uninit = vrf_dev_uninit,
774 .ndo_start_xmit = vrf_xmit,
775 .ndo_get_stats64 = vrf_get_stats64,
776 .ndo_add_slave = vrf_add_slave,
777 .ndo_del_slave = vrf_del_slave,
778 };
779
780 static u32 vrf_fib_table(const struct net_device *dev)
781 {
782 struct net_vrf *vrf = netdev_priv(dev);
783
784 return vrf->tb_id;
785 }
786
787 static struct rtable *vrf_get_rtable(const struct net_device *dev,
788 const struct flowi4 *fl4)
789 {
790 struct rtable *rth = NULL;
791
792 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
793 struct net_vrf *vrf = netdev_priv(dev);
794
795 rth = vrf->rth;
796 atomic_inc(&rth->dst.__refcnt);
797 }
798
799 return rth;
800 }
801
802 /* called under rcu_read_lock */
803 static void vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
804 {
805 struct fib_result res = { .tclassid = 0 };
806 struct net *net = dev_net(dev);
807 u32 orig_tos = fl4->flowi4_tos;
808 u8 flags = fl4->flowi4_flags;
809 u8 scope = fl4->flowi4_scope;
810 u8 tos = RT_FL_TOS(fl4);
811
812 if (unlikely(!fl4->daddr))
813 return;
814
815 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
816 fl4->flowi4_iif = LOOPBACK_IFINDEX;
817 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
818 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
819 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
820
821 if (!fib_lookup(net, fl4, &res, 0)) {
822 if (res.type == RTN_LOCAL)
823 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
824 else
825 fib_select_path(net, &res, fl4, -1);
826 }
827
828 fl4->flowi4_flags = flags;
829 fl4->flowi4_tos = orig_tos;
830 fl4->flowi4_scope = scope;
831 }
832
833 #if IS_ENABLED(CONFIG_IPV6)
834 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
835 const struct flowi6 *fl6)
836 {
837 struct rt6_info *rt = NULL;
838
839 if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
840 struct net_vrf *vrf = netdev_priv(dev);
841
842 rt = vrf->rt6;
843 atomic_inc(&rt->dst.__refcnt);
844 }
845
846 return (struct dst_entry *)rt;
847 }
848 #endif
849
850 static const struct l3mdev_ops vrf_l3mdev_ops = {
851 .l3mdev_fib_table = vrf_fib_table,
852 .l3mdev_get_rtable = vrf_get_rtable,
853 .l3mdev_get_saddr = vrf_get_saddr,
854 #if IS_ENABLED(CONFIG_IPV6)
855 .l3mdev_get_rt6_dst = vrf_get_rt6_dst,
856 #endif
857 };
858
859 static void vrf_get_drvinfo(struct net_device *dev,
860 struct ethtool_drvinfo *info)
861 {
862 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
863 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
864 }
865
866 static const struct ethtool_ops vrf_ethtool_ops = {
867 .get_drvinfo = vrf_get_drvinfo,
868 };
869
870 static void vrf_setup(struct net_device *dev)
871 {
872 ether_setup(dev);
873
874 /* Initialize the device structure. */
875 dev->netdev_ops = &vrf_netdev_ops;
876 dev->l3mdev_ops = &vrf_l3mdev_ops;
877 dev->ethtool_ops = &vrf_ethtool_ops;
878 dev->destructor = free_netdev;
879
880 /* Fill in device structure with ethernet-generic values. */
881 eth_hw_addr_random(dev);
882
883 /* don't acquire vrf device's netif_tx_lock when transmitting */
884 dev->features |= NETIF_F_LLTX;
885
886 /* don't allow vrf devices to change network namespaces. */
887 dev->features |= NETIF_F_NETNS_LOCAL;
888 }
889
890 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
891 {
892 if (tb[IFLA_ADDRESS]) {
893 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
894 return -EINVAL;
895 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
896 return -EADDRNOTAVAIL;
897 }
898 return 0;
899 }
900
901 static void vrf_dellink(struct net_device *dev, struct list_head *head)
902 {
903 unregister_netdevice_queue(dev, head);
904 }
905
906 static int vrf_newlink(struct net *src_net, struct net_device *dev,
907 struct nlattr *tb[], struct nlattr *data[])
908 {
909 struct net_vrf *vrf = netdev_priv(dev);
910 int err;
911
912 if (!data || !data[IFLA_VRF_TABLE])
913 return -EINVAL;
914
915 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
916
917 dev->priv_flags |= IFF_L3MDEV_MASTER;
918
919 err = register_netdevice(dev);
920 if (err < 0)
921 goto out_fail;
922
923 return 0;
924
925 out_fail:
926 free_netdev(dev);
927 return err;
928 }
929
930 static size_t vrf_nl_getsize(const struct net_device *dev)
931 {
932 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
933 }
934
935 static int vrf_fillinfo(struct sk_buff *skb,
936 const struct net_device *dev)
937 {
938 struct net_vrf *vrf = netdev_priv(dev);
939
940 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
941 }
942
943 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
944 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
945 };
946
947 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
948 .kind = DRV_NAME,
949 .priv_size = sizeof(struct net_vrf),
950
951 .get_size = vrf_nl_getsize,
952 .policy = vrf_nl_policy,
953 .validate = vrf_validate,
954 .fill_info = vrf_fillinfo,
955
956 .newlink = vrf_newlink,
957 .dellink = vrf_dellink,
958 .setup = vrf_setup,
959 .maxtype = IFLA_VRF_MAX,
960 };
961
962 static int vrf_device_event(struct notifier_block *unused,
963 unsigned long event, void *ptr)
964 {
965 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
966
967 /* only care about unregister events to drop slave references */
968 if (event == NETDEV_UNREGISTER) {
969 struct net_device *vrf_dev;
970
971 if (!netif_is_l3_slave(dev))
972 goto out;
973
974 vrf_dev = netdev_master_upper_dev_get(dev);
975 vrf_del_slave(vrf_dev, dev);
976 }
977 out:
978 return NOTIFY_DONE;
979 }
980
981 static struct notifier_block vrf_notifier_block __read_mostly = {
982 .notifier_call = vrf_device_event,
983 };
984
985 static int __init vrf_init_module(void)
986 {
987 int rc;
988
989 vrf_dst_ops.kmem_cachep =
990 kmem_cache_create("vrf_ip_dst_cache",
991 sizeof(struct rtable), 0,
992 SLAB_HWCACHE_ALIGN,
993 NULL);
994
995 if (!vrf_dst_ops.kmem_cachep)
996 return -ENOMEM;
997
998 rc = init_dst_ops6_kmem_cachep();
999 if (rc != 0)
1000 goto error2;
1001
1002 register_netdevice_notifier(&vrf_notifier_block);
1003
1004 rc = rtnl_link_register(&vrf_link_ops);
1005 if (rc < 0)
1006 goto error;
1007
1008 return 0;
1009
1010 error:
1011 unregister_netdevice_notifier(&vrf_notifier_block);
1012 free_dst_ops6_kmem_cachep();
1013 error2:
1014 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1015 return rc;
1016 }
1017
1018 static void __exit vrf_cleanup_module(void)
1019 {
1020 rtnl_link_unregister(&vrf_link_ops);
1021 unregister_netdevice_notifier(&vrf_notifier_block);
1022 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
1023 free_dst_ops6_kmem_cachep();
1024 }
1025
1026 module_init(vrf_init_module);
1027 module_exit(vrf_cleanup_module);
1028 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1029 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1030 MODULE_LICENSE("GPL");
1031 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1032 MODULE_VERSION(DRV_VERSION);
This page took 0.058412 seconds and 5 git commands to generate.