ipv4, ipv6: Pass net into __ip_local_out and __ip6_local_out
[deliverable/linux.git] / drivers / net / vrf.c
1 /*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_route.h>
34 #include <net/rtnetlink.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38
39 #define RT_FL_TOS(oldflp4) \
40 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
41
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.0"
44
45 #define vrf_master_get_rcu(dev) \
46 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
47
48 struct slave {
49 struct list_head list;
50 struct net_device *dev;
51 };
52
53 struct slave_queue {
54 struct list_head all_slaves;
55 };
56
57 struct net_vrf {
58 struct slave_queue queue;
59 struct rtable *rth;
60 u32 tb_id;
61 };
62
63 struct pcpu_dstats {
64 u64 tx_pkts;
65 u64 tx_bytes;
66 u64 tx_drps;
67 u64 rx_pkts;
68 u64 rx_bytes;
69 struct u64_stats_sync syncp;
70 };
71
72 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
73 {
74 return dst;
75 }
76
77 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
78 {
79 return ip_local_out(sk, skb);
80 }
81
82 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
83 {
84 /* TO-DO: return max ethernet size? */
85 return dst->dev->mtu;
86 }
87
88 static void vrf_dst_destroy(struct dst_entry *dst)
89 {
90 /* our dst lives forever - or until the device is closed */
91 }
92
93 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
94 {
95 return 65535 - 40;
96 }
97
98 static struct dst_ops vrf_dst_ops = {
99 .family = AF_INET,
100 .local_out = vrf_ip_local_out,
101 .check = vrf_ip_check,
102 .mtu = vrf_v4_mtu,
103 .destroy = vrf_dst_destroy,
104 .default_advmss = vrf_default_advmss,
105 };
106
107 static bool is_ip_rx_frame(struct sk_buff *skb)
108 {
109 switch (skb->protocol) {
110 case htons(ETH_P_IP):
111 case htons(ETH_P_IPV6):
112 return true;
113 }
114 return false;
115 }
116
117 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
118 {
119 vrf_dev->stats.tx_errors++;
120 kfree_skb(skb);
121 }
122
123 /* note: already called with rcu_read_lock */
124 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
125 {
126 struct sk_buff *skb = *pskb;
127
128 if (is_ip_rx_frame(skb)) {
129 struct net_device *dev = vrf_master_get_rcu(skb->dev);
130 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
131
132 u64_stats_update_begin(&dstats->syncp);
133 dstats->rx_pkts++;
134 dstats->rx_bytes += skb->len;
135 u64_stats_update_end(&dstats->syncp);
136
137 skb->dev = dev;
138
139 return RX_HANDLER_ANOTHER;
140 }
141 return RX_HANDLER_PASS;
142 }
143
144 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
145 struct rtnl_link_stats64 *stats)
146 {
147 int i;
148
149 for_each_possible_cpu(i) {
150 const struct pcpu_dstats *dstats;
151 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
152 unsigned int start;
153
154 dstats = per_cpu_ptr(dev->dstats, i);
155 do {
156 start = u64_stats_fetch_begin_irq(&dstats->syncp);
157 tbytes = dstats->tx_bytes;
158 tpkts = dstats->tx_pkts;
159 tdrops = dstats->tx_drps;
160 rbytes = dstats->rx_bytes;
161 rpkts = dstats->rx_pkts;
162 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
163 stats->tx_bytes += tbytes;
164 stats->tx_packets += tpkts;
165 stats->tx_dropped += tdrops;
166 stats->rx_bytes += rbytes;
167 stats->rx_packets += rpkts;
168 }
169 return stats;
170 }
171
172 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
173 struct net_device *dev)
174 {
175 vrf_tx_error(dev, skb);
176 return NET_XMIT_DROP;
177 }
178
179 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
180 struct net_device *vrf_dev)
181 {
182 struct rtable *rt;
183 int err = 1;
184
185 rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
186 if (IS_ERR(rt))
187 goto out;
188
189 /* TO-DO: what about broadcast ? */
190 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
191 ip_rt_put(rt);
192 goto out;
193 }
194
195 skb_dst_drop(skb);
196 skb_dst_set(skb, &rt->dst);
197 err = 0;
198 out:
199 return err;
200 }
201
202 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
203 struct net_device *vrf_dev)
204 {
205 struct iphdr *ip4h = ip_hdr(skb);
206 int ret = NET_XMIT_DROP;
207 struct flowi4 fl4 = {
208 /* needed to match OIF rule */
209 .flowi4_oif = vrf_dev->ifindex,
210 .flowi4_iif = LOOPBACK_IFINDEX,
211 .flowi4_tos = RT_TOS(ip4h->tos),
212 .flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
213 FLOWI_FLAG_SKIP_NH_OIF,
214 .daddr = ip4h->daddr,
215 };
216
217 if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
218 goto err;
219
220 if (!ip4h->saddr) {
221 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
222 RT_SCOPE_LINK);
223 }
224
225 ret = ip_local_out(skb->sk, skb);
226 if (unlikely(net_xmit_eval(ret)))
227 vrf_dev->stats.tx_errors++;
228 else
229 ret = NET_XMIT_SUCCESS;
230
231 out:
232 return ret;
233 err:
234 vrf_tx_error(vrf_dev, skb);
235 goto out;
236 }
237
238 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
239 {
240 /* strip the ethernet header added for pass through VRF device */
241 __skb_pull(skb, skb_network_offset(skb));
242
243 switch (skb->protocol) {
244 case htons(ETH_P_IP):
245 return vrf_process_v4_outbound(skb, dev);
246 case htons(ETH_P_IPV6):
247 return vrf_process_v6_outbound(skb, dev);
248 default:
249 vrf_tx_error(dev, skb);
250 return NET_XMIT_DROP;
251 }
252 }
253
254 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
255 {
256 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
257
258 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
259 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
260
261 u64_stats_update_begin(&dstats->syncp);
262 dstats->tx_pkts++;
263 dstats->tx_bytes += skb->len;
264 u64_stats_update_end(&dstats->syncp);
265 } else {
266 this_cpu_inc(dev->dstats->tx_drps);
267 }
268
269 return ret;
270 }
271
272 /* modelled after ip_finish_output2 */
273 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
274 {
275 struct dst_entry *dst = skb_dst(skb);
276 struct rtable *rt = (struct rtable *)dst;
277 struct net_device *dev = dst->dev;
278 unsigned int hh_len = LL_RESERVED_SPACE(dev);
279 struct neighbour *neigh;
280 u32 nexthop;
281 int ret = -EINVAL;
282
283 /* Be paranoid, rather than too clever. */
284 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
285 struct sk_buff *skb2;
286
287 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
288 if (!skb2) {
289 ret = -ENOMEM;
290 goto err;
291 }
292 if (skb->sk)
293 skb_set_owner_w(skb2, skb->sk);
294
295 consume_skb(skb);
296 skb = skb2;
297 }
298
299 rcu_read_lock_bh();
300
301 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
302 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
303 if (unlikely(!neigh))
304 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
305 if (!IS_ERR(neigh))
306 ret = dst_neigh_output(dst, neigh, skb);
307
308 rcu_read_unlock_bh();
309 err:
310 if (unlikely(ret < 0))
311 vrf_tx_error(skb->dev, skb);
312 return ret;
313 }
314
315 static int vrf_output(struct sock *sk, struct sk_buff *skb)
316 {
317 struct net_device *dev = skb_dst(skb)->dev;
318 struct net *net = dev_net(dev);
319
320 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
321
322 skb->dev = dev;
323 skb->protocol = htons(ETH_P_IP);
324
325 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
326 net, sk, skb, NULL, dev,
327 vrf_finish_output,
328 !(IPCB(skb)->flags & IPSKB_REROUTED));
329 }
330
331 static void vrf_rtable_destroy(struct net_vrf *vrf)
332 {
333 struct dst_entry *dst = (struct dst_entry *)vrf->rth;
334
335 dst_destroy(dst);
336 vrf->rth = NULL;
337 }
338
339 static struct rtable *vrf_rtable_create(struct net_device *dev)
340 {
341 struct net_vrf *vrf = netdev_priv(dev);
342 struct rtable *rth;
343
344 rth = dst_alloc(&vrf_dst_ops, dev, 2,
345 DST_OBSOLETE_NONE,
346 (DST_HOST | DST_NOPOLICY | DST_NOXFRM));
347 if (rth) {
348 rth->dst.output = vrf_output;
349 rth->rt_genid = rt_genid_ipv4(dev_net(dev));
350 rth->rt_flags = 0;
351 rth->rt_type = RTN_UNICAST;
352 rth->rt_is_input = 0;
353 rth->rt_iif = 0;
354 rth->rt_pmtu = 0;
355 rth->rt_gateway = 0;
356 rth->rt_uses_gateway = 0;
357 rth->rt_table_id = vrf->tb_id;
358 INIT_LIST_HEAD(&rth->rt_uncached);
359 rth->rt_uncached_list = NULL;
360 }
361
362 return rth;
363 }
364
365 /**************************** device handling ********************/
366
367 /* cycle interface to flush neighbor cache and move routes across tables */
368 static void cycle_netdev(struct net_device *dev)
369 {
370 unsigned int flags = dev->flags;
371 int ret;
372
373 if (!netif_running(dev))
374 return;
375
376 ret = dev_change_flags(dev, flags & ~IFF_UP);
377 if (ret >= 0)
378 ret = dev_change_flags(dev, flags);
379
380 if (ret < 0) {
381 netdev_err(dev,
382 "Failed to cycle device %s; route tables might be wrong!\n",
383 dev->name);
384 }
385 }
386
387 static struct slave *__vrf_find_slave_dev(struct slave_queue *queue,
388 struct net_device *dev)
389 {
390 struct list_head *head = &queue->all_slaves;
391 struct slave *slave;
392
393 list_for_each_entry(slave, head, list) {
394 if (slave->dev == dev)
395 return slave;
396 }
397
398 return NULL;
399 }
400
401 /* inverse of __vrf_insert_slave */
402 static void __vrf_remove_slave(struct slave_queue *queue, struct slave *slave)
403 {
404 list_del(&slave->list);
405 }
406
407 static void __vrf_insert_slave(struct slave_queue *queue, struct slave *slave)
408 {
409 list_add(&slave->list, &queue->all_slaves);
410 }
411
412 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
413 {
414 struct slave *slave = kzalloc(sizeof(*slave), GFP_KERNEL);
415 struct net_vrf *vrf = netdev_priv(dev);
416 struct slave_queue *queue = &vrf->queue;
417 int ret = -ENOMEM;
418
419 if (!slave)
420 goto out_fail;
421
422 slave->dev = port_dev;
423
424 /* register the packet handler for slave ports */
425 ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
426 if (ret) {
427 netdev_err(port_dev,
428 "Device %s failed to register rx_handler\n",
429 port_dev->name);
430 goto out_fail;
431 }
432
433 ret = netdev_master_upper_dev_link(port_dev, dev);
434 if (ret < 0)
435 goto out_unregister;
436
437 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
438 __vrf_insert_slave(queue, slave);
439 cycle_netdev(port_dev);
440
441 return 0;
442
443 out_unregister:
444 netdev_rx_handler_unregister(port_dev);
445 out_fail:
446 kfree(slave);
447 return ret;
448 }
449
450 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
451 {
452 if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
453 return -EINVAL;
454
455 return do_vrf_add_slave(dev, port_dev);
456 }
457
458 /* inverse of do_vrf_add_slave */
459 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
460 {
461 struct net_vrf *vrf = netdev_priv(dev);
462 struct slave_queue *queue = &vrf->queue;
463 struct slave *slave;
464
465 netdev_upper_dev_unlink(port_dev, dev);
466 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
467
468 netdev_rx_handler_unregister(port_dev);
469
470 cycle_netdev(port_dev);
471
472 slave = __vrf_find_slave_dev(queue, port_dev);
473 if (slave)
474 __vrf_remove_slave(queue, slave);
475
476 kfree(slave);
477
478 return 0;
479 }
480
481 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
482 {
483 return do_vrf_del_slave(dev, port_dev);
484 }
485
486 static void vrf_dev_uninit(struct net_device *dev)
487 {
488 struct net_vrf *vrf = netdev_priv(dev);
489 struct slave_queue *queue = &vrf->queue;
490 struct list_head *head = &queue->all_slaves;
491 struct slave *slave, *next;
492
493 vrf_rtable_destroy(vrf);
494
495 list_for_each_entry_safe(slave, next, head, list)
496 vrf_del_slave(dev, slave->dev);
497
498 free_percpu(dev->dstats);
499 dev->dstats = NULL;
500 }
501
502 static int vrf_dev_init(struct net_device *dev)
503 {
504 struct net_vrf *vrf = netdev_priv(dev);
505
506 INIT_LIST_HEAD(&vrf->queue.all_slaves);
507
508 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
509 if (!dev->dstats)
510 goto out_nomem;
511
512 /* create the default dst which points back to us */
513 vrf->rth = vrf_rtable_create(dev);
514 if (!vrf->rth)
515 goto out_stats;
516
517 dev->flags = IFF_MASTER | IFF_NOARP;
518
519 return 0;
520
521 out_stats:
522 free_percpu(dev->dstats);
523 dev->dstats = NULL;
524 out_nomem:
525 return -ENOMEM;
526 }
527
528 static const struct net_device_ops vrf_netdev_ops = {
529 .ndo_init = vrf_dev_init,
530 .ndo_uninit = vrf_dev_uninit,
531 .ndo_start_xmit = vrf_xmit,
532 .ndo_get_stats64 = vrf_get_stats64,
533 .ndo_add_slave = vrf_add_slave,
534 .ndo_del_slave = vrf_del_slave,
535 };
536
537 static u32 vrf_fib_table(const struct net_device *dev)
538 {
539 struct net_vrf *vrf = netdev_priv(dev);
540
541 return vrf->tb_id;
542 }
543
544 static struct rtable *vrf_get_rtable(const struct net_device *dev,
545 const struct flowi4 *fl4)
546 {
547 struct rtable *rth = NULL;
548
549 if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
550 struct net_vrf *vrf = netdev_priv(dev);
551
552 rth = vrf->rth;
553 atomic_inc(&rth->dst.__refcnt);
554 }
555
556 return rth;
557 }
558
559 /* called under rcu_read_lock */
560 static void vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
561 {
562 struct fib_result res = { .tclassid = 0 };
563 struct net *net = dev_net(dev);
564 u32 orig_tos = fl4->flowi4_tos;
565 u8 flags = fl4->flowi4_flags;
566 u8 scope = fl4->flowi4_scope;
567 u8 tos = RT_FL_TOS(fl4);
568
569 if (unlikely(!fl4->daddr))
570 return;
571
572 fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
573 fl4->flowi4_iif = LOOPBACK_IFINDEX;
574 fl4->flowi4_tos = tos & IPTOS_RT_MASK;
575 fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
576 RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
577
578 if (!fib_lookup(net, fl4, &res, 0)) {
579 if (res.type == RTN_LOCAL)
580 fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
581 else
582 fib_select_path(net, &res, fl4, -1);
583 }
584
585 fl4->flowi4_flags = flags;
586 fl4->flowi4_tos = orig_tos;
587 fl4->flowi4_scope = scope;
588 }
589
590 static const struct l3mdev_ops vrf_l3mdev_ops = {
591 .l3mdev_fib_table = vrf_fib_table,
592 .l3mdev_get_rtable = vrf_get_rtable,
593 .l3mdev_get_saddr = vrf_get_saddr,
594 };
595
596 static void vrf_get_drvinfo(struct net_device *dev,
597 struct ethtool_drvinfo *info)
598 {
599 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
600 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
601 }
602
603 static const struct ethtool_ops vrf_ethtool_ops = {
604 .get_drvinfo = vrf_get_drvinfo,
605 };
606
607 static void vrf_setup(struct net_device *dev)
608 {
609 ether_setup(dev);
610
611 /* Initialize the device structure. */
612 dev->netdev_ops = &vrf_netdev_ops;
613 dev->l3mdev_ops = &vrf_l3mdev_ops;
614 dev->ethtool_ops = &vrf_ethtool_ops;
615 dev->destructor = free_netdev;
616
617 /* Fill in device structure with ethernet-generic values. */
618 eth_hw_addr_random(dev);
619
620 /* don't acquire vrf device's netif_tx_lock when transmitting */
621 dev->features |= NETIF_F_LLTX;
622
623 /* don't allow vrf devices to change network namespaces. */
624 dev->features |= NETIF_F_NETNS_LOCAL;
625 }
626
627 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
628 {
629 if (tb[IFLA_ADDRESS]) {
630 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
631 return -EINVAL;
632 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
633 return -EADDRNOTAVAIL;
634 }
635 return 0;
636 }
637
638 static void vrf_dellink(struct net_device *dev, struct list_head *head)
639 {
640 unregister_netdevice_queue(dev, head);
641 }
642
643 static int vrf_newlink(struct net *src_net, struct net_device *dev,
644 struct nlattr *tb[], struct nlattr *data[])
645 {
646 struct net_vrf *vrf = netdev_priv(dev);
647 int err;
648
649 if (!data || !data[IFLA_VRF_TABLE])
650 return -EINVAL;
651
652 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
653
654 dev->priv_flags |= IFF_L3MDEV_MASTER;
655
656 err = register_netdevice(dev);
657 if (err < 0)
658 goto out_fail;
659
660 return 0;
661
662 out_fail:
663 free_netdev(dev);
664 return err;
665 }
666
667 static size_t vrf_nl_getsize(const struct net_device *dev)
668 {
669 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
670 }
671
672 static int vrf_fillinfo(struct sk_buff *skb,
673 const struct net_device *dev)
674 {
675 struct net_vrf *vrf = netdev_priv(dev);
676
677 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
678 }
679
680 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
681 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
682 };
683
684 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
685 .kind = DRV_NAME,
686 .priv_size = sizeof(struct net_vrf),
687
688 .get_size = vrf_nl_getsize,
689 .policy = vrf_nl_policy,
690 .validate = vrf_validate,
691 .fill_info = vrf_fillinfo,
692
693 .newlink = vrf_newlink,
694 .dellink = vrf_dellink,
695 .setup = vrf_setup,
696 .maxtype = IFLA_VRF_MAX,
697 };
698
699 static int vrf_device_event(struct notifier_block *unused,
700 unsigned long event, void *ptr)
701 {
702 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
703
704 /* only care about unregister events to drop slave references */
705 if (event == NETDEV_UNREGISTER) {
706 struct net_device *vrf_dev;
707
708 if (!netif_is_l3_slave(dev))
709 goto out;
710
711 vrf_dev = netdev_master_upper_dev_get(dev);
712 vrf_del_slave(vrf_dev, dev);
713 }
714 out:
715 return NOTIFY_DONE;
716 }
717
718 static struct notifier_block vrf_notifier_block __read_mostly = {
719 .notifier_call = vrf_device_event,
720 };
721
722 static int __init vrf_init_module(void)
723 {
724 int rc;
725
726 vrf_dst_ops.kmem_cachep =
727 kmem_cache_create("vrf_ip_dst_cache",
728 sizeof(struct rtable), 0,
729 SLAB_HWCACHE_ALIGN,
730 NULL);
731
732 if (!vrf_dst_ops.kmem_cachep)
733 return -ENOMEM;
734
735 register_netdevice_notifier(&vrf_notifier_block);
736
737 rc = rtnl_link_register(&vrf_link_ops);
738 if (rc < 0)
739 goto error;
740
741 return 0;
742
743 error:
744 unregister_netdevice_notifier(&vrf_notifier_block);
745 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
746 return rc;
747 }
748
749 static void __exit vrf_cleanup_module(void)
750 {
751 rtnl_link_unregister(&vrf_link_ops);
752 unregister_netdevice_notifier(&vrf_notifier_block);
753 kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
754 }
755
756 module_init(vrf_init_module);
757 module_exit(vrf_cleanup_module);
758 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
759 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
760 MODULE_LICENSE("GPL");
761 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
762 MODULE_VERSION(DRV_VERSION);
This page took 0.056314 seconds and 5 git commands to generate.