ath10k: prevent txrx running for too long
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29 #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37 static struct sk_buff *
38 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39 {
40 struct ath10k_skb_rxcb *rxcb;
41
42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 if (rxcb->paddr == paddr)
44 return ATH10K_RXCB_SKB(rxcb);
45
46 WARN_ON_ONCE(1);
47 return NULL;
48 }
49
50 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51 {
52 struct sk_buff *skb;
53 struct ath10k_skb_rxcb *rxcb;
54 struct hlist_node *n;
55 int i;
56
57 if (htt->rx_ring.in_ord_rx) {
58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 skb = ATH10K_RXCB_SKB(rxcb);
60 dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 skb->len + skb_tailroom(skb),
62 DMA_FROM_DEVICE);
63 hash_del(&rxcb->hlist);
64 dev_kfree_skb_any(skb);
65 }
66 } else {
67 for (i = 0; i < htt->rx_ring.size; i++) {
68 skb = htt->rx_ring.netbufs_ring[i];
69 if (!skb)
70 continue;
71
72 rxcb = ATH10K_SKB_RXCB(skb);
73 dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 skb->len + skb_tailroom(skb),
75 DMA_FROM_DEVICE);
76 dev_kfree_skb_any(skb);
77 }
78 }
79
80 htt->rx_ring.fill_cnt = 0;
81 hash_init(htt->rx_ring.skb_table);
82 memset(htt->rx_ring.netbufs_ring, 0,
83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84 }
85
86 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87 {
88 struct htt_rx_desc *rx_desc;
89 struct ath10k_skb_rxcb *rxcb;
90 struct sk_buff *skb;
91 dma_addr_t paddr;
92 int ret = 0, idx;
93
94 /* The Full Rx Reorder firmware has no way of telling the host
95 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96 * To keep things simple make sure ring is always half empty. This
97 * guarantees there'll be no replenishment overruns possible.
98 */
99 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
101 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
102 while (num > 0) {
103 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104 if (!skb) {
105 ret = -ENOMEM;
106 goto fail;
107 }
108
109 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110 skb_pull(skb,
111 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112 skb->data);
113
114 /* Clear rx_desc attention word before posting to Rx ring */
115 rx_desc = (struct htt_rx_desc *)skb->data;
116 rx_desc->attention.flags = __cpu_to_le32(0);
117
118 paddr = dma_map_single(htt->ar->dev, skb->data,
119 skb->len + skb_tailroom(skb),
120 DMA_FROM_DEVICE);
121
122 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123 dev_kfree_skb_any(skb);
124 ret = -ENOMEM;
125 goto fail;
126 }
127
128 rxcb = ATH10K_SKB_RXCB(skb);
129 rxcb->paddr = paddr;
130 htt->rx_ring.netbufs_ring[idx] = skb;
131 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132 htt->rx_ring.fill_cnt++;
133
134 if (htt->rx_ring.in_ord_rx) {
135 hash_add(htt->rx_ring.skb_table,
136 &ATH10K_SKB_RXCB(skb)->hlist,
137 (u32)paddr);
138 }
139
140 num--;
141 idx++;
142 idx &= htt->rx_ring.size_mask;
143 }
144
145 fail:
146 /*
147 * Make sure the rx buffer is updated before available buffer
148 * index to avoid any potential rx ring corruption.
149 */
150 mb();
151 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
152 return ret;
153 }
154
155 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156 {
157 lockdep_assert_held(&htt->rx_ring.lock);
158 return __ath10k_htt_rx_ring_fill_n(htt, num);
159 }
160
161 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162 {
163 int ret, num_deficit, num_to_fill;
164
165 /* Refilling the whole RX ring buffer proves to be a bad idea. The
166 * reason is RX may take up significant amount of CPU cycles and starve
167 * other tasks, e.g. TX on an ethernet device while acting as a bridge
168 * with ath10k wlan interface. This ended up with very poor performance
169 * once CPU the host system was overwhelmed with RX on ath10k.
170 *
171 * By limiting the number of refills the replenishing occurs
172 * progressively. This in turns makes use of the fact tasklets are
173 * processed in FIFO order. This means actual RX processing can starve
174 * out refilling. If there's not enough buffers on RX ring FW will not
175 * report RX until it is refilled with enough buffers. This
176 * automatically balances load wrt to CPU power.
177 *
178 * This probably comes at a cost of lower maximum throughput but
179 * improves the average and stability. */
180 spin_lock_bh(&htt->rx_ring.lock);
181 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183 num_deficit -= num_to_fill;
184 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185 if (ret == -ENOMEM) {
186 /*
187 * Failed to fill it to the desired level -
188 * we'll start a timer and try again next time.
189 * As long as enough buffers are left in the ring for
190 * another A-MPDU rx, no special recovery is needed.
191 */
192 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
194 } else if (num_deficit > 0) {
195 tasklet_schedule(&htt->rx_replenish_task);
196 }
197 spin_unlock_bh(&htt->rx_ring.lock);
198 }
199
200 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201 {
202 struct ath10k_htt *htt = (struct ath10k_htt *)arg;
203
204 ath10k_htt_rx_msdu_buff_replenish(htt);
205 }
206
207 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
208 {
209 struct ath10k_htt *htt = &ar->htt;
210 int ret;
211
212 spin_lock_bh(&htt->rx_ring.lock);
213 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214 htt->rx_ring.fill_cnt));
215 spin_unlock_bh(&htt->rx_ring.lock);
216
217 if (ret)
218 ath10k_htt_rx_ring_free(htt);
219
220 return ret;
221 }
222
223 void ath10k_htt_rx_free(struct ath10k_htt *htt)
224 {
225 del_timer_sync(&htt->rx_ring.refill_retry_timer);
226 tasklet_kill(&htt->rx_replenish_task);
227 tasklet_kill(&htt->txrx_compl_task);
228
229 skb_queue_purge(&htt->tx_compl_q);
230 skb_queue_purge(&htt->rx_compl_q);
231 skb_queue_purge(&htt->rx_in_ord_compl_q);
232
233 ath10k_htt_rx_ring_free(htt);
234
235 dma_free_coherent(htt->ar->dev,
236 (htt->rx_ring.size *
237 sizeof(htt->rx_ring.paddrs_ring)),
238 htt->rx_ring.paddrs_ring,
239 htt->rx_ring.base_paddr);
240
241 dma_free_coherent(htt->ar->dev,
242 sizeof(*htt->rx_ring.alloc_idx.vaddr),
243 htt->rx_ring.alloc_idx.vaddr,
244 htt->rx_ring.alloc_idx.paddr);
245
246 kfree(htt->rx_ring.netbufs_ring);
247 }
248
249 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250 {
251 struct ath10k *ar = htt->ar;
252 int idx;
253 struct sk_buff *msdu;
254
255 lockdep_assert_held(&htt->rx_ring.lock);
256
257 if (htt->rx_ring.fill_cnt == 0) {
258 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259 return NULL;
260 }
261
262 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263 msdu = htt->rx_ring.netbufs_ring[idx];
264 htt->rx_ring.netbufs_ring[idx] = NULL;
265 htt->rx_ring.paddrs_ring[idx] = 0;
266
267 idx++;
268 idx &= htt->rx_ring.size_mask;
269 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270 htt->rx_ring.fill_cnt--;
271
272 dma_unmap_single(htt->ar->dev,
273 ATH10K_SKB_RXCB(msdu)->paddr,
274 msdu->len + skb_tailroom(msdu),
275 DMA_FROM_DEVICE);
276 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277 msdu->data, msdu->len + skb_tailroom(msdu));
278
279 return msdu;
280 }
281
282 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284 u8 **fw_desc, int *fw_desc_len,
285 struct sk_buff_head *amsdu)
286 {
287 struct ath10k *ar = htt->ar;
288 int msdu_len, msdu_chaining = 0;
289 struct sk_buff *msdu;
290 struct htt_rx_desc *rx_desc;
291
292 lockdep_assert_held(&htt->rx_ring.lock);
293
294 for (;;) {
295 int last_msdu, msdu_len_invalid, msdu_chained;
296
297 msdu = ath10k_htt_rx_netbuf_pop(htt);
298 if (!msdu) {
299 __skb_queue_purge(amsdu);
300 return -ENOENT;
301 }
302
303 __skb_queue_tail(amsdu, msdu);
304
305 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307 /* FIXME: we must report msdu payload since this is what caller
308 * expects now */
309 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312 /*
313 * Sanity check - confirm the HW is finished filling in the
314 * rx data.
315 * If the HW and SW are working correctly, then it's guaranteed
316 * that the HW's MAC DMA is done before this point in the SW.
317 * To prevent the case that we handle a stale Rx descriptor,
318 * just assert for now until we have a way to recover.
319 */
320 if (!(__le32_to_cpu(rx_desc->attention.flags)
321 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
322 __skb_queue_purge(amsdu);
323 return -EIO;
324 }
325
326 /*
327 * Copy the FW rx descriptor for this MSDU from the rx
328 * indication message into the MSDU's netbuf. HL uses the
329 * same rx indication message definition as LL, and simply
330 * appends new info (fields from the HW rx desc, and the
331 * MSDU payload itself). So, the offset into the rx
332 * indication message only has to account for the standard
333 * offset of the per-MSDU FW rx desc info within the
334 * message, and how many bytes of the per-MSDU FW rx desc
335 * info have already been consumed. (And the endianness of
336 * the host, since for a big-endian host, the rx ind
337 * message contents, including the per-MSDU rx desc bytes,
338 * were byteswapped during upload.)
339 */
340 if (*fw_desc_len > 0) {
341 rx_desc->fw_desc.info0 = **fw_desc;
342 /*
343 * The target is expected to only provide the basic
344 * per-MSDU rx descriptors. Just to be sure, verify
345 * that the target has not attached extension data
346 * (e.g. LRO flow ID).
347 */
348
349 /* or more, if there's extension data */
350 (*fw_desc)++;
351 (*fw_desc_len)--;
352 } else {
353 /*
354 * When an oversized AMSDU happened, FW will lost
355 * some of MSDU status - in this case, the FW
356 * descriptors provided will be less than the
357 * actual MSDUs inside this MPDU. Mark the FW
358 * descriptors so that it will still deliver to
359 * upper stack, if no CRC error for this MPDU.
360 *
361 * FIX THIS - the FW descriptors are actually for
362 * MSDUs in the end of this A-MSDU instead of the
363 * beginning.
364 */
365 rx_desc->fw_desc.info0 = 0;
366 }
367
368 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
372 RX_MSDU_START_INFO0_MSDU_LENGTH);
373 msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375 if (msdu_len_invalid)
376 msdu_len = 0;
377
378 skb_trim(msdu, 0);
379 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380 msdu_len -= msdu->len;
381
382 /* Note: Chained buffers do not contain rx descriptor */
383 while (msdu_chained--) {
384 msdu = ath10k_htt_rx_netbuf_pop(htt);
385 if (!msdu) {
386 __skb_queue_purge(amsdu);
387 return -ENOENT;
388 }
389
390 __skb_queue_tail(amsdu, msdu);
391 skb_trim(msdu, 0);
392 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393 msdu_len -= msdu->len;
394 msdu_chaining = 1;
395 }
396
397 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
398 RX_MSDU_END_INFO0_LAST_MSDU;
399
400 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
401 sizeof(*rx_desc) - sizeof(u32));
402
403 if (last_msdu)
404 break;
405 }
406
407 if (skb_queue_empty(amsdu))
408 msdu_chaining = -1;
409
410 /*
411 * Don't refill the ring yet.
412 *
413 * First, the elements popped here are still in use - it is not
414 * safe to overwrite them until the matching call to
415 * mpdu_desc_list_next. Second, for efficiency it is preferable to
416 * refill the rx ring with 1 PPDU's worth of rx buffers (something
417 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418 * (something like 3 buffers). Consequently, we'll rely on the txrx
419 * SW to tell us when it is done pulling all the PPDU's rx buffers
420 * out of the rx ring, and then refill it just once.
421 */
422
423 return msdu_chaining;
424 }
425
426 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427 {
428 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
429
430 ath10k_htt_rx_msdu_buff_replenish(htt);
431 }
432
433 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434 u32 paddr)
435 {
436 struct ath10k *ar = htt->ar;
437 struct ath10k_skb_rxcb *rxcb;
438 struct sk_buff *msdu;
439
440 lockdep_assert_held(&htt->rx_ring.lock);
441
442 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443 if (!msdu)
444 return NULL;
445
446 rxcb = ATH10K_SKB_RXCB(msdu);
447 hash_del(&rxcb->hlist);
448 htt->rx_ring.fill_cnt--;
449
450 dma_unmap_single(htt->ar->dev, rxcb->paddr,
451 msdu->len + skb_tailroom(msdu),
452 DMA_FROM_DEVICE);
453 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454 msdu->data, msdu->len + skb_tailroom(msdu));
455
456 return msdu;
457 }
458
459 static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460 struct htt_rx_in_ord_ind *ev,
461 struct sk_buff_head *list)
462 {
463 struct ath10k *ar = htt->ar;
464 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465 struct htt_rx_desc *rxd;
466 struct sk_buff *msdu;
467 int msdu_count;
468 bool is_offload;
469 u32 paddr;
470
471 lockdep_assert_held(&htt->rx_ring.lock);
472
473 msdu_count = __le16_to_cpu(ev->msdu_count);
474 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476 while (msdu_count--) {
477 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480 if (!msdu) {
481 __skb_queue_purge(list);
482 return -ENOENT;
483 }
484
485 __skb_queue_tail(list, msdu);
486
487 if (!is_offload) {
488 rxd = (void *)msdu->data;
489
490 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492 skb_put(msdu, sizeof(*rxd));
493 skb_pull(msdu, sizeof(*rxd));
494 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496 if (!(__le32_to_cpu(rxd->attention.flags) &
497 RX_ATTENTION_FLAGS_MSDU_DONE)) {
498 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499 return -EIO;
500 }
501 }
502
503 msdu_desc++;
504 }
505
506 return 0;
507 }
508
509 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
510 {
511 struct ath10k *ar = htt->ar;
512 dma_addr_t paddr;
513 void *vaddr;
514 size_t size;
515 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
517 htt->rx_confused = false;
518
519 /* XXX: The fill level could be changed during runtime in response to
520 * the host processing latency. Is this really worth it?
521 */
522 htt->rx_ring.size = HTT_RX_RING_SIZE;
523 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
526 if (!is_power_of_2(htt->rx_ring.size)) {
527 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
528 return -EINVAL;
529 }
530
531 htt->rx_ring.netbufs_ring =
532 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
533 GFP_KERNEL);
534 if (!htt->rx_ring.netbufs_ring)
535 goto err_netbuf;
536
537 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
540 if (!vaddr)
541 goto err_dma_ring;
542
543 htt->rx_ring.paddrs_ring = vaddr;
544 htt->rx_ring.base_paddr = paddr;
545
546 vaddr = dma_alloc_coherent(htt->ar->dev,
547 sizeof(*htt->rx_ring.alloc_idx.vaddr),
548 &paddr, GFP_KERNEL);
549 if (!vaddr)
550 goto err_dma_idx;
551
552 htt->rx_ring.alloc_idx.vaddr = vaddr;
553 htt->rx_ring.alloc_idx.paddr = paddr;
554 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
555 *htt->rx_ring.alloc_idx.vaddr = 0;
556
557 /* Initialize the Rx refill retry timer */
558 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560 spin_lock_init(&htt->rx_ring.lock);
561
562 htt->rx_ring.fill_cnt = 0;
563 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564 hash_init(htt->rx_ring.skb_table);
565
566 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567 (unsigned long)htt);
568
569 skb_queue_head_init(&htt->tx_compl_q);
570 skb_queue_head_init(&htt->rx_compl_q);
571 skb_queue_head_init(&htt->rx_in_ord_compl_q);
572
573 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574 (unsigned long)htt);
575
576 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
577 htt->rx_ring.size, htt->rx_ring.fill_level);
578 return 0;
579
580 err_dma_idx:
581 dma_free_coherent(htt->ar->dev,
582 (htt->rx_ring.size *
583 sizeof(htt->rx_ring.paddrs_ring)),
584 htt->rx_ring.paddrs_ring,
585 htt->rx_ring.base_paddr);
586 err_dma_ring:
587 kfree(htt->rx_ring.netbufs_ring);
588 err_netbuf:
589 return -ENOMEM;
590 }
591
592 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593 enum htt_rx_mpdu_encrypt_type type)
594 {
595 switch (type) {
596 case HTT_RX_MPDU_ENCRYPT_NONE:
597 return 0;
598 case HTT_RX_MPDU_ENCRYPT_WEP40:
599 case HTT_RX_MPDU_ENCRYPT_WEP104:
600 return IEEE80211_WEP_IV_LEN;
601 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
602 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
603 return IEEE80211_TKIP_IV_LEN;
604 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
605 return IEEE80211_CCMP_HDR_LEN;
606 case HTT_RX_MPDU_ENCRYPT_WEP128:
607 case HTT_RX_MPDU_ENCRYPT_WAPI:
608 break;
609 }
610
611 ath10k_warn(ar, "unsupported encryption type %d\n", type);
612 return 0;
613 }
614
615 #define MICHAEL_MIC_LEN 8
616
617 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618 enum htt_rx_mpdu_encrypt_type type)
619 {
620 switch (type) {
621 case HTT_RX_MPDU_ENCRYPT_NONE:
622 return 0;
623 case HTT_RX_MPDU_ENCRYPT_WEP40:
624 case HTT_RX_MPDU_ENCRYPT_WEP104:
625 return IEEE80211_WEP_ICV_LEN;
626 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
628 return IEEE80211_TKIP_ICV_LEN;
629 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
630 return IEEE80211_CCMP_MIC_LEN;
631 case HTT_RX_MPDU_ENCRYPT_WEP128:
632 case HTT_RX_MPDU_ENCRYPT_WAPI:
633 break;
634 }
635
636 ath10k_warn(ar, "unsupported encryption type %d\n", type);
637 return 0;
638 }
639
640 struct amsdu_subframe_hdr {
641 u8 dst[ETH_ALEN];
642 u8 src[ETH_ALEN];
643 __be16 len;
644 } __packed;
645
646 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
647
648 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
649 struct ieee80211_rx_status *status,
650 struct htt_rx_desc *rxd)
651 {
652 struct ieee80211_supported_band *sband;
653 u8 cck, rate, bw, sgi, mcs, nss;
654 u8 preamble = 0;
655 u8 group_id;
656 u32 info1, info2, info3;
657
658 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
659 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
660 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
661
662 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
663
664 switch (preamble) {
665 case HTT_RX_LEGACY:
666 /* To get legacy rate index band is required. Since band can't
667 * be undefined check if freq is non-zero.
668 */
669 if (!status->freq)
670 return;
671
672 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
673 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
674 rate &= ~RX_PPDU_START_RATE_FLAG;
675
676 sband = &ar->mac.sbands[status->band];
677 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
678 break;
679 case HTT_RX_HT:
680 case HTT_RX_HT_WITH_TXBF:
681 /* HT-SIG - Table 20-11 in info2 and info3 */
682 mcs = info2 & 0x1F;
683 nss = mcs >> 3;
684 bw = (info2 >> 7) & 1;
685 sgi = (info3 >> 7) & 1;
686
687 status->rate_idx = mcs;
688 status->flag |= RX_FLAG_HT;
689 if (sgi)
690 status->flag |= RX_FLAG_SHORT_GI;
691 if (bw)
692 status->flag |= RX_FLAG_40MHZ;
693 break;
694 case HTT_RX_VHT:
695 case HTT_RX_VHT_WITH_TXBF:
696 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
697 TODO check this */
698 bw = info2 & 3;
699 sgi = info3 & 1;
700 group_id = (info2 >> 4) & 0x3F;
701
702 if (GROUP_ID_IS_SU_MIMO(group_id)) {
703 mcs = (info3 >> 4) & 0x0F;
704 nss = ((info2 >> 10) & 0x07) + 1;
705 } else {
706 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
707 * so it's impossible to decode MCS. Also since
708 * firmware consumes Group Id Management frames host
709 * has no knowledge regarding group/user position
710 * mapping so it's impossible to pick the correct Nsts
711 * from VHT-SIG-A1.
712 *
713 * Bandwidth and SGI are valid so report the rateinfo
714 * on best-effort basis.
715 */
716 mcs = 0;
717 nss = 1;
718 }
719
720 if (mcs > 0x09) {
721 ath10k_warn(ar, "invalid MCS received %u\n", mcs);
722 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
723 __le32_to_cpu(rxd->attention.flags),
724 __le32_to_cpu(rxd->mpdu_start.info0),
725 __le32_to_cpu(rxd->mpdu_start.info1),
726 __le32_to_cpu(rxd->msdu_start.common.info0),
727 __le32_to_cpu(rxd->msdu_start.common.info1),
728 rxd->ppdu_start.info0,
729 __le32_to_cpu(rxd->ppdu_start.info1),
730 __le32_to_cpu(rxd->ppdu_start.info2),
731 __le32_to_cpu(rxd->ppdu_start.info3),
732 __le32_to_cpu(rxd->ppdu_start.info4));
733
734 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
735 __le32_to_cpu(rxd->msdu_end.common.info0),
736 __le32_to_cpu(rxd->mpdu_end.info0));
737
738 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
739 "rx desc msdu payload: ",
740 rxd->msdu_payload, 50);
741 }
742
743 status->rate_idx = mcs;
744 status->vht_nss = nss;
745
746 if (sgi)
747 status->flag |= RX_FLAG_SHORT_GI;
748
749 switch (bw) {
750 /* 20MHZ */
751 case 0:
752 break;
753 /* 40MHZ */
754 case 1:
755 status->flag |= RX_FLAG_40MHZ;
756 break;
757 /* 80MHZ */
758 case 2:
759 status->vht_flag |= RX_VHT_FLAG_80MHZ;
760 }
761
762 status->flag |= RX_FLAG_VHT;
763 break;
764 default:
765 break;
766 }
767 }
768
769 static struct ieee80211_channel *
770 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
771 {
772 struct ath10k_peer *peer;
773 struct ath10k_vif *arvif;
774 struct cfg80211_chan_def def;
775 u16 peer_id;
776
777 lockdep_assert_held(&ar->data_lock);
778
779 if (!rxd)
780 return NULL;
781
782 if (rxd->attention.flags &
783 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
784 return NULL;
785
786 if (!(rxd->msdu_end.common.info0 &
787 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
788 return NULL;
789
790 peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
791 RX_MPDU_START_INFO0_PEER_IDX);
792
793 peer = ath10k_peer_find_by_id(ar, peer_id);
794 if (!peer)
795 return NULL;
796
797 arvif = ath10k_get_arvif(ar, peer->vdev_id);
798 if (WARN_ON_ONCE(!arvif))
799 return NULL;
800
801 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
802 return NULL;
803
804 return def.chan;
805 }
806
807 static struct ieee80211_channel *
808 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
809 {
810 struct ath10k_vif *arvif;
811 struct cfg80211_chan_def def;
812
813 lockdep_assert_held(&ar->data_lock);
814
815 list_for_each_entry(arvif, &ar->arvifs, list) {
816 if (arvif->vdev_id == vdev_id &&
817 ath10k_mac_vif_chan(arvif->vif, &def) == 0)
818 return def.chan;
819 }
820
821 return NULL;
822 }
823
824 static void
825 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
826 struct ieee80211_chanctx_conf *conf,
827 void *data)
828 {
829 struct cfg80211_chan_def *def = data;
830
831 *def = conf->def;
832 }
833
834 static struct ieee80211_channel *
835 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
836 {
837 struct cfg80211_chan_def def = {};
838
839 ieee80211_iter_chan_contexts_atomic(ar->hw,
840 ath10k_htt_rx_h_any_chan_iter,
841 &def);
842
843 return def.chan;
844 }
845
846 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
847 struct ieee80211_rx_status *status,
848 struct htt_rx_desc *rxd,
849 u32 vdev_id)
850 {
851 struct ieee80211_channel *ch;
852
853 spin_lock_bh(&ar->data_lock);
854 ch = ar->scan_channel;
855 if (!ch)
856 ch = ar->rx_channel;
857 if (!ch)
858 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
859 if (!ch)
860 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
861 if (!ch)
862 ch = ath10k_htt_rx_h_any_channel(ar);
863 spin_unlock_bh(&ar->data_lock);
864
865 if (!ch)
866 return false;
867
868 status->band = ch->band;
869 status->freq = ch->center_freq;
870
871 return true;
872 }
873
874 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
875 struct ieee80211_rx_status *status,
876 struct htt_rx_desc *rxd)
877 {
878 /* FIXME: Get real NF */
879 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
880 rxd->ppdu_start.rssi_comb;
881 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
882 }
883
884 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
885 struct ieee80211_rx_status *status,
886 struct htt_rx_desc *rxd)
887 {
888 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
889 * means all prior MSDUs in a PPDU are reported to mac80211 without the
890 * TSF. Is it worth holding frames until end of PPDU is known?
891 *
892 * FIXME: Can we get/compute 64bit TSF?
893 */
894 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
895 status->flag |= RX_FLAG_MACTIME_END;
896 }
897
898 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
899 struct sk_buff_head *amsdu,
900 struct ieee80211_rx_status *status,
901 u32 vdev_id)
902 {
903 struct sk_buff *first;
904 struct htt_rx_desc *rxd;
905 bool is_first_ppdu;
906 bool is_last_ppdu;
907
908 if (skb_queue_empty(amsdu))
909 return;
910
911 first = skb_peek(amsdu);
912 rxd = (void *)first->data - sizeof(*rxd);
913
914 is_first_ppdu = !!(rxd->attention.flags &
915 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
916 is_last_ppdu = !!(rxd->attention.flags &
917 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
918
919 if (is_first_ppdu) {
920 /* New PPDU starts so clear out the old per-PPDU status. */
921 status->freq = 0;
922 status->rate_idx = 0;
923 status->vht_nss = 0;
924 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
925 status->flag &= ~(RX_FLAG_HT |
926 RX_FLAG_VHT |
927 RX_FLAG_SHORT_GI |
928 RX_FLAG_40MHZ |
929 RX_FLAG_MACTIME_END);
930 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
931
932 ath10k_htt_rx_h_signal(ar, status, rxd);
933 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
934 ath10k_htt_rx_h_rates(ar, status, rxd);
935 }
936
937 if (is_last_ppdu)
938 ath10k_htt_rx_h_mactime(ar, status, rxd);
939 }
940
941 static const char * const tid_to_ac[] = {
942 "BE",
943 "BK",
944 "BK",
945 "BE",
946 "VI",
947 "VI",
948 "VO",
949 "VO",
950 };
951
952 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
953 {
954 u8 *qc;
955 int tid;
956
957 if (!ieee80211_is_data_qos(hdr->frame_control))
958 return "";
959
960 qc = ieee80211_get_qos_ctl(hdr);
961 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
962 if (tid < 8)
963 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
964 else
965 snprintf(out, size, "tid %d", tid);
966
967 return out;
968 }
969
970 static void ath10k_process_rx(struct ath10k *ar,
971 struct ieee80211_rx_status *rx_status,
972 struct sk_buff *skb)
973 {
974 struct ieee80211_rx_status *status;
975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
976 char tid[32];
977
978 status = IEEE80211_SKB_RXCB(skb);
979 *status = *rx_status;
980
981 ath10k_dbg(ar, ATH10K_DBG_DATA,
982 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
983 skb,
984 skb->len,
985 ieee80211_get_SA(hdr),
986 ath10k_get_tid(hdr, tid, sizeof(tid)),
987 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
988 "mcast" : "ucast",
989 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
990 status->flag == 0 ? "legacy" : "",
991 status->flag & RX_FLAG_HT ? "ht" : "",
992 status->flag & RX_FLAG_VHT ? "vht" : "",
993 status->flag & RX_FLAG_40MHZ ? "40" : "",
994 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
995 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
996 status->rate_idx,
997 status->vht_nss,
998 status->freq,
999 status->band, status->flag,
1000 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1001 !!(status->flag & RX_FLAG_MMIC_ERROR),
1002 !!(status->flag & RX_FLAG_AMSDU_MORE));
1003 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1004 skb->data, skb->len);
1005 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1006 trace_ath10k_rx_payload(ar, skb->data, skb->len);
1007
1008 ieee80211_rx(ar->hw, skb);
1009 }
1010
1011 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1012 struct ieee80211_hdr *hdr)
1013 {
1014 int len = ieee80211_hdrlen(hdr->frame_control);
1015
1016 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1017 ar->fw_features))
1018 len = round_up(len, 4);
1019
1020 return len;
1021 }
1022
1023 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1024 struct sk_buff *msdu,
1025 struct ieee80211_rx_status *status,
1026 enum htt_rx_mpdu_encrypt_type enctype,
1027 bool is_decrypted)
1028 {
1029 struct ieee80211_hdr *hdr;
1030 struct htt_rx_desc *rxd;
1031 size_t hdr_len;
1032 size_t crypto_len;
1033 bool is_first;
1034 bool is_last;
1035
1036 rxd = (void *)msdu->data - sizeof(*rxd);
1037 is_first = !!(rxd->msdu_end.common.info0 &
1038 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1039 is_last = !!(rxd->msdu_end.common.info0 &
1040 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1041
1042 /* Delivered decapped frame:
1043 * [802.11 header]
1044 * [crypto param] <-- can be trimmed if !fcs_err &&
1045 * !decrypt_err && !peer_idx_invalid
1046 * [amsdu header] <-- only if A-MSDU
1047 * [rfc1042/llc]
1048 * [payload]
1049 * [FCS] <-- at end, needs to be trimmed
1050 */
1051
1052 /* This probably shouldn't happen but warn just in case */
1053 if (unlikely(WARN_ON_ONCE(!is_first)))
1054 return;
1055
1056 /* This probably shouldn't happen but warn just in case */
1057 if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1058 return;
1059
1060 skb_trim(msdu, msdu->len - FCS_LEN);
1061
1062 /* In most cases this will be true for sniffed frames. It makes sense
1063 * to deliver them as-is without stripping the crypto param. This is
1064 * necessary for software based decryption.
1065 *
1066 * If there's no error then the frame is decrypted. At least that is
1067 * the case for frames that come in via fragmented rx indication.
1068 */
1069 if (!is_decrypted)
1070 return;
1071
1072 /* The payload is decrypted so strip crypto params. Start from tail
1073 * since hdr is used to compute some stuff.
1074 */
1075
1076 hdr = (void *)msdu->data;
1077
1078 /* Tail */
1079 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
1080
1081 /* MMIC */
1082 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1083 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1084 skb_trim(msdu, msdu->len - 8);
1085
1086 /* Head */
1087 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1088 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1089
1090 memmove((void *)msdu->data + crypto_len,
1091 (void *)msdu->data, hdr_len);
1092 skb_pull(msdu, crypto_len);
1093 }
1094
1095 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1096 struct sk_buff *msdu,
1097 struct ieee80211_rx_status *status,
1098 const u8 first_hdr[64])
1099 {
1100 struct ieee80211_hdr *hdr;
1101 size_t hdr_len;
1102 u8 da[ETH_ALEN];
1103 u8 sa[ETH_ALEN];
1104
1105 /* Delivered decapped frame:
1106 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1107 * [rfc1042/llc]
1108 *
1109 * Note: The nwifi header doesn't have QoS Control and is
1110 * (always?) a 3addr frame.
1111 *
1112 * Note2: There's no A-MSDU subframe header. Even if it's part
1113 * of an A-MSDU.
1114 */
1115
1116 /* pull decapped header and copy SA & DA */
1117 if ((ar->hw_params.hw_4addr_pad == ATH10K_HW_4ADDR_PAD_BEFORE) &&
1118 ieee80211_has_a4(((struct ieee80211_hdr *)first_hdr)->frame_control)) {
1119 /* The QCA99X0 4 address mode pad 2 bytes at the
1120 * beginning of MSDU
1121 */
1122 hdr = (struct ieee80211_hdr *)(msdu->data + 2);
1123 /* The skb length need be extended 2 as the 2 bytes at the tail
1124 * be excluded due to the padding
1125 */
1126 skb_put(msdu, 2);
1127 } else {
1128 hdr = (struct ieee80211_hdr *)(msdu->data);
1129 }
1130
1131 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1132 ether_addr_copy(da, ieee80211_get_DA(hdr));
1133 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1134 skb_pull(msdu, hdr_len);
1135
1136 /* push original 802.11 header */
1137 hdr = (struct ieee80211_hdr *)first_hdr;
1138 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1139 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1140
1141 /* original 802.11 header has a different DA and in
1142 * case of 4addr it may also have different SA
1143 */
1144 hdr = (struct ieee80211_hdr *)msdu->data;
1145 ether_addr_copy(ieee80211_get_DA(hdr), da);
1146 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1147 }
1148
1149 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1150 struct sk_buff *msdu,
1151 enum htt_rx_mpdu_encrypt_type enctype)
1152 {
1153 struct ieee80211_hdr *hdr;
1154 struct htt_rx_desc *rxd;
1155 size_t hdr_len, crypto_len;
1156 void *rfc1042;
1157 bool is_first, is_last, is_amsdu;
1158
1159 rxd = (void *)msdu->data - sizeof(*rxd);
1160 hdr = (void *)rxd->rx_hdr_status;
1161
1162 is_first = !!(rxd->msdu_end.common.info0 &
1163 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1164 is_last = !!(rxd->msdu_end.common.info0 &
1165 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1166 is_amsdu = !(is_first && is_last);
1167
1168 rfc1042 = hdr;
1169
1170 if (is_first) {
1171 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1172 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1173
1174 rfc1042 += round_up(hdr_len, 4) +
1175 round_up(crypto_len, 4);
1176 }
1177
1178 if (is_amsdu)
1179 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1180
1181 return rfc1042;
1182 }
1183
1184 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1185 struct sk_buff *msdu,
1186 struct ieee80211_rx_status *status,
1187 const u8 first_hdr[64],
1188 enum htt_rx_mpdu_encrypt_type enctype)
1189 {
1190 struct ieee80211_hdr *hdr;
1191 struct ethhdr *eth;
1192 size_t hdr_len;
1193 void *rfc1042;
1194 u8 da[ETH_ALEN];
1195 u8 sa[ETH_ALEN];
1196
1197 /* Delivered decapped frame:
1198 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1199 * [payload]
1200 */
1201
1202 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1203 if (WARN_ON_ONCE(!rfc1042))
1204 return;
1205
1206 /* pull decapped header and copy SA & DA */
1207 eth = (struct ethhdr *)msdu->data;
1208 ether_addr_copy(da, eth->h_dest);
1209 ether_addr_copy(sa, eth->h_source);
1210 skb_pull(msdu, sizeof(struct ethhdr));
1211
1212 /* push rfc1042/llc/snap */
1213 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1214 sizeof(struct rfc1042_hdr));
1215
1216 /* push original 802.11 header */
1217 hdr = (struct ieee80211_hdr *)first_hdr;
1218 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1219 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1220
1221 /* original 802.11 header has a different DA and in
1222 * case of 4addr it may also have different SA
1223 */
1224 hdr = (struct ieee80211_hdr *)msdu->data;
1225 ether_addr_copy(ieee80211_get_DA(hdr), da);
1226 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1227 }
1228
1229 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1230 struct sk_buff *msdu,
1231 struct ieee80211_rx_status *status,
1232 const u8 first_hdr[64])
1233 {
1234 struct ieee80211_hdr *hdr;
1235 size_t hdr_len;
1236
1237 /* Delivered decapped frame:
1238 * [amsdu header] <-- replaced with 802.11 hdr
1239 * [rfc1042/llc]
1240 * [payload]
1241 */
1242
1243 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1244
1245 hdr = (struct ieee80211_hdr *)first_hdr;
1246 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1247 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1248 }
1249
1250 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1251 struct sk_buff *msdu,
1252 struct ieee80211_rx_status *status,
1253 u8 first_hdr[64],
1254 enum htt_rx_mpdu_encrypt_type enctype,
1255 bool is_decrypted)
1256 {
1257 struct htt_rx_desc *rxd;
1258 enum rx_msdu_decap_format decap;
1259
1260 /* First msdu's decapped header:
1261 * [802.11 header] <-- padded to 4 bytes long
1262 * [crypto param] <-- padded to 4 bytes long
1263 * [amsdu header] <-- only if A-MSDU
1264 * [rfc1042/llc]
1265 *
1266 * Other (2nd, 3rd, ..) msdu's decapped header:
1267 * [amsdu header] <-- only if A-MSDU
1268 * [rfc1042/llc]
1269 */
1270
1271 rxd = (void *)msdu->data - sizeof(*rxd);
1272 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1273 RX_MSDU_START_INFO1_DECAP_FORMAT);
1274
1275 switch (decap) {
1276 case RX_MSDU_DECAP_RAW:
1277 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1278 is_decrypted);
1279 break;
1280 case RX_MSDU_DECAP_NATIVE_WIFI:
1281 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1282 break;
1283 case RX_MSDU_DECAP_ETHERNET2_DIX:
1284 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1285 break;
1286 case RX_MSDU_DECAP_8023_SNAP_LLC:
1287 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1288 break;
1289 }
1290 }
1291
1292 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1293 {
1294 struct htt_rx_desc *rxd;
1295 u32 flags, info;
1296 bool is_ip4, is_ip6;
1297 bool is_tcp, is_udp;
1298 bool ip_csum_ok, tcpudp_csum_ok;
1299
1300 rxd = (void *)skb->data - sizeof(*rxd);
1301 flags = __le32_to_cpu(rxd->attention.flags);
1302 info = __le32_to_cpu(rxd->msdu_start.common.info1);
1303
1304 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1305 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1306 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1307 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1308 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1309 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1310
1311 if (!is_ip4 && !is_ip6)
1312 return CHECKSUM_NONE;
1313 if (!is_tcp && !is_udp)
1314 return CHECKSUM_NONE;
1315 if (!ip_csum_ok)
1316 return CHECKSUM_NONE;
1317 if (!tcpudp_csum_ok)
1318 return CHECKSUM_NONE;
1319
1320 return CHECKSUM_UNNECESSARY;
1321 }
1322
1323 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1324 {
1325 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1326 }
1327
1328 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1329 struct sk_buff_head *amsdu,
1330 struct ieee80211_rx_status *status)
1331 {
1332 struct sk_buff *first;
1333 struct sk_buff *last;
1334 struct sk_buff *msdu;
1335 struct htt_rx_desc *rxd;
1336 struct ieee80211_hdr *hdr;
1337 enum htt_rx_mpdu_encrypt_type enctype;
1338 u8 first_hdr[64];
1339 u8 *qos;
1340 size_t hdr_len;
1341 bool has_fcs_err;
1342 bool has_crypto_err;
1343 bool has_tkip_err;
1344 bool has_peer_idx_invalid;
1345 bool is_decrypted;
1346 u32 attention;
1347
1348 if (skb_queue_empty(amsdu))
1349 return;
1350
1351 first = skb_peek(amsdu);
1352 rxd = (void *)first->data - sizeof(*rxd);
1353
1354 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1355 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1356
1357 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1358 * decapped header. It'll be used for undecapping of each MSDU.
1359 */
1360 hdr = (void *)rxd->rx_hdr_status;
1361 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1362 memcpy(first_hdr, hdr, hdr_len);
1363
1364 /* Each A-MSDU subframe will use the original header as the base and be
1365 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1366 */
1367 hdr = (void *)first_hdr;
1368 qos = ieee80211_get_qos_ctl(hdr);
1369 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1370
1371 /* Some attention flags are valid only in the last MSDU. */
1372 last = skb_peek_tail(amsdu);
1373 rxd = (void *)last->data - sizeof(*rxd);
1374 attention = __le32_to_cpu(rxd->attention.flags);
1375
1376 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1377 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1378 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1379 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1380
1381 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1382 * e.g. due to fcs error, missing peer or invalid key data it will
1383 * report the frame as raw.
1384 */
1385 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1386 !has_fcs_err &&
1387 !has_crypto_err &&
1388 !has_peer_idx_invalid);
1389
1390 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1391 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1392 RX_FLAG_MMIC_ERROR |
1393 RX_FLAG_DECRYPTED |
1394 RX_FLAG_IV_STRIPPED |
1395 RX_FLAG_MMIC_STRIPPED);
1396
1397 if (has_fcs_err)
1398 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1399
1400 if (has_tkip_err)
1401 status->flag |= RX_FLAG_MMIC_ERROR;
1402
1403 if (is_decrypted)
1404 status->flag |= RX_FLAG_DECRYPTED |
1405 RX_FLAG_IV_STRIPPED |
1406 RX_FLAG_MMIC_STRIPPED;
1407
1408 skb_queue_walk(amsdu, msdu) {
1409 ath10k_htt_rx_h_csum_offload(msdu);
1410 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1411 is_decrypted);
1412
1413 /* Undecapping involves copying the original 802.11 header back
1414 * to sk_buff. If frame is protected and hardware has decrypted
1415 * it then remove the protected bit.
1416 */
1417 if (!is_decrypted)
1418 continue;
1419
1420 hdr = (void *)msdu->data;
1421 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1422 }
1423 }
1424
1425 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1426 struct sk_buff_head *amsdu,
1427 struct ieee80211_rx_status *status)
1428 {
1429 struct sk_buff *msdu;
1430
1431 while ((msdu = __skb_dequeue(amsdu))) {
1432 /* Setup per-MSDU flags */
1433 if (skb_queue_empty(amsdu))
1434 status->flag &= ~RX_FLAG_AMSDU_MORE;
1435 else
1436 status->flag |= RX_FLAG_AMSDU_MORE;
1437
1438 ath10k_process_rx(ar, status, msdu);
1439 }
1440 }
1441
1442 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1443 {
1444 struct sk_buff *skb, *first;
1445 int space;
1446 int total_len = 0;
1447
1448 /* TODO: Might could optimize this by using
1449 * skb_try_coalesce or similar method to
1450 * decrease copying, or maybe get mac80211 to
1451 * provide a way to just receive a list of
1452 * skb?
1453 */
1454
1455 first = __skb_dequeue(amsdu);
1456
1457 /* Allocate total length all at once. */
1458 skb_queue_walk(amsdu, skb)
1459 total_len += skb->len;
1460
1461 space = total_len - skb_tailroom(first);
1462 if ((space > 0) &&
1463 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1464 /* TODO: bump some rx-oom error stat */
1465 /* put it back together so we can free the
1466 * whole list at once.
1467 */
1468 __skb_queue_head(amsdu, first);
1469 return -1;
1470 }
1471
1472 /* Walk list again, copying contents into
1473 * msdu_head
1474 */
1475 while ((skb = __skb_dequeue(amsdu))) {
1476 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1477 skb->len);
1478 dev_kfree_skb_any(skb);
1479 }
1480
1481 __skb_queue_head(amsdu, first);
1482 return 0;
1483 }
1484
1485 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1486 struct sk_buff_head *amsdu,
1487 bool chained)
1488 {
1489 struct sk_buff *first;
1490 struct htt_rx_desc *rxd;
1491 enum rx_msdu_decap_format decap;
1492
1493 first = skb_peek(amsdu);
1494 rxd = (void *)first->data - sizeof(*rxd);
1495 decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1496 RX_MSDU_START_INFO1_DECAP_FORMAT);
1497
1498 if (!chained)
1499 return;
1500
1501 /* FIXME: Current unchaining logic can only handle simple case of raw
1502 * msdu chaining. If decapping is other than raw the chaining may be
1503 * more complex and this isn't handled by the current code. Don't even
1504 * try re-constructing such frames - it'll be pretty much garbage.
1505 */
1506 if (decap != RX_MSDU_DECAP_RAW ||
1507 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1508 __skb_queue_purge(amsdu);
1509 return;
1510 }
1511
1512 ath10k_unchain_msdu(amsdu);
1513 }
1514
1515 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1516 struct sk_buff_head *amsdu,
1517 struct ieee80211_rx_status *rx_status)
1518 {
1519 struct sk_buff *msdu;
1520 struct htt_rx_desc *rxd;
1521 bool is_mgmt;
1522 bool has_fcs_err;
1523
1524 msdu = skb_peek(amsdu);
1525 rxd = (void *)msdu->data - sizeof(*rxd);
1526
1527 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1528 * invalid/dangerous frames.
1529 */
1530
1531 if (!rx_status->freq) {
1532 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1533 return false;
1534 }
1535
1536 is_mgmt = !!(rxd->attention.flags &
1537 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1538 has_fcs_err = !!(rxd->attention.flags &
1539 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1540
1541 /* Management frames are handled via WMI events. The pros of such
1542 * approach is that channel is explicitly provided in WMI events
1543 * whereas HTT doesn't provide channel information for Rxed frames.
1544 *
1545 * However some firmware revisions don't report corrupted frames via
1546 * WMI so don't drop them.
1547 */
1548 if (is_mgmt && !has_fcs_err) {
1549 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1550 return false;
1551 }
1552
1553 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1554 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1555 return false;
1556 }
1557
1558 return true;
1559 }
1560
1561 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1562 struct sk_buff_head *amsdu,
1563 struct ieee80211_rx_status *rx_status)
1564 {
1565 if (skb_queue_empty(amsdu))
1566 return;
1567
1568 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1569 return;
1570
1571 __skb_queue_purge(amsdu);
1572 }
1573
1574 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1575 struct htt_rx_indication *rx)
1576 {
1577 struct ath10k *ar = htt->ar;
1578 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1579 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1580 struct sk_buff_head amsdu;
1581 int num_mpdu_ranges;
1582 int fw_desc_len;
1583 u8 *fw_desc;
1584 int i, ret, mpdu_count = 0;
1585
1586 lockdep_assert_held(&htt->rx_ring.lock);
1587
1588 if (htt->rx_confused)
1589 return;
1590
1591 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1592 fw_desc = (u8 *)&rx->fw_desc;
1593
1594 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1595 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1596 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1597
1598 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1599 rx, sizeof(*rx) +
1600 (sizeof(struct htt_rx_indication_mpdu_range) *
1601 num_mpdu_ranges));
1602
1603 for (i = 0; i < num_mpdu_ranges; i++)
1604 mpdu_count += mpdu_ranges[i].mpdu_count;
1605
1606 while (mpdu_count--) {
1607 __skb_queue_head_init(&amsdu);
1608 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1609 &fw_desc_len, &amsdu);
1610 if (ret < 0) {
1611 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1612 __skb_queue_purge(&amsdu);
1613 /* FIXME: It's probably a good idea to reboot the
1614 * device instead of leaving it inoperable.
1615 */
1616 htt->rx_confused = true;
1617 break;
1618 }
1619
1620 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1621 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1622 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1623 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1624 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1625 }
1626
1627 tasklet_schedule(&htt->rx_replenish_task);
1628 }
1629
1630 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1631 struct htt_rx_fragment_indication *frag)
1632 {
1633 struct ath10k *ar = htt->ar;
1634 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1635 struct sk_buff_head amsdu;
1636 int ret;
1637 u8 *fw_desc;
1638 int fw_desc_len;
1639
1640 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1641 fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1642
1643 __skb_queue_head_init(&amsdu);
1644
1645 spin_lock_bh(&htt->rx_ring.lock);
1646 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1647 &amsdu);
1648 spin_unlock_bh(&htt->rx_ring.lock);
1649
1650 tasklet_schedule(&htt->rx_replenish_task);
1651
1652 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1653
1654 if (ret) {
1655 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1656 ret);
1657 __skb_queue_purge(&amsdu);
1658 return;
1659 }
1660
1661 if (skb_queue_len(&amsdu) != 1) {
1662 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1663 __skb_queue_purge(&amsdu);
1664 return;
1665 }
1666
1667 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1668 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1669 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1670 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1671
1672 if (fw_desc_len > 0) {
1673 ath10k_dbg(ar, ATH10K_DBG_HTT,
1674 "expecting more fragmented rx in one indication %d\n",
1675 fw_desc_len);
1676 }
1677 }
1678
1679 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1680 struct sk_buff *skb)
1681 {
1682 struct ath10k_htt *htt = &ar->htt;
1683 struct htt_resp *resp = (struct htt_resp *)skb->data;
1684 struct htt_tx_done tx_done = {};
1685 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1686 __le16 msdu_id;
1687 int i;
1688
1689 switch (status) {
1690 case HTT_DATA_TX_STATUS_NO_ACK:
1691 tx_done.no_ack = true;
1692 break;
1693 case HTT_DATA_TX_STATUS_OK:
1694 tx_done.success = true;
1695 break;
1696 case HTT_DATA_TX_STATUS_DISCARD:
1697 case HTT_DATA_TX_STATUS_POSTPONE:
1698 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1699 tx_done.discard = true;
1700 break;
1701 default:
1702 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1703 tx_done.discard = true;
1704 break;
1705 }
1706
1707 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1708 resp->data_tx_completion.num_msdus);
1709
1710 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1711 msdu_id = resp->data_tx_completion.msdus[i];
1712 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1713 ath10k_txrx_tx_unref(htt, &tx_done);
1714 }
1715 }
1716
1717 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1718 {
1719 struct htt_rx_addba *ev = &resp->rx_addba;
1720 struct ath10k_peer *peer;
1721 struct ath10k_vif *arvif;
1722 u16 info0, tid, peer_id;
1723
1724 info0 = __le16_to_cpu(ev->info0);
1725 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1726 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1727
1728 ath10k_dbg(ar, ATH10K_DBG_HTT,
1729 "htt rx addba tid %hu peer_id %hu size %hhu\n",
1730 tid, peer_id, ev->window_size);
1731
1732 spin_lock_bh(&ar->data_lock);
1733 peer = ath10k_peer_find_by_id(ar, peer_id);
1734 if (!peer) {
1735 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1736 peer_id);
1737 spin_unlock_bh(&ar->data_lock);
1738 return;
1739 }
1740
1741 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1742 if (!arvif) {
1743 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1744 peer->vdev_id);
1745 spin_unlock_bh(&ar->data_lock);
1746 return;
1747 }
1748
1749 ath10k_dbg(ar, ATH10K_DBG_HTT,
1750 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1751 peer->addr, tid, ev->window_size);
1752
1753 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1754 spin_unlock_bh(&ar->data_lock);
1755 }
1756
1757 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1758 {
1759 struct htt_rx_delba *ev = &resp->rx_delba;
1760 struct ath10k_peer *peer;
1761 struct ath10k_vif *arvif;
1762 u16 info0, tid, peer_id;
1763
1764 info0 = __le16_to_cpu(ev->info0);
1765 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1766 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1767
1768 ath10k_dbg(ar, ATH10K_DBG_HTT,
1769 "htt rx delba tid %hu peer_id %hu\n",
1770 tid, peer_id);
1771
1772 spin_lock_bh(&ar->data_lock);
1773 peer = ath10k_peer_find_by_id(ar, peer_id);
1774 if (!peer) {
1775 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1776 peer_id);
1777 spin_unlock_bh(&ar->data_lock);
1778 return;
1779 }
1780
1781 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1782 if (!arvif) {
1783 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1784 peer->vdev_id);
1785 spin_unlock_bh(&ar->data_lock);
1786 return;
1787 }
1788
1789 ath10k_dbg(ar, ATH10K_DBG_HTT,
1790 "htt rx stop rx ba session sta %pM tid %hu\n",
1791 peer->addr, tid);
1792
1793 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1794 spin_unlock_bh(&ar->data_lock);
1795 }
1796
1797 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1798 struct sk_buff_head *amsdu)
1799 {
1800 struct sk_buff *msdu;
1801 struct htt_rx_desc *rxd;
1802
1803 if (skb_queue_empty(list))
1804 return -ENOBUFS;
1805
1806 if (WARN_ON(!skb_queue_empty(amsdu)))
1807 return -EINVAL;
1808
1809 while ((msdu = __skb_dequeue(list))) {
1810 __skb_queue_tail(amsdu, msdu);
1811
1812 rxd = (void *)msdu->data - sizeof(*rxd);
1813 if (rxd->msdu_end.common.info0 &
1814 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1815 break;
1816 }
1817
1818 msdu = skb_peek_tail(amsdu);
1819 rxd = (void *)msdu->data - sizeof(*rxd);
1820 if (!(rxd->msdu_end.common.info0 &
1821 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1822 skb_queue_splice_init(amsdu, list);
1823 return -EAGAIN;
1824 }
1825
1826 return 0;
1827 }
1828
1829 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1830 struct sk_buff *skb)
1831 {
1832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1833
1834 if (!ieee80211_has_protected(hdr->frame_control))
1835 return;
1836
1837 /* Offloaded frames are already decrypted but firmware insists they are
1838 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
1839 * will drop the frame.
1840 */
1841
1842 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1843 status->flag |= RX_FLAG_DECRYPTED |
1844 RX_FLAG_IV_STRIPPED |
1845 RX_FLAG_MMIC_STRIPPED;
1846 }
1847
1848 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1849 struct sk_buff_head *list)
1850 {
1851 struct ath10k_htt *htt = &ar->htt;
1852 struct ieee80211_rx_status *status = &htt->rx_status;
1853 struct htt_rx_offload_msdu *rx;
1854 struct sk_buff *msdu;
1855 size_t offset;
1856
1857 while ((msdu = __skb_dequeue(list))) {
1858 /* Offloaded frames don't have Rx descriptor. Instead they have
1859 * a short meta information header.
1860 */
1861
1862 rx = (void *)msdu->data;
1863
1864 skb_put(msdu, sizeof(*rx));
1865 skb_pull(msdu, sizeof(*rx));
1866
1867 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1868 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1869 dev_kfree_skb_any(msdu);
1870 continue;
1871 }
1872
1873 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1874
1875 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1876 * actual payload is unaligned. Align the frame. Otherwise
1877 * mac80211 complains. This shouldn't reduce performance much
1878 * because these offloaded frames are rare.
1879 */
1880 offset = 4 - ((unsigned long)msdu->data & 3);
1881 skb_put(msdu, offset);
1882 memmove(msdu->data + offset, msdu->data, msdu->len);
1883 skb_pull(msdu, offset);
1884
1885 /* FIXME: The frame is NWifi. Re-construct QoS Control
1886 * if possible later.
1887 */
1888
1889 memset(status, 0, sizeof(*status));
1890 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1891
1892 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1893 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
1894 ath10k_process_rx(ar, status, msdu);
1895 }
1896 }
1897
1898 static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1899 {
1900 struct ath10k_htt *htt = &ar->htt;
1901 struct htt_resp *resp = (void *)skb->data;
1902 struct ieee80211_rx_status *status = &htt->rx_status;
1903 struct sk_buff_head list;
1904 struct sk_buff_head amsdu;
1905 u16 peer_id;
1906 u16 msdu_count;
1907 u8 vdev_id;
1908 u8 tid;
1909 bool offload;
1910 bool frag;
1911 int ret;
1912
1913 lockdep_assert_held(&htt->rx_ring.lock);
1914
1915 if (htt->rx_confused)
1916 return;
1917
1918 skb_pull(skb, sizeof(resp->hdr));
1919 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1920
1921 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1922 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1923 vdev_id = resp->rx_in_ord_ind.vdev_id;
1924 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1925 offload = !!(resp->rx_in_ord_ind.info &
1926 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1927 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1928
1929 ath10k_dbg(ar, ATH10K_DBG_HTT,
1930 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1931 vdev_id, peer_id, tid, offload, frag, msdu_count);
1932
1933 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1934 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1935 return;
1936 }
1937
1938 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1939 * extracted and processed.
1940 */
1941 __skb_queue_head_init(&list);
1942 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1943 if (ret < 0) {
1944 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1945 htt->rx_confused = true;
1946 return;
1947 }
1948
1949 /* Offloaded frames are very different and need to be handled
1950 * separately.
1951 */
1952 if (offload)
1953 ath10k_htt_rx_h_rx_offload(ar, &list);
1954
1955 while (!skb_queue_empty(&list)) {
1956 __skb_queue_head_init(&amsdu);
1957 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1958 switch (ret) {
1959 case 0:
1960 /* Note: The in-order indication may report interleaved
1961 * frames from different PPDUs meaning reported rx rate
1962 * to mac80211 isn't accurate/reliable. It's still
1963 * better to report something than nothing though. This
1964 * should still give an idea about rx rate to the user.
1965 */
1966 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
1967 ath10k_htt_rx_h_filter(ar, &amsdu, status);
1968 ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1969 ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1970 break;
1971 case -EAGAIN:
1972 /* fall through */
1973 default:
1974 /* Should not happen. */
1975 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1976 htt->rx_confused = true;
1977 __skb_queue_purge(&list);
1978 return;
1979 }
1980 }
1981
1982 tasklet_schedule(&htt->rx_replenish_task);
1983 }
1984
1985 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1986 {
1987 struct ath10k_htt *htt = &ar->htt;
1988 struct htt_resp *resp = (struct htt_resp *)skb->data;
1989 enum htt_t2h_msg_type type;
1990
1991 /* confirm alignment */
1992 if (!IS_ALIGNED((unsigned long)skb->data, 4))
1993 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1994
1995 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1996 resp->hdr.msg_type);
1997
1998 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
1999 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2000 resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2001 dev_kfree_skb_any(skb);
2002 return;
2003 }
2004 type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2005
2006 switch (type) {
2007 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2008 htt->target_version_major = resp->ver_resp.major;
2009 htt->target_version_minor = resp->ver_resp.minor;
2010 complete(&htt->target_version_received);
2011 break;
2012 }
2013 case HTT_T2H_MSG_TYPE_RX_IND:
2014 spin_lock_bh(&htt->rx_ring.lock);
2015 __skb_queue_tail(&htt->rx_compl_q, skb);
2016 spin_unlock_bh(&htt->rx_ring.lock);
2017 tasklet_schedule(&htt->txrx_compl_task);
2018 return;
2019 case HTT_T2H_MSG_TYPE_PEER_MAP: {
2020 struct htt_peer_map_event ev = {
2021 .vdev_id = resp->peer_map.vdev_id,
2022 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2023 };
2024 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2025 ath10k_peer_map_event(htt, &ev);
2026 break;
2027 }
2028 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2029 struct htt_peer_unmap_event ev = {
2030 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2031 };
2032 ath10k_peer_unmap_event(htt, &ev);
2033 break;
2034 }
2035 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2036 struct htt_tx_done tx_done = {};
2037 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2038
2039 tx_done.msdu_id =
2040 __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2041
2042 switch (status) {
2043 case HTT_MGMT_TX_STATUS_OK:
2044 tx_done.success = true;
2045 break;
2046 case HTT_MGMT_TX_STATUS_RETRY:
2047 tx_done.no_ack = true;
2048 break;
2049 case HTT_MGMT_TX_STATUS_DROP:
2050 tx_done.discard = true;
2051 break;
2052 }
2053
2054 ath10k_txrx_tx_unref(htt, &tx_done);
2055 break;
2056 }
2057 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2058 skb_queue_tail(&htt->tx_compl_q, skb);
2059 tasklet_schedule(&htt->txrx_compl_task);
2060 return;
2061 case HTT_T2H_MSG_TYPE_SEC_IND: {
2062 struct ath10k *ar = htt->ar;
2063 struct htt_security_indication *ev = &resp->security_indication;
2064
2065 ath10k_dbg(ar, ATH10K_DBG_HTT,
2066 "sec ind peer_id %d unicast %d type %d\n",
2067 __le16_to_cpu(ev->peer_id),
2068 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2069 MS(ev->flags, HTT_SECURITY_TYPE));
2070 complete(&ar->install_key_done);
2071 break;
2072 }
2073 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2074 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2075 skb->data, skb->len);
2076 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
2077 break;
2078 }
2079 case HTT_T2H_MSG_TYPE_TEST:
2080 break;
2081 case HTT_T2H_MSG_TYPE_STATS_CONF:
2082 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2083 break;
2084 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2085 /* Firmware can return tx frames if it's unable to fully
2086 * process them and suspects host may be able to fix it. ath10k
2087 * sends all tx frames as already inspected so this shouldn't
2088 * happen unless fw has a bug.
2089 */
2090 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2091 break;
2092 case HTT_T2H_MSG_TYPE_RX_ADDBA:
2093 ath10k_htt_rx_addba(ar, resp);
2094 break;
2095 case HTT_T2H_MSG_TYPE_RX_DELBA:
2096 ath10k_htt_rx_delba(ar, resp);
2097 break;
2098 case HTT_T2H_MSG_TYPE_PKTLOG: {
2099 struct ath10k_pktlog_hdr *hdr =
2100 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2101
2102 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2103 sizeof(*hdr) +
2104 __le16_to_cpu(hdr->size));
2105 break;
2106 }
2107 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2108 /* Ignore this event because mac80211 takes care of Rx
2109 * aggregation reordering.
2110 */
2111 break;
2112 }
2113 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2114 spin_lock_bh(&htt->rx_ring.lock);
2115 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2116 spin_unlock_bh(&htt->rx_ring.lock);
2117 tasklet_schedule(&htt->txrx_compl_task);
2118 return;
2119 }
2120 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2121 break;
2122 case HTT_T2H_MSG_TYPE_CHAN_CHANGE:
2123 break;
2124 case HTT_T2H_MSG_TYPE_AGGR_CONF:
2125 break;
2126 case HTT_T2H_MSG_TYPE_EN_STATS:
2127 case HTT_T2H_MSG_TYPE_TX_FETCH_IND:
2128 case HTT_T2H_MSG_TYPE_TX_FETCH_CONF:
2129 case HTT_T2H_MSG_TYPE_TX_LOW_LATENCY_IND:
2130 default:
2131 ath10k_warn(ar, "htt event (%d) not handled\n",
2132 resp->hdr.msg_type);
2133 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2134 skb->data, skb->len);
2135 break;
2136 };
2137
2138 /* Free the indication buffer */
2139 dev_kfree_skb_any(skb);
2140 }
2141 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2142
2143 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2144 struct sk_buff *skb)
2145 {
2146 struct ath10k_pktlog_10_4_hdr *hdr =
2147 (struct ath10k_pktlog_10_4_hdr *)skb->data;
2148
2149 trace_ath10k_htt_pktlog(ar, hdr->payload,
2150 sizeof(*hdr) + __le16_to_cpu(hdr->size));
2151 dev_kfree_skb_any(skb);
2152 }
2153 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2154
2155 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2156 {
2157 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2158 struct ath10k *ar = htt->ar;
2159 struct sk_buff_head tx_q;
2160 struct htt_resp *resp;
2161 struct sk_buff *skb;
2162 unsigned long flags;
2163
2164 __skb_queue_head_init(&tx_q);
2165
2166 spin_lock_irqsave(&htt->tx_compl_q.lock, flags);
2167 skb_queue_splice_init(&htt->tx_compl_q, &tx_q);
2168 spin_unlock_irqrestore(&htt->tx_compl_q.lock, flags);
2169
2170 while ((skb = __skb_dequeue(&tx_q))) {
2171 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
2172 dev_kfree_skb_any(skb);
2173 }
2174
2175 spin_lock_bh(&htt->rx_ring.lock);
2176 while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
2177 resp = (struct htt_resp *)skb->data;
2178 ath10k_htt_rx_handler(htt, &resp->rx_ind);
2179 dev_kfree_skb_any(skb);
2180 }
2181
2182 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2183 ath10k_htt_rx_in_ord_ind(ar, skb);
2184 dev_kfree_skb_any(skb);
2185 }
2186 spin_unlock_bh(&htt->rx_ring.lock);
2187 }
This page took 0.079634 seconds and 5 git commands to generate.