Merge tag 'for-linus-20141215' of git://git.infradead.org/linux-mtd
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 #define HTT_RX_RING_SIZE 1024
29 #define HTT_RX_RING_FILL_LEVEL 1000
30
31 /* when under memory pressure rx ring refill may fail and needs a retry */
32 #define HTT_RX_RING_REFILL_RETRY_MS 50
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
38 {
39 struct sk_buff *skb;
40 struct ath10k_skb_cb *cb;
41 int i;
42
43 for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
44 skb = htt->rx_ring.netbufs_ring[i];
45 cb = ATH10K_SKB_CB(skb);
46 dma_unmap_single(htt->ar->dev, cb->paddr,
47 skb->len + skb_tailroom(skb),
48 DMA_FROM_DEVICE);
49 dev_kfree_skb_any(skb);
50 }
51
52 htt->rx_ring.fill_cnt = 0;
53 }
54
55 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
56 {
57 struct htt_rx_desc *rx_desc;
58 struct sk_buff *skb;
59 dma_addr_t paddr;
60 int ret = 0, idx;
61
62 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
63 while (num > 0) {
64 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
65 if (!skb) {
66 ret = -ENOMEM;
67 goto fail;
68 }
69
70 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
71 skb_pull(skb,
72 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
73 skb->data);
74
75 /* Clear rx_desc attention word before posting to Rx ring */
76 rx_desc = (struct htt_rx_desc *)skb->data;
77 rx_desc->attention.flags = __cpu_to_le32(0);
78
79 paddr = dma_map_single(htt->ar->dev, skb->data,
80 skb->len + skb_tailroom(skb),
81 DMA_FROM_DEVICE);
82
83 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
84 dev_kfree_skb_any(skb);
85 ret = -ENOMEM;
86 goto fail;
87 }
88
89 ATH10K_SKB_CB(skb)->paddr = paddr;
90 htt->rx_ring.netbufs_ring[idx] = skb;
91 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
92 htt->rx_ring.fill_cnt++;
93
94 num--;
95 idx++;
96 idx &= htt->rx_ring.size_mask;
97 }
98
99 fail:
100 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
101 return ret;
102 }
103
104 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
105 {
106 lockdep_assert_held(&htt->rx_ring.lock);
107 return __ath10k_htt_rx_ring_fill_n(htt, num);
108 }
109
110 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
111 {
112 int ret, num_deficit, num_to_fill;
113
114 /* Refilling the whole RX ring buffer proves to be a bad idea. The
115 * reason is RX may take up significant amount of CPU cycles and starve
116 * other tasks, e.g. TX on an ethernet device while acting as a bridge
117 * with ath10k wlan interface. This ended up with very poor performance
118 * once CPU the host system was overwhelmed with RX on ath10k.
119 *
120 * By limiting the number of refills the replenishing occurs
121 * progressively. This in turns makes use of the fact tasklets are
122 * processed in FIFO order. This means actual RX processing can starve
123 * out refilling. If there's not enough buffers on RX ring FW will not
124 * report RX until it is refilled with enough buffers. This
125 * automatically balances load wrt to CPU power.
126 *
127 * This probably comes at a cost of lower maximum throughput but
128 * improves the avarage and stability. */
129 spin_lock_bh(&htt->rx_ring.lock);
130 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
131 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
132 num_deficit -= num_to_fill;
133 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
134 if (ret == -ENOMEM) {
135 /*
136 * Failed to fill it to the desired level -
137 * we'll start a timer and try again next time.
138 * As long as enough buffers are left in the ring for
139 * another A-MPDU rx, no special recovery is needed.
140 */
141 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
142 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
143 } else if (num_deficit > 0) {
144 tasklet_schedule(&htt->rx_replenish_task);
145 }
146 spin_unlock_bh(&htt->rx_ring.lock);
147 }
148
149 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
150 {
151 struct ath10k_htt *htt = (struct ath10k_htt *)arg;
152
153 ath10k_htt_rx_msdu_buff_replenish(htt);
154 }
155
156 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
157 {
158 struct sk_buff *skb;
159 int i;
160
161 for (i = 0; i < htt->rx_ring.size; i++) {
162 skb = htt->rx_ring.netbufs_ring[i];
163 if (!skb)
164 continue;
165
166 dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
167 skb->len + skb_tailroom(skb),
168 DMA_FROM_DEVICE);
169 dev_kfree_skb_any(skb);
170 htt->rx_ring.netbufs_ring[i] = NULL;
171 }
172 }
173
174 void ath10k_htt_rx_free(struct ath10k_htt *htt)
175 {
176 del_timer_sync(&htt->rx_ring.refill_retry_timer);
177 tasklet_kill(&htt->rx_replenish_task);
178 tasklet_kill(&htt->txrx_compl_task);
179
180 skb_queue_purge(&htt->tx_compl_q);
181 skb_queue_purge(&htt->rx_compl_q);
182
183 ath10k_htt_rx_ring_clean_up(htt);
184
185 dma_free_coherent(htt->ar->dev,
186 (htt->rx_ring.size *
187 sizeof(htt->rx_ring.paddrs_ring)),
188 htt->rx_ring.paddrs_ring,
189 htt->rx_ring.base_paddr);
190
191 dma_free_coherent(htt->ar->dev,
192 sizeof(*htt->rx_ring.alloc_idx.vaddr),
193 htt->rx_ring.alloc_idx.vaddr,
194 htt->rx_ring.alloc_idx.paddr);
195
196 kfree(htt->rx_ring.netbufs_ring);
197 }
198
199 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
200 {
201 struct ath10k *ar = htt->ar;
202 int idx;
203 struct sk_buff *msdu;
204
205 lockdep_assert_held(&htt->rx_ring.lock);
206
207 if (htt->rx_ring.fill_cnt == 0) {
208 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
209 return NULL;
210 }
211
212 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
213 msdu = htt->rx_ring.netbufs_ring[idx];
214 htt->rx_ring.netbufs_ring[idx] = NULL;
215
216 idx++;
217 idx &= htt->rx_ring.size_mask;
218 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
219 htt->rx_ring.fill_cnt--;
220
221 dma_unmap_single(htt->ar->dev,
222 ATH10K_SKB_CB(msdu)->paddr,
223 msdu->len + skb_tailroom(msdu),
224 DMA_FROM_DEVICE);
225 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
226 msdu->data, msdu->len + skb_tailroom(msdu));
227
228 return msdu;
229 }
230
231 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
232 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
233 u8 **fw_desc, int *fw_desc_len,
234 struct sk_buff_head *amsdu)
235 {
236 struct ath10k *ar = htt->ar;
237 int msdu_len, msdu_chaining = 0;
238 struct sk_buff *msdu;
239 struct htt_rx_desc *rx_desc;
240
241 lockdep_assert_held(&htt->rx_ring.lock);
242
243 for (;;) {
244 int last_msdu, msdu_len_invalid, msdu_chained;
245
246 msdu = ath10k_htt_rx_netbuf_pop(htt);
247 if (!msdu) {
248 __skb_queue_purge(amsdu);
249 return -ENOENT;
250 }
251
252 __skb_queue_tail(amsdu, msdu);
253
254 rx_desc = (struct htt_rx_desc *)msdu->data;
255
256 /* FIXME: we must report msdu payload since this is what caller
257 * expects now */
258 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
259 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
260
261 /*
262 * Sanity check - confirm the HW is finished filling in the
263 * rx data.
264 * If the HW and SW are working correctly, then it's guaranteed
265 * that the HW's MAC DMA is done before this point in the SW.
266 * To prevent the case that we handle a stale Rx descriptor,
267 * just assert for now until we have a way to recover.
268 */
269 if (!(__le32_to_cpu(rx_desc->attention.flags)
270 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
271 __skb_queue_purge(amsdu);
272 return -EIO;
273 }
274
275 /*
276 * Copy the FW rx descriptor for this MSDU from the rx
277 * indication message into the MSDU's netbuf. HL uses the
278 * same rx indication message definition as LL, and simply
279 * appends new info (fields from the HW rx desc, and the
280 * MSDU payload itself). So, the offset into the rx
281 * indication message only has to account for the standard
282 * offset of the per-MSDU FW rx desc info within the
283 * message, and how many bytes of the per-MSDU FW rx desc
284 * info have already been consumed. (And the endianness of
285 * the host, since for a big-endian host, the rx ind
286 * message contents, including the per-MSDU rx desc bytes,
287 * were byteswapped during upload.)
288 */
289 if (*fw_desc_len > 0) {
290 rx_desc->fw_desc.info0 = **fw_desc;
291 /*
292 * The target is expected to only provide the basic
293 * per-MSDU rx descriptors. Just to be sure, verify
294 * that the target has not attached extension data
295 * (e.g. LRO flow ID).
296 */
297
298 /* or more, if there's extension data */
299 (*fw_desc)++;
300 (*fw_desc_len)--;
301 } else {
302 /*
303 * When an oversized AMSDU happened, FW will lost
304 * some of MSDU status - in this case, the FW
305 * descriptors provided will be less than the
306 * actual MSDUs inside this MPDU. Mark the FW
307 * descriptors so that it will still deliver to
308 * upper stack, if no CRC error for this MPDU.
309 *
310 * FIX THIS - the FW descriptors are actually for
311 * MSDUs in the end of this A-MSDU instead of the
312 * beginning.
313 */
314 rx_desc->fw_desc.info0 = 0;
315 }
316
317 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
318 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
319 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
320 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
321 RX_MSDU_START_INFO0_MSDU_LENGTH);
322 msdu_chained = rx_desc->frag_info.ring2_more_count;
323
324 if (msdu_len_invalid)
325 msdu_len = 0;
326
327 skb_trim(msdu, 0);
328 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
329 msdu_len -= msdu->len;
330
331 /* Note: Chained buffers do not contain rx descriptor */
332 while (msdu_chained--) {
333 msdu = ath10k_htt_rx_netbuf_pop(htt);
334 if (!msdu) {
335 __skb_queue_purge(amsdu);
336 return -ENOENT;
337 }
338
339 __skb_queue_tail(amsdu, msdu);
340 skb_trim(msdu, 0);
341 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
342 msdu_len -= msdu->len;
343 msdu_chaining = 1;
344 }
345
346 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
347 RX_MSDU_END_INFO0_LAST_MSDU;
348
349 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
350 sizeof(*rx_desc) - sizeof(u32));
351
352 if (last_msdu)
353 break;
354 }
355
356 if (skb_queue_empty(amsdu))
357 msdu_chaining = -1;
358
359 /*
360 * Don't refill the ring yet.
361 *
362 * First, the elements popped here are still in use - it is not
363 * safe to overwrite them until the matching call to
364 * mpdu_desc_list_next. Second, for efficiency it is preferable to
365 * refill the rx ring with 1 PPDU's worth of rx buffers (something
366 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
367 * (something like 3 buffers). Consequently, we'll rely on the txrx
368 * SW to tell us when it is done pulling all the PPDU's rx buffers
369 * out of the rx ring, and then refill it just once.
370 */
371
372 return msdu_chaining;
373 }
374
375 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
376 {
377 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
378
379 ath10k_htt_rx_msdu_buff_replenish(htt);
380 }
381
382 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
383 {
384 struct ath10k *ar = htt->ar;
385 dma_addr_t paddr;
386 void *vaddr;
387 size_t size;
388 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
389
390 htt->rx_confused = false;
391
392 /* XXX: The fill level could be changed during runtime in response to
393 * the host processing latency. Is this really worth it?
394 */
395 htt->rx_ring.size = HTT_RX_RING_SIZE;
396 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
397 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
398
399 if (!is_power_of_2(htt->rx_ring.size)) {
400 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
401 return -EINVAL;
402 }
403
404 htt->rx_ring.netbufs_ring =
405 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
406 GFP_KERNEL);
407 if (!htt->rx_ring.netbufs_ring)
408 goto err_netbuf;
409
410 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
411
412 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
413 if (!vaddr)
414 goto err_dma_ring;
415
416 htt->rx_ring.paddrs_ring = vaddr;
417 htt->rx_ring.base_paddr = paddr;
418
419 vaddr = dma_alloc_coherent(htt->ar->dev,
420 sizeof(*htt->rx_ring.alloc_idx.vaddr),
421 &paddr, GFP_DMA);
422 if (!vaddr)
423 goto err_dma_idx;
424
425 htt->rx_ring.alloc_idx.vaddr = vaddr;
426 htt->rx_ring.alloc_idx.paddr = paddr;
427 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
428 *htt->rx_ring.alloc_idx.vaddr = 0;
429
430 /* Initialize the Rx refill retry timer */
431 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
432
433 spin_lock_init(&htt->rx_ring.lock);
434
435 htt->rx_ring.fill_cnt = 0;
436 if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
437 goto err_fill_ring;
438
439 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
440 (unsigned long)htt);
441
442 skb_queue_head_init(&htt->tx_compl_q);
443 skb_queue_head_init(&htt->rx_compl_q);
444
445 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
446 (unsigned long)htt);
447
448 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
449 htt->rx_ring.size, htt->rx_ring.fill_level);
450 return 0;
451
452 err_fill_ring:
453 ath10k_htt_rx_ring_free(htt);
454 dma_free_coherent(htt->ar->dev,
455 sizeof(*htt->rx_ring.alloc_idx.vaddr),
456 htt->rx_ring.alloc_idx.vaddr,
457 htt->rx_ring.alloc_idx.paddr);
458 err_dma_idx:
459 dma_free_coherent(htt->ar->dev,
460 (htt->rx_ring.size *
461 sizeof(htt->rx_ring.paddrs_ring)),
462 htt->rx_ring.paddrs_ring,
463 htt->rx_ring.base_paddr);
464 err_dma_ring:
465 kfree(htt->rx_ring.netbufs_ring);
466 err_netbuf:
467 return -ENOMEM;
468 }
469
470 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
471 enum htt_rx_mpdu_encrypt_type type)
472 {
473 switch (type) {
474 case HTT_RX_MPDU_ENCRYPT_NONE:
475 return 0;
476 case HTT_RX_MPDU_ENCRYPT_WEP40:
477 case HTT_RX_MPDU_ENCRYPT_WEP104:
478 return IEEE80211_WEP_IV_LEN;
479 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
480 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
481 return IEEE80211_TKIP_IV_LEN;
482 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
483 return IEEE80211_CCMP_HDR_LEN;
484 case HTT_RX_MPDU_ENCRYPT_WEP128:
485 case HTT_RX_MPDU_ENCRYPT_WAPI:
486 break;
487 }
488
489 ath10k_warn(ar, "unsupported encryption type %d\n", type);
490 return 0;
491 }
492
493 #define MICHAEL_MIC_LEN 8
494
495 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
496 enum htt_rx_mpdu_encrypt_type type)
497 {
498 switch (type) {
499 case HTT_RX_MPDU_ENCRYPT_NONE:
500 return 0;
501 case HTT_RX_MPDU_ENCRYPT_WEP40:
502 case HTT_RX_MPDU_ENCRYPT_WEP104:
503 return IEEE80211_WEP_ICV_LEN;
504 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
505 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
506 return IEEE80211_TKIP_ICV_LEN;
507 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
508 return IEEE80211_CCMP_MIC_LEN;
509 case HTT_RX_MPDU_ENCRYPT_WEP128:
510 case HTT_RX_MPDU_ENCRYPT_WAPI:
511 break;
512 }
513
514 ath10k_warn(ar, "unsupported encryption type %d\n", type);
515 return 0;
516 }
517
518 struct rfc1042_hdr {
519 u8 llc_dsap;
520 u8 llc_ssap;
521 u8 llc_ctrl;
522 u8 snap_oui[3];
523 __be16 snap_type;
524 } __packed;
525
526 struct amsdu_subframe_hdr {
527 u8 dst[ETH_ALEN];
528 u8 src[ETH_ALEN];
529 __be16 len;
530 } __packed;
531
532 static const u8 rx_legacy_rate_idx[] = {
533 3, /* 0x00 - 11Mbps */
534 2, /* 0x01 - 5.5Mbps */
535 1, /* 0x02 - 2Mbps */
536 0, /* 0x03 - 1Mbps */
537 3, /* 0x04 - 11Mbps */
538 2, /* 0x05 - 5.5Mbps */
539 1, /* 0x06 - 2Mbps */
540 0, /* 0x07 - 1Mbps */
541 10, /* 0x08 - 48Mbps */
542 8, /* 0x09 - 24Mbps */
543 6, /* 0x0A - 12Mbps */
544 4, /* 0x0B - 6Mbps */
545 11, /* 0x0C - 54Mbps */
546 9, /* 0x0D - 36Mbps */
547 7, /* 0x0E - 18Mbps */
548 5, /* 0x0F - 9Mbps */
549 };
550
551 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
552 struct ieee80211_rx_status *status,
553 struct htt_rx_desc *rxd)
554 {
555 enum ieee80211_band band;
556 u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
557 u8 preamble = 0;
558 u32 info1, info2, info3;
559
560 /* Band value can't be set as undefined but freq can be 0 - use that to
561 * determine whether band is provided.
562 *
563 * FIXME: Perhaps this can go away if CCK rate reporting is a little
564 * reworked?
565 */
566 if (!status->freq)
567 return;
568
569 band = status->band;
570 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
571 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
572 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
573
574 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
575
576 switch (preamble) {
577 case HTT_RX_LEGACY:
578 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
579 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
580 rate_idx = 0;
581
582 if (rate < 0x08 || rate > 0x0F)
583 break;
584
585 switch (band) {
586 case IEEE80211_BAND_2GHZ:
587 if (cck)
588 rate &= ~BIT(3);
589 rate_idx = rx_legacy_rate_idx[rate];
590 break;
591 case IEEE80211_BAND_5GHZ:
592 rate_idx = rx_legacy_rate_idx[rate];
593 /* We are using same rate table registering
594 HW - ath10k_rates[]. In case of 5GHz skip
595 CCK rates, so -4 here */
596 rate_idx -= 4;
597 break;
598 default:
599 break;
600 }
601
602 status->rate_idx = rate_idx;
603 break;
604 case HTT_RX_HT:
605 case HTT_RX_HT_WITH_TXBF:
606 /* HT-SIG - Table 20-11 in info2 and info3 */
607 mcs = info2 & 0x1F;
608 nss = mcs >> 3;
609 bw = (info2 >> 7) & 1;
610 sgi = (info3 >> 7) & 1;
611
612 status->rate_idx = mcs;
613 status->flag |= RX_FLAG_HT;
614 if (sgi)
615 status->flag |= RX_FLAG_SHORT_GI;
616 if (bw)
617 status->flag |= RX_FLAG_40MHZ;
618 break;
619 case HTT_RX_VHT:
620 case HTT_RX_VHT_WITH_TXBF:
621 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
622 TODO check this */
623 mcs = (info3 >> 4) & 0x0F;
624 nss = ((info2 >> 10) & 0x07) + 1;
625 bw = info2 & 3;
626 sgi = info3 & 1;
627
628 status->rate_idx = mcs;
629 status->vht_nss = nss;
630
631 if (sgi)
632 status->flag |= RX_FLAG_SHORT_GI;
633
634 switch (bw) {
635 /* 20MHZ */
636 case 0:
637 break;
638 /* 40MHZ */
639 case 1:
640 status->flag |= RX_FLAG_40MHZ;
641 break;
642 /* 80MHZ */
643 case 2:
644 status->vht_flag |= RX_VHT_FLAG_80MHZ;
645 }
646
647 status->flag |= RX_FLAG_VHT;
648 break;
649 default:
650 break;
651 }
652 }
653
654 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
655 struct ieee80211_rx_status *status)
656 {
657 struct ieee80211_channel *ch;
658
659 spin_lock_bh(&ar->data_lock);
660 ch = ar->scan_channel;
661 if (!ch)
662 ch = ar->rx_channel;
663 spin_unlock_bh(&ar->data_lock);
664
665 if (!ch)
666 return false;
667
668 status->band = ch->band;
669 status->freq = ch->center_freq;
670
671 return true;
672 }
673
674 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
675 struct ieee80211_rx_status *status,
676 struct htt_rx_desc *rxd)
677 {
678 /* FIXME: Get real NF */
679 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
680 rxd->ppdu_start.rssi_comb;
681 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
682 }
683
684 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
685 struct ieee80211_rx_status *status,
686 struct htt_rx_desc *rxd)
687 {
688 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
689 * means all prior MSDUs in a PPDU are reported to mac80211 without the
690 * TSF. Is it worth holding frames until end of PPDU is known?
691 *
692 * FIXME: Can we get/compute 64bit TSF?
693 */
694 status->mactime = __le32_to_cpu(rxd->ppdu_end.tsf_timestamp);
695 status->flag |= RX_FLAG_MACTIME_END;
696 }
697
698 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
699 struct sk_buff_head *amsdu,
700 struct ieee80211_rx_status *status)
701 {
702 struct sk_buff *first;
703 struct htt_rx_desc *rxd;
704 bool is_first_ppdu;
705 bool is_last_ppdu;
706
707 if (skb_queue_empty(amsdu))
708 return;
709
710 first = skb_peek(amsdu);
711 rxd = (void *)first->data - sizeof(*rxd);
712
713 is_first_ppdu = !!(rxd->attention.flags &
714 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
715 is_last_ppdu = !!(rxd->attention.flags &
716 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
717
718 if (is_first_ppdu) {
719 /* New PPDU starts so clear out the old per-PPDU status. */
720 status->freq = 0;
721 status->rate_idx = 0;
722 status->vht_nss = 0;
723 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
724 status->flag &= ~(RX_FLAG_HT |
725 RX_FLAG_VHT |
726 RX_FLAG_SHORT_GI |
727 RX_FLAG_40MHZ |
728 RX_FLAG_MACTIME_END);
729 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
730
731 ath10k_htt_rx_h_signal(ar, status, rxd);
732 ath10k_htt_rx_h_channel(ar, status);
733 ath10k_htt_rx_h_rates(ar, status, rxd);
734 }
735
736 if (is_last_ppdu)
737 ath10k_htt_rx_h_mactime(ar, status, rxd);
738 }
739
740 static const char * const tid_to_ac[] = {
741 "BE",
742 "BK",
743 "BK",
744 "BE",
745 "VI",
746 "VI",
747 "VO",
748 "VO",
749 };
750
751 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
752 {
753 u8 *qc;
754 int tid;
755
756 if (!ieee80211_is_data_qos(hdr->frame_control))
757 return "";
758
759 qc = ieee80211_get_qos_ctl(hdr);
760 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
761 if (tid < 8)
762 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
763 else
764 snprintf(out, size, "tid %d", tid);
765
766 return out;
767 }
768
769 static void ath10k_process_rx(struct ath10k *ar,
770 struct ieee80211_rx_status *rx_status,
771 struct sk_buff *skb)
772 {
773 struct ieee80211_rx_status *status;
774 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
775 char tid[32];
776
777 status = IEEE80211_SKB_RXCB(skb);
778 *status = *rx_status;
779
780 ath10k_dbg(ar, ATH10K_DBG_DATA,
781 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
782 skb,
783 skb->len,
784 ieee80211_get_SA(hdr),
785 ath10k_get_tid(hdr, tid, sizeof(tid)),
786 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
787 "mcast" : "ucast",
788 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
789 status->flag == 0 ? "legacy" : "",
790 status->flag & RX_FLAG_HT ? "ht" : "",
791 status->flag & RX_FLAG_VHT ? "vht" : "",
792 status->flag & RX_FLAG_40MHZ ? "40" : "",
793 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
794 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
795 status->rate_idx,
796 status->vht_nss,
797 status->freq,
798 status->band, status->flag,
799 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
800 !!(status->flag & RX_FLAG_MMIC_ERROR),
801 !!(status->flag & RX_FLAG_AMSDU_MORE));
802 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
803 skb->data, skb->len);
804 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
805 trace_ath10k_rx_payload(ar, skb->data, skb->len);
806
807 ieee80211_rx(ar->hw, skb);
808 }
809
810 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
811 {
812 /* nwifi header is padded to 4 bytes. this fixes 4addr rx */
813 return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
814 }
815
816 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
817 struct sk_buff *msdu,
818 struct ieee80211_rx_status *status,
819 enum htt_rx_mpdu_encrypt_type enctype,
820 bool is_decrypted)
821 {
822 struct ieee80211_hdr *hdr;
823 struct htt_rx_desc *rxd;
824 size_t hdr_len;
825 size_t crypto_len;
826 bool is_first;
827 bool is_last;
828
829 rxd = (void *)msdu->data - sizeof(*rxd);
830 is_first = !!(rxd->msdu_end.info0 &
831 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
832 is_last = !!(rxd->msdu_end.info0 &
833 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
834
835 /* Delivered decapped frame:
836 * [802.11 header]
837 * [crypto param] <-- can be trimmed if !fcs_err &&
838 * !decrypt_err && !peer_idx_invalid
839 * [amsdu header] <-- only if A-MSDU
840 * [rfc1042/llc]
841 * [payload]
842 * [FCS] <-- at end, needs to be trimmed
843 */
844
845 /* This probably shouldn't happen but warn just in case */
846 if (unlikely(WARN_ON_ONCE(!is_first)))
847 return;
848
849 /* This probably shouldn't happen but warn just in case */
850 if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
851 return;
852
853 skb_trim(msdu, msdu->len - FCS_LEN);
854
855 /* In most cases this will be true for sniffed frames. It makes sense
856 * to deliver them as-is without stripping the crypto param. This would
857 * also make sense for software based decryption (which is not
858 * implemented in ath10k).
859 *
860 * If there's no error then the frame is decrypted. At least that is
861 * the case for frames that come in via fragmented rx indication.
862 */
863 if (!is_decrypted)
864 return;
865
866 /* The payload is decrypted so strip crypto params. Start from tail
867 * since hdr is used to compute some stuff.
868 */
869
870 hdr = (void *)msdu->data;
871
872 /* Tail */
873 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
874
875 /* MMIC */
876 if (!ieee80211_has_morefrags(hdr->frame_control) &&
877 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
878 skb_trim(msdu, msdu->len - 8);
879
880 /* Head */
881 hdr_len = ieee80211_hdrlen(hdr->frame_control);
882 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
883
884 memmove((void *)msdu->data + crypto_len,
885 (void *)msdu->data, hdr_len);
886 skb_pull(msdu, crypto_len);
887 }
888
889 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
890 struct sk_buff *msdu,
891 struct ieee80211_rx_status *status,
892 const u8 first_hdr[64])
893 {
894 struct ieee80211_hdr *hdr;
895 size_t hdr_len;
896 u8 da[ETH_ALEN];
897 u8 sa[ETH_ALEN];
898
899 /* Delivered decapped frame:
900 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
901 * [rfc1042/llc]
902 *
903 * Note: The nwifi header doesn't have QoS Control and is
904 * (always?) a 3addr frame.
905 *
906 * Note2: There's no A-MSDU subframe header. Even if it's part
907 * of an A-MSDU.
908 */
909
910 /* pull decapped header and copy SA & DA */
911 hdr = (struct ieee80211_hdr *)msdu->data;
912 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
913 ether_addr_copy(da, ieee80211_get_DA(hdr));
914 ether_addr_copy(sa, ieee80211_get_SA(hdr));
915 skb_pull(msdu, hdr_len);
916
917 /* push original 802.11 header */
918 hdr = (struct ieee80211_hdr *)first_hdr;
919 hdr_len = ieee80211_hdrlen(hdr->frame_control);
920 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
921
922 /* original 802.11 header has a different DA and in
923 * case of 4addr it may also have different SA
924 */
925 hdr = (struct ieee80211_hdr *)msdu->data;
926 ether_addr_copy(ieee80211_get_DA(hdr), da);
927 ether_addr_copy(ieee80211_get_SA(hdr), sa);
928 }
929
930 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
931 struct sk_buff *msdu,
932 enum htt_rx_mpdu_encrypt_type enctype)
933 {
934 struct ieee80211_hdr *hdr;
935 struct htt_rx_desc *rxd;
936 size_t hdr_len, crypto_len;
937 void *rfc1042;
938 bool is_first, is_last, is_amsdu;
939
940 rxd = (void *)msdu->data - sizeof(*rxd);
941 hdr = (void *)rxd->rx_hdr_status;
942
943 is_first = !!(rxd->msdu_end.info0 &
944 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
945 is_last = !!(rxd->msdu_end.info0 &
946 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
947 is_amsdu = !(is_first && is_last);
948
949 rfc1042 = hdr;
950
951 if (is_first) {
952 hdr_len = ieee80211_hdrlen(hdr->frame_control);
953 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
954
955 rfc1042 += round_up(hdr_len, 4) +
956 round_up(crypto_len, 4);
957 }
958
959 if (is_amsdu)
960 rfc1042 += sizeof(struct amsdu_subframe_hdr);
961
962 return rfc1042;
963 }
964
965 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
966 struct sk_buff *msdu,
967 struct ieee80211_rx_status *status,
968 const u8 first_hdr[64],
969 enum htt_rx_mpdu_encrypt_type enctype)
970 {
971 struct ieee80211_hdr *hdr;
972 struct ethhdr *eth;
973 size_t hdr_len;
974 void *rfc1042;
975 u8 da[ETH_ALEN];
976 u8 sa[ETH_ALEN];
977
978 /* Delivered decapped frame:
979 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
980 * [payload]
981 */
982
983 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
984 if (WARN_ON_ONCE(!rfc1042))
985 return;
986
987 /* pull decapped header and copy SA & DA */
988 eth = (struct ethhdr *)msdu->data;
989 ether_addr_copy(da, eth->h_dest);
990 ether_addr_copy(sa, eth->h_source);
991 skb_pull(msdu, sizeof(struct ethhdr));
992
993 /* push rfc1042/llc/snap */
994 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
995 sizeof(struct rfc1042_hdr));
996
997 /* push original 802.11 header */
998 hdr = (struct ieee80211_hdr *)first_hdr;
999 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1000 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1001
1002 /* original 802.11 header has a different DA and in
1003 * case of 4addr it may also have different SA
1004 */
1005 hdr = (struct ieee80211_hdr *)msdu->data;
1006 ether_addr_copy(ieee80211_get_DA(hdr), da);
1007 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1008 }
1009
1010 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1011 struct sk_buff *msdu,
1012 struct ieee80211_rx_status *status,
1013 const u8 first_hdr[64])
1014 {
1015 struct ieee80211_hdr *hdr;
1016 size_t hdr_len;
1017
1018 /* Delivered decapped frame:
1019 * [amsdu header] <-- replaced with 802.11 hdr
1020 * [rfc1042/llc]
1021 * [payload]
1022 */
1023
1024 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1025
1026 hdr = (struct ieee80211_hdr *)first_hdr;
1027 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1028 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1029 }
1030
1031 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1032 struct sk_buff *msdu,
1033 struct ieee80211_rx_status *status,
1034 u8 first_hdr[64],
1035 enum htt_rx_mpdu_encrypt_type enctype,
1036 bool is_decrypted)
1037 {
1038 struct htt_rx_desc *rxd;
1039 enum rx_msdu_decap_format decap;
1040 struct ieee80211_hdr *hdr;
1041
1042 /* First msdu's decapped header:
1043 * [802.11 header] <-- padded to 4 bytes long
1044 * [crypto param] <-- padded to 4 bytes long
1045 * [amsdu header] <-- only if A-MSDU
1046 * [rfc1042/llc]
1047 *
1048 * Other (2nd, 3rd, ..) msdu's decapped header:
1049 * [amsdu header] <-- only if A-MSDU
1050 * [rfc1042/llc]
1051 */
1052
1053 rxd = (void *)msdu->data - sizeof(*rxd);
1054 hdr = (void *)rxd->rx_hdr_status;
1055 decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1056 RX_MSDU_START_INFO1_DECAP_FORMAT);
1057
1058 switch (decap) {
1059 case RX_MSDU_DECAP_RAW:
1060 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1061 is_decrypted);
1062 break;
1063 case RX_MSDU_DECAP_NATIVE_WIFI:
1064 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1065 break;
1066 case RX_MSDU_DECAP_ETHERNET2_DIX:
1067 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1068 break;
1069 case RX_MSDU_DECAP_8023_SNAP_LLC:
1070 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1071 break;
1072 }
1073 }
1074
1075 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1076 {
1077 struct htt_rx_desc *rxd;
1078 u32 flags, info;
1079 bool is_ip4, is_ip6;
1080 bool is_tcp, is_udp;
1081 bool ip_csum_ok, tcpudp_csum_ok;
1082
1083 rxd = (void *)skb->data - sizeof(*rxd);
1084 flags = __le32_to_cpu(rxd->attention.flags);
1085 info = __le32_to_cpu(rxd->msdu_start.info1);
1086
1087 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1088 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1089 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1090 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1091 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1092 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1093
1094 if (!is_ip4 && !is_ip6)
1095 return CHECKSUM_NONE;
1096 if (!is_tcp && !is_udp)
1097 return CHECKSUM_NONE;
1098 if (!ip_csum_ok)
1099 return CHECKSUM_NONE;
1100 if (!tcpudp_csum_ok)
1101 return CHECKSUM_NONE;
1102
1103 return CHECKSUM_UNNECESSARY;
1104 }
1105
1106 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1107 {
1108 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1109 }
1110
1111 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1112 struct sk_buff_head *amsdu,
1113 struct ieee80211_rx_status *status)
1114 {
1115 struct sk_buff *first;
1116 struct sk_buff *last;
1117 struct sk_buff *msdu;
1118 struct htt_rx_desc *rxd;
1119 struct ieee80211_hdr *hdr;
1120 enum htt_rx_mpdu_encrypt_type enctype;
1121 u8 first_hdr[64];
1122 u8 *qos;
1123 size_t hdr_len;
1124 bool has_fcs_err;
1125 bool has_crypto_err;
1126 bool has_tkip_err;
1127 bool has_peer_idx_invalid;
1128 bool is_decrypted;
1129 u32 attention;
1130
1131 if (skb_queue_empty(amsdu))
1132 return;
1133
1134 first = skb_peek(amsdu);
1135 rxd = (void *)first->data - sizeof(*rxd);
1136
1137 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1138 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1139
1140 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1141 * decapped header. It'll be used for undecapping of each MSDU.
1142 */
1143 hdr = (void *)rxd->rx_hdr_status;
1144 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1145 memcpy(first_hdr, hdr, hdr_len);
1146
1147 /* Each A-MSDU subframe will use the original header as the base and be
1148 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1149 */
1150 hdr = (void *)first_hdr;
1151 qos = ieee80211_get_qos_ctl(hdr);
1152 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1153
1154 /* Some attention flags are valid only in the last MSDU. */
1155 last = skb_peek_tail(amsdu);
1156 rxd = (void *)last->data - sizeof(*rxd);
1157 attention = __le32_to_cpu(rxd->attention.flags);
1158
1159 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1160 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1161 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1162 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1163
1164 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1165 * e.g. due to fcs error, missing peer or invalid key data it will
1166 * report the frame as raw.
1167 */
1168 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1169 !has_fcs_err &&
1170 !has_crypto_err &&
1171 !has_peer_idx_invalid);
1172
1173 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1174 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1175 RX_FLAG_MMIC_ERROR |
1176 RX_FLAG_DECRYPTED |
1177 RX_FLAG_IV_STRIPPED |
1178 RX_FLAG_MMIC_STRIPPED);
1179
1180 if (has_fcs_err)
1181 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1182
1183 if (has_tkip_err)
1184 status->flag |= RX_FLAG_MMIC_ERROR;
1185
1186 if (is_decrypted)
1187 status->flag |= RX_FLAG_DECRYPTED |
1188 RX_FLAG_IV_STRIPPED |
1189 RX_FLAG_MMIC_STRIPPED;
1190
1191 skb_queue_walk(amsdu, msdu) {
1192 ath10k_htt_rx_h_csum_offload(msdu);
1193 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1194 is_decrypted);
1195
1196 /* Undecapping involves copying the original 802.11 header back
1197 * to sk_buff. If frame is protected and hardware has decrypted
1198 * it then remove the protected bit.
1199 */
1200 if (!is_decrypted)
1201 continue;
1202
1203 hdr = (void *)msdu->data;
1204 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1205 }
1206 }
1207
1208 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1209 struct sk_buff_head *amsdu,
1210 struct ieee80211_rx_status *status)
1211 {
1212 struct sk_buff *msdu;
1213
1214 while ((msdu = __skb_dequeue(amsdu))) {
1215 /* Setup per-MSDU flags */
1216 if (skb_queue_empty(amsdu))
1217 status->flag &= ~RX_FLAG_AMSDU_MORE;
1218 else
1219 status->flag |= RX_FLAG_AMSDU_MORE;
1220
1221 ath10k_process_rx(ar, status, msdu);
1222 }
1223 }
1224
1225 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1226 {
1227 struct sk_buff *skb, *first;
1228 int space;
1229 int total_len = 0;
1230
1231 /* TODO: Might could optimize this by using
1232 * skb_try_coalesce or similar method to
1233 * decrease copying, or maybe get mac80211 to
1234 * provide a way to just receive a list of
1235 * skb?
1236 */
1237
1238 first = __skb_dequeue(amsdu);
1239
1240 /* Allocate total length all at once. */
1241 skb_queue_walk(amsdu, skb)
1242 total_len += skb->len;
1243
1244 space = total_len - skb_tailroom(first);
1245 if ((space > 0) &&
1246 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1247 /* TODO: bump some rx-oom error stat */
1248 /* put it back together so we can free the
1249 * whole list at once.
1250 */
1251 __skb_queue_head(amsdu, first);
1252 return -1;
1253 }
1254
1255 /* Walk list again, copying contents into
1256 * msdu_head
1257 */
1258 while ((skb = __skb_dequeue(amsdu))) {
1259 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1260 skb->len);
1261 dev_kfree_skb_any(skb);
1262 }
1263
1264 __skb_queue_head(amsdu, first);
1265 return 0;
1266 }
1267
1268 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1269 struct sk_buff_head *amsdu,
1270 bool chained)
1271 {
1272 struct sk_buff *first;
1273 struct htt_rx_desc *rxd;
1274 enum rx_msdu_decap_format decap;
1275
1276 first = skb_peek(amsdu);
1277 rxd = (void *)first->data - sizeof(*rxd);
1278 decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1279 RX_MSDU_START_INFO1_DECAP_FORMAT);
1280
1281 if (!chained)
1282 return;
1283
1284 /* FIXME: Current unchaining logic can only handle simple case of raw
1285 * msdu chaining. If decapping is other than raw the chaining may be
1286 * more complex and this isn't handled by the current code. Don't even
1287 * try re-constructing such frames - it'll be pretty much garbage.
1288 */
1289 if (decap != RX_MSDU_DECAP_RAW ||
1290 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1291 __skb_queue_purge(amsdu);
1292 return;
1293 }
1294
1295 ath10k_unchain_msdu(amsdu);
1296 }
1297
1298 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1299 struct sk_buff_head *amsdu,
1300 struct ieee80211_rx_status *rx_status)
1301 {
1302 struct sk_buff *msdu;
1303 struct htt_rx_desc *rxd;
1304 bool is_mgmt;
1305 bool has_fcs_err;
1306
1307 msdu = skb_peek(amsdu);
1308 rxd = (void *)msdu->data - sizeof(*rxd);
1309
1310 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1311 * invalid/dangerous frames.
1312 */
1313
1314 if (!rx_status->freq) {
1315 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1316 return false;
1317 }
1318
1319 is_mgmt = !!(rxd->attention.flags &
1320 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1321 has_fcs_err = !!(rxd->attention.flags &
1322 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1323
1324 /* Management frames are handled via WMI events. The pros of such
1325 * approach is that channel is explicitly provided in WMI events
1326 * whereas HTT doesn't provide channel information for Rxed frames.
1327 *
1328 * However some firmware revisions don't report corrupted frames via
1329 * WMI so don't drop them.
1330 */
1331 if (is_mgmt && !has_fcs_err) {
1332 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1333 return false;
1334 }
1335
1336 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1337 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1338 return false;
1339 }
1340
1341 return true;
1342 }
1343
1344 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1345 struct sk_buff_head *amsdu,
1346 struct ieee80211_rx_status *rx_status)
1347 {
1348 if (skb_queue_empty(amsdu))
1349 return;
1350
1351 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1352 return;
1353
1354 __skb_queue_purge(amsdu);
1355 }
1356
1357 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1358 struct htt_rx_indication *rx)
1359 {
1360 struct ath10k *ar = htt->ar;
1361 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1362 struct htt_rx_indication_mpdu_range *mpdu_ranges;
1363 struct sk_buff_head amsdu;
1364 int num_mpdu_ranges;
1365 int fw_desc_len;
1366 u8 *fw_desc;
1367 int i, ret, mpdu_count = 0;
1368
1369 lockdep_assert_held(&htt->rx_ring.lock);
1370
1371 if (htt->rx_confused)
1372 return;
1373
1374 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1375 fw_desc = (u8 *)&rx->fw_desc;
1376
1377 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1378 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1379 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1380
1381 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1382 rx, sizeof(*rx) +
1383 (sizeof(struct htt_rx_indication_mpdu_range) *
1384 num_mpdu_ranges));
1385
1386 for (i = 0; i < num_mpdu_ranges; i++)
1387 mpdu_count += mpdu_ranges[i].mpdu_count;
1388
1389 while (mpdu_count--) {
1390 __skb_queue_head_init(&amsdu);
1391 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1392 &fw_desc_len, &amsdu);
1393 if (ret < 0) {
1394 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1395 __skb_queue_purge(&amsdu);
1396 /* FIXME: It's probably a good idea to reboot the
1397 * device instead of leaving it inoperable.
1398 */
1399 htt->rx_confused = true;
1400 break;
1401 }
1402
1403 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1404 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1405 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1406 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1407 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1408 }
1409
1410 tasklet_schedule(&htt->rx_replenish_task);
1411 }
1412
1413 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1414 struct htt_rx_fragment_indication *frag)
1415 {
1416 struct ath10k *ar = htt->ar;
1417 struct ieee80211_rx_status *rx_status = &htt->rx_status;
1418 struct sk_buff_head amsdu;
1419 int ret;
1420 u8 *fw_desc;
1421 int fw_desc_len;
1422
1423 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1424 fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1425
1426 __skb_queue_head_init(&amsdu);
1427
1428 spin_lock_bh(&htt->rx_ring.lock);
1429 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1430 &amsdu);
1431 spin_unlock_bh(&htt->rx_ring.lock);
1432
1433 tasklet_schedule(&htt->rx_replenish_task);
1434
1435 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1436
1437 if (ret) {
1438 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1439 ret);
1440 __skb_queue_purge(&amsdu);
1441 return;
1442 }
1443
1444 if (skb_queue_len(&amsdu) != 1) {
1445 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1446 __skb_queue_purge(&amsdu);
1447 return;
1448 }
1449
1450 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1451 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1452 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1453 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1454
1455 if (fw_desc_len > 0) {
1456 ath10k_dbg(ar, ATH10K_DBG_HTT,
1457 "expecting more fragmented rx in one indication %d\n",
1458 fw_desc_len);
1459 }
1460 }
1461
1462 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1463 struct sk_buff *skb)
1464 {
1465 struct ath10k_htt *htt = &ar->htt;
1466 struct htt_resp *resp = (struct htt_resp *)skb->data;
1467 struct htt_tx_done tx_done = {};
1468 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1469 __le16 msdu_id;
1470 int i;
1471
1472 lockdep_assert_held(&htt->tx_lock);
1473
1474 switch (status) {
1475 case HTT_DATA_TX_STATUS_NO_ACK:
1476 tx_done.no_ack = true;
1477 break;
1478 case HTT_DATA_TX_STATUS_OK:
1479 break;
1480 case HTT_DATA_TX_STATUS_DISCARD:
1481 case HTT_DATA_TX_STATUS_POSTPONE:
1482 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1483 tx_done.discard = true;
1484 break;
1485 default:
1486 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1487 tx_done.discard = true;
1488 break;
1489 }
1490
1491 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1492 resp->data_tx_completion.num_msdus);
1493
1494 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1495 msdu_id = resp->data_tx_completion.msdus[i];
1496 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1497 ath10k_txrx_tx_unref(htt, &tx_done);
1498 }
1499 }
1500
1501 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1502 {
1503 struct htt_rx_addba *ev = &resp->rx_addba;
1504 struct ath10k_peer *peer;
1505 struct ath10k_vif *arvif;
1506 u16 info0, tid, peer_id;
1507
1508 info0 = __le16_to_cpu(ev->info0);
1509 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1510 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1511
1512 ath10k_dbg(ar, ATH10K_DBG_HTT,
1513 "htt rx addba tid %hu peer_id %hu size %hhu\n",
1514 tid, peer_id, ev->window_size);
1515
1516 spin_lock_bh(&ar->data_lock);
1517 peer = ath10k_peer_find_by_id(ar, peer_id);
1518 if (!peer) {
1519 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1520 peer_id);
1521 spin_unlock_bh(&ar->data_lock);
1522 return;
1523 }
1524
1525 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1526 if (!arvif) {
1527 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1528 peer->vdev_id);
1529 spin_unlock_bh(&ar->data_lock);
1530 return;
1531 }
1532
1533 ath10k_dbg(ar, ATH10K_DBG_HTT,
1534 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1535 peer->addr, tid, ev->window_size);
1536
1537 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1538 spin_unlock_bh(&ar->data_lock);
1539 }
1540
1541 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1542 {
1543 struct htt_rx_delba *ev = &resp->rx_delba;
1544 struct ath10k_peer *peer;
1545 struct ath10k_vif *arvif;
1546 u16 info0, tid, peer_id;
1547
1548 info0 = __le16_to_cpu(ev->info0);
1549 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1550 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1551
1552 ath10k_dbg(ar, ATH10K_DBG_HTT,
1553 "htt rx delba tid %hu peer_id %hu\n",
1554 tid, peer_id);
1555
1556 spin_lock_bh(&ar->data_lock);
1557 peer = ath10k_peer_find_by_id(ar, peer_id);
1558 if (!peer) {
1559 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1560 peer_id);
1561 spin_unlock_bh(&ar->data_lock);
1562 return;
1563 }
1564
1565 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1566 if (!arvif) {
1567 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1568 peer->vdev_id);
1569 spin_unlock_bh(&ar->data_lock);
1570 return;
1571 }
1572
1573 ath10k_dbg(ar, ATH10K_DBG_HTT,
1574 "htt rx stop rx ba session sta %pM tid %hu\n",
1575 peer->addr, tid);
1576
1577 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1578 spin_unlock_bh(&ar->data_lock);
1579 }
1580
1581 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1582 {
1583 struct ath10k_htt *htt = &ar->htt;
1584 struct htt_resp *resp = (struct htt_resp *)skb->data;
1585
1586 /* confirm alignment */
1587 if (!IS_ALIGNED((unsigned long)skb->data, 4))
1588 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1589
1590 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1591 resp->hdr.msg_type);
1592 switch (resp->hdr.msg_type) {
1593 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1594 htt->target_version_major = resp->ver_resp.major;
1595 htt->target_version_minor = resp->ver_resp.minor;
1596 complete(&htt->target_version_received);
1597 break;
1598 }
1599 case HTT_T2H_MSG_TYPE_RX_IND:
1600 spin_lock_bh(&htt->rx_ring.lock);
1601 __skb_queue_tail(&htt->rx_compl_q, skb);
1602 spin_unlock_bh(&htt->rx_ring.lock);
1603 tasklet_schedule(&htt->txrx_compl_task);
1604 return;
1605 case HTT_T2H_MSG_TYPE_PEER_MAP: {
1606 struct htt_peer_map_event ev = {
1607 .vdev_id = resp->peer_map.vdev_id,
1608 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1609 };
1610 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1611 ath10k_peer_map_event(htt, &ev);
1612 break;
1613 }
1614 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1615 struct htt_peer_unmap_event ev = {
1616 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1617 };
1618 ath10k_peer_unmap_event(htt, &ev);
1619 break;
1620 }
1621 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1622 struct htt_tx_done tx_done = {};
1623 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1624
1625 tx_done.msdu_id =
1626 __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1627
1628 switch (status) {
1629 case HTT_MGMT_TX_STATUS_OK:
1630 break;
1631 case HTT_MGMT_TX_STATUS_RETRY:
1632 tx_done.no_ack = true;
1633 break;
1634 case HTT_MGMT_TX_STATUS_DROP:
1635 tx_done.discard = true;
1636 break;
1637 }
1638
1639 spin_lock_bh(&htt->tx_lock);
1640 ath10k_txrx_tx_unref(htt, &tx_done);
1641 spin_unlock_bh(&htt->tx_lock);
1642 break;
1643 }
1644 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1645 spin_lock_bh(&htt->tx_lock);
1646 __skb_queue_tail(&htt->tx_compl_q, skb);
1647 spin_unlock_bh(&htt->tx_lock);
1648 tasklet_schedule(&htt->txrx_compl_task);
1649 return;
1650 case HTT_T2H_MSG_TYPE_SEC_IND: {
1651 struct ath10k *ar = htt->ar;
1652 struct htt_security_indication *ev = &resp->security_indication;
1653
1654 ath10k_dbg(ar, ATH10K_DBG_HTT,
1655 "sec ind peer_id %d unicast %d type %d\n",
1656 __le16_to_cpu(ev->peer_id),
1657 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1658 MS(ev->flags, HTT_SECURITY_TYPE));
1659 complete(&ar->install_key_done);
1660 break;
1661 }
1662 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1663 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1664 skb->data, skb->len);
1665 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1666 break;
1667 }
1668 case HTT_T2H_MSG_TYPE_TEST:
1669 /* FIX THIS */
1670 break;
1671 case HTT_T2H_MSG_TYPE_STATS_CONF:
1672 trace_ath10k_htt_stats(ar, skb->data, skb->len);
1673 break;
1674 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1675 /* Firmware can return tx frames if it's unable to fully
1676 * process them and suspects host may be able to fix it. ath10k
1677 * sends all tx frames as already inspected so this shouldn't
1678 * happen unless fw has a bug.
1679 */
1680 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
1681 break;
1682 case HTT_T2H_MSG_TYPE_RX_ADDBA:
1683 ath10k_htt_rx_addba(ar, resp);
1684 break;
1685 case HTT_T2H_MSG_TYPE_RX_DELBA:
1686 ath10k_htt_rx_delba(ar, resp);
1687 break;
1688 case HTT_T2H_MSG_TYPE_PKTLOG: {
1689 struct ath10k_pktlog_hdr *hdr =
1690 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
1691
1692 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
1693 sizeof(*hdr) +
1694 __le16_to_cpu(hdr->size));
1695 break;
1696 }
1697 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
1698 /* Ignore this event because mac80211 takes care of Rx
1699 * aggregation reordering.
1700 */
1701 break;
1702 }
1703 default:
1704 ath10k_warn(ar, "htt event (%d) not handled\n",
1705 resp->hdr.msg_type);
1706 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1707 skb->data, skb->len);
1708 break;
1709 };
1710
1711 /* Free the indication buffer */
1712 dev_kfree_skb_any(skb);
1713 }
1714
1715 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1716 {
1717 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1718 struct htt_resp *resp;
1719 struct sk_buff *skb;
1720
1721 spin_lock_bh(&htt->tx_lock);
1722 while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1723 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1724 dev_kfree_skb_any(skb);
1725 }
1726 spin_unlock_bh(&htt->tx_lock);
1727
1728 spin_lock_bh(&htt->rx_ring.lock);
1729 while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1730 resp = (struct htt_resp *)skb->data;
1731 ath10k_htt_rx_handler(htt, &resp->rx_ind);
1732 dev_kfree_skb_any(skb);
1733 }
1734 spin_unlock_bh(&htt->rx_ring.lock);
1735 }
This page took 0.066281 seconds and 6 git commands to generate.