WAN: convert drivers to use built-in netdev_stats
[deliverable/linux.git] / drivers / net / wan / farsync.c
1 /*
2 * FarSync WAN driver for Linux (2.6.x kernel version)
3 *
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5 *
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
7 * www.farsite.co.uk
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/ioport.h>
23 #include <linux/init.h>
24 #include <linux/if.h>
25 #include <linux/hdlc.h>
26 #include <asm/io.h>
27 #include <asm/uaccess.h>
28
29 #include "farsync.h"
30
31 /*
32 * Module info
33 */
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
37
38 /* Driver configuration and global parameters
39 * ==========================================
40 */
41
42 /* Number of ports (per card) and cards supported
43 */
44 #define FST_MAX_PORTS 4
45 #define FST_MAX_CARDS 32
46
47 /* Default parameters for the link
48 */
49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
50 * useful, the syncppp module forces
51 * this down assuming a slower line I
52 * guess.
53 */
54 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
55 * of frames on the way down to the card
56 * so that we can keep the card busy
57 * and maximise throughput
58 */
59 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 * network layer */
61 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
62 * control from network layer */
63 #define FST_MAX_MTU 8000 /* Huge but possible */
64 #define FST_DEF_MTU 1500 /* Common sane value */
65
66 #define FST_TX_TIMEOUT (2*HZ)
67
68 #ifdef ARPHRD_RAWHDLC
69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70 #else
71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
72 #endif
73
74 /*
75 * Modules parameters and associated varaibles
76 */
77 static int fst_txq_low = FST_LOW_WATER_MARK;
78 static int fst_txq_high = FST_HIGH_WATER_MARK;
79 static int fst_max_reads = 7;
80 static int fst_excluded_cards = 0;
81 static int fst_excluded_list[FST_MAX_CARDS];
82
83 module_param(fst_txq_low, int, 0);
84 module_param(fst_txq_high, int, 0);
85 module_param(fst_max_reads, int, 0);
86 module_param(fst_excluded_cards, int, 0);
87 module_param_array(fst_excluded_list, int, NULL, 0);
88
89 /* Card shared memory layout
90 * =========================
91 */
92 #pragma pack(1)
93
94 /* This information is derived in part from the FarSite FarSync Smc.h
95 * file. Unfortunately various name clashes and the non-portability of the
96 * bit field declarations in that file have meant that I have chosen to
97 * recreate the information here.
98 *
99 * The SMC (Shared Memory Configuration) has a version number that is
100 * incremented every time there is a significant change. This number can
101 * be used to check that we have not got out of step with the firmware
102 * contained in the .CDE files.
103 */
104 #define SMC_VERSION 24
105
106 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
107
108 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
109 * configuration structure */
110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
111 * buffers */
112
113 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
114 #define LEN_RX_BUFFER 8192
115
116 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
117 #define LEN_SMALL_RX_BUFFER 256
118
119 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
120 #define NUM_RX_BUFFER 8
121
122 /* Interrupt retry time in milliseconds */
123 #define INT_RETRY_TIME 2
124
125 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
126 * of buffer descriptors. The structure is almost identical to that used
127 * in the LANCE Ethernet controllers. Details available as PDF from the
128 * AMD web site: http://www.amd.com/products/epd/processors/\
129 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
130 */
131 struct txdesc { /* Transmit descriptor */
132 volatile u16 ladr; /* Low order address of packet. This is a
133 * linear address in the Am186 memory space
134 */
135 volatile u8 hadr; /* High order address. Low 4 bits only, high 4
136 * bits must be zero
137 */
138 volatile u8 bits; /* Status and config */
139 volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
140 * Transmit terminal count interrupt enable in
141 * top bit.
142 */
143 u16 unused; /* Not used in Tx */
144 };
145
146 struct rxdesc { /* Receive descriptor */
147 volatile u16 ladr; /* Low order address of packet */
148 volatile u8 hadr; /* High order address */
149 volatile u8 bits; /* Status and config */
150 volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
151 * Receive terminal count interrupt enable in
152 * top bit.
153 */
154 volatile u16 mcnt; /* Message byte count (15 bits) */
155 };
156
157 /* Convert a length into the 15 bit 2's complement */
158 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
159 /* Since we need to set the high bit to enable the completion interrupt this
160 * can be made a lot simpler
161 */
162 #define cnv_bcnt(len) (-(len))
163
164 /* Status and config bits for the above */
165 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
166 #define TX_STP 0x02 /* Tx: start of packet */
167 #define TX_ENP 0x01 /* Tx: end of packet */
168 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
169 #define RX_FRAM 0x20 /* Rx: framing error */
170 #define RX_OFLO 0x10 /* Rx: overflow error */
171 #define RX_CRC 0x08 /* Rx: CRC error */
172 #define RX_HBUF 0x04 /* Rx: buffer error */
173 #define RX_STP 0x02 /* Rx: start of packet */
174 #define RX_ENP 0x01 /* Rx: end of packet */
175
176 /* Interrupts from the card are caused by various events which are presented
177 * in a circular buffer as several events may be processed on one physical int
178 */
179 #define MAX_CIRBUFF 32
180
181 struct cirbuff {
182 u8 rdindex; /* read, then increment and wrap */
183 u8 wrindex; /* write, then increment and wrap */
184 u8 evntbuff[MAX_CIRBUFF];
185 };
186
187 /* Interrupt event codes.
188 * Where appropriate the two low order bits indicate the port number
189 */
190 #define CTLA_CHG 0x18 /* Control signal changed */
191 #define CTLB_CHG 0x19
192 #define CTLC_CHG 0x1A
193 #define CTLD_CHG 0x1B
194
195 #define INIT_CPLT 0x20 /* Initialisation complete */
196 #define INIT_FAIL 0x21 /* Initialisation failed */
197
198 #define ABTA_SENT 0x24 /* Abort sent */
199 #define ABTB_SENT 0x25
200 #define ABTC_SENT 0x26
201 #define ABTD_SENT 0x27
202
203 #define TXA_UNDF 0x28 /* Transmission underflow */
204 #define TXB_UNDF 0x29
205 #define TXC_UNDF 0x2A
206 #define TXD_UNDF 0x2B
207
208 #define F56_INT 0x2C
209 #define M32_INT 0x2D
210
211 #define TE1_ALMA 0x30
212
213 /* Port physical configuration. See farsync.h for field values */
214 struct port_cfg {
215 u16 lineInterface; /* Physical interface type */
216 u8 x25op; /* Unused at present */
217 u8 internalClock; /* 1 => internal clock, 0 => external */
218 u8 transparentMode; /* 1 => on, 0 => off */
219 u8 invertClock; /* 0 => normal, 1 => inverted */
220 u8 padBytes[6]; /* Padding */
221 u32 lineSpeed; /* Speed in bps */
222 };
223
224 /* TE1 port physical configuration */
225 struct su_config {
226 u32 dataRate;
227 u8 clocking;
228 u8 framing;
229 u8 structure;
230 u8 interface;
231 u8 coding;
232 u8 lineBuildOut;
233 u8 equalizer;
234 u8 transparentMode;
235 u8 loopMode;
236 u8 range;
237 u8 txBufferMode;
238 u8 rxBufferMode;
239 u8 startingSlot;
240 u8 losThreshold;
241 u8 enableIdleCode;
242 u8 idleCode;
243 u8 spare[44];
244 };
245
246 /* TE1 Status */
247 struct su_status {
248 u32 receiveBufferDelay;
249 u32 framingErrorCount;
250 u32 codeViolationCount;
251 u32 crcErrorCount;
252 u32 lineAttenuation;
253 u8 portStarted;
254 u8 lossOfSignal;
255 u8 receiveRemoteAlarm;
256 u8 alarmIndicationSignal;
257 u8 spare[40];
258 };
259
260 /* Finally sling all the above together into the shared memory structure.
261 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
262 * evolving under NT for some time so I guess we're stuck with it.
263 * The structure starts at offset SMC_BASE.
264 * See farsync.h for some field values.
265 */
266 struct fst_shared {
267 /* DMA descriptor rings */
268 struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
269 struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
270
271 /* Obsolete small buffers */
272 u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
273 u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
274
275 u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
276 * 0xFF => halted
277 */
278
279 u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
280 * set to 0xEE by host to acknowledge interrupt
281 */
282
283 u16 smcVersion; /* Must match SMC_VERSION */
284
285 u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
286 * version, RR = revision and BB = build
287 */
288
289 u16 txa_done; /* Obsolete completion flags */
290 u16 rxa_done;
291 u16 txb_done;
292 u16 rxb_done;
293 u16 txc_done;
294 u16 rxc_done;
295 u16 txd_done;
296 u16 rxd_done;
297
298 u16 mailbox[4]; /* Diagnostics mailbox. Not used */
299
300 struct cirbuff interruptEvent; /* interrupt causes */
301
302 u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
303 u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
304
305 struct port_cfg portConfig[FST_MAX_PORTS];
306
307 u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
308
309 u16 cableStatus; /* lsb: 0=> present, 1=> absent */
310
311 u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
312 u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
313
314 u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
315 u16 cardMailbox[4]; /* Not used */
316
317 /* Number of times the card thinks the host has
318 * missed an interrupt by not acknowledging
319 * within 2mS (I guess NT has problems)
320 */
321 u32 interruptRetryCount;
322
323 /* Driver private data used as an ID. We'll not
324 * use this as I'd rather keep such things
325 * in main memory rather than on the PCI bus
326 */
327 u32 portHandle[FST_MAX_PORTS];
328
329 /* Count of Tx underflows for stats */
330 u32 transmitBufferUnderflow[FST_MAX_PORTS];
331
332 /* Debounced V.24 control input status */
333 u32 v24DebouncedSts[FST_MAX_PORTS];
334
335 /* Adapter debounce timers. Don't touch */
336 u32 ctsTimer[FST_MAX_PORTS];
337 u32 ctsTimerRun[FST_MAX_PORTS];
338 u32 dcdTimer[FST_MAX_PORTS];
339 u32 dcdTimerRun[FST_MAX_PORTS];
340
341 u32 numberOfPorts; /* Number of ports detected at startup */
342
343 u16 _reserved[64];
344
345 u16 cardMode; /* Bit-mask to enable features:
346 * Bit 0: 1 enables LED identify mode
347 */
348
349 u16 portScheduleOffset;
350
351 struct su_config suConfig; /* TE1 Bits */
352 struct su_status suStatus;
353
354 u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
355 * the structure and marks the end of shared
356 * memory. Adapter code initializes it as
357 * END_SIG.
358 */
359 };
360
361 /* endOfSmcSignature value */
362 #define END_SIG 0x12345678
363
364 /* Mailbox values. (portMailbox) */
365 #define NOP 0 /* No operation */
366 #define ACK 1 /* Positive acknowledgement to PC driver */
367 #define NAK 2 /* Negative acknowledgement to PC driver */
368 #define STARTPORT 3 /* Start an HDLC port */
369 #define STOPPORT 4 /* Stop an HDLC port */
370 #define ABORTTX 5 /* Abort the transmitter for a port */
371 #define SETV24O 6 /* Set V24 outputs */
372
373 /* PLX Chip Register Offsets */
374 #define CNTRL_9052 0x50 /* Control Register */
375 #define CNTRL_9054 0x6c /* Control Register */
376
377 #define INTCSR_9052 0x4c /* Interrupt control/status register */
378 #define INTCSR_9054 0x68 /* Interrupt control/status register */
379
380 /* 9054 DMA Registers */
381 /*
382 * Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
384 */
385 #define DMAMODE0 0x80
386 #define DMAPADR0 0x84
387 #define DMALADR0 0x88
388 #define DMASIZ0 0x8c
389 #define DMADPR0 0x90
390 #define DMAMODE1 0x94
391 #define DMAPADR1 0x98
392 #define DMALADR1 0x9c
393 #define DMASIZ1 0xa0
394 #define DMADPR1 0xa4
395 #define DMACSR0 0xa8
396 #define DMACSR1 0xa9
397 #define DMAARB 0xac
398 #define DMATHR 0xb0
399 #define DMADAC0 0xb4
400 #define DMADAC1 0xb8
401 #define DMAMARBR 0xac
402
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT 0x01
405 #define FST_TX_DMA_INT 0x02
406 #define FST_CARD_INT 0x04
407
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 struct buf_window {
410 u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
411 u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
412 };
413
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
416
417 #pragma pack()
418
419 /* Device driver private information
420 * =================================
421 */
422 /* Per port (line or channel) information
423 */
424 struct fst_port_info {
425 struct net_device *dev; /* Device struct - must be first */
426 struct fst_card_info *card; /* Card we're associated with */
427 int index; /* Port index on the card */
428 int hwif; /* Line hardware (lineInterface copy) */
429 int run; /* Port is running */
430 int mode; /* Normal or FarSync raw */
431 int rxpos; /* Next Rx buffer to use */
432 int txpos; /* Next Tx buffer to use */
433 int txipos; /* Next Tx buffer to check for free */
434 int start; /* Indication of start/stop to network */
435 /*
436 * A sixteen entry transmit queue
437 */
438 int txqs; /* index to get next buffer to tx */
439 int txqe; /* index to queue next packet */
440 struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
441 int rxqdepth;
442 };
443
444 /* Per card information
445 */
446 struct fst_card_info {
447 char __iomem *mem; /* Card memory mapped to kernel space */
448 char __iomem *ctlmem; /* Control memory for PCI cards */
449 unsigned int phys_mem; /* Physical memory window address */
450 unsigned int phys_ctlmem; /* Physical control memory address */
451 unsigned int irq; /* Interrupt request line number */
452 unsigned int nports; /* Number of serial ports */
453 unsigned int type; /* Type index of card */
454 unsigned int state; /* State of card */
455 spinlock_t card_lock; /* Lock for SMP access */
456 unsigned short pci_conf; /* PCI card config in I/O space */
457 /* Per port info */
458 struct fst_port_info ports[FST_MAX_PORTS];
459 struct pci_dev *device; /* Information about the pci device */
460 int card_no; /* Inst of the card on the system */
461 int family; /* TxP or TxU */
462 int dmarx_in_progress;
463 int dmatx_in_progress;
464 unsigned long int_count;
465 unsigned long int_time_ave;
466 void *rx_dma_handle_host;
467 dma_addr_t rx_dma_handle_card;
468 void *tx_dma_handle_host;
469 dma_addr_t tx_dma_handle_card;
470 struct sk_buff *dma_skb_rx;
471 struct fst_port_info *dma_port_rx;
472 struct fst_port_info *dma_port_tx;
473 int dma_len_rx;
474 int dma_len_tx;
475 int dma_txpos;
476 int dma_rxpos;
477 };
478
479 /* Convert an HDLC device pointer into a port info pointer and similar */
480 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
481 #define port_to_dev(P) ((P)->dev)
482
483
484 /*
485 * Shared memory window access macros
486 *
487 * We have a nice memory based structure above, which could be directly
488 * mapped on i386 but might not work on other architectures unless we use
489 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
490 * physical offsets so we have to convert. The only saving grace is that
491 * this should all collapse back to a simple indirection eventually.
492 */
493 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
494
495 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
497 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
498
499 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
501 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
502
503 /*
504 * Debug support
505 */
506 #if FST_DEBUG
507
508 static int fst_debug_mask = { FST_DEBUG };
509
510 /* Most common debug activity is to print something if the corresponding bit
511 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
512 * support variable numbers of macro parameters. The inverted if prevents us
513 * eating someone else's else clause.
514 */
515 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
516 ; \
517 else \
518 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
519
520 #else
521 #define dbg(X...) /* NOP */
522 #endif
523
524 /* Printing short cuts
525 */
526 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
527 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
528 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
529
530 /*
531 * PCI ID lookup table
532 */
533 static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
534 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
535 PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536
537 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
538 PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539
540 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
541 PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542
543 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
544 PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545
546 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
547 PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548
549 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
550 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551
552 {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
553 PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554 {0,} /* End */
555 };
556
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558
559 /*
560 * Device Driver Work Queues
561 *
562 * So that we don't spend too much time processing events in the
563 * Interrupt Service routine, we will declare a work queue per Card
564 * and make the ISR schedule a task in the queue for later execution.
565 * In the 2.4 Kernel we used to use the immediate queue for BH's
566 * Now that they are gone, tasklets seem to be much better than work
567 * queues.
568 */
569
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586 unsigned long flags;
587 u64 mask;
588
589 /*
590 * Grab the queue exclusively
591 */
592 spin_lock_irqsave(&fst_work_q_lock, flags);
593
594 /*
595 * Making an entry in the queue is simply a matter of setting
596 * a bit for the card indicating that there is work to do in the
597 * bottom half for the card. Note the limitation of 64 cards.
598 * That ought to be enough
599 */
600 mask = 1 << card_index;
601 *queue |= mask;
602 spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608 unsigned long flags;
609 u64 work_txq;
610 int i;
611
612 /*
613 * Grab the queue exclusively
614 */
615 dbg(DBG_TX, "fst_process_tx_work_q\n");
616 spin_lock_irqsave(&fst_work_q_lock, flags);
617 work_txq = fst_work_txq;
618 fst_work_txq = 0;
619 spin_unlock_irqrestore(&fst_work_q_lock, flags);
620
621 /*
622 * Call the bottom half for each card with work waiting
623 */
624 for (i = 0; i < FST_MAX_CARDS; i++) {
625 if (work_txq & 0x01) {
626 if (fst_card_array[i] != NULL) {
627 dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628 do_bottom_half_tx(fst_card_array[i]);
629 }
630 }
631 work_txq = work_txq >> 1;
632 }
633 }
634
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638 unsigned long flags;
639 u64 work_intq;
640 int i;
641
642 /*
643 * Grab the queue exclusively
644 */
645 dbg(DBG_INTR, "fst_process_int_work_q\n");
646 spin_lock_irqsave(&fst_work_q_lock, flags);
647 work_intq = fst_work_intq;
648 fst_work_intq = 0;
649 spin_unlock_irqrestore(&fst_work_q_lock, flags);
650
651 /*
652 * Call the bottom half for each card with work waiting
653 */
654 for (i = 0; i < FST_MAX_CARDS; i++) {
655 if (work_intq & 0x01) {
656 if (fst_card_array[i] != NULL) {
657 dbg(DBG_INTR,
658 "Calling rx & tx bh for card %d\n", i);
659 do_bottom_half_rx(fst_card_array[i]);
660 do_bottom_half_tx(fst_card_array[i]);
661 }
662 }
663 work_intq = work_intq >> 1;
664 }
665 }
666
667 /* Card control functions
668 * ======================
669 */
670 /* Place the processor in reset state
671 *
672 * Used to be a simple write to card control space but a glitch in the latest
673 * AMD Am186CH processor means that we now have to do it by asserting and de-
674 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675 * at offset 9052_CNTRL. Note the updates for the TXU.
676 */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680 unsigned char interrupt_line_register;
681 unsigned long j = jiffies + 1;
682 unsigned int regval;
683
684 if (card->family == FST_FAMILY_TXU) {
685 if (pci_read_config_byte
686 (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687 dbg(DBG_ASS,
688 "Error in reading interrupt line register\n");
689 }
690 /*
691 * Assert PLX software reset and Am186 hardware reset
692 * and then deassert the PLX software reset but 186 still in reset
693 */
694 outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696 /*
697 * We are delaying here to allow the 9054 to reset itself
698 */
699 j = jiffies + 1;
700 while (jiffies < j)
701 /* Do nothing */ ;
702 outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703 /*
704 * We are delaying here to allow the 9054 to reload its eeprom
705 */
706 j = jiffies + 1;
707 while (jiffies < j)
708 /* Do nothing */ ;
709 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710
711 if (pci_write_config_byte
712 (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713 dbg(DBG_ASS,
714 "Error in writing interrupt line register\n");
715 }
716
717 } else {
718 regval = inl(card->pci_conf + CNTRL_9052);
719
720 outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721 outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722 }
723 }
724
725 /* Release the processor from reset
726 */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730 if (card->family == FST_FAMILY_TXU) {
731 /*
732 * Force posted writes to complete
733 */
734 (void) readb(card->mem);
735
736 /*
737 * Release LRESET DO = 1
738 * Then release Local Hold, DO = 1
739 */
740 outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741 outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742 } else {
743 (void) readb(card->ctlmem);
744 }
745 }
746
747 /* Clear the cards interrupt flag
748 */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752 if (card->family == FST_FAMILY_TXU) {
753 (void) readb(card->ctlmem);
754 } else {
755 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756 */
757 outw(0x0543, card->pci_conf + INTCSR_9052);
758 }
759 }
760
761 /* Enable card interrupts
762 */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766 if (card->family == FST_FAMILY_TXU) {
767 outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768 } else {
769 outw(0x0543, card->pci_conf + INTCSR_9052);
770 }
771 }
772
773 /* Disable card interrupts
774 */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778 if (card->family == FST_FAMILY_TXU) {
779 outl(0x00000000, card->pci_conf + INTCSR_9054);
780 } else {
781 outw(0x0000, card->pci_conf + INTCSR_9052);
782 }
783 }
784
785 /* Process the result of trying to pass a received frame up the stack
786 */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790 switch (rx_status) {
791 case NET_RX_SUCCESS:
792 {
793 /*
794 * Nothing to do here
795 */
796 break;
797 }
798
799 case NET_RX_CN_LOW:
800 {
801 dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
802 break;
803 }
804
805 case NET_RX_CN_MOD:
806 {
807 dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
808 break;
809 }
810
811 case NET_RX_CN_HIGH:
812 {
813 dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
814 break;
815 }
816
817 case NET_RX_DROP:
818 {
819 dbg(DBG_ASS, "%s: Received packet dropped\n", name);
820 break;
821 }
822 }
823 }
824
825 /* Initilaise DMA for PLX 9054
826 */
827 static inline void
828 fst_init_dma(struct fst_card_info *card)
829 {
830 /*
831 * This is only required for the PLX 9054
832 */
833 if (card->family == FST_FAMILY_TXU) {
834 pci_set_master(card->device);
835 outl(0x00020441, card->pci_conf + DMAMODE0);
836 outl(0x00020441, card->pci_conf + DMAMODE1);
837 outl(0x0, card->pci_conf + DMATHR);
838 }
839 }
840
841 /* Tx dma complete interrupt
842 */
843 static void
844 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
845 int len, int txpos)
846 {
847 struct net_device *dev = port_to_dev(port);
848
849 /*
850 * Everything is now set, just tell the card to go
851 */
852 dbg(DBG_TX, "fst_tx_dma_complete\n");
853 FST_WRB(card, txDescrRing[port->index][txpos].bits,
854 DMA_OWN | TX_STP | TX_ENP);
855 dev->stats.tx_packets++;
856 dev->stats.tx_bytes += len;
857 dev->trans_start = jiffies;
858 }
859
860 /*
861 * Mark it for our own raw sockets interface
862 */
863 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
864 {
865 skb->dev = dev;
866 skb_reset_mac_header(skb);
867 skb->pkt_type = PACKET_HOST;
868 return htons(ETH_P_CUST);
869 }
870
871 /* Rx dma complete interrupt
872 */
873 static void
874 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
875 int len, struct sk_buff *skb, int rxp)
876 {
877 struct net_device *dev = port_to_dev(port);
878 int pi;
879 int rx_status;
880
881 dbg(DBG_TX, "fst_rx_dma_complete\n");
882 pi = port->index;
883 memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
884
885 /* Reset buffer descriptor */
886 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
887
888 /* Update stats */
889 dev->stats.rx_packets++;
890 dev->stats.rx_bytes += len;
891
892 /* Push upstream */
893 dbg(DBG_RX, "Pushing the frame up the stack\n");
894 if (port->mode == FST_RAW)
895 skb->protocol = farsync_type_trans(skb, dev);
896 else
897 skb->protocol = hdlc_type_trans(skb, dev);
898 rx_status = netif_rx(skb);
899 fst_process_rx_status(rx_status, port_to_dev(port)->name);
900 if (rx_status == NET_RX_DROP)
901 dev->stats.rx_dropped++;
902 dev->last_rx = jiffies;
903 }
904
905 /*
906 * Receive a frame through the DMA
907 */
908 static inline void
909 fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
910 unsigned char *mem, int len)
911 {
912 /*
913 * This routine will setup the DMA and start it
914 */
915
916 dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
917 if (card->dmarx_in_progress) {
918 dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
919 }
920
921 outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
922 outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
923 outl(len, card->pci_conf + DMASIZ0); /* for this length */
924 outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
925
926 /*
927 * We use the dmarx_in_progress flag to flag the channel as busy
928 */
929 card->dmarx_in_progress = 1;
930 outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
931 }
932
933 /*
934 * Send a frame through the DMA
935 */
936 static inline void
937 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
938 unsigned char *mem, int len)
939 {
940 /*
941 * This routine will setup the DMA and start it.
942 */
943
944 dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
945 if (card->dmatx_in_progress) {
946 dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
947 }
948
949 outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
950 outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
951 outl(len, card->pci_conf + DMASIZ1); /* for this length */
952 outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
953
954 /*
955 * We use the dmatx_in_progress to flag the channel as busy
956 */
957 card->dmatx_in_progress = 1;
958 outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
959 }
960
961 /* Issue a Mailbox command for a port.
962 * Note we issue them on a fire and forget basis, not expecting to see an
963 * error and not waiting for completion.
964 */
965 static void
966 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
967 {
968 struct fst_card_info *card;
969 unsigned short mbval;
970 unsigned long flags;
971 int safety;
972
973 card = port->card;
974 spin_lock_irqsave(&card->card_lock, flags);
975 mbval = FST_RDW(card, portMailbox[port->index][0]);
976
977 safety = 0;
978 /* Wait for any previous command to complete */
979 while (mbval > NAK) {
980 spin_unlock_irqrestore(&card->card_lock, flags);
981 schedule_timeout_uninterruptible(1);
982 spin_lock_irqsave(&card->card_lock, flags);
983
984 if (++safety > 2000) {
985 printk_err("Mailbox safety timeout\n");
986 break;
987 }
988
989 mbval = FST_RDW(card, portMailbox[port->index][0]);
990 }
991 if (safety > 0) {
992 dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
993 }
994 if (mbval == NAK) {
995 dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
996 }
997
998 FST_WRW(card, portMailbox[port->index][0], cmd);
999
1000 if (cmd == ABORTTX || cmd == STARTPORT) {
1001 port->txpos = 0;
1002 port->txipos = 0;
1003 port->start = 0;
1004 }
1005
1006 spin_unlock_irqrestore(&card->card_lock, flags);
1007 }
1008
1009 /* Port output signals control
1010 */
1011 static inline void
1012 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
1013 {
1014 outputs |= FST_RDL(port->card, v24OpSts[port->index]);
1015 FST_WRL(port->card, v24OpSts[port->index], outputs);
1016
1017 if (port->run)
1018 fst_issue_cmd(port, SETV24O);
1019 }
1020
1021 static inline void
1022 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1023 {
1024 outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1025 FST_WRL(port->card, v24OpSts[port->index], outputs);
1026
1027 if (port->run)
1028 fst_issue_cmd(port, SETV24O);
1029 }
1030
1031 /*
1032 * Setup port Rx buffers
1033 */
1034 static void
1035 fst_rx_config(struct fst_port_info *port)
1036 {
1037 int i;
1038 int pi;
1039 unsigned int offset;
1040 unsigned long flags;
1041 struct fst_card_info *card;
1042
1043 pi = port->index;
1044 card = port->card;
1045 spin_lock_irqsave(&card->card_lock, flags);
1046 for (i = 0; i < NUM_RX_BUFFER; i++) {
1047 offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1048
1049 FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1050 FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1051 FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1052 FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1053 FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1054 }
1055 port->rxpos = 0;
1056 spin_unlock_irqrestore(&card->card_lock, flags);
1057 }
1058
1059 /*
1060 * Setup port Tx buffers
1061 */
1062 static void
1063 fst_tx_config(struct fst_port_info *port)
1064 {
1065 int i;
1066 int pi;
1067 unsigned int offset;
1068 unsigned long flags;
1069 struct fst_card_info *card;
1070
1071 pi = port->index;
1072 card = port->card;
1073 spin_lock_irqsave(&card->card_lock, flags);
1074 for (i = 0; i < NUM_TX_BUFFER; i++) {
1075 offset = BUF_OFFSET(txBuffer[pi][i][0]);
1076
1077 FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1078 FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1079 FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1080 FST_WRB(card, txDescrRing[pi][i].bits, 0);
1081 }
1082 port->txpos = 0;
1083 port->txipos = 0;
1084 port->start = 0;
1085 spin_unlock_irqrestore(&card->card_lock, flags);
1086 }
1087
1088 /* TE1 Alarm change interrupt event
1089 */
1090 static void
1091 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1092 {
1093 u8 los;
1094 u8 rra;
1095 u8 ais;
1096
1097 los = FST_RDB(card, suStatus.lossOfSignal);
1098 rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1099 ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1100
1101 if (los) {
1102 /*
1103 * Lost the link
1104 */
1105 if (netif_carrier_ok(port_to_dev(port))) {
1106 dbg(DBG_INTR, "Net carrier off\n");
1107 netif_carrier_off(port_to_dev(port));
1108 }
1109 } else {
1110 /*
1111 * Link available
1112 */
1113 if (!netif_carrier_ok(port_to_dev(port))) {
1114 dbg(DBG_INTR, "Net carrier on\n");
1115 netif_carrier_on(port_to_dev(port));
1116 }
1117 }
1118
1119 if (los)
1120 dbg(DBG_INTR, "Assert LOS Alarm\n");
1121 else
1122 dbg(DBG_INTR, "De-assert LOS Alarm\n");
1123 if (rra)
1124 dbg(DBG_INTR, "Assert RRA Alarm\n");
1125 else
1126 dbg(DBG_INTR, "De-assert RRA Alarm\n");
1127
1128 if (ais)
1129 dbg(DBG_INTR, "Assert AIS Alarm\n");
1130 else
1131 dbg(DBG_INTR, "De-assert AIS Alarm\n");
1132 }
1133
1134 /* Control signal change interrupt event
1135 */
1136 static void
1137 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1138 {
1139 int signals;
1140
1141 signals = FST_RDL(card, v24DebouncedSts[port->index]);
1142
1143 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1144 ? IPSTS_INDICATE : IPSTS_DCD)) {
1145 if (!netif_carrier_ok(port_to_dev(port))) {
1146 dbg(DBG_INTR, "DCD active\n");
1147 netif_carrier_on(port_to_dev(port));
1148 }
1149 } else {
1150 if (netif_carrier_ok(port_to_dev(port))) {
1151 dbg(DBG_INTR, "DCD lost\n");
1152 netif_carrier_off(port_to_dev(port));
1153 }
1154 }
1155 }
1156
1157 /* Log Rx Errors
1158 */
1159 static void
1160 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1161 unsigned char dmabits, int rxp, unsigned short len)
1162 {
1163 struct net_device *dev = port_to_dev(port);
1164
1165 /*
1166 * Increment the appropriate error counter
1167 */
1168 dev->stats.rx_errors++;
1169 if (dmabits & RX_OFLO) {
1170 dev->stats.rx_fifo_errors++;
1171 dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1172 card->card_no, port->index, rxp);
1173 }
1174 if (dmabits & RX_CRC) {
1175 dev->stats.rx_crc_errors++;
1176 dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1177 card->card_no, port->index);
1178 }
1179 if (dmabits & RX_FRAM) {
1180 dev->stats.rx_frame_errors++;
1181 dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1182 card->card_no, port->index);
1183 }
1184 if (dmabits == (RX_STP | RX_ENP)) {
1185 dev->stats.rx_length_errors++;
1186 dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1187 len, card->card_no, port->index);
1188 }
1189 }
1190
1191 /* Rx Error Recovery
1192 */
1193 static void
1194 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1195 unsigned char dmabits, int rxp, unsigned short len)
1196 {
1197 int i;
1198 int pi;
1199
1200 pi = port->index;
1201 /*
1202 * Discard buffer descriptors until we see the start of the
1203 * next frame. Note that for long frames this could be in
1204 * a subsequent interrupt.
1205 */
1206 i = 0;
1207 while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1208 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1209 rxp = (rxp+1) % NUM_RX_BUFFER;
1210 if (++i > NUM_RX_BUFFER) {
1211 dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1212 " than we have\n");
1213 break;
1214 }
1215 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1216 dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1217 }
1218 dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1219
1220 /* Discard the terminal buffer */
1221 if (!(dmabits & DMA_OWN)) {
1222 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1223 rxp = (rxp+1) % NUM_RX_BUFFER;
1224 }
1225 port->rxpos = rxp;
1226 return;
1227
1228 }
1229
1230 /* Rx complete interrupt
1231 */
1232 static void
1233 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1234 {
1235 unsigned char dmabits;
1236 int pi;
1237 int rxp;
1238 int rx_status;
1239 unsigned short len;
1240 struct sk_buff *skb;
1241 struct net_device *dev = port_to_dev(port);
1242
1243 /* Check we have a buffer to process */
1244 pi = port->index;
1245 rxp = port->rxpos;
1246 dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1247 if (dmabits & DMA_OWN) {
1248 dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1249 pi, rxp);
1250 return;
1251 }
1252 if (card->dmarx_in_progress) {
1253 return;
1254 }
1255
1256 /* Get buffer length */
1257 len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1258 /* Discard the CRC */
1259 len -= 2;
1260 if (len == 0) {
1261 /*
1262 * This seems to happen on the TE1 interface sometimes
1263 * so throw the frame away and log the event.
1264 */
1265 printk_err("Frame received with 0 length. Card %d Port %d\n",
1266 card->card_no, port->index);
1267 /* Return descriptor to card */
1268 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1269
1270 rxp = (rxp+1) % NUM_RX_BUFFER;
1271 port->rxpos = rxp;
1272 return;
1273 }
1274
1275 /* Check buffer length and for other errors. We insist on one packet
1276 * in one buffer. This simplifies things greatly and since we've
1277 * allocated 8K it shouldn't be a real world limitation
1278 */
1279 dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1280 if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1281 fst_log_rx_error(card, port, dmabits, rxp, len);
1282 fst_recover_rx_error(card, port, dmabits, rxp, len);
1283 return;
1284 }
1285
1286 /* Allocate SKB */
1287 if ((skb = dev_alloc_skb(len)) == NULL) {
1288 dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1289
1290 dev->stats.rx_dropped++;
1291
1292 /* Return descriptor to card */
1293 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294
1295 rxp = (rxp+1) % NUM_RX_BUFFER;
1296 port->rxpos = rxp;
1297 return;
1298 }
1299
1300 /*
1301 * We know the length we need to receive, len.
1302 * It's not worth using the DMA for reads of less than
1303 * FST_MIN_DMA_LEN
1304 */
1305
1306 if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1307 memcpy_fromio(skb_put(skb, len),
1308 card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1309 len);
1310
1311 /* Reset buffer descriptor */
1312 FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1313
1314 /* Update stats */
1315 dev->stats.rx_packets++;
1316 dev->stats.rx_bytes += len;
1317
1318 /* Push upstream */
1319 dbg(DBG_RX, "Pushing frame up the stack\n");
1320 if (port->mode == FST_RAW)
1321 skb->protocol = farsync_type_trans(skb, dev);
1322 else
1323 skb->protocol = hdlc_type_trans(skb, dev);
1324 rx_status = netif_rx(skb);
1325 fst_process_rx_status(rx_status, port_to_dev(port)->name);
1326 if (rx_status == NET_RX_DROP)
1327 dev->stats.rx_dropped++;
1328 dev->last_rx = jiffies;
1329 } else {
1330 card->dma_skb_rx = skb;
1331 card->dma_port_rx = port;
1332 card->dma_len_rx = len;
1333 card->dma_rxpos = rxp;
1334 fst_rx_dma(card, (char *) card->rx_dma_handle_card,
1335 (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1336 }
1337 if (rxp != port->rxpos) {
1338 dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1339 dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1340 }
1341 rxp = (rxp+1) % NUM_RX_BUFFER;
1342 port->rxpos = rxp;
1343 }
1344
1345 /*
1346 * The bottom halfs to the ISR
1347 *
1348 */
1349
1350 static void
1351 do_bottom_half_tx(struct fst_card_info *card)
1352 {
1353 struct fst_port_info *port;
1354 int pi;
1355 int txq_length;
1356 struct sk_buff *skb;
1357 unsigned long flags;
1358 struct net_device *dev;
1359
1360 /*
1361 * Find a free buffer for the transmit
1362 * Step through each port on this card
1363 */
1364
1365 dbg(DBG_TX, "do_bottom_half_tx\n");
1366 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1367 if (!port->run)
1368 continue;
1369
1370 dev = port_to_dev(port);
1371 while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1372 DMA_OWN)
1373 && !(card->dmatx_in_progress)) {
1374 /*
1375 * There doesn't seem to be a txdone event per-se
1376 * We seem to have to deduce it, by checking the DMA_OWN
1377 * bit on the next buffer we think we can use
1378 */
1379 spin_lock_irqsave(&card->card_lock, flags);
1380 if ((txq_length = port->txqe - port->txqs) < 0) {
1381 /*
1382 * This is the case where one has wrapped and the
1383 * maths gives us a negative number
1384 */
1385 txq_length = txq_length + FST_TXQ_DEPTH;
1386 }
1387 spin_unlock_irqrestore(&card->card_lock, flags);
1388 if (txq_length > 0) {
1389 /*
1390 * There is something to send
1391 */
1392 spin_lock_irqsave(&card->card_lock, flags);
1393 skb = port->txq[port->txqs];
1394 port->txqs++;
1395 if (port->txqs == FST_TXQ_DEPTH) {
1396 port->txqs = 0;
1397 }
1398 spin_unlock_irqrestore(&card->card_lock, flags);
1399 /*
1400 * copy the data and set the required indicators on the
1401 * card.
1402 */
1403 FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1404 cnv_bcnt(skb->len));
1405 if ((skb->len < FST_MIN_DMA_LEN)
1406 || (card->family == FST_FAMILY_TXP)) {
1407 /* Enqueue the packet with normal io */
1408 memcpy_toio(card->mem +
1409 BUF_OFFSET(txBuffer[pi]
1410 [port->
1411 txpos][0]),
1412 skb->data, skb->len);
1413 FST_WRB(card,
1414 txDescrRing[pi][port->txpos].
1415 bits,
1416 DMA_OWN | TX_STP | TX_ENP);
1417 dev->stats.tx_packets++;
1418 dev->stats.tx_bytes += skb->len;
1419 dev->trans_start = jiffies;
1420 } else {
1421 /* Or do it through dma */
1422 memcpy(card->tx_dma_handle_host,
1423 skb->data, skb->len);
1424 card->dma_port_tx = port;
1425 card->dma_len_tx = skb->len;
1426 card->dma_txpos = port->txpos;
1427 fst_tx_dma(card,
1428 (char *) card->
1429 tx_dma_handle_card,
1430 (char *)
1431 BUF_OFFSET(txBuffer[pi]
1432 [port->txpos][0]),
1433 skb->len);
1434 }
1435 if (++port->txpos >= NUM_TX_BUFFER)
1436 port->txpos = 0;
1437 /*
1438 * If we have flow control on, can we now release it?
1439 */
1440 if (port->start) {
1441 if (txq_length < fst_txq_low) {
1442 netif_wake_queue(port_to_dev
1443 (port));
1444 port->start = 0;
1445 }
1446 }
1447 dev_kfree_skb(skb);
1448 } else {
1449 /*
1450 * Nothing to send so break out of the while loop
1451 */
1452 break;
1453 }
1454 }
1455 }
1456 }
1457
1458 static void
1459 do_bottom_half_rx(struct fst_card_info *card)
1460 {
1461 struct fst_port_info *port;
1462 int pi;
1463 int rx_count = 0;
1464
1465 /* Check for rx completions on all ports on this card */
1466 dbg(DBG_RX, "do_bottom_half_rx\n");
1467 for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1468 if (!port->run)
1469 continue;
1470
1471 while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1472 & DMA_OWN) && !(card->dmarx_in_progress)) {
1473 if (rx_count > fst_max_reads) {
1474 /*
1475 * Don't spend forever in receive processing
1476 * Schedule another event
1477 */
1478 fst_q_work_item(&fst_work_intq, card->card_no);
1479 tasklet_schedule(&fst_int_task);
1480 break; /* Leave the loop */
1481 }
1482 fst_intr_rx(card, port);
1483 rx_count++;
1484 }
1485 }
1486 }
1487
1488 /*
1489 * The interrupt service routine
1490 * Dev_id is our fst_card_info pointer
1491 */
1492 static irqreturn_t
1493 fst_intr(int dummy, void *dev_id)
1494 {
1495 struct fst_card_info *card = dev_id;
1496 struct fst_port_info *port;
1497 int rdidx; /* Event buffer indices */
1498 int wridx;
1499 int event; /* Actual event for processing */
1500 unsigned int dma_intcsr = 0;
1501 unsigned int do_card_interrupt;
1502 unsigned int int_retry_count;
1503
1504 /*
1505 * Check to see if the interrupt was for this card
1506 * return if not
1507 * Note that the call to clear the interrupt is important
1508 */
1509 dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1510 if (card->state != FST_RUNNING) {
1511 printk_err
1512 ("Interrupt received for card %d in a non running state (%d)\n",
1513 card->card_no, card->state);
1514
1515 /*
1516 * It is possible to really be running, i.e. we have re-loaded
1517 * a running card
1518 * Clear and reprime the interrupt source
1519 */
1520 fst_clear_intr(card);
1521 return IRQ_HANDLED;
1522 }
1523
1524 /* Clear and reprime the interrupt source */
1525 fst_clear_intr(card);
1526
1527 /*
1528 * Is the interrupt for this card (handshake == 1)
1529 */
1530 do_card_interrupt = 0;
1531 if (FST_RDB(card, interruptHandshake) == 1) {
1532 do_card_interrupt += FST_CARD_INT;
1533 /* Set the software acknowledge */
1534 FST_WRB(card, interruptHandshake, 0xEE);
1535 }
1536 if (card->family == FST_FAMILY_TXU) {
1537 /*
1538 * Is it a DMA Interrupt
1539 */
1540 dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1541 if (dma_intcsr & 0x00200000) {
1542 /*
1543 * DMA Channel 0 (Rx transfer complete)
1544 */
1545 dbg(DBG_RX, "DMA Rx xfer complete\n");
1546 outb(0x8, card->pci_conf + DMACSR0);
1547 fst_rx_dma_complete(card, card->dma_port_rx,
1548 card->dma_len_rx, card->dma_skb_rx,
1549 card->dma_rxpos);
1550 card->dmarx_in_progress = 0;
1551 do_card_interrupt += FST_RX_DMA_INT;
1552 }
1553 if (dma_intcsr & 0x00400000) {
1554 /*
1555 * DMA Channel 1 (Tx transfer complete)
1556 */
1557 dbg(DBG_TX, "DMA Tx xfer complete\n");
1558 outb(0x8, card->pci_conf + DMACSR1);
1559 fst_tx_dma_complete(card, card->dma_port_tx,
1560 card->dma_len_tx, card->dma_txpos);
1561 card->dmatx_in_progress = 0;
1562 do_card_interrupt += FST_TX_DMA_INT;
1563 }
1564 }
1565
1566 /*
1567 * Have we been missing Interrupts
1568 */
1569 int_retry_count = FST_RDL(card, interruptRetryCount);
1570 if (int_retry_count) {
1571 dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1572 card->card_no, int_retry_count);
1573 FST_WRL(card, interruptRetryCount, 0);
1574 }
1575
1576 if (!do_card_interrupt) {
1577 return IRQ_HANDLED;
1578 }
1579
1580 /* Scehdule the bottom half of the ISR */
1581 fst_q_work_item(&fst_work_intq, card->card_no);
1582 tasklet_schedule(&fst_int_task);
1583
1584 /* Drain the event queue */
1585 rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1586 wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1587 while (rdidx != wridx) {
1588 event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1589 port = &card->ports[event & 0x03];
1590
1591 dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1592
1593 switch (event) {
1594 case TE1_ALMA:
1595 dbg(DBG_INTR, "TE1 Alarm intr\n");
1596 if (port->run)
1597 fst_intr_te1_alarm(card, port);
1598 break;
1599
1600 case CTLA_CHG:
1601 case CTLB_CHG:
1602 case CTLC_CHG:
1603 case CTLD_CHG:
1604 if (port->run)
1605 fst_intr_ctlchg(card, port);
1606 break;
1607
1608 case ABTA_SENT:
1609 case ABTB_SENT:
1610 case ABTC_SENT:
1611 case ABTD_SENT:
1612 dbg(DBG_TX, "Abort complete port %d\n", port->index);
1613 break;
1614
1615 case TXA_UNDF:
1616 case TXB_UNDF:
1617 case TXC_UNDF:
1618 case TXD_UNDF:
1619 /* Difficult to see how we'd get this given that we
1620 * always load up the entire packet for DMA.
1621 */
1622 dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1623 port_to_dev(port)->stats.tx_errors++;
1624 port_to_dev(port)->stats.tx_fifo_errors++;
1625 dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1626 card->card_no, port->index);
1627 break;
1628
1629 case INIT_CPLT:
1630 dbg(DBG_INIT, "Card init OK intr\n");
1631 break;
1632
1633 case INIT_FAIL:
1634 dbg(DBG_INIT, "Card init FAILED intr\n");
1635 card->state = FST_IFAILED;
1636 break;
1637
1638 default:
1639 printk_err("intr: unknown card event %d. ignored\n",
1640 event);
1641 break;
1642 }
1643
1644 /* Bump and wrap the index */
1645 if (++rdidx >= MAX_CIRBUFF)
1646 rdidx = 0;
1647 }
1648 FST_WRB(card, interruptEvent.rdindex, rdidx);
1649 return IRQ_HANDLED;
1650 }
1651
1652 /* Check that the shared memory configuration is one that we can handle
1653 * and that some basic parameters are correct
1654 */
1655 static void
1656 check_started_ok(struct fst_card_info *card)
1657 {
1658 int i;
1659
1660 /* Check structure version and end marker */
1661 if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1662 printk_err("Bad shared memory version %d expected %d\n",
1663 FST_RDW(card, smcVersion), SMC_VERSION);
1664 card->state = FST_BADVERSION;
1665 return;
1666 }
1667 if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1668 printk_err("Missing shared memory signature\n");
1669 card->state = FST_BADVERSION;
1670 return;
1671 }
1672 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1673 if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1674 card->state = FST_RUNNING;
1675 } else if (i == 0xFF) {
1676 printk_err("Firmware initialisation failed. Card halted\n");
1677 card->state = FST_HALTED;
1678 return;
1679 } else if (i != 0x00) {
1680 printk_err("Unknown firmware status 0x%x\n", i);
1681 card->state = FST_HALTED;
1682 return;
1683 }
1684
1685 /* Finally check the number of ports reported by firmware against the
1686 * number we assumed at card detection. Should never happen with
1687 * existing firmware etc so we just report it for the moment.
1688 */
1689 if (FST_RDL(card, numberOfPorts) != card->nports) {
1690 printk_warn("Port count mismatch on card %d."
1691 " Firmware thinks %d we say %d\n", card->card_no,
1692 FST_RDL(card, numberOfPorts), card->nports);
1693 }
1694 }
1695
1696 static int
1697 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1698 struct fstioc_info *info)
1699 {
1700 int err;
1701 unsigned char my_framing;
1702
1703 /* Set things according to the user set valid flags
1704 * Several of the old options have been invalidated/replaced by the
1705 * generic hdlc package.
1706 */
1707 err = 0;
1708 if (info->valid & FSTVAL_PROTO) {
1709 if (info->proto == FST_RAW)
1710 port->mode = FST_RAW;
1711 else
1712 port->mode = FST_GEN_HDLC;
1713 }
1714
1715 if (info->valid & FSTVAL_CABLE)
1716 err = -EINVAL;
1717
1718 if (info->valid & FSTVAL_SPEED)
1719 err = -EINVAL;
1720
1721 if (info->valid & FSTVAL_PHASE)
1722 FST_WRB(card, portConfig[port->index].invertClock,
1723 info->invertClock);
1724 if (info->valid & FSTVAL_MODE)
1725 FST_WRW(card, cardMode, info->cardMode);
1726 if (info->valid & FSTVAL_TE1) {
1727 FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1728 FST_WRB(card, suConfig.clocking, info->clockSource);
1729 my_framing = FRAMING_E1;
1730 if (info->framing == E1)
1731 my_framing = FRAMING_E1;
1732 if (info->framing == T1)
1733 my_framing = FRAMING_T1;
1734 if (info->framing == J1)
1735 my_framing = FRAMING_J1;
1736 FST_WRB(card, suConfig.framing, my_framing);
1737 FST_WRB(card, suConfig.structure, info->structure);
1738 FST_WRB(card, suConfig.interface, info->interface);
1739 FST_WRB(card, suConfig.coding, info->coding);
1740 FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1741 FST_WRB(card, suConfig.equalizer, info->equalizer);
1742 FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1743 FST_WRB(card, suConfig.loopMode, info->loopMode);
1744 FST_WRB(card, suConfig.range, info->range);
1745 FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1746 FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1747 FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1748 FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1749 if (info->idleCode)
1750 FST_WRB(card, suConfig.enableIdleCode, 1);
1751 else
1752 FST_WRB(card, suConfig.enableIdleCode, 0);
1753 FST_WRB(card, suConfig.idleCode, info->idleCode);
1754 #if FST_DEBUG
1755 if (info->valid & FSTVAL_TE1) {
1756 printk("Setting TE1 data\n");
1757 printk("Line Speed = %d\n", info->lineSpeed);
1758 printk("Start slot = %d\n", info->startingSlot);
1759 printk("Clock source = %d\n", info->clockSource);
1760 printk("Framing = %d\n", my_framing);
1761 printk("Structure = %d\n", info->structure);
1762 printk("interface = %d\n", info->interface);
1763 printk("Coding = %d\n", info->coding);
1764 printk("Line build out = %d\n", info->lineBuildOut);
1765 printk("Equaliser = %d\n", info->equalizer);
1766 printk("Transparent mode = %d\n",
1767 info->transparentMode);
1768 printk("Loop mode = %d\n", info->loopMode);
1769 printk("Range = %d\n", info->range);
1770 printk("Tx Buffer mode = %d\n", info->txBufferMode);
1771 printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1772 printk("LOS Threshold = %d\n", info->losThreshold);
1773 printk("Idle Code = %d\n", info->idleCode);
1774 }
1775 #endif
1776 }
1777 #if FST_DEBUG
1778 if (info->valid & FSTVAL_DEBUG) {
1779 fst_debug_mask = info->debug;
1780 }
1781 #endif
1782
1783 return err;
1784 }
1785
1786 static void
1787 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1788 struct fstioc_info *info)
1789 {
1790 int i;
1791
1792 memset(info, 0, sizeof (struct fstioc_info));
1793
1794 i = port->index;
1795 info->kernelVersion = LINUX_VERSION_CODE;
1796 info->nports = card->nports;
1797 info->type = card->type;
1798 info->state = card->state;
1799 info->proto = FST_GEN_HDLC;
1800 info->index = i;
1801 #if FST_DEBUG
1802 info->debug = fst_debug_mask;
1803 #endif
1804
1805 /* Only mark information as valid if card is running.
1806 * Copy the data anyway in case it is useful for diagnostics
1807 */
1808 info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1809 #if FST_DEBUG
1810 | FSTVAL_DEBUG
1811 #endif
1812 ;
1813
1814 info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1815 info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1816 info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1817 info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1818 info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1819 info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1820 info->clockStatus = FST_RDW(card, clockStatus[i]);
1821 info->cableStatus = FST_RDW(card, cableStatus);
1822 info->cardMode = FST_RDW(card, cardMode);
1823 info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1824
1825 /*
1826 * The T2U can report cable presence for both A or B
1827 * in bits 0 and 1 of cableStatus. See which port we are and
1828 * do the mapping.
1829 */
1830 if (card->family == FST_FAMILY_TXU) {
1831 if (port->index == 0) {
1832 /*
1833 * Port A
1834 */
1835 info->cableStatus = info->cableStatus & 1;
1836 } else {
1837 /*
1838 * Port B
1839 */
1840 info->cableStatus = info->cableStatus >> 1;
1841 info->cableStatus = info->cableStatus & 1;
1842 }
1843 }
1844 /*
1845 * Some additional bits if we are TE1
1846 */
1847 if (card->type == FST_TYPE_TE1) {
1848 info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1849 info->clockSource = FST_RDB(card, suConfig.clocking);
1850 info->framing = FST_RDB(card, suConfig.framing);
1851 info->structure = FST_RDB(card, suConfig.structure);
1852 info->interface = FST_RDB(card, suConfig.interface);
1853 info->coding = FST_RDB(card, suConfig.coding);
1854 info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1855 info->equalizer = FST_RDB(card, suConfig.equalizer);
1856 info->loopMode = FST_RDB(card, suConfig.loopMode);
1857 info->range = FST_RDB(card, suConfig.range);
1858 info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1859 info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1860 info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1861 info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1862 if (FST_RDB(card, suConfig.enableIdleCode))
1863 info->idleCode = FST_RDB(card, suConfig.idleCode);
1864 else
1865 info->idleCode = 0;
1866 info->receiveBufferDelay =
1867 FST_RDL(card, suStatus.receiveBufferDelay);
1868 info->framingErrorCount =
1869 FST_RDL(card, suStatus.framingErrorCount);
1870 info->codeViolationCount =
1871 FST_RDL(card, suStatus.codeViolationCount);
1872 info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1873 info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1874 info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1875 info->receiveRemoteAlarm =
1876 FST_RDB(card, suStatus.receiveRemoteAlarm);
1877 info->alarmIndicationSignal =
1878 FST_RDB(card, suStatus.alarmIndicationSignal);
1879 }
1880 }
1881
1882 static int
1883 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1884 struct ifreq *ifr)
1885 {
1886 sync_serial_settings sync;
1887 int i;
1888
1889 if (ifr->ifr_settings.size != sizeof (sync)) {
1890 return -ENOMEM;
1891 }
1892
1893 if (copy_from_user
1894 (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1895 return -EFAULT;
1896 }
1897
1898 if (sync.loopback)
1899 return -EINVAL;
1900
1901 i = port->index;
1902
1903 switch (ifr->ifr_settings.type) {
1904 case IF_IFACE_V35:
1905 FST_WRW(card, portConfig[i].lineInterface, V35);
1906 port->hwif = V35;
1907 break;
1908
1909 case IF_IFACE_V24:
1910 FST_WRW(card, portConfig[i].lineInterface, V24);
1911 port->hwif = V24;
1912 break;
1913
1914 case IF_IFACE_X21:
1915 FST_WRW(card, portConfig[i].lineInterface, X21);
1916 port->hwif = X21;
1917 break;
1918
1919 case IF_IFACE_X21D:
1920 FST_WRW(card, portConfig[i].lineInterface, X21D);
1921 port->hwif = X21D;
1922 break;
1923
1924 case IF_IFACE_T1:
1925 FST_WRW(card, portConfig[i].lineInterface, T1);
1926 port->hwif = T1;
1927 break;
1928
1929 case IF_IFACE_E1:
1930 FST_WRW(card, portConfig[i].lineInterface, E1);
1931 port->hwif = E1;
1932 break;
1933
1934 case IF_IFACE_SYNC_SERIAL:
1935 break;
1936
1937 default:
1938 return -EINVAL;
1939 }
1940
1941 switch (sync.clock_type) {
1942 case CLOCK_EXT:
1943 FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1944 break;
1945
1946 case CLOCK_INT:
1947 FST_WRB(card, portConfig[i].internalClock, INTCLK);
1948 break;
1949
1950 default:
1951 return -EINVAL;
1952 }
1953 FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1954 return 0;
1955 }
1956
1957 static int
1958 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1959 struct ifreq *ifr)
1960 {
1961 sync_serial_settings sync;
1962 int i;
1963
1964 /* First check what line type is set, we'll default to reporting X.21
1965 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1966 * changed
1967 */
1968 switch (port->hwif) {
1969 case E1:
1970 ifr->ifr_settings.type = IF_IFACE_E1;
1971 break;
1972 case T1:
1973 ifr->ifr_settings.type = IF_IFACE_T1;
1974 break;
1975 case V35:
1976 ifr->ifr_settings.type = IF_IFACE_V35;
1977 break;
1978 case V24:
1979 ifr->ifr_settings.type = IF_IFACE_V24;
1980 break;
1981 case X21D:
1982 ifr->ifr_settings.type = IF_IFACE_X21D;
1983 break;
1984 case X21:
1985 default:
1986 ifr->ifr_settings.type = IF_IFACE_X21;
1987 break;
1988 }
1989 if (ifr->ifr_settings.size == 0) {
1990 return 0; /* only type requested */
1991 }
1992 if (ifr->ifr_settings.size < sizeof (sync)) {
1993 return -ENOMEM;
1994 }
1995
1996 i = port->index;
1997 sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1998 /* Lucky card and linux use same encoding here */
1999 sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
2000 INTCLK ? CLOCK_INT : CLOCK_EXT;
2001 sync.loopback = 0;
2002
2003 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
2004 return -EFAULT;
2005 }
2006
2007 ifr->ifr_settings.size = sizeof (sync);
2008 return 0;
2009 }
2010
2011 static int
2012 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2013 {
2014 struct fst_card_info *card;
2015 struct fst_port_info *port;
2016 struct fstioc_write wrthdr;
2017 struct fstioc_info info;
2018 unsigned long flags;
2019 void *buf;
2020
2021 dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2022
2023 port = dev_to_port(dev);
2024 card = port->card;
2025
2026 if (!capable(CAP_NET_ADMIN))
2027 return -EPERM;
2028
2029 switch (cmd) {
2030 case FSTCPURESET:
2031 fst_cpureset(card);
2032 card->state = FST_RESET;
2033 return 0;
2034
2035 case FSTCPURELEASE:
2036 fst_cpurelease(card);
2037 card->state = FST_STARTING;
2038 return 0;
2039
2040 case FSTWRITE: /* Code write (download) */
2041
2042 /* First copy in the header with the length and offset of data
2043 * to write
2044 */
2045 if (ifr->ifr_data == NULL) {
2046 return -EINVAL;
2047 }
2048 if (copy_from_user(&wrthdr, ifr->ifr_data,
2049 sizeof (struct fstioc_write))) {
2050 return -EFAULT;
2051 }
2052
2053 /* Sanity check the parameters. We don't support partial writes
2054 * when going over the top
2055 */
2056 if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
2057 || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2058 return -ENXIO;
2059 }
2060
2061 /* Now copy the data to the card. */
2062
2063 buf = kmalloc(wrthdr.size, GFP_KERNEL);
2064 if (!buf)
2065 return -ENOMEM;
2066
2067 if (copy_from_user(buf,
2068 ifr->ifr_data + sizeof (struct fstioc_write),
2069 wrthdr.size)) {
2070 kfree(buf);
2071 return -EFAULT;
2072 }
2073
2074 memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2075 kfree(buf);
2076
2077 /* Writes to the memory of a card in the reset state constitute
2078 * a download
2079 */
2080 if (card->state == FST_RESET) {
2081 card->state = FST_DOWNLOAD;
2082 }
2083 return 0;
2084
2085 case FSTGETCONF:
2086
2087 /* If card has just been started check the shared memory config
2088 * version and marker
2089 */
2090 if (card->state == FST_STARTING) {
2091 check_started_ok(card);
2092
2093 /* If everything checked out enable card interrupts */
2094 if (card->state == FST_RUNNING) {
2095 spin_lock_irqsave(&card->card_lock, flags);
2096 fst_enable_intr(card);
2097 FST_WRB(card, interruptHandshake, 0xEE);
2098 spin_unlock_irqrestore(&card->card_lock, flags);
2099 }
2100 }
2101
2102 if (ifr->ifr_data == NULL) {
2103 return -EINVAL;
2104 }
2105
2106 gather_conf_info(card, port, &info);
2107
2108 if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2109 return -EFAULT;
2110 }
2111 return 0;
2112
2113 case FSTSETCONF:
2114
2115 /*
2116 * Most of the settings have been moved to the generic ioctls
2117 * this just covers debug and board ident now
2118 */
2119
2120 if (card->state != FST_RUNNING) {
2121 printk_err
2122 ("Attempt to configure card %d in non-running state (%d)\n",
2123 card->card_no, card->state);
2124 return -EIO;
2125 }
2126 if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2127 return -EFAULT;
2128 }
2129
2130 return set_conf_from_info(card, port, &info);
2131
2132 case SIOCWANDEV:
2133 switch (ifr->ifr_settings.type) {
2134 case IF_GET_IFACE:
2135 return fst_get_iface(card, port, ifr);
2136
2137 case IF_IFACE_SYNC_SERIAL:
2138 case IF_IFACE_V35:
2139 case IF_IFACE_V24:
2140 case IF_IFACE_X21:
2141 case IF_IFACE_X21D:
2142 case IF_IFACE_T1:
2143 case IF_IFACE_E1:
2144 return fst_set_iface(card, port, ifr);
2145
2146 case IF_PROTO_RAW:
2147 port->mode = FST_RAW;
2148 return 0;
2149
2150 case IF_GET_PROTO:
2151 if (port->mode == FST_RAW) {
2152 ifr->ifr_settings.type = IF_PROTO_RAW;
2153 return 0;
2154 }
2155 return hdlc_ioctl(dev, ifr, cmd);
2156
2157 default:
2158 port->mode = FST_GEN_HDLC;
2159 dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2160 ifr->ifr_settings.type);
2161 return hdlc_ioctl(dev, ifr, cmd);
2162 }
2163
2164 default:
2165 /* Not one of ours. Pass through to HDLC package */
2166 return hdlc_ioctl(dev, ifr, cmd);
2167 }
2168 }
2169
2170 static void
2171 fst_openport(struct fst_port_info *port)
2172 {
2173 int signals;
2174 int txq_length;
2175
2176 /* Only init things if card is actually running. This allows open to
2177 * succeed for downloads etc.
2178 */
2179 if (port->card->state == FST_RUNNING) {
2180 if (port->run) {
2181 dbg(DBG_OPEN, "open: found port already running\n");
2182
2183 fst_issue_cmd(port, STOPPORT);
2184 port->run = 0;
2185 }
2186
2187 fst_rx_config(port);
2188 fst_tx_config(port);
2189 fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2190
2191 fst_issue_cmd(port, STARTPORT);
2192 port->run = 1;
2193
2194 signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2195 if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2196 ? IPSTS_INDICATE : IPSTS_DCD))
2197 netif_carrier_on(port_to_dev(port));
2198 else
2199 netif_carrier_off(port_to_dev(port));
2200
2201 txq_length = port->txqe - port->txqs;
2202 port->txqe = 0;
2203 port->txqs = 0;
2204 }
2205
2206 }
2207
2208 static void
2209 fst_closeport(struct fst_port_info *port)
2210 {
2211 if (port->card->state == FST_RUNNING) {
2212 if (port->run) {
2213 port->run = 0;
2214 fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2215
2216 fst_issue_cmd(port, STOPPORT);
2217 } else {
2218 dbg(DBG_OPEN, "close: port not running\n");
2219 }
2220 }
2221 }
2222
2223 static int
2224 fst_open(struct net_device *dev)
2225 {
2226 int err;
2227 struct fst_port_info *port;
2228
2229 port = dev_to_port(dev);
2230 if (!try_module_get(THIS_MODULE))
2231 return -EBUSY;
2232
2233 if (port->mode != FST_RAW) {
2234 err = hdlc_open(dev);
2235 if (err)
2236 return err;
2237 }
2238
2239 fst_openport(port);
2240 netif_wake_queue(dev);
2241 return 0;
2242 }
2243
2244 static int
2245 fst_close(struct net_device *dev)
2246 {
2247 struct fst_port_info *port;
2248 struct fst_card_info *card;
2249 unsigned char tx_dma_done;
2250 unsigned char rx_dma_done;
2251
2252 port = dev_to_port(dev);
2253 card = port->card;
2254
2255 tx_dma_done = inb(card->pci_conf + DMACSR1);
2256 rx_dma_done = inb(card->pci_conf + DMACSR0);
2257 dbg(DBG_OPEN,
2258 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2259 card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2260 rx_dma_done);
2261
2262 netif_stop_queue(dev);
2263 fst_closeport(dev_to_port(dev));
2264 if (port->mode != FST_RAW) {
2265 hdlc_close(dev);
2266 }
2267 module_put(THIS_MODULE);
2268 return 0;
2269 }
2270
2271 static int
2272 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2273 {
2274 /*
2275 * Setting currently fixed in FarSync card so we check and forget
2276 */
2277 if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2278 return -EINVAL;
2279 return 0;
2280 }
2281
2282 static void
2283 fst_tx_timeout(struct net_device *dev)
2284 {
2285 struct fst_port_info *port;
2286 struct fst_card_info *card;
2287
2288 port = dev_to_port(dev);
2289 card = port->card;
2290 dev->stats.tx_errors++;
2291 dev->stats.tx_aborted_errors++;
2292 dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2293 card->card_no, port->index);
2294 fst_issue_cmd(port, ABORTTX);
2295
2296 dev->trans_start = jiffies;
2297 netif_wake_queue(dev);
2298 port->start = 0;
2299 }
2300
2301 static int
2302 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2303 {
2304 struct fst_card_info *card;
2305 struct fst_port_info *port;
2306 unsigned long flags;
2307 int txq_length;
2308
2309 port = dev_to_port(dev);
2310 card = port->card;
2311 dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2312
2313 /* Drop packet with error if we don't have carrier */
2314 if (!netif_carrier_ok(dev)) {
2315 dev_kfree_skb(skb);
2316 dev->stats.tx_errors++;
2317 dev->stats.tx_carrier_errors++;
2318 dbg(DBG_ASS,
2319 "Tried to transmit but no carrier on card %d port %d\n",
2320 card->card_no, port->index);
2321 return 0;
2322 }
2323
2324 /* Drop it if it's too big! MTU failure ? */
2325 if (skb->len > LEN_TX_BUFFER) {
2326 dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2327 LEN_TX_BUFFER);
2328 dev_kfree_skb(skb);
2329 dev->stats.tx_errors++;
2330 return 0;
2331 }
2332
2333 /*
2334 * We are always going to queue the packet
2335 * so that the bottom half is the only place we tx from
2336 * Check there is room in the port txq
2337 */
2338 spin_lock_irqsave(&card->card_lock, flags);
2339 if ((txq_length = port->txqe - port->txqs) < 0) {
2340 /*
2341 * This is the case where the next free has wrapped but the
2342 * last used hasn't
2343 */
2344 txq_length = txq_length + FST_TXQ_DEPTH;
2345 }
2346 spin_unlock_irqrestore(&card->card_lock, flags);
2347 if (txq_length > fst_txq_high) {
2348 /*
2349 * We have got enough buffers in the pipeline. Ask the network
2350 * layer to stop sending frames down
2351 */
2352 netif_stop_queue(dev);
2353 port->start = 1; /* I'm using this to signal stop sent up */
2354 }
2355
2356 if (txq_length == FST_TXQ_DEPTH - 1) {
2357 /*
2358 * This shouldn't have happened but such is life
2359 */
2360 dev_kfree_skb(skb);
2361 dev->stats.tx_errors++;
2362 dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2363 card->card_no, port->index);
2364 return 0;
2365 }
2366
2367 /*
2368 * queue the buffer
2369 */
2370 spin_lock_irqsave(&card->card_lock, flags);
2371 port->txq[port->txqe] = skb;
2372 port->txqe++;
2373 if (port->txqe == FST_TXQ_DEPTH)
2374 port->txqe = 0;
2375 spin_unlock_irqrestore(&card->card_lock, flags);
2376
2377 /* Scehdule the bottom half which now does transmit processing */
2378 fst_q_work_item(&fst_work_txq, card->card_no);
2379 tasklet_schedule(&fst_tx_task);
2380
2381 return 0;
2382 }
2383
2384 /*
2385 * Card setup having checked hardware resources.
2386 * Should be pretty bizarre if we get an error here (kernel memory
2387 * exhaustion is one possibility). If we do see a problem we report it
2388 * via a printk and leave the corresponding interface and all that follow
2389 * disabled.
2390 */
2391 static char *type_strings[] __devinitdata = {
2392 "no hardware", /* Should never be seen */
2393 "FarSync T2P",
2394 "FarSync T4P",
2395 "FarSync T1U",
2396 "FarSync T2U",
2397 "FarSync T4U",
2398 "FarSync TE1"
2399 };
2400
2401 static void __devinit
2402 fst_init_card(struct fst_card_info *card)
2403 {
2404 int i;
2405 int err;
2406
2407 /* We're working on a number of ports based on the card ID. If the
2408 * firmware detects something different later (should never happen)
2409 * we'll have to revise it in some way then.
2410 */
2411 for (i = 0; i < card->nports; i++) {
2412 err = register_hdlc_device(card->ports[i].dev);
2413 if (err < 0) {
2414 int j;
2415 printk_err ("Cannot register HDLC device for port %d"
2416 " (errno %d)\n", i, -err );
2417 for (j = i; j < card->nports; j++) {
2418 free_netdev(card->ports[j].dev);
2419 card->ports[j].dev = NULL;
2420 }
2421 card->nports = i;
2422 break;
2423 }
2424 }
2425
2426 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2427 port_to_dev(&card->ports[0])->name,
2428 port_to_dev(&card->ports[card->nports - 1])->name,
2429 type_strings[card->type], card->irq, card->nports);
2430 }
2431
2432 /*
2433 * Initialise card when detected.
2434 * Returns 0 to indicate success, or errno otherwise.
2435 */
2436 static int __devinit
2437 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2438 {
2439 static int firsttime_done = 0;
2440 static int no_of_cards_added = 0;
2441 struct fst_card_info *card;
2442 int err = 0;
2443 int i;
2444
2445 if (!firsttime_done) {
2446 printk_info("FarSync WAN driver " FST_USER_VERSION
2447 " (c) 2001-2004 FarSite Communications Ltd.\n");
2448 firsttime_done = 1;
2449 dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2450 }
2451
2452 /*
2453 * We are going to be clever and allow certain cards not to be
2454 * configured. An exclude list can be provided in /etc/modules.conf
2455 */
2456 if (fst_excluded_cards != 0) {
2457 /*
2458 * There are cards to exclude
2459 *
2460 */
2461 for (i = 0; i < fst_excluded_cards; i++) {
2462 if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2463 printk_info("FarSync PCI device %d not assigned\n",
2464 (pdev->devfn) >> 3);
2465 return -EBUSY;
2466 }
2467 }
2468 }
2469
2470 /* Allocate driver private data */
2471 card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2472 if (card == NULL) {
2473 printk_err("FarSync card found but insufficient memory for"
2474 " driver storage\n");
2475 return -ENOMEM;
2476 }
2477
2478 /* Try to enable the device */
2479 if ((err = pci_enable_device(pdev)) != 0) {
2480 printk_err("Failed to enable card. Err %d\n", -err);
2481 kfree(card);
2482 return err;
2483 }
2484
2485 if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2486 printk_err("Failed to allocate regions. Err %d\n", -err);
2487 pci_disable_device(pdev);
2488 kfree(card);
2489 return err;
2490 }
2491
2492 /* Get virtual addresses of memory regions */
2493 card->pci_conf = pci_resource_start(pdev, 1);
2494 card->phys_mem = pci_resource_start(pdev, 2);
2495 card->phys_ctlmem = pci_resource_start(pdev, 3);
2496 if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2497 printk_err("Physical memory remap failed\n");
2498 pci_release_regions(pdev);
2499 pci_disable_device(pdev);
2500 kfree(card);
2501 return -ENODEV;
2502 }
2503 if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2504 printk_err("Control memory remap failed\n");
2505 pci_release_regions(pdev);
2506 pci_disable_device(pdev);
2507 kfree(card);
2508 return -ENODEV;
2509 }
2510 dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2511
2512 /* Register the interrupt handler */
2513 if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2514 printk_err("Unable to register interrupt %d\n", card->irq);
2515 pci_release_regions(pdev);
2516 pci_disable_device(pdev);
2517 iounmap(card->ctlmem);
2518 iounmap(card->mem);
2519 kfree(card);
2520 return -ENODEV;
2521 }
2522
2523 /* Record info we need */
2524 card->irq = pdev->irq;
2525 card->type = ent->driver_data;
2526 card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2527 (ent->driver_data == FST_TYPE_T4P))
2528 ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2529 if ((ent->driver_data == FST_TYPE_T1U) ||
2530 (ent->driver_data == FST_TYPE_TE1))
2531 card->nports = 1;
2532 else
2533 card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2534 (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2535
2536 card->state = FST_UNINIT;
2537 spin_lock_init ( &card->card_lock );
2538
2539 for ( i = 0 ; i < card->nports ; i++ ) {
2540 struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2541 hdlc_device *hdlc;
2542 if (!dev) {
2543 while (i--)
2544 free_netdev(card->ports[i].dev);
2545 printk_err ("FarSync: out of memory\n");
2546 free_irq(card->irq, card);
2547 pci_release_regions(pdev);
2548 pci_disable_device(pdev);
2549 iounmap(card->ctlmem);
2550 iounmap(card->mem);
2551 kfree(card);
2552 return -ENODEV;
2553 }
2554 card->ports[i].dev = dev;
2555 card->ports[i].card = card;
2556 card->ports[i].index = i;
2557 card->ports[i].run = 0;
2558
2559 hdlc = dev_to_hdlc(dev);
2560
2561 /* Fill in the net device info */
2562 /* Since this is a PCI setup this is purely
2563 * informational. Give them the buffer addresses
2564 * and basic card I/O.
2565 */
2566 dev->mem_start = card->phys_mem
2567 + BUF_OFFSET ( txBuffer[i][0][0]);
2568 dev->mem_end = card->phys_mem
2569 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2570 dev->base_addr = card->pci_conf;
2571 dev->irq = card->irq;
2572
2573 dev->tx_queue_len = FST_TX_QUEUE_LEN;
2574 dev->open = fst_open;
2575 dev->stop = fst_close;
2576 dev->do_ioctl = fst_ioctl;
2577 dev->watchdog_timeo = FST_TX_TIMEOUT;
2578 dev->tx_timeout = fst_tx_timeout;
2579 hdlc->attach = fst_attach;
2580 hdlc->xmit = fst_start_xmit;
2581 }
2582
2583 card->device = pdev;
2584
2585 dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2586 card->nports, card->irq);
2587 dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2588 card->pci_conf, card->phys_mem, card->phys_ctlmem);
2589
2590 /* Reset the card's processor */
2591 fst_cpureset(card);
2592 card->state = FST_RESET;
2593
2594 /* Initialise DMA (if required) */
2595 fst_init_dma(card);
2596
2597 /* Record driver data for later use */
2598 pci_set_drvdata(pdev, card);
2599
2600 /* Remainder of card setup */
2601 fst_card_array[no_of_cards_added] = card;
2602 card->card_no = no_of_cards_added++; /* Record instance and bump it */
2603 fst_init_card(card);
2604 if (card->family == FST_FAMILY_TXU) {
2605 /*
2606 * Allocate a dma buffer for transmit and receives
2607 */
2608 card->rx_dma_handle_host =
2609 pci_alloc_consistent(card->device, FST_MAX_MTU,
2610 &card->rx_dma_handle_card);
2611 if (card->rx_dma_handle_host == NULL) {
2612 printk_err("Could not allocate rx dma buffer\n");
2613 fst_disable_intr(card);
2614 pci_release_regions(pdev);
2615 pci_disable_device(pdev);
2616 iounmap(card->ctlmem);
2617 iounmap(card->mem);
2618 kfree(card);
2619 return -ENOMEM;
2620 }
2621 card->tx_dma_handle_host =
2622 pci_alloc_consistent(card->device, FST_MAX_MTU,
2623 &card->tx_dma_handle_card);
2624 if (card->tx_dma_handle_host == NULL) {
2625 printk_err("Could not allocate tx dma buffer\n");
2626 fst_disable_intr(card);
2627 pci_release_regions(pdev);
2628 pci_disable_device(pdev);
2629 iounmap(card->ctlmem);
2630 iounmap(card->mem);
2631 kfree(card);
2632 return -ENOMEM;
2633 }
2634 }
2635 return 0; /* Success */
2636 }
2637
2638 /*
2639 * Cleanup and close down a card
2640 */
2641 static void __devexit
2642 fst_remove_one(struct pci_dev *pdev)
2643 {
2644 struct fst_card_info *card;
2645 int i;
2646
2647 card = pci_get_drvdata(pdev);
2648
2649 for (i = 0; i < card->nports; i++) {
2650 struct net_device *dev = port_to_dev(&card->ports[i]);
2651 unregister_hdlc_device(dev);
2652 }
2653
2654 fst_disable_intr(card);
2655 free_irq(card->irq, card);
2656
2657 iounmap(card->ctlmem);
2658 iounmap(card->mem);
2659 pci_release_regions(pdev);
2660 if (card->family == FST_FAMILY_TXU) {
2661 /*
2662 * Free dma buffers
2663 */
2664 pci_free_consistent(card->device, FST_MAX_MTU,
2665 card->rx_dma_handle_host,
2666 card->rx_dma_handle_card);
2667 pci_free_consistent(card->device, FST_MAX_MTU,
2668 card->tx_dma_handle_host,
2669 card->tx_dma_handle_card);
2670 }
2671 fst_card_array[card->card_no] = NULL;
2672 }
2673
2674 static struct pci_driver fst_driver = {
2675 .name = FST_NAME,
2676 .id_table = fst_pci_dev_id,
2677 .probe = fst_add_one,
2678 .remove = __devexit_p(fst_remove_one),
2679 .suspend = NULL,
2680 .resume = NULL,
2681 };
2682
2683 static int __init
2684 fst_init(void)
2685 {
2686 int i;
2687
2688 for (i = 0; i < FST_MAX_CARDS; i++)
2689 fst_card_array[i] = NULL;
2690 spin_lock_init(&fst_work_q_lock);
2691 return pci_register_driver(&fst_driver);
2692 }
2693
2694 static void __exit
2695 fst_cleanup_module(void)
2696 {
2697 printk_info("FarSync WAN driver unloading\n");
2698 pci_unregister_driver(&fst_driver);
2699 }
2700
2701 module_init(fst_init);
2702 module_exit(fst_cleanup_module);
This page took 0.086694 seconds and 5 git commands to generate.