ath10k: disable uapsd autotrigger
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / mac.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "mac.h"
19
20 #include <net/mac80211.h>
21 #include <linux/etherdevice.h>
22
23 #include "hif.h"
24 #include "core.h"
25 #include "debug.h"
26 #include "wmi.h"
27 #include "htt.h"
28 #include "txrx.h"
29 #include "testmode.h"
30 #include "wmi.h"
31 #include "wmi-ops.h"
32
33 /**********/
34 /* Crypto */
35 /**********/
36
37 static int ath10k_send_key(struct ath10k_vif *arvif,
38 struct ieee80211_key_conf *key,
39 enum set_key_cmd cmd,
40 const u8 *macaddr)
41 {
42 struct ath10k *ar = arvif->ar;
43 struct wmi_vdev_install_key_arg arg = {
44 .vdev_id = arvif->vdev_id,
45 .key_idx = key->keyidx,
46 .key_len = key->keylen,
47 .key_data = key->key,
48 .macaddr = macaddr,
49 };
50
51 lockdep_assert_held(&arvif->ar->conf_mutex);
52
53 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
54 arg.key_flags = WMI_KEY_PAIRWISE;
55 else
56 arg.key_flags = WMI_KEY_GROUP;
57
58 switch (key->cipher) {
59 case WLAN_CIPHER_SUITE_CCMP:
60 arg.key_cipher = WMI_CIPHER_AES_CCM;
61 if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
62 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
63 else
64 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
65 break;
66 case WLAN_CIPHER_SUITE_TKIP:
67 arg.key_cipher = WMI_CIPHER_TKIP;
68 arg.key_txmic_len = 8;
69 arg.key_rxmic_len = 8;
70 break;
71 case WLAN_CIPHER_SUITE_WEP40:
72 case WLAN_CIPHER_SUITE_WEP104:
73 arg.key_cipher = WMI_CIPHER_WEP;
74 /* AP/IBSS mode requires self-key to be groupwise
75 * Otherwise pairwise key must be set */
76 if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN))
77 arg.key_flags = WMI_KEY_PAIRWISE;
78 break;
79 default:
80 ath10k_warn(ar, "cipher %d is not supported\n", key->cipher);
81 return -EOPNOTSUPP;
82 }
83
84 if (cmd == DISABLE_KEY) {
85 arg.key_cipher = WMI_CIPHER_NONE;
86 arg.key_data = NULL;
87 }
88
89 return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
90 }
91
92 static int ath10k_install_key(struct ath10k_vif *arvif,
93 struct ieee80211_key_conf *key,
94 enum set_key_cmd cmd,
95 const u8 *macaddr)
96 {
97 struct ath10k *ar = arvif->ar;
98 int ret;
99
100 lockdep_assert_held(&ar->conf_mutex);
101
102 reinit_completion(&ar->install_key_done);
103
104 ret = ath10k_send_key(arvif, key, cmd, macaddr);
105 if (ret)
106 return ret;
107
108 ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ);
109 if (ret == 0)
110 return -ETIMEDOUT;
111
112 return 0;
113 }
114
115 static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
116 const u8 *addr)
117 {
118 struct ath10k *ar = arvif->ar;
119 struct ath10k_peer *peer;
120 int ret;
121 int i;
122
123 lockdep_assert_held(&ar->conf_mutex);
124
125 spin_lock_bh(&ar->data_lock);
126 peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
127 spin_unlock_bh(&ar->data_lock);
128
129 if (!peer)
130 return -ENOENT;
131
132 for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
133 if (arvif->wep_keys[i] == NULL)
134 continue;
135
136 ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY,
137 addr);
138 if (ret)
139 return ret;
140
141 spin_lock_bh(&ar->data_lock);
142 peer->keys[i] = arvif->wep_keys[i];
143 spin_unlock_bh(&ar->data_lock);
144 }
145
146 return 0;
147 }
148
149 static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
150 const u8 *addr)
151 {
152 struct ath10k *ar = arvif->ar;
153 struct ath10k_peer *peer;
154 int first_errno = 0;
155 int ret;
156 int i;
157
158 lockdep_assert_held(&ar->conf_mutex);
159
160 spin_lock_bh(&ar->data_lock);
161 peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
162 spin_unlock_bh(&ar->data_lock);
163
164 if (!peer)
165 return -ENOENT;
166
167 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
168 if (peer->keys[i] == NULL)
169 continue;
170
171 ret = ath10k_install_key(arvif, peer->keys[i],
172 DISABLE_KEY, addr);
173 if (ret && first_errno == 0)
174 first_errno = ret;
175
176 if (ret)
177 ath10k_warn(ar, "failed to remove peer wep key %d: %d\n",
178 i, ret);
179
180 spin_lock_bh(&ar->data_lock);
181 peer->keys[i] = NULL;
182 spin_unlock_bh(&ar->data_lock);
183 }
184
185 return first_errno;
186 }
187
188 bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr,
189 u8 keyidx)
190 {
191 struct ath10k_peer *peer;
192 int i;
193
194 lockdep_assert_held(&ar->data_lock);
195
196 /* We don't know which vdev this peer belongs to,
197 * since WMI doesn't give us that information.
198 *
199 * FIXME: multi-bss needs to be handled.
200 */
201 peer = ath10k_peer_find(ar, 0, addr);
202 if (!peer)
203 return false;
204
205 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
206 if (peer->keys[i] && peer->keys[i]->keyidx == keyidx)
207 return true;
208 }
209
210 return false;
211 }
212
213 static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
214 struct ieee80211_key_conf *key)
215 {
216 struct ath10k *ar = arvif->ar;
217 struct ath10k_peer *peer;
218 u8 addr[ETH_ALEN];
219 int first_errno = 0;
220 int ret;
221 int i;
222
223 lockdep_assert_held(&ar->conf_mutex);
224
225 for (;;) {
226 /* since ath10k_install_key we can't hold data_lock all the
227 * time, so we try to remove the keys incrementally */
228 spin_lock_bh(&ar->data_lock);
229 i = 0;
230 list_for_each_entry(peer, &ar->peers, list) {
231 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
232 if (peer->keys[i] == key) {
233 ether_addr_copy(addr, peer->addr);
234 peer->keys[i] = NULL;
235 break;
236 }
237 }
238
239 if (i < ARRAY_SIZE(peer->keys))
240 break;
241 }
242 spin_unlock_bh(&ar->data_lock);
243
244 if (i == ARRAY_SIZE(peer->keys))
245 break;
246
247 ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr);
248 if (ret && first_errno == 0)
249 first_errno = ret;
250
251 if (ret)
252 ath10k_warn(ar, "failed to remove key for %pM: %d\n",
253 addr, ret);
254 }
255
256 return first_errno;
257 }
258
259 /*********************/
260 /* General utilities */
261 /*********************/
262
263 static inline enum wmi_phy_mode
264 chan_to_phymode(const struct cfg80211_chan_def *chandef)
265 {
266 enum wmi_phy_mode phymode = MODE_UNKNOWN;
267
268 switch (chandef->chan->band) {
269 case IEEE80211_BAND_2GHZ:
270 switch (chandef->width) {
271 case NL80211_CHAN_WIDTH_20_NOHT:
272 if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM)
273 phymode = MODE_11B;
274 else
275 phymode = MODE_11G;
276 break;
277 case NL80211_CHAN_WIDTH_20:
278 phymode = MODE_11NG_HT20;
279 break;
280 case NL80211_CHAN_WIDTH_40:
281 phymode = MODE_11NG_HT40;
282 break;
283 case NL80211_CHAN_WIDTH_5:
284 case NL80211_CHAN_WIDTH_10:
285 case NL80211_CHAN_WIDTH_80:
286 case NL80211_CHAN_WIDTH_80P80:
287 case NL80211_CHAN_WIDTH_160:
288 phymode = MODE_UNKNOWN;
289 break;
290 }
291 break;
292 case IEEE80211_BAND_5GHZ:
293 switch (chandef->width) {
294 case NL80211_CHAN_WIDTH_20_NOHT:
295 phymode = MODE_11A;
296 break;
297 case NL80211_CHAN_WIDTH_20:
298 phymode = MODE_11NA_HT20;
299 break;
300 case NL80211_CHAN_WIDTH_40:
301 phymode = MODE_11NA_HT40;
302 break;
303 case NL80211_CHAN_WIDTH_80:
304 phymode = MODE_11AC_VHT80;
305 break;
306 case NL80211_CHAN_WIDTH_5:
307 case NL80211_CHAN_WIDTH_10:
308 case NL80211_CHAN_WIDTH_80P80:
309 case NL80211_CHAN_WIDTH_160:
310 phymode = MODE_UNKNOWN;
311 break;
312 }
313 break;
314 default:
315 break;
316 }
317
318 WARN_ON(phymode == MODE_UNKNOWN);
319 return phymode;
320 }
321
322 static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
323 {
324 /*
325 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
326 * 0 for no restriction
327 * 1 for 1/4 us
328 * 2 for 1/2 us
329 * 3 for 1 us
330 * 4 for 2 us
331 * 5 for 4 us
332 * 6 for 8 us
333 * 7 for 16 us
334 */
335 switch (mpdudensity) {
336 case 0:
337 return 0;
338 case 1:
339 case 2:
340 case 3:
341 /* Our lower layer calculations limit our precision to
342 1 microsecond */
343 return 1;
344 case 4:
345 return 2;
346 case 5:
347 return 4;
348 case 6:
349 return 8;
350 case 7:
351 return 16;
352 default:
353 return 0;
354 }
355 }
356
357 static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr)
358 {
359 int ret;
360
361 lockdep_assert_held(&ar->conf_mutex);
362
363 if (ar->num_peers >= ar->max_num_peers)
364 return -ENOBUFS;
365
366 ret = ath10k_wmi_peer_create(ar, vdev_id, addr);
367 if (ret) {
368 ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n",
369 addr, vdev_id, ret);
370 return ret;
371 }
372
373 ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
374 if (ret) {
375 ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n",
376 addr, vdev_id, ret);
377 return ret;
378 }
379
380 ar->num_peers++;
381
382 return 0;
383 }
384
385 static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
386 {
387 struct ath10k *ar = arvif->ar;
388 u32 param;
389 int ret;
390
391 param = ar->wmi.pdev_param->sta_kickout_th;
392 ret = ath10k_wmi_pdev_set_param(ar, param,
393 ATH10K_KICKOUT_THRESHOLD);
394 if (ret) {
395 ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n",
396 arvif->vdev_id, ret);
397 return ret;
398 }
399
400 param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
401 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
402 ATH10K_KEEPALIVE_MIN_IDLE);
403 if (ret) {
404 ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n",
405 arvif->vdev_id, ret);
406 return ret;
407 }
408
409 param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
410 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
411 ATH10K_KEEPALIVE_MAX_IDLE);
412 if (ret) {
413 ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n",
414 arvif->vdev_id, ret);
415 return ret;
416 }
417
418 param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
419 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
420 ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
421 if (ret) {
422 ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
423 arvif->vdev_id, ret);
424 return ret;
425 }
426
427 return 0;
428 }
429
430 static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
431 {
432 struct ath10k *ar = arvif->ar;
433 u32 vdev_param;
434
435 vdev_param = ar->wmi.vdev_param->rts_threshold;
436 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
437 }
438
439 static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value)
440 {
441 struct ath10k *ar = arvif->ar;
442 u32 vdev_param;
443
444 if (value != 0xFFFFFFFF)
445 value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold,
446 ATH10K_FRAGMT_THRESHOLD_MIN,
447 ATH10K_FRAGMT_THRESHOLD_MAX);
448
449 vdev_param = ar->wmi.vdev_param->fragmentation_threshold;
450 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
451 }
452
453 static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
454 {
455 int ret;
456
457 lockdep_assert_held(&ar->conf_mutex);
458
459 ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
460 if (ret)
461 return ret;
462
463 ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
464 if (ret)
465 return ret;
466
467 ar->num_peers--;
468
469 return 0;
470 }
471
472 static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
473 {
474 struct ath10k_peer *peer, *tmp;
475
476 lockdep_assert_held(&ar->conf_mutex);
477
478 spin_lock_bh(&ar->data_lock);
479 list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
480 if (peer->vdev_id != vdev_id)
481 continue;
482
483 ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n",
484 peer->addr, vdev_id);
485
486 list_del(&peer->list);
487 kfree(peer);
488 ar->num_peers--;
489 }
490 spin_unlock_bh(&ar->data_lock);
491 }
492
493 static void ath10k_peer_cleanup_all(struct ath10k *ar)
494 {
495 struct ath10k_peer *peer, *tmp;
496
497 lockdep_assert_held(&ar->conf_mutex);
498
499 spin_lock_bh(&ar->data_lock);
500 list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
501 list_del(&peer->list);
502 kfree(peer);
503 }
504 spin_unlock_bh(&ar->data_lock);
505
506 ar->num_peers = 0;
507 ar->num_stations = 0;
508 }
509
510 /************************/
511 /* Interface management */
512 /************************/
513
514 void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif)
515 {
516 struct ath10k *ar = arvif->ar;
517
518 lockdep_assert_held(&ar->data_lock);
519
520 if (!arvif->beacon)
521 return;
522
523 if (!arvif->beacon_buf)
524 dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
525 arvif->beacon->len, DMA_TO_DEVICE);
526
527 dev_kfree_skb_any(arvif->beacon);
528
529 arvif->beacon = NULL;
530 arvif->beacon_sent = false;
531 }
532
533 static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif)
534 {
535 struct ath10k *ar = arvif->ar;
536
537 lockdep_assert_held(&ar->data_lock);
538
539 ath10k_mac_vif_beacon_free(arvif);
540
541 if (arvif->beacon_buf) {
542 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
543 arvif->beacon_buf, arvif->beacon_paddr);
544 arvif->beacon_buf = NULL;
545 }
546 }
547
548 static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
549 {
550 int ret;
551
552 lockdep_assert_held(&ar->conf_mutex);
553
554 if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
555 return -ESHUTDOWN;
556
557 ret = wait_for_completion_timeout(&ar->vdev_setup_done,
558 ATH10K_VDEV_SETUP_TIMEOUT_HZ);
559 if (ret == 0)
560 return -ETIMEDOUT;
561
562 return 0;
563 }
564
565 static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id)
566 {
567 struct cfg80211_chan_def *chandef = &ar->chandef;
568 struct ieee80211_channel *channel = chandef->chan;
569 struct wmi_vdev_start_request_arg arg = {};
570 int ret = 0;
571
572 lockdep_assert_held(&ar->conf_mutex);
573
574 arg.vdev_id = vdev_id;
575 arg.channel.freq = channel->center_freq;
576 arg.channel.band_center_freq1 = chandef->center_freq1;
577
578 /* TODO setup this dynamically, what in case we
579 don't have any vifs? */
580 arg.channel.mode = chan_to_phymode(chandef);
581 arg.channel.chan_radar =
582 !!(channel->flags & IEEE80211_CHAN_RADAR);
583
584 arg.channel.min_power = 0;
585 arg.channel.max_power = channel->max_power * 2;
586 arg.channel.max_reg_power = channel->max_reg_power * 2;
587 arg.channel.max_antenna_gain = channel->max_antenna_gain * 2;
588
589 reinit_completion(&ar->vdev_setup_done);
590
591 ret = ath10k_wmi_vdev_start(ar, &arg);
592 if (ret) {
593 ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n",
594 vdev_id, ret);
595 return ret;
596 }
597
598 ret = ath10k_vdev_setup_sync(ar);
599 if (ret) {
600 ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i: %d\n",
601 vdev_id, ret);
602 return ret;
603 }
604
605 ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
606 if (ret) {
607 ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n",
608 vdev_id, ret);
609 goto vdev_stop;
610 }
611
612 ar->monitor_vdev_id = vdev_id;
613
614 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
615 ar->monitor_vdev_id);
616 return 0;
617
618 vdev_stop:
619 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
620 if (ret)
621 ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n",
622 ar->monitor_vdev_id, ret);
623
624 return ret;
625 }
626
627 static int ath10k_monitor_vdev_stop(struct ath10k *ar)
628 {
629 int ret = 0;
630
631 lockdep_assert_held(&ar->conf_mutex);
632
633 ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
634 if (ret)
635 ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n",
636 ar->monitor_vdev_id, ret);
637
638 reinit_completion(&ar->vdev_setup_done);
639
640 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
641 if (ret)
642 ath10k_warn(ar, "failed to to request monitor vdev %i stop: %d\n",
643 ar->monitor_vdev_id, ret);
644
645 ret = ath10k_vdev_setup_sync(ar);
646 if (ret)
647 ath10k_warn(ar, "failed to synchronise monitor vdev %i: %d\n",
648 ar->monitor_vdev_id, ret);
649
650 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
651 ar->monitor_vdev_id);
652 return ret;
653 }
654
655 static int ath10k_monitor_vdev_create(struct ath10k *ar)
656 {
657 int bit, ret = 0;
658
659 lockdep_assert_held(&ar->conf_mutex);
660
661 if (ar->free_vdev_map == 0) {
662 ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n");
663 return -ENOMEM;
664 }
665
666 bit = __ffs64(ar->free_vdev_map);
667
668 ar->monitor_vdev_id = bit;
669
670 ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
671 WMI_VDEV_TYPE_MONITOR,
672 0, ar->mac_addr);
673 if (ret) {
674 ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n",
675 ar->monitor_vdev_id, ret);
676 return ret;
677 }
678
679 ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
680 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
681 ar->monitor_vdev_id);
682
683 return 0;
684 }
685
686 static int ath10k_monitor_vdev_delete(struct ath10k *ar)
687 {
688 int ret = 0;
689
690 lockdep_assert_held(&ar->conf_mutex);
691
692 ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
693 if (ret) {
694 ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n",
695 ar->monitor_vdev_id, ret);
696 return ret;
697 }
698
699 ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;
700
701 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
702 ar->monitor_vdev_id);
703 return ret;
704 }
705
706 static int ath10k_monitor_start(struct ath10k *ar)
707 {
708 int ret;
709
710 lockdep_assert_held(&ar->conf_mutex);
711
712 ret = ath10k_monitor_vdev_create(ar);
713 if (ret) {
714 ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret);
715 return ret;
716 }
717
718 ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
719 if (ret) {
720 ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret);
721 ath10k_monitor_vdev_delete(ar);
722 return ret;
723 }
724
725 ar->monitor_started = true;
726 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");
727
728 return 0;
729 }
730
731 static int ath10k_monitor_stop(struct ath10k *ar)
732 {
733 int ret;
734
735 lockdep_assert_held(&ar->conf_mutex);
736
737 ret = ath10k_monitor_vdev_stop(ar);
738 if (ret) {
739 ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret);
740 return ret;
741 }
742
743 ret = ath10k_monitor_vdev_delete(ar);
744 if (ret) {
745 ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret);
746 return ret;
747 }
748
749 ar->monitor_started = false;
750 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");
751
752 return 0;
753 }
754
755 static int ath10k_monitor_recalc(struct ath10k *ar)
756 {
757 bool should_start;
758
759 lockdep_assert_held(&ar->conf_mutex);
760
761 should_start = ar->monitor ||
762 ar->filter_flags & FIF_PROMISC_IN_BSS ||
763 test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
764
765 ath10k_dbg(ar, ATH10K_DBG_MAC,
766 "mac monitor recalc started? %d should? %d\n",
767 ar->monitor_started, should_start);
768
769 if (should_start == ar->monitor_started)
770 return 0;
771
772 if (should_start)
773 return ath10k_monitor_start(ar);
774
775 return ath10k_monitor_stop(ar);
776 }
777
778 static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif)
779 {
780 struct ath10k *ar = arvif->ar;
781 u32 vdev_param, rts_cts = 0;
782
783 lockdep_assert_held(&ar->conf_mutex);
784
785 vdev_param = ar->wmi.vdev_param->enable_rtscts;
786
787 if (arvif->use_cts_prot || arvif->num_legacy_stations > 0)
788 rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);
789
790 if (arvif->num_legacy_stations > 0)
791 rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
792 WMI_RTSCTS_PROFILE);
793
794 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
795 rts_cts);
796 }
797
798 static int ath10k_start_cac(struct ath10k *ar)
799 {
800 int ret;
801
802 lockdep_assert_held(&ar->conf_mutex);
803
804 set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
805
806 ret = ath10k_monitor_recalc(ar);
807 if (ret) {
808 ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret);
809 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
810 return ret;
811 }
812
813 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
814 ar->monitor_vdev_id);
815
816 return 0;
817 }
818
819 static int ath10k_stop_cac(struct ath10k *ar)
820 {
821 lockdep_assert_held(&ar->conf_mutex);
822
823 /* CAC is not running - do nothing */
824 if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
825 return 0;
826
827 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
828 ath10k_monitor_stop(ar);
829
830 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");
831
832 return 0;
833 }
834
835 static void ath10k_recalc_radar_detection(struct ath10k *ar)
836 {
837 int ret;
838
839 lockdep_assert_held(&ar->conf_mutex);
840
841 ath10k_stop_cac(ar);
842
843 if (!ar->radar_enabled)
844 return;
845
846 if (ar->num_started_vdevs > 0)
847 return;
848
849 ret = ath10k_start_cac(ar);
850 if (ret) {
851 /*
852 * Not possible to start CAC on current channel so starting
853 * radiation is not allowed, make this channel DFS_UNAVAILABLE
854 * by indicating that radar was detected.
855 */
856 ath10k_warn(ar, "failed to start CAC: %d\n", ret);
857 ieee80211_radar_detected(ar->hw);
858 }
859 }
860
861 static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, bool restart)
862 {
863 struct ath10k *ar = arvif->ar;
864 struct cfg80211_chan_def *chandef = &ar->chandef;
865 struct wmi_vdev_start_request_arg arg = {};
866 int ret = 0;
867
868 lockdep_assert_held(&ar->conf_mutex);
869
870 reinit_completion(&ar->vdev_setup_done);
871
872 arg.vdev_id = arvif->vdev_id;
873 arg.dtim_period = arvif->dtim_period;
874 arg.bcn_intval = arvif->beacon_interval;
875
876 arg.channel.freq = chandef->chan->center_freq;
877 arg.channel.band_center_freq1 = chandef->center_freq1;
878 arg.channel.mode = chan_to_phymode(chandef);
879
880 arg.channel.min_power = 0;
881 arg.channel.max_power = chandef->chan->max_power * 2;
882 arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
883 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2;
884
885 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
886 arg.ssid = arvif->u.ap.ssid;
887 arg.ssid_len = arvif->u.ap.ssid_len;
888 arg.hidden_ssid = arvif->u.ap.hidden_ssid;
889
890 /* For now allow DFS for AP mode */
891 arg.channel.chan_radar =
892 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
893 } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
894 arg.ssid = arvif->vif->bss_conf.ssid;
895 arg.ssid_len = arvif->vif->bss_conf.ssid_len;
896 }
897
898 ath10k_dbg(ar, ATH10K_DBG_MAC,
899 "mac vdev %d start center_freq %d phymode %s\n",
900 arg.vdev_id, arg.channel.freq,
901 ath10k_wmi_phymode_str(arg.channel.mode));
902
903 if (restart)
904 ret = ath10k_wmi_vdev_restart(ar, &arg);
905 else
906 ret = ath10k_wmi_vdev_start(ar, &arg);
907
908 if (ret) {
909 ath10k_warn(ar, "failed to start WMI vdev %i: %d\n",
910 arg.vdev_id, ret);
911 return ret;
912 }
913
914 ret = ath10k_vdev_setup_sync(ar);
915 if (ret) {
916 ath10k_warn(ar, "failed to synchronise setup for vdev %i: %d\n",
917 arg.vdev_id, ret);
918 return ret;
919 }
920
921 ar->num_started_vdevs++;
922 ath10k_recalc_radar_detection(ar);
923
924 return ret;
925 }
926
927 static int ath10k_vdev_start(struct ath10k_vif *arvif)
928 {
929 return ath10k_vdev_start_restart(arvif, false);
930 }
931
932 static int ath10k_vdev_restart(struct ath10k_vif *arvif)
933 {
934 return ath10k_vdev_start_restart(arvif, true);
935 }
936
937 static int ath10k_vdev_stop(struct ath10k_vif *arvif)
938 {
939 struct ath10k *ar = arvif->ar;
940 int ret;
941
942 lockdep_assert_held(&ar->conf_mutex);
943
944 reinit_completion(&ar->vdev_setup_done);
945
946 ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
947 if (ret) {
948 ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n",
949 arvif->vdev_id, ret);
950 return ret;
951 }
952
953 ret = ath10k_vdev_setup_sync(ar);
954 if (ret) {
955 ath10k_warn(ar, "failed to syncronise setup for vdev %i: %d\n",
956 arvif->vdev_id, ret);
957 return ret;
958 }
959
960 WARN_ON(ar->num_started_vdevs == 0);
961
962 if (ar->num_started_vdevs != 0) {
963 ar->num_started_vdevs--;
964 ath10k_recalc_radar_detection(ar);
965 }
966
967 return ret;
968 }
969
970 static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif,
971 struct sk_buff *bcn)
972 {
973 struct ath10k *ar = arvif->ar;
974 struct ieee80211_mgmt *mgmt;
975 const u8 *p2p_ie;
976 int ret;
977
978 if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
979 return 0;
980
981 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
982 return 0;
983
984 mgmt = (void *)bcn->data;
985 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
986 mgmt->u.beacon.variable,
987 bcn->len - (mgmt->u.beacon.variable -
988 bcn->data));
989 if (!p2p_ie)
990 return -ENOENT;
991
992 ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
993 if (ret) {
994 ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n",
995 arvif->vdev_id, ret);
996 return ret;
997 }
998
999 return 0;
1000 }
1001
1002 static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
1003 u8 oui_type, size_t ie_offset)
1004 {
1005 size_t len;
1006 const u8 *next;
1007 const u8 *end;
1008 u8 *ie;
1009
1010 if (WARN_ON(skb->len < ie_offset))
1011 return -EINVAL;
1012
1013 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
1014 skb->data + ie_offset,
1015 skb->len - ie_offset);
1016 if (!ie)
1017 return -ENOENT;
1018
1019 len = ie[1] + 2;
1020 end = skb->data + skb->len;
1021 next = ie + len;
1022
1023 if (WARN_ON(next > end))
1024 return -EINVAL;
1025
1026 memmove(ie, next, end - next);
1027 skb_trim(skb, skb->len - len);
1028
1029 return 0;
1030 }
1031
1032 static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif)
1033 {
1034 struct ath10k *ar = arvif->ar;
1035 struct ieee80211_hw *hw = ar->hw;
1036 struct ieee80211_vif *vif = arvif->vif;
1037 struct ieee80211_mutable_offsets offs = {};
1038 struct sk_buff *bcn;
1039 int ret;
1040
1041 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
1042 return 0;
1043
1044 bcn = ieee80211_beacon_get_template(hw, vif, &offs);
1045 if (!bcn) {
1046 ath10k_warn(ar, "failed to get beacon template from mac80211\n");
1047 return -EPERM;
1048 }
1049
1050 ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn);
1051 if (ret) {
1052 ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret);
1053 kfree_skb(bcn);
1054 return ret;
1055 }
1056
1057 /* P2P IE is inserted by firmware automatically (as configured above)
1058 * so remove it from the base beacon template to avoid duplicate P2P
1059 * IEs in beacon frames.
1060 */
1061 ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
1062 offsetof(struct ieee80211_mgmt,
1063 u.beacon.variable));
1064
1065 ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0,
1066 0, NULL, 0);
1067 kfree_skb(bcn);
1068
1069 if (ret) {
1070 ath10k_warn(ar, "failed to submit beacon template command: %d\n",
1071 ret);
1072 return ret;
1073 }
1074
1075 return 0;
1076 }
1077
1078 static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif)
1079 {
1080 struct ath10k *ar = arvif->ar;
1081 struct ieee80211_hw *hw = ar->hw;
1082 struct ieee80211_vif *vif = arvif->vif;
1083 struct sk_buff *prb;
1084 int ret;
1085
1086 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
1087 return 0;
1088
1089 prb = ieee80211_proberesp_get(hw, vif);
1090 if (!prb) {
1091 ath10k_warn(ar, "failed to get probe resp template from mac80211\n");
1092 return -EPERM;
1093 }
1094
1095 ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb);
1096 kfree_skb(prb);
1097
1098 if (ret) {
1099 ath10k_warn(ar, "failed to submit probe resp template command: %d\n",
1100 ret);
1101 return ret;
1102 }
1103
1104 return 0;
1105 }
1106
1107 static void ath10k_control_beaconing(struct ath10k_vif *arvif,
1108 struct ieee80211_bss_conf *info)
1109 {
1110 struct ath10k *ar = arvif->ar;
1111 int ret = 0;
1112
1113 lockdep_assert_held(&arvif->ar->conf_mutex);
1114
1115 if (!info->enable_beacon) {
1116 ath10k_vdev_stop(arvif);
1117
1118 arvif->is_started = false;
1119 arvif->is_up = false;
1120
1121 spin_lock_bh(&arvif->ar->data_lock);
1122 ath10k_mac_vif_beacon_free(arvif);
1123 spin_unlock_bh(&arvif->ar->data_lock);
1124
1125 return;
1126 }
1127
1128 arvif->tx_seq_no = 0x1000;
1129
1130 ret = ath10k_vdev_start(arvif);
1131 if (ret)
1132 return;
1133
1134 arvif->aid = 0;
1135 ether_addr_copy(arvif->bssid, info->bssid);
1136
1137 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
1138 arvif->bssid);
1139 if (ret) {
1140 ath10k_warn(ar, "failed to bring up vdev %d: %i\n",
1141 arvif->vdev_id, ret);
1142 ath10k_vdev_stop(arvif);
1143 return;
1144 }
1145
1146 arvif->is_started = true;
1147 arvif->is_up = true;
1148
1149 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
1150 }
1151
1152 static void ath10k_control_ibss(struct ath10k_vif *arvif,
1153 struct ieee80211_bss_conf *info,
1154 const u8 self_peer[ETH_ALEN])
1155 {
1156 struct ath10k *ar = arvif->ar;
1157 u32 vdev_param;
1158 int ret = 0;
1159
1160 lockdep_assert_held(&arvif->ar->conf_mutex);
1161
1162 if (!info->ibss_joined) {
1163 ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer);
1164 if (ret)
1165 ath10k_warn(ar, "failed to delete IBSS self peer %pM for vdev %d: %d\n",
1166 self_peer, arvif->vdev_id, ret);
1167
1168 if (is_zero_ether_addr(arvif->bssid))
1169 return;
1170
1171 memset(arvif->bssid, 0, ETH_ALEN);
1172
1173 return;
1174 }
1175
1176 ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer);
1177 if (ret) {
1178 ath10k_warn(ar, "failed to create IBSS self peer %pM for vdev %d: %d\n",
1179 self_peer, arvif->vdev_id, ret);
1180 return;
1181 }
1182
1183 vdev_param = arvif->ar->wmi.vdev_param->atim_window;
1184 ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
1185 ATH10K_DEFAULT_ATIM);
1186 if (ret)
1187 ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n",
1188 arvif->vdev_id, ret);
1189 }
1190
1191 static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif)
1192 {
1193 struct ath10k *ar = arvif->ar;
1194 u32 param;
1195 u32 value;
1196 int ret;
1197
1198 lockdep_assert_held(&arvif->ar->conf_mutex);
1199
1200 if (arvif->u.sta.uapsd)
1201 value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER;
1202 else
1203 value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
1204
1205 param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
1206 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value);
1207 if (ret) {
1208 ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n",
1209 value, arvif->vdev_id, ret);
1210 return ret;
1211 }
1212
1213 return 0;
1214 }
1215
1216 static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif)
1217 {
1218 struct ath10k *ar = arvif->ar;
1219 u32 param;
1220 u32 value;
1221 int ret;
1222
1223 lockdep_assert_held(&arvif->ar->conf_mutex);
1224
1225 if (arvif->u.sta.uapsd)
1226 value = WMI_STA_PS_PSPOLL_COUNT_UAPSD;
1227 else
1228 value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
1229
1230 param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
1231 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
1232 param, value);
1233 if (ret) {
1234 ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n",
1235 value, arvif->vdev_id, ret);
1236 return ret;
1237 }
1238
1239 return 0;
1240 }
1241
1242 static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
1243 {
1244 struct ath10k *ar = arvif->ar;
1245 struct ieee80211_vif *vif = arvif->vif;
1246 struct ieee80211_conf *conf = &ar->hw->conf;
1247 enum wmi_sta_powersave_param param;
1248 enum wmi_sta_ps_mode psmode;
1249 int ret;
1250 int ps_timeout;
1251
1252 lockdep_assert_held(&arvif->ar->conf_mutex);
1253
1254 if (arvif->vif->type != NL80211_IFTYPE_STATION)
1255 return 0;
1256
1257 if (vif->bss_conf.ps) {
1258 psmode = WMI_STA_PS_MODE_ENABLED;
1259 param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
1260
1261 ps_timeout = conf->dynamic_ps_timeout;
1262 if (ps_timeout == 0) {
1263 /* Firmware doesn't like 0 */
1264 ps_timeout = ieee80211_tu_to_usec(
1265 vif->bss_conf.beacon_int) / 1000;
1266 }
1267
1268 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
1269 ps_timeout);
1270 if (ret) {
1271 ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n",
1272 arvif->vdev_id, ret);
1273 return ret;
1274 }
1275 } else {
1276 psmode = WMI_STA_PS_MODE_DISABLED;
1277 }
1278
1279 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
1280 arvif->vdev_id, psmode ? "enable" : "disable");
1281
1282 ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
1283 if (ret) {
1284 ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n",
1285 psmode, arvif->vdev_id, ret);
1286 return ret;
1287 }
1288
1289 return 0;
1290 }
1291
1292 /**********************/
1293 /* Station management */
1294 /**********************/
1295
1296 static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar,
1297 struct ieee80211_vif *vif)
1298 {
1299 /* Some firmware revisions have unstable STA powersave when listen
1300 * interval is set too high (e.g. 5). The symptoms are firmware doesn't
1301 * generate NullFunc frames properly even if buffered frames have been
1302 * indicated in Beacon TIM. Firmware would seldom wake up to pull
1303 * buffered frames. Often pinging the device from AP would simply fail.
1304 *
1305 * As a workaround set it to 1.
1306 */
1307 if (vif->type == NL80211_IFTYPE_STATION)
1308 return 1;
1309
1310 return ar->hw->conf.listen_interval;
1311 }
1312
1313 static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
1314 struct ieee80211_vif *vif,
1315 struct ieee80211_sta *sta,
1316 struct wmi_peer_assoc_complete_arg *arg)
1317 {
1318 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1319
1320 lockdep_assert_held(&ar->conf_mutex);
1321
1322 ether_addr_copy(arg->addr, sta->addr);
1323 arg->vdev_id = arvif->vdev_id;
1324 arg->peer_aid = sta->aid;
1325 arg->peer_flags |= WMI_PEER_AUTH;
1326 arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif);
1327 arg->peer_num_spatial_streams = 1;
1328 arg->peer_caps = vif->bss_conf.assoc_capability;
1329 }
1330
1331 static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
1332 struct ieee80211_vif *vif,
1333 struct wmi_peer_assoc_complete_arg *arg)
1334 {
1335 struct ieee80211_bss_conf *info = &vif->bss_conf;
1336 struct cfg80211_bss *bss;
1337 const u8 *rsnie = NULL;
1338 const u8 *wpaie = NULL;
1339
1340 lockdep_assert_held(&ar->conf_mutex);
1341
1342 bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan,
1343 info->bssid, NULL, 0, 0, 0);
1344 if (bss) {
1345 const struct cfg80211_bss_ies *ies;
1346
1347 rcu_read_lock();
1348 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
1349
1350 ies = rcu_dereference(bss->ies);
1351
1352 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
1353 WLAN_OUI_TYPE_MICROSOFT_WPA,
1354 ies->data,
1355 ies->len);
1356 rcu_read_unlock();
1357 cfg80211_put_bss(ar->hw->wiphy, bss);
1358 }
1359
1360 /* FIXME: base on RSN IE/WPA IE is a correct idea? */
1361 if (rsnie || wpaie) {
1362 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
1363 arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY;
1364 }
1365
1366 if (wpaie) {
1367 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
1368 arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY;
1369 }
1370 }
1371
1372 static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
1373 struct ieee80211_sta *sta,
1374 struct wmi_peer_assoc_complete_arg *arg)
1375 {
1376 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
1377 const struct ieee80211_supported_band *sband;
1378 const struct ieee80211_rate *rates;
1379 u32 ratemask;
1380 int i;
1381
1382 lockdep_assert_held(&ar->conf_mutex);
1383
1384 sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band];
1385 ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band];
1386 rates = sband->bitrates;
1387
1388 rateset->num_rates = 0;
1389
1390 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
1391 if (!(ratemask & 1))
1392 continue;
1393
1394 rateset->rates[rateset->num_rates] = rates->hw_value;
1395 rateset->num_rates++;
1396 }
1397 }
1398
1399 static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
1400 struct ieee80211_sta *sta,
1401 struct wmi_peer_assoc_complete_arg *arg)
1402 {
1403 const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
1404 int i, n;
1405 u32 stbc;
1406
1407 lockdep_assert_held(&ar->conf_mutex);
1408
1409 if (!ht_cap->ht_supported)
1410 return;
1411
1412 arg->peer_flags |= WMI_PEER_HT;
1413 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1414 ht_cap->ampdu_factor)) - 1;
1415
1416 arg->peer_mpdu_density =
1417 ath10k_parse_mpdudensity(ht_cap->ampdu_density);
1418
1419 arg->peer_ht_caps = ht_cap->cap;
1420 arg->peer_rate_caps |= WMI_RC_HT_FLAG;
1421
1422 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
1423 arg->peer_flags |= WMI_PEER_LDPC;
1424
1425 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
1426 arg->peer_flags |= WMI_PEER_40MHZ;
1427 arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
1428 }
1429
1430 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
1431 arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
1432
1433 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
1434 arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
1435
1436 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
1437 arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
1438 arg->peer_flags |= WMI_PEER_STBC;
1439 }
1440
1441 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
1442 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
1443 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
1444 stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
1445 arg->peer_rate_caps |= stbc;
1446 arg->peer_flags |= WMI_PEER_STBC;
1447 }
1448
1449 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
1450 arg->peer_rate_caps |= WMI_RC_TS_FLAG;
1451 else if (ht_cap->mcs.rx_mask[1])
1452 arg->peer_rate_caps |= WMI_RC_DS_FLAG;
1453
1454 for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++)
1455 if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8))
1456 arg->peer_ht_rates.rates[n++] = i;
1457
1458 /*
1459 * This is a workaround for HT-enabled STAs which break the spec
1460 * and have no HT capabilities RX mask (no HT RX MCS map).
1461 *
1462 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
1463 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
1464 *
1465 * Firmware asserts if such situation occurs.
1466 */
1467 if (n == 0) {
1468 arg->peer_ht_rates.num_rates = 8;
1469 for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
1470 arg->peer_ht_rates.rates[i] = i;
1471 } else {
1472 arg->peer_ht_rates.num_rates = n;
1473 arg->peer_num_spatial_streams = sta->rx_nss;
1474 }
1475
1476 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
1477 arg->addr,
1478 arg->peer_ht_rates.num_rates,
1479 arg->peer_num_spatial_streams);
1480 }
1481
1482 static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
1483 struct ath10k_vif *arvif,
1484 struct ieee80211_sta *sta)
1485 {
1486 u32 uapsd = 0;
1487 u32 max_sp = 0;
1488 int ret = 0;
1489
1490 lockdep_assert_held(&ar->conf_mutex);
1491
1492 if (sta->wme && sta->uapsd_queues) {
1493 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
1494 sta->uapsd_queues, sta->max_sp);
1495
1496 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
1497 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
1498 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
1499 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
1500 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
1501 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
1502 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
1503 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
1504 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
1505 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
1506 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
1507 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
1508
1509 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
1510 max_sp = sta->max_sp;
1511
1512 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
1513 sta->addr,
1514 WMI_AP_PS_PEER_PARAM_UAPSD,
1515 uapsd);
1516 if (ret) {
1517 ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n",
1518 arvif->vdev_id, ret);
1519 return ret;
1520 }
1521
1522 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
1523 sta->addr,
1524 WMI_AP_PS_PEER_PARAM_MAX_SP,
1525 max_sp);
1526 if (ret) {
1527 ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n",
1528 arvif->vdev_id, ret);
1529 return ret;
1530 }
1531
1532 /* TODO setup this based on STA listen interval and
1533 beacon interval. Currently we don't know
1534 sta->listen_interval - mac80211 patch required.
1535 Currently use 10 seconds */
1536 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
1537 WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
1538 10);
1539 if (ret) {
1540 ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n",
1541 arvif->vdev_id, ret);
1542 return ret;
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
1550 struct ieee80211_sta *sta,
1551 struct wmi_peer_assoc_complete_arg *arg)
1552 {
1553 const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1554 u8 ampdu_factor;
1555
1556 if (!vht_cap->vht_supported)
1557 return;
1558
1559 arg->peer_flags |= WMI_PEER_VHT;
1560 arg->peer_vht_caps = vht_cap->cap;
1561
1562 ampdu_factor = (vht_cap->cap &
1563 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
1564 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
1565
1566 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
1567 * zero in VHT IE. Using it would result in degraded throughput.
1568 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep
1569 * it if VHT max_mpdu is smaller. */
1570 arg->peer_max_mpdu = max(arg->peer_max_mpdu,
1571 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1572 ampdu_factor)) - 1);
1573
1574 if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
1575 arg->peer_flags |= WMI_PEER_80MHZ;
1576
1577 arg->peer_vht_rates.rx_max_rate =
1578 __le16_to_cpu(vht_cap->vht_mcs.rx_highest);
1579 arg->peer_vht_rates.rx_mcs_set =
1580 __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
1581 arg->peer_vht_rates.tx_max_rate =
1582 __le16_to_cpu(vht_cap->vht_mcs.tx_highest);
1583 arg->peer_vht_rates.tx_mcs_set =
1584 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map);
1585
1586 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
1587 sta->addr, arg->peer_max_mpdu, arg->peer_flags);
1588 }
1589
1590 static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
1591 struct ieee80211_vif *vif,
1592 struct ieee80211_sta *sta,
1593 struct wmi_peer_assoc_complete_arg *arg)
1594 {
1595 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1596
1597 switch (arvif->vdev_type) {
1598 case WMI_VDEV_TYPE_AP:
1599 if (sta->wme)
1600 arg->peer_flags |= WMI_PEER_QOS;
1601
1602 if (sta->wme && sta->uapsd_queues) {
1603 arg->peer_flags |= WMI_PEER_APSD;
1604 arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
1605 }
1606 break;
1607 case WMI_VDEV_TYPE_STA:
1608 if (vif->bss_conf.qos)
1609 arg->peer_flags |= WMI_PEER_QOS;
1610 break;
1611 case WMI_VDEV_TYPE_IBSS:
1612 if (sta->wme)
1613 arg->peer_flags |= WMI_PEER_QOS;
1614 break;
1615 default:
1616 break;
1617 }
1618
1619 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n",
1620 sta->addr, !!(arg->peer_flags & WMI_PEER_QOS));
1621 }
1622
1623 static bool ath10k_mac_sta_has_11g_rates(struct ieee80211_sta *sta)
1624 {
1625 /* First 4 rates in ath10k_rates are CCK (11b) rates. */
1626 return sta->supp_rates[IEEE80211_BAND_2GHZ] >> 4;
1627 }
1628
1629 static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
1630 struct ieee80211_vif *vif,
1631 struct ieee80211_sta *sta,
1632 struct wmi_peer_assoc_complete_arg *arg)
1633 {
1634 enum wmi_phy_mode phymode = MODE_UNKNOWN;
1635
1636 switch (ar->hw->conf.chandef.chan->band) {
1637 case IEEE80211_BAND_2GHZ:
1638 if (sta->ht_cap.ht_supported) {
1639 if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
1640 phymode = MODE_11NG_HT40;
1641 else
1642 phymode = MODE_11NG_HT20;
1643 } else if (ath10k_mac_sta_has_11g_rates(sta)) {
1644 phymode = MODE_11G;
1645 } else {
1646 phymode = MODE_11B;
1647 }
1648
1649 break;
1650 case IEEE80211_BAND_5GHZ:
1651 /*
1652 * Check VHT first.
1653 */
1654 if (sta->vht_cap.vht_supported) {
1655 if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
1656 phymode = MODE_11AC_VHT80;
1657 else if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
1658 phymode = MODE_11AC_VHT40;
1659 else if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
1660 phymode = MODE_11AC_VHT20;
1661 } else if (sta->ht_cap.ht_supported) {
1662 if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
1663 phymode = MODE_11NA_HT40;
1664 else
1665 phymode = MODE_11NA_HT20;
1666 } else {
1667 phymode = MODE_11A;
1668 }
1669
1670 break;
1671 default:
1672 break;
1673 }
1674
1675 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
1676 sta->addr, ath10k_wmi_phymode_str(phymode));
1677
1678 arg->peer_phymode = phymode;
1679 WARN_ON(phymode == MODE_UNKNOWN);
1680 }
1681
1682 static int ath10k_peer_assoc_prepare(struct ath10k *ar,
1683 struct ieee80211_vif *vif,
1684 struct ieee80211_sta *sta,
1685 struct wmi_peer_assoc_complete_arg *arg)
1686 {
1687 lockdep_assert_held(&ar->conf_mutex);
1688
1689 memset(arg, 0, sizeof(*arg));
1690
1691 ath10k_peer_assoc_h_basic(ar, vif, sta, arg);
1692 ath10k_peer_assoc_h_crypto(ar, vif, arg);
1693 ath10k_peer_assoc_h_rates(ar, sta, arg);
1694 ath10k_peer_assoc_h_ht(ar, sta, arg);
1695 ath10k_peer_assoc_h_vht(ar, sta, arg);
1696 ath10k_peer_assoc_h_qos(ar, vif, sta, arg);
1697 ath10k_peer_assoc_h_phymode(ar, vif, sta, arg);
1698
1699 return 0;
1700 }
1701
1702 static const u32 ath10k_smps_map[] = {
1703 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
1704 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
1705 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
1706 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
1707 };
1708
1709 static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
1710 const u8 *addr,
1711 const struct ieee80211_sta_ht_cap *ht_cap)
1712 {
1713 int smps;
1714
1715 if (!ht_cap->ht_supported)
1716 return 0;
1717
1718 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
1719 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
1720
1721 if (smps >= ARRAY_SIZE(ath10k_smps_map))
1722 return -EINVAL;
1723
1724 return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
1725 WMI_PEER_SMPS_STATE,
1726 ath10k_smps_map[smps]);
1727 }
1728
1729 /* can be called only in mac80211 callbacks due to `key_count` usage */
1730 static void ath10k_bss_assoc(struct ieee80211_hw *hw,
1731 struct ieee80211_vif *vif,
1732 struct ieee80211_bss_conf *bss_conf)
1733 {
1734 struct ath10k *ar = hw->priv;
1735 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1736 struct ieee80211_sta_ht_cap ht_cap;
1737 struct wmi_peer_assoc_complete_arg peer_arg;
1738 struct ieee80211_sta *ap_sta;
1739 int ret;
1740
1741 lockdep_assert_held(&ar->conf_mutex);
1742
1743 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n",
1744 arvif->vdev_id, arvif->bssid, arvif->aid);
1745
1746 rcu_read_lock();
1747
1748 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
1749 if (!ap_sta) {
1750 ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n",
1751 bss_conf->bssid, arvif->vdev_id);
1752 rcu_read_unlock();
1753 return;
1754 }
1755
1756 /* ap_sta must be accessed only within rcu section which must be left
1757 * before calling ath10k_setup_peer_smps() which might sleep. */
1758 ht_cap = ap_sta->ht_cap;
1759
1760 ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg);
1761 if (ret) {
1762 ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n",
1763 bss_conf->bssid, arvif->vdev_id, ret);
1764 rcu_read_unlock();
1765 return;
1766 }
1767
1768 rcu_read_unlock();
1769
1770 ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
1771 if (ret) {
1772 ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n",
1773 bss_conf->bssid, arvif->vdev_id, ret);
1774 return;
1775 }
1776
1777 ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
1778 if (ret) {
1779 ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n",
1780 arvif->vdev_id, ret);
1781 return;
1782 }
1783
1784 ath10k_dbg(ar, ATH10K_DBG_MAC,
1785 "mac vdev %d up (associated) bssid %pM aid %d\n",
1786 arvif->vdev_id, bss_conf->bssid, bss_conf->aid);
1787
1788 WARN_ON(arvif->is_up);
1789
1790 arvif->aid = bss_conf->aid;
1791 ether_addr_copy(arvif->bssid, bss_conf->bssid);
1792
1793 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
1794 if (ret) {
1795 ath10k_warn(ar, "failed to set vdev %d up: %d\n",
1796 arvif->vdev_id, ret);
1797 return;
1798 }
1799
1800 arvif->is_up = true;
1801 }
1802
1803 static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
1804 struct ieee80211_vif *vif)
1805 {
1806 struct ath10k *ar = hw->priv;
1807 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1808 int ret;
1809
1810 lockdep_assert_held(&ar->conf_mutex);
1811
1812 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
1813 arvif->vdev_id, arvif->bssid);
1814
1815 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
1816 if (ret)
1817 ath10k_warn(ar, "faield to down vdev %i: %d\n",
1818 arvif->vdev_id, ret);
1819
1820 arvif->def_wep_key_idx = 0;
1821 arvif->is_up = false;
1822 }
1823
1824 static int ath10k_station_assoc(struct ath10k *ar,
1825 struct ieee80211_vif *vif,
1826 struct ieee80211_sta *sta,
1827 bool reassoc)
1828 {
1829 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1830 struct wmi_peer_assoc_complete_arg peer_arg;
1831 int ret = 0;
1832
1833 lockdep_assert_held(&ar->conf_mutex);
1834
1835 ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg);
1836 if (ret) {
1837 ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n",
1838 sta->addr, arvif->vdev_id, ret);
1839 return ret;
1840 }
1841
1842 peer_arg.peer_reassoc = reassoc;
1843 ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
1844 if (ret) {
1845 ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n",
1846 sta->addr, arvif->vdev_id, ret);
1847 return ret;
1848 }
1849
1850 /* Re-assoc is run only to update supported rates for given station. It
1851 * doesn't make much sense to reconfigure the peer completely.
1852 */
1853 if (!reassoc) {
1854 ret = ath10k_setup_peer_smps(ar, arvif, sta->addr,
1855 &sta->ht_cap);
1856 if (ret) {
1857 ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n",
1858 arvif->vdev_id, ret);
1859 return ret;
1860 }
1861
1862 ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
1863 if (ret) {
1864 ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n",
1865 sta->addr, arvif->vdev_id, ret);
1866 return ret;
1867 }
1868
1869 if (!sta->wme) {
1870 arvif->num_legacy_stations++;
1871 ret = ath10k_recalc_rtscts_prot(arvif);
1872 if (ret) {
1873 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
1874 arvif->vdev_id, ret);
1875 return ret;
1876 }
1877 }
1878
1879 ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
1880 if (ret) {
1881 ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n",
1882 arvif->vdev_id, ret);
1883 return ret;
1884 }
1885 }
1886
1887 return ret;
1888 }
1889
1890 static int ath10k_station_disassoc(struct ath10k *ar,
1891 struct ieee80211_vif *vif,
1892 struct ieee80211_sta *sta)
1893 {
1894 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1895 int ret = 0;
1896
1897 lockdep_assert_held(&ar->conf_mutex);
1898
1899 if (!sta->wme) {
1900 arvif->num_legacy_stations--;
1901 ret = ath10k_recalc_rtscts_prot(arvif);
1902 if (ret) {
1903 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
1904 arvif->vdev_id, ret);
1905 return ret;
1906 }
1907 }
1908
1909 ret = ath10k_clear_peer_keys(arvif, sta->addr);
1910 if (ret) {
1911 ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n",
1912 arvif->vdev_id, ret);
1913 return ret;
1914 }
1915
1916 return ret;
1917 }
1918
1919 /**************/
1920 /* Regulatory */
1921 /**************/
1922
1923 static int ath10k_update_channel_list(struct ath10k *ar)
1924 {
1925 struct ieee80211_hw *hw = ar->hw;
1926 struct ieee80211_supported_band **bands;
1927 enum ieee80211_band band;
1928 struct ieee80211_channel *channel;
1929 struct wmi_scan_chan_list_arg arg = {0};
1930 struct wmi_channel_arg *ch;
1931 bool passive;
1932 int len;
1933 int ret;
1934 int i;
1935
1936 lockdep_assert_held(&ar->conf_mutex);
1937
1938 bands = hw->wiphy->bands;
1939 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1940 if (!bands[band])
1941 continue;
1942
1943 for (i = 0; i < bands[band]->n_channels; i++) {
1944 if (bands[band]->channels[i].flags &
1945 IEEE80211_CHAN_DISABLED)
1946 continue;
1947
1948 arg.n_channels++;
1949 }
1950 }
1951
1952 len = sizeof(struct wmi_channel_arg) * arg.n_channels;
1953 arg.channels = kzalloc(len, GFP_KERNEL);
1954 if (!arg.channels)
1955 return -ENOMEM;
1956
1957 ch = arg.channels;
1958 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1959 if (!bands[band])
1960 continue;
1961
1962 for (i = 0; i < bands[band]->n_channels; i++) {
1963 channel = &bands[band]->channels[i];
1964
1965 if (channel->flags & IEEE80211_CHAN_DISABLED)
1966 continue;
1967
1968 ch->allow_ht = true;
1969
1970 /* FIXME: when should we really allow VHT? */
1971 ch->allow_vht = true;
1972
1973 ch->allow_ibss =
1974 !(channel->flags & IEEE80211_CHAN_NO_IR);
1975
1976 ch->ht40plus =
1977 !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
1978
1979 ch->chan_radar =
1980 !!(channel->flags & IEEE80211_CHAN_RADAR);
1981
1982 passive = channel->flags & IEEE80211_CHAN_NO_IR;
1983 ch->passive = passive;
1984
1985 ch->freq = channel->center_freq;
1986 ch->band_center_freq1 = channel->center_freq;
1987 ch->min_power = 0;
1988 ch->max_power = channel->max_power * 2;
1989 ch->max_reg_power = channel->max_reg_power * 2;
1990 ch->max_antenna_gain = channel->max_antenna_gain * 2;
1991 ch->reg_class_id = 0; /* FIXME */
1992
1993 /* FIXME: why use only legacy modes, why not any
1994 * HT/VHT modes? Would that even make any
1995 * difference? */
1996 if (channel->band == IEEE80211_BAND_2GHZ)
1997 ch->mode = MODE_11G;
1998 else
1999 ch->mode = MODE_11A;
2000
2001 if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
2002 continue;
2003
2004 ath10k_dbg(ar, ATH10K_DBG_WMI,
2005 "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
2006 ch - arg.channels, arg.n_channels,
2007 ch->freq, ch->max_power, ch->max_reg_power,
2008 ch->max_antenna_gain, ch->mode);
2009
2010 ch++;
2011 }
2012 }
2013
2014 ret = ath10k_wmi_scan_chan_list(ar, &arg);
2015 kfree(arg.channels);
2016
2017 return ret;
2018 }
2019
2020 static enum wmi_dfs_region
2021 ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region)
2022 {
2023 switch (dfs_region) {
2024 case NL80211_DFS_UNSET:
2025 return WMI_UNINIT_DFS_DOMAIN;
2026 case NL80211_DFS_FCC:
2027 return WMI_FCC_DFS_DOMAIN;
2028 case NL80211_DFS_ETSI:
2029 return WMI_ETSI_DFS_DOMAIN;
2030 case NL80211_DFS_JP:
2031 return WMI_MKK4_DFS_DOMAIN;
2032 }
2033 return WMI_UNINIT_DFS_DOMAIN;
2034 }
2035
2036 static void ath10k_regd_update(struct ath10k *ar)
2037 {
2038 struct reg_dmn_pair_mapping *regpair;
2039 int ret;
2040 enum wmi_dfs_region wmi_dfs_reg;
2041 enum nl80211_dfs_regions nl_dfs_reg;
2042
2043 lockdep_assert_held(&ar->conf_mutex);
2044
2045 ret = ath10k_update_channel_list(ar);
2046 if (ret)
2047 ath10k_warn(ar, "failed to update channel list: %d\n", ret);
2048
2049 regpair = ar->ath_common.regulatory.regpair;
2050
2051 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
2052 nl_dfs_reg = ar->dfs_detector->region;
2053 wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
2054 } else {
2055 wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
2056 }
2057
2058 /* Target allows setting up per-band regdomain but ath_common provides
2059 * a combined one only */
2060 ret = ath10k_wmi_pdev_set_regdomain(ar,
2061 regpair->reg_domain,
2062 regpair->reg_domain, /* 2ghz */
2063 regpair->reg_domain, /* 5ghz */
2064 regpair->reg_2ghz_ctl,
2065 regpair->reg_5ghz_ctl,
2066 wmi_dfs_reg);
2067 if (ret)
2068 ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret);
2069 }
2070
2071 static void ath10k_reg_notifier(struct wiphy *wiphy,
2072 struct regulatory_request *request)
2073 {
2074 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
2075 struct ath10k *ar = hw->priv;
2076 bool result;
2077
2078 ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
2079
2080 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
2081 ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
2082 request->dfs_region);
2083 result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
2084 request->dfs_region);
2085 if (!result)
2086 ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n",
2087 request->dfs_region);
2088 }
2089
2090 mutex_lock(&ar->conf_mutex);
2091 if (ar->state == ATH10K_STATE_ON)
2092 ath10k_regd_update(ar);
2093 mutex_unlock(&ar->conf_mutex);
2094 }
2095
2096 /***************/
2097 /* TX handlers */
2098 /***************/
2099
2100 static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr)
2101 {
2102 if (ieee80211_is_mgmt(hdr->frame_control))
2103 return HTT_DATA_TX_EXT_TID_MGMT;
2104
2105 if (!ieee80211_is_data_qos(hdr->frame_control))
2106 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
2107
2108 if (!is_unicast_ether_addr(ieee80211_get_DA(hdr)))
2109 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
2110
2111 return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
2112 }
2113
2114 static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_vif *vif)
2115 {
2116 if (vif)
2117 return ath10k_vif_to_arvif(vif)->vdev_id;
2118
2119 if (ar->monitor_started)
2120 return ar->monitor_vdev_id;
2121
2122 ath10k_warn(ar, "failed to resolve vdev id\n");
2123 return 0;
2124 }
2125
2126 /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
2127 * Control in the header.
2128 */
2129 static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb)
2130 {
2131 struct ieee80211_hdr *hdr = (void *)skb->data;
2132 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
2133 u8 *qos_ctl;
2134
2135 if (!ieee80211_is_data_qos(hdr->frame_control))
2136 return;
2137
2138 qos_ctl = ieee80211_get_qos_ctl(hdr);
2139 memmove(skb->data + IEEE80211_QOS_CTL_LEN,
2140 skb->data, (void *)qos_ctl - (void *)skb->data);
2141 skb_pull(skb, IEEE80211_QOS_CTL_LEN);
2142
2143 /* Fw/Hw generates a corrupted QoS Control Field for QoS NullFunc
2144 * frames. Powersave is handled by the fw/hw so QoS NyllFunc frames are
2145 * used only for CQM purposes (e.g. hostapd station keepalive ping) so
2146 * it is safe to downgrade to NullFunc.
2147 */
2148 hdr = (void *)skb->data;
2149 if (ieee80211_is_qos_nullfunc(hdr->frame_control)) {
2150 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
2151 cb->htt.tid = HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
2152 }
2153 }
2154
2155 static void ath10k_tx_wep_key_work(struct work_struct *work)
2156 {
2157 struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
2158 wep_key_work);
2159 struct ath10k *ar = arvif->ar;
2160 int ret, keyidx = arvif->def_wep_key_newidx;
2161
2162 mutex_lock(&arvif->ar->conf_mutex);
2163
2164 if (arvif->ar->state != ATH10K_STATE_ON)
2165 goto unlock;
2166
2167 if (arvif->def_wep_key_idx == keyidx)
2168 goto unlock;
2169
2170 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
2171 arvif->vdev_id, keyidx);
2172
2173 ret = ath10k_wmi_vdev_set_param(arvif->ar,
2174 arvif->vdev_id,
2175 arvif->ar->wmi.vdev_param->def_keyid,
2176 keyidx);
2177 if (ret) {
2178 ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n",
2179 arvif->vdev_id,
2180 ret);
2181 goto unlock;
2182 }
2183
2184 arvif->def_wep_key_idx = keyidx;
2185
2186 unlock:
2187 mutex_unlock(&arvif->ar->conf_mutex);
2188 }
2189
2190 static void ath10k_tx_h_update_wep_key(struct ieee80211_vif *vif,
2191 struct ieee80211_key_conf *key,
2192 struct sk_buff *skb)
2193 {
2194 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2195 struct ath10k *ar = arvif->ar;
2196 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2197
2198 if (!ieee80211_has_protected(hdr->frame_control))
2199 return;
2200
2201 if (!key)
2202 return;
2203
2204 if (key->cipher != WLAN_CIPHER_SUITE_WEP40 &&
2205 key->cipher != WLAN_CIPHER_SUITE_WEP104)
2206 return;
2207
2208 if (key->keyidx == arvif->def_wep_key_idx)
2209 return;
2210
2211 /* FIXME: Most likely a few frames will be TXed with an old key. Simply
2212 * queueing frames until key index is updated is not an option because
2213 * sk_buff may need more processing to be done, e.g. offchannel */
2214 arvif->def_wep_key_newidx = key->keyidx;
2215 ieee80211_queue_work(ar->hw, &arvif->wep_key_work);
2216 }
2217
2218 static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar,
2219 struct ieee80211_vif *vif,
2220 struct sk_buff *skb)
2221 {
2222 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2223 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2224
2225 /* This is case only for P2P_GO */
2226 if (arvif->vdev_type != WMI_VDEV_TYPE_AP ||
2227 arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
2228 return;
2229
2230 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
2231 spin_lock_bh(&ar->data_lock);
2232 if (arvif->u.ap.noa_data)
2233 if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
2234 GFP_ATOMIC))
2235 memcpy(skb_put(skb, arvif->u.ap.noa_len),
2236 arvif->u.ap.noa_data,
2237 arvif->u.ap.noa_len);
2238 spin_unlock_bh(&ar->data_lock);
2239 }
2240 }
2241
2242 static bool ath10k_mac_need_offchan_tx_work(struct ath10k *ar)
2243 {
2244 /* FIXME: Not really sure since when the behaviour changed. At some
2245 * point new firmware stopped requiring creation of peer entries for
2246 * offchannel tx (and actually creating them causes issues with wmi-htc
2247 * tx credit replenishment and reliability). Assuming it's at least 3.4
2248 * because that's when the `freq` was introduced to TX_FRM HTT command.
2249 */
2250 return !(ar->htt.target_version_major >= 3 &&
2251 ar->htt.target_version_minor >= 4);
2252 }
2253
2254 static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb)
2255 {
2256 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2257 int ret = 0;
2258
2259 if (ar->htt.target_version_major >= 3) {
2260 /* Since HTT 3.0 there is no separate mgmt tx command */
2261 ret = ath10k_htt_tx(&ar->htt, skb);
2262 goto exit;
2263 }
2264
2265 if (ieee80211_is_mgmt(hdr->frame_control)) {
2266 if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
2267 ar->fw_features)) {
2268 if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >=
2269 ATH10K_MAX_NUM_MGMT_PENDING) {
2270 ath10k_warn(ar, "reached WMI management transmit queue limit\n");
2271 ret = -EBUSY;
2272 goto exit;
2273 }
2274
2275 skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb);
2276 ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
2277 } else {
2278 ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
2279 }
2280 } else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
2281 ar->fw_features) &&
2282 ieee80211_is_nullfunc(hdr->frame_control)) {
2283 /* FW does not report tx status properly for NullFunc frames
2284 * unless they are sent through mgmt tx path. mac80211 sends
2285 * those frames when it detects link/beacon loss and depends
2286 * on the tx status to be correct. */
2287 ret = ath10k_htt_mgmt_tx(&ar->htt, skb);
2288 } else {
2289 ret = ath10k_htt_tx(&ar->htt, skb);
2290 }
2291
2292 exit:
2293 if (ret) {
2294 ath10k_warn(ar, "failed to transmit packet, dropping: %d\n",
2295 ret);
2296 ieee80211_free_txskb(ar->hw, skb);
2297 }
2298 }
2299
2300 void ath10k_offchan_tx_purge(struct ath10k *ar)
2301 {
2302 struct sk_buff *skb;
2303
2304 for (;;) {
2305 skb = skb_dequeue(&ar->offchan_tx_queue);
2306 if (!skb)
2307 break;
2308
2309 ieee80211_free_txskb(ar->hw, skb);
2310 }
2311 }
2312
2313 void ath10k_offchan_tx_work(struct work_struct *work)
2314 {
2315 struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
2316 struct ath10k_peer *peer;
2317 struct ieee80211_hdr *hdr;
2318 struct sk_buff *skb;
2319 const u8 *peer_addr;
2320 int vdev_id;
2321 int ret;
2322
2323 /* FW requirement: We must create a peer before FW will send out
2324 * an offchannel frame. Otherwise the frame will be stuck and
2325 * never transmitted. We delete the peer upon tx completion.
2326 * It is unlikely that a peer for offchannel tx will already be
2327 * present. However it may be in some rare cases so account for that.
2328 * Otherwise we might remove a legitimate peer and break stuff. */
2329
2330 for (;;) {
2331 skb = skb_dequeue(&ar->offchan_tx_queue);
2332 if (!skb)
2333 break;
2334
2335 mutex_lock(&ar->conf_mutex);
2336
2337 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %p\n",
2338 skb);
2339
2340 hdr = (struct ieee80211_hdr *)skb->data;
2341 peer_addr = ieee80211_get_DA(hdr);
2342 vdev_id = ATH10K_SKB_CB(skb)->vdev_id;
2343
2344 spin_lock_bh(&ar->data_lock);
2345 peer = ath10k_peer_find(ar, vdev_id, peer_addr);
2346 spin_unlock_bh(&ar->data_lock);
2347
2348 if (peer)
2349 /* FIXME: should this use ath10k_warn()? */
2350 ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
2351 peer_addr, vdev_id);
2352
2353 if (!peer) {
2354 ret = ath10k_peer_create(ar, vdev_id, peer_addr);
2355 if (ret)
2356 ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n",
2357 peer_addr, vdev_id, ret);
2358 }
2359
2360 spin_lock_bh(&ar->data_lock);
2361 reinit_completion(&ar->offchan_tx_completed);
2362 ar->offchan_tx_skb = skb;
2363 spin_unlock_bh(&ar->data_lock);
2364
2365 ath10k_tx_htt(ar, skb);
2366
2367 ret = wait_for_completion_timeout(&ar->offchan_tx_completed,
2368 3 * HZ);
2369 if (ret == 0)
2370 ath10k_warn(ar, "timed out waiting for offchannel skb %p\n",
2371 skb);
2372
2373 if (!peer) {
2374 ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
2375 if (ret)
2376 ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n",
2377 peer_addr, vdev_id, ret);
2378 }
2379
2380 mutex_unlock(&ar->conf_mutex);
2381 }
2382 }
2383
2384 void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
2385 {
2386 struct sk_buff *skb;
2387
2388 for (;;) {
2389 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
2390 if (!skb)
2391 break;
2392
2393 ieee80211_free_txskb(ar->hw, skb);
2394 }
2395 }
2396
2397 void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
2398 {
2399 struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
2400 struct sk_buff *skb;
2401 int ret;
2402
2403 for (;;) {
2404 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
2405 if (!skb)
2406 break;
2407
2408 ret = ath10k_wmi_mgmt_tx(ar, skb);
2409 if (ret) {
2410 ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n",
2411 ret);
2412 ieee80211_free_txskb(ar->hw, skb);
2413 }
2414 }
2415 }
2416
2417 /************/
2418 /* Scanning */
2419 /************/
2420
2421 void __ath10k_scan_finish(struct ath10k *ar)
2422 {
2423 lockdep_assert_held(&ar->data_lock);
2424
2425 switch (ar->scan.state) {
2426 case ATH10K_SCAN_IDLE:
2427 break;
2428 case ATH10K_SCAN_RUNNING:
2429 if (ar->scan.is_roc)
2430 ieee80211_remain_on_channel_expired(ar->hw);
2431 /* fall through */
2432 case ATH10K_SCAN_ABORTING:
2433 if (!ar->scan.is_roc)
2434 ieee80211_scan_completed(ar->hw,
2435 (ar->scan.state ==
2436 ATH10K_SCAN_ABORTING));
2437 /* fall through */
2438 case ATH10K_SCAN_STARTING:
2439 ar->scan.state = ATH10K_SCAN_IDLE;
2440 ar->scan_channel = NULL;
2441 ath10k_offchan_tx_purge(ar);
2442 cancel_delayed_work(&ar->scan.timeout);
2443 complete_all(&ar->scan.completed);
2444 break;
2445 }
2446 }
2447
2448 void ath10k_scan_finish(struct ath10k *ar)
2449 {
2450 spin_lock_bh(&ar->data_lock);
2451 __ath10k_scan_finish(ar);
2452 spin_unlock_bh(&ar->data_lock);
2453 }
2454
2455 static int ath10k_scan_stop(struct ath10k *ar)
2456 {
2457 struct wmi_stop_scan_arg arg = {
2458 .req_id = 1, /* FIXME */
2459 .req_type = WMI_SCAN_STOP_ONE,
2460 .u.scan_id = ATH10K_SCAN_ID,
2461 };
2462 int ret;
2463
2464 lockdep_assert_held(&ar->conf_mutex);
2465
2466 ret = ath10k_wmi_stop_scan(ar, &arg);
2467 if (ret) {
2468 ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret);
2469 goto out;
2470 }
2471
2472 ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ);
2473 if (ret == 0) {
2474 ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n");
2475 ret = -ETIMEDOUT;
2476 } else if (ret > 0) {
2477 ret = 0;
2478 }
2479
2480 out:
2481 /* Scan state should be updated upon scan completion but in case
2482 * firmware fails to deliver the event (for whatever reason) it is
2483 * desired to clean up scan state anyway. Firmware may have just
2484 * dropped the scan completion event delivery due to transport pipe
2485 * being overflown with data and/or it can recover on its own before
2486 * next scan request is submitted.
2487 */
2488 spin_lock_bh(&ar->data_lock);
2489 if (ar->scan.state != ATH10K_SCAN_IDLE)
2490 __ath10k_scan_finish(ar);
2491 spin_unlock_bh(&ar->data_lock);
2492
2493 return ret;
2494 }
2495
2496 static void ath10k_scan_abort(struct ath10k *ar)
2497 {
2498 int ret;
2499
2500 lockdep_assert_held(&ar->conf_mutex);
2501
2502 spin_lock_bh(&ar->data_lock);
2503
2504 switch (ar->scan.state) {
2505 case ATH10K_SCAN_IDLE:
2506 /* This can happen if timeout worker kicked in and called
2507 * abortion while scan completion was being processed.
2508 */
2509 break;
2510 case ATH10K_SCAN_STARTING:
2511 case ATH10K_SCAN_ABORTING:
2512 ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n",
2513 ath10k_scan_state_str(ar->scan.state),
2514 ar->scan.state);
2515 break;
2516 case ATH10K_SCAN_RUNNING:
2517 ar->scan.state = ATH10K_SCAN_ABORTING;
2518 spin_unlock_bh(&ar->data_lock);
2519
2520 ret = ath10k_scan_stop(ar);
2521 if (ret)
2522 ath10k_warn(ar, "failed to abort scan: %d\n", ret);
2523
2524 spin_lock_bh(&ar->data_lock);
2525 break;
2526 }
2527
2528 spin_unlock_bh(&ar->data_lock);
2529 }
2530
2531 void ath10k_scan_timeout_work(struct work_struct *work)
2532 {
2533 struct ath10k *ar = container_of(work, struct ath10k,
2534 scan.timeout.work);
2535
2536 mutex_lock(&ar->conf_mutex);
2537 ath10k_scan_abort(ar);
2538 mutex_unlock(&ar->conf_mutex);
2539 }
2540
2541 static int ath10k_start_scan(struct ath10k *ar,
2542 const struct wmi_start_scan_arg *arg)
2543 {
2544 int ret;
2545
2546 lockdep_assert_held(&ar->conf_mutex);
2547
2548 ret = ath10k_wmi_start_scan(ar, arg);
2549 if (ret)
2550 return ret;
2551
2552 ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ);
2553 if (ret == 0) {
2554 ret = ath10k_scan_stop(ar);
2555 if (ret)
2556 ath10k_warn(ar, "failed to stop scan: %d\n", ret);
2557
2558 return -ETIMEDOUT;
2559 }
2560
2561 /* Add a 200ms margin to account for event/command processing */
2562 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
2563 msecs_to_jiffies(arg->max_scan_time+200));
2564 return 0;
2565 }
2566
2567 /**********************/
2568 /* mac80211 callbacks */
2569 /**********************/
2570
2571 static void ath10k_tx(struct ieee80211_hw *hw,
2572 struct ieee80211_tx_control *control,
2573 struct sk_buff *skb)
2574 {
2575 struct ath10k *ar = hw->priv;
2576 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2577 struct ieee80211_vif *vif = info->control.vif;
2578 struct ieee80211_key_conf *key = info->control.hw_key;
2579 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2580
2581 /* We should disable CCK RATE due to P2P */
2582 if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
2583 ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
2584
2585 ATH10K_SKB_CB(skb)->htt.is_offchan = false;
2586 ATH10K_SKB_CB(skb)->htt.tid = ath10k_tx_h_get_tid(hdr);
2587 ATH10K_SKB_CB(skb)->vdev_id = ath10k_tx_h_get_vdev_id(ar, vif);
2588
2589 /* it makes no sense to process injected frames like that */
2590 if (vif && vif->type != NL80211_IFTYPE_MONITOR) {
2591 ath10k_tx_h_nwifi(hw, skb);
2592 ath10k_tx_h_update_wep_key(vif, key, skb);
2593 ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
2594 ath10k_tx_h_seq_no(vif, skb);
2595 }
2596
2597 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
2598 spin_lock_bh(&ar->data_lock);
2599 ATH10K_SKB_CB(skb)->htt.freq = ar->scan.roc_freq;
2600 ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id;
2601 spin_unlock_bh(&ar->data_lock);
2602
2603 if (ath10k_mac_need_offchan_tx_work(ar)) {
2604 ATH10K_SKB_CB(skb)->htt.freq = 0;
2605 ATH10K_SKB_CB(skb)->htt.is_offchan = true;
2606
2607 ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %p\n",
2608 skb);
2609
2610 skb_queue_tail(&ar->offchan_tx_queue, skb);
2611 ieee80211_queue_work(hw, &ar->offchan_tx_work);
2612 return;
2613 }
2614 }
2615
2616 ath10k_tx_htt(ar, skb);
2617 }
2618
2619 /* Must not be called with conf_mutex held as workers can use that also. */
2620 void ath10k_drain_tx(struct ath10k *ar)
2621 {
2622 /* make sure rcu-protected mac80211 tx path itself is drained */
2623 synchronize_net();
2624
2625 ath10k_offchan_tx_purge(ar);
2626 ath10k_mgmt_over_wmi_tx_purge(ar);
2627
2628 cancel_work_sync(&ar->offchan_tx_work);
2629 cancel_work_sync(&ar->wmi_mgmt_tx_work);
2630 }
2631
2632 void ath10k_halt(struct ath10k *ar)
2633 {
2634 struct ath10k_vif *arvif;
2635
2636 lockdep_assert_held(&ar->conf_mutex);
2637
2638 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
2639 ar->filter_flags = 0;
2640 ar->monitor = false;
2641
2642 if (ar->monitor_started)
2643 ath10k_monitor_stop(ar);
2644
2645 ar->monitor_started = false;
2646
2647 ath10k_scan_finish(ar);
2648 ath10k_peer_cleanup_all(ar);
2649 ath10k_core_stop(ar);
2650 ath10k_hif_power_down(ar);
2651
2652 spin_lock_bh(&ar->data_lock);
2653 list_for_each_entry(arvif, &ar->arvifs, list)
2654 ath10k_mac_vif_beacon_cleanup(arvif);
2655 spin_unlock_bh(&ar->data_lock);
2656 }
2657
2658 static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
2659 {
2660 struct ath10k *ar = hw->priv;
2661
2662 mutex_lock(&ar->conf_mutex);
2663
2664 if (ar->cfg_tx_chainmask) {
2665 *tx_ant = ar->cfg_tx_chainmask;
2666 *rx_ant = ar->cfg_rx_chainmask;
2667 } else {
2668 *tx_ant = ar->supp_tx_chainmask;
2669 *rx_ant = ar->supp_rx_chainmask;
2670 }
2671
2672 mutex_unlock(&ar->conf_mutex);
2673
2674 return 0;
2675 }
2676
2677 static void ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg)
2678 {
2679 /* It is not clear that allowing gaps in chainmask
2680 * is helpful. Probably it will not do what user
2681 * is hoping for, so warn in that case.
2682 */
2683 if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0)
2684 return;
2685
2686 ath10k_warn(ar, "mac %s antenna chainmask may be invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n",
2687 dbg, cm);
2688 }
2689
2690 static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant)
2691 {
2692 int ret;
2693
2694 lockdep_assert_held(&ar->conf_mutex);
2695
2696 ath10k_check_chain_mask(ar, tx_ant, "tx");
2697 ath10k_check_chain_mask(ar, rx_ant, "rx");
2698
2699 ar->cfg_tx_chainmask = tx_ant;
2700 ar->cfg_rx_chainmask = rx_ant;
2701
2702 if ((ar->state != ATH10K_STATE_ON) &&
2703 (ar->state != ATH10K_STATE_RESTARTED))
2704 return 0;
2705
2706 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask,
2707 tx_ant);
2708 if (ret) {
2709 ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n",
2710 ret, tx_ant);
2711 return ret;
2712 }
2713
2714 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask,
2715 rx_ant);
2716 if (ret) {
2717 ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n",
2718 ret, rx_ant);
2719 return ret;
2720 }
2721
2722 return 0;
2723 }
2724
2725 static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
2726 {
2727 struct ath10k *ar = hw->priv;
2728 int ret;
2729
2730 mutex_lock(&ar->conf_mutex);
2731 ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
2732 mutex_unlock(&ar->conf_mutex);
2733 return ret;
2734 }
2735
2736 static int ath10k_start(struct ieee80211_hw *hw)
2737 {
2738 struct ath10k *ar = hw->priv;
2739 int ret = 0;
2740
2741 /*
2742 * This makes sense only when restarting hw. It is harmless to call
2743 * uncoditionally. This is necessary to make sure no HTT/WMI tx
2744 * commands will be submitted while restarting.
2745 */
2746 ath10k_drain_tx(ar);
2747
2748 mutex_lock(&ar->conf_mutex);
2749
2750 switch (ar->state) {
2751 case ATH10K_STATE_OFF:
2752 ar->state = ATH10K_STATE_ON;
2753 break;
2754 case ATH10K_STATE_RESTARTING:
2755 ath10k_halt(ar);
2756 ar->state = ATH10K_STATE_RESTARTED;
2757 break;
2758 case ATH10K_STATE_ON:
2759 case ATH10K_STATE_RESTARTED:
2760 case ATH10K_STATE_WEDGED:
2761 WARN_ON(1);
2762 ret = -EINVAL;
2763 goto err;
2764 case ATH10K_STATE_UTF:
2765 ret = -EBUSY;
2766 goto err;
2767 }
2768
2769 ret = ath10k_hif_power_up(ar);
2770 if (ret) {
2771 ath10k_err(ar, "Could not init hif: %d\n", ret);
2772 goto err_off;
2773 }
2774
2775 ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL);
2776 if (ret) {
2777 ath10k_err(ar, "Could not init core: %d\n", ret);
2778 goto err_power_down;
2779 }
2780
2781 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
2782 if (ret) {
2783 ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret);
2784 goto err_core_stop;
2785 }
2786
2787 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1);
2788 if (ret) {
2789 ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret);
2790 goto err_core_stop;
2791 }
2792
2793 if (ar->cfg_tx_chainmask)
2794 __ath10k_set_antenna(ar, ar->cfg_tx_chainmask,
2795 ar->cfg_rx_chainmask);
2796
2797 /*
2798 * By default FW set ARP frames ac to voice (6). In that case ARP
2799 * exchange is not working properly for UAPSD enabled AP. ARP requests
2800 * which arrives with access category 0 are processed by network stack
2801 * and send back with access category 0, but FW changes access category
2802 * to 6. Set ARP frames access category to best effort (0) solves
2803 * this problem.
2804 */
2805
2806 ret = ath10k_wmi_pdev_set_param(ar,
2807 ar->wmi.pdev_param->arp_ac_override, 0);
2808 if (ret) {
2809 ath10k_warn(ar, "failed to set arp ac override parameter: %d\n",
2810 ret);
2811 goto err_core_stop;
2812 }
2813
2814 ar->num_started_vdevs = 0;
2815 ath10k_regd_update(ar);
2816
2817 ath10k_spectral_start(ar);
2818
2819 mutex_unlock(&ar->conf_mutex);
2820 return 0;
2821
2822 err_core_stop:
2823 ath10k_core_stop(ar);
2824
2825 err_power_down:
2826 ath10k_hif_power_down(ar);
2827
2828 err_off:
2829 ar->state = ATH10K_STATE_OFF;
2830
2831 err:
2832 mutex_unlock(&ar->conf_mutex);
2833 return ret;
2834 }
2835
2836 static void ath10k_stop(struct ieee80211_hw *hw)
2837 {
2838 struct ath10k *ar = hw->priv;
2839
2840 ath10k_drain_tx(ar);
2841
2842 mutex_lock(&ar->conf_mutex);
2843 if (ar->state != ATH10K_STATE_OFF) {
2844 ath10k_halt(ar);
2845 ar->state = ATH10K_STATE_OFF;
2846 }
2847 mutex_unlock(&ar->conf_mutex);
2848
2849 cancel_delayed_work_sync(&ar->scan.timeout);
2850 cancel_work_sync(&ar->restart_work);
2851 }
2852
2853 static int ath10k_config_ps(struct ath10k *ar)
2854 {
2855 struct ath10k_vif *arvif;
2856 int ret = 0;
2857
2858 lockdep_assert_held(&ar->conf_mutex);
2859
2860 list_for_each_entry(arvif, &ar->arvifs, list) {
2861 ret = ath10k_mac_vif_setup_ps(arvif);
2862 if (ret) {
2863 ath10k_warn(ar, "failed to setup powersave: %d\n", ret);
2864 break;
2865 }
2866 }
2867
2868 return ret;
2869 }
2870
2871 static const char *chandef_get_width(enum nl80211_chan_width width)
2872 {
2873 switch (width) {
2874 case NL80211_CHAN_WIDTH_20_NOHT:
2875 return "20 (noht)";
2876 case NL80211_CHAN_WIDTH_20:
2877 return "20";
2878 case NL80211_CHAN_WIDTH_40:
2879 return "40";
2880 case NL80211_CHAN_WIDTH_80:
2881 return "80";
2882 case NL80211_CHAN_WIDTH_80P80:
2883 return "80+80";
2884 case NL80211_CHAN_WIDTH_160:
2885 return "160";
2886 case NL80211_CHAN_WIDTH_5:
2887 return "5";
2888 case NL80211_CHAN_WIDTH_10:
2889 return "10";
2890 }
2891 return "?";
2892 }
2893
2894 static void ath10k_config_chan(struct ath10k *ar)
2895 {
2896 struct ath10k_vif *arvif;
2897 int ret;
2898
2899 lockdep_assert_held(&ar->conf_mutex);
2900
2901 ath10k_dbg(ar, ATH10K_DBG_MAC,
2902 "mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n",
2903 ar->chandef.chan->center_freq,
2904 ar->chandef.center_freq1,
2905 ar->chandef.center_freq2,
2906 chandef_get_width(ar->chandef.width));
2907
2908 /* First stop monitor interface. Some FW versions crash if there's a
2909 * lone monitor interface. */
2910 if (ar->monitor_started)
2911 ath10k_monitor_stop(ar);
2912
2913 list_for_each_entry(arvif, &ar->arvifs, list) {
2914 if (!arvif->is_started)
2915 continue;
2916
2917 if (!arvif->is_up)
2918 continue;
2919
2920 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
2921 continue;
2922
2923 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
2924 if (ret) {
2925 ath10k_warn(ar, "failed to down vdev %d: %d\n",
2926 arvif->vdev_id, ret);
2927 continue;
2928 }
2929 }
2930
2931 /* all vdevs are downed now - attempt to restart and re-up them */
2932
2933 list_for_each_entry(arvif, &ar->arvifs, list) {
2934 if (!arvif->is_started)
2935 continue;
2936
2937 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
2938 continue;
2939
2940 ret = ath10k_vdev_restart(arvif);
2941 if (ret) {
2942 ath10k_warn(ar, "failed to restart vdev %d: %d\n",
2943 arvif->vdev_id, ret);
2944 continue;
2945 }
2946
2947 if (!arvif->is_up)
2948 continue;
2949
2950 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
2951 arvif->bssid);
2952 if (ret) {
2953 ath10k_warn(ar, "failed to bring vdev up %d: %d\n",
2954 arvif->vdev_id, ret);
2955 continue;
2956 }
2957 }
2958
2959 ath10k_monitor_recalc(ar);
2960 }
2961
2962 static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower)
2963 {
2964 int ret;
2965 u32 param;
2966
2967 lockdep_assert_held(&ar->conf_mutex);
2968
2969 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower %d\n", txpower);
2970
2971 param = ar->wmi.pdev_param->txpower_limit2g;
2972 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
2973 if (ret) {
2974 ath10k_warn(ar, "failed to set 2g txpower %d: %d\n",
2975 txpower, ret);
2976 return ret;
2977 }
2978
2979 param = ar->wmi.pdev_param->txpower_limit5g;
2980 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
2981 if (ret) {
2982 ath10k_warn(ar, "failed to set 5g txpower %d: %d\n",
2983 txpower, ret);
2984 return ret;
2985 }
2986
2987 return 0;
2988 }
2989
2990 static int ath10k_mac_txpower_recalc(struct ath10k *ar)
2991 {
2992 struct ath10k_vif *arvif;
2993 int ret, txpower = -1;
2994
2995 lockdep_assert_held(&ar->conf_mutex);
2996
2997 list_for_each_entry(arvif, &ar->arvifs, list) {
2998 WARN_ON(arvif->txpower < 0);
2999
3000 if (txpower == -1)
3001 txpower = arvif->txpower;
3002 else
3003 txpower = min(txpower, arvif->txpower);
3004 }
3005
3006 if (WARN_ON(txpower == -1))
3007 return -EINVAL;
3008
3009 ret = ath10k_mac_txpower_setup(ar, txpower);
3010 if (ret) {
3011 ath10k_warn(ar, "failed to setup tx power %d: %d\n",
3012 txpower, ret);
3013 return ret;
3014 }
3015
3016 return 0;
3017 }
3018
3019 static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
3020 {
3021 struct ath10k *ar = hw->priv;
3022 struct ieee80211_conf *conf = &hw->conf;
3023 int ret = 0;
3024
3025 mutex_lock(&ar->conf_mutex);
3026
3027 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
3028 ath10k_dbg(ar, ATH10K_DBG_MAC,
3029 "mac config channel %dMHz flags 0x%x radar %d\n",
3030 conf->chandef.chan->center_freq,
3031 conf->chandef.chan->flags,
3032 conf->radar_enabled);
3033
3034 spin_lock_bh(&ar->data_lock);
3035 ar->rx_channel = conf->chandef.chan;
3036 spin_unlock_bh(&ar->data_lock);
3037
3038 ar->radar_enabled = conf->radar_enabled;
3039 ath10k_recalc_radar_detection(ar);
3040
3041 if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) {
3042 ar->chandef = conf->chandef;
3043 ath10k_config_chan(ar);
3044 }
3045 }
3046
3047 if (changed & IEEE80211_CONF_CHANGE_PS)
3048 ath10k_config_ps(ar);
3049
3050 if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
3051 ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
3052 ret = ath10k_monitor_recalc(ar);
3053 if (ret)
3054 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
3055 }
3056
3057 mutex_unlock(&ar->conf_mutex);
3058 return ret;
3059 }
3060
3061 static u32 get_nss_from_chainmask(u16 chain_mask)
3062 {
3063 if ((chain_mask & 0x15) == 0x15)
3064 return 4;
3065 else if ((chain_mask & 0x7) == 0x7)
3066 return 3;
3067 else if ((chain_mask & 0x3) == 0x3)
3068 return 2;
3069 return 1;
3070 }
3071
3072 /*
3073 * TODO:
3074 * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
3075 * because we will send mgmt frames without CCK. This requirement
3076 * for P2P_FIND/GO_NEG should be handled by checking CCK flag
3077 * in the TX packet.
3078 */
3079 static int ath10k_add_interface(struct ieee80211_hw *hw,
3080 struct ieee80211_vif *vif)
3081 {
3082 struct ath10k *ar = hw->priv;
3083 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3084 enum wmi_sta_powersave_param param;
3085 int ret = 0;
3086 u32 value;
3087 int bit;
3088 u32 vdev_param;
3089
3090 mutex_lock(&ar->conf_mutex);
3091
3092 memset(arvif, 0, sizeof(*arvif));
3093
3094 arvif->ar = ar;
3095 arvif->vif = vif;
3096
3097 INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work);
3098 INIT_LIST_HEAD(&arvif->list);
3099
3100 if (ar->free_vdev_map == 0) {
3101 ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n");
3102 ret = -EBUSY;
3103 goto err;
3104 }
3105 bit = __ffs64(ar->free_vdev_map);
3106
3107 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n",
3108 bit, ar->free_vdev_map);
3109
3110 arvif->vdev_id = bit;
3111 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
3112
3113 switch (vif->type) {
3114 case NL80211_IFTYPE_P2P_DEVICE:
3115 arvif->vdev_type = WMI_VDEV_TYPE_STA;
3116 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
3117 break;
3118 case NL80211_IFTYPE_UNSPECIFIED:
3119 case NL80211_IFTYPE_STATION:
3120 arvif->vdev_type = WMI_VDEV_TYPE_STA;
3121 if (vif->p2p)
3122 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
3123 break;
3124 case NL80211_IFTYPE_ADHOC:
3125 arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
3126 break;
3127 case NL80211_IFTYPE_AP:
3128 arvif->vdev_type = WMI_VDEV_TYPE_AP;
3129
3130 if (vif->p2p)
3131 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
3132 break;
3133 case NL80211_IFTYPE_MONITOR:
3134 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
3135 break;
3136 default:
3137 WARN_ON(1);
3138 break;
3139 }
3140
3141 /* Some firmware revisions don't wait for beacon tx completion before
3142 * sending another SWBA event. This could lead to hardware using old
3143 * (freed) beacon data in some cases, e.g. tx credit starvation
3144 * combined with missed TBTT. This is very very rare.
3145 *
3146 * On non-IOMMU-enabled hosts this could be a possible security issue
3147 * because hw could beacon some random data on the air. On
3148 * IOMMU-enabled hosts DMAR faults would occur in most cases and target
3149 * device would crash.
3150 *
3151 * Since there are no beacon tx completions (implicit nor explicit)
3152 * propagated to host the only workaround for this is to allocate a
3153 * DMA-coherent buffer for a lifetime of a vif and use it for all
3154 * beacon tx commands. Worst case for this approach is some beacons may
3155 * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
3156 */
3157 if (vif->type == NL80211_IFTYPE_ADHOC ||
3158 vif->type == NL80211_IFTYPE_AP) {
3159 arvif->beacon_buf = dma_zalloc_coherent(ar->dev,
3160 IEEE80211_MAX_FRAME_LEN,
3161 &arvif->beacon_paddr,
3162 GFP_ATOMIC);
3163 if (!arvif->beacon_buf) {
3164 ret = -ENOMEM;
3165 ath10k_warn(ar, "failed to allocate beacon buffer: %d\n",
3166 ret);
3167 goto err;
3168 }
3169 }
3170
3171 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n",
3172 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
3173 arvif->beacon_buf ? "single-buf" : "per-skb");
3174
3175 ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
3176 arvif->vdev_subtype, vif->addr);
3177 if (ret) {
3178 ath10k_warn(ar, "failed to create WMI vdev %i: %d\n",
3179 arvif->vdev_id, ret);
3180 goto err;
3181 }
3182
3183 ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
3184 list_add(&arvif->list, &ar->arvifs);
3185
3186 vdev_param = ar->wmi.vdev_param->def_keyid;
3187 ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param,
3188 arvif->def_wep_key_idx);
3189 if (ret) {
3190 ath10k_warn(ar, "failed to set vdev %i default key id: %d\n",
3191 arvif->vdev_id, ret);
3192 goto err_vdev_delete;
3193 }
3194
3195 vdev_param = ar->wmi.vdev_param->tx_encap_type;
3196 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3197 ATH10K_HW_TXRX_NATIVE_WIFI);
3198 /* 10.X firmware does not support this VDEV parameter. Do not warn */
3199 if (ret && ret != -EOPNOTSUPP) {
3200 ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n",
3201 arvif->vdev_id, ret);
3202 goto err_vdev_delete;
3203 }
3204
3205 if (ar->cfg_tx_chainmask) {
3206 u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);
3207
3208 vdev_param = ar->wmi.vdev_param->nss;
3209 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3210 nss);
3211 if (ret) {
3212 ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n",
3213 arvif->vdev_id, ar->cfg_tx_chainmask, nss,
3214 ret);
3215 goto err_vdev_delete;
3216 }
3217 }
3218
3219 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
3220 ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr);
3221 if (ret) {
3222 ath10k_warn(ar, "failed to create vdev %i peer for AP: %d\n",
3223 arvif->vdev_id, ret);
3224 goto err_vdev_delete;
3225 }
3226
3227 ret = ath10k_mac_set_kickout(arvif);
3228 if (ret) {
3229 ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n",
3230 arvif->vdev_id, ret);
3231 goto err_peer_delete;
3232 }
3233 }
3234
3235 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
3236 param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
3237 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
3238 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
3239 param, value);
3240 if (ret) {
3241 ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n",
3242 arvif->vdev_id, ret);
3243 goto err_peer_delete;
3244 }
3245
3246 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
3247 if (ret) {
3248 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
3249 arvif->vdev_id, ret);
3250 goto err_peer_delete;
3251 }
3252
3253 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
3254 if (ret) {
3255 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
3256 arvif->vdev_id, ret);
3257 goto err_peer_delete;
3258 }
3259 }
3260
3261 ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
3262 if (ret) {
3263 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
3264 arvif->vdev_id, ret);
3265 goto err_peer_delete;
3266 }
3267
3268 ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold);
3269 if (ret) {
3270 ath10k_warn(ar, "failed to set frag threshold for vdev %d: %d\n",
3271 arvif->vdev_id, ret);
3272 goto err_peer_delete;
3273 }
3274
3275 arvif->txpower = vif->bss_conf.txpower;
3276 ret = ath10k_mac_txpower_recalc(ar);
3277 if (ret) {
3278 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
3279 goto err_peer_delete;
3280 }
3281
3282 mutex_unlock(&ar->conf_mutex);
3283 return 0;
3284
3285 err_peer_delete:
3286 if (arvif->vdev_type == WMI_VDEV_TYPE_AP)
3287 ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
3288
3289 err_vdev_delete:
3290 ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
3291 ar->free_vdev_map |= 1LL << arvif->vdev_id;
3292 list_del(&arvif->list);
3293
3294 err:
3295 if (arvif->beacon_buf) {
3296 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
3297 arvif->beacon_buf, arvif->beacon_paddr);
3298 arvif->beacon_buf = NULL;
3299 }
3300
3301 mutex_unlock(&ar->conf_mutex);
3302
3303 return ret;
3304 }
3305
3306 static void ath10k_remove_interface(struct ieee80211_hw *hw,
3307 struct ieee80211_vif *vif)
3308 {
3309 struct ath10k *ar = hw->priv;
3310 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3311 int ret;
3312
3313 cancel_work_sync(&arvif->wep_key_work);
3314
3315 mutex_lock(&ar->conf_mutex);
3316
3317 spin_lock_bh(&ar->data_lock);
3318 ath10k_mac_vif_beacon_cleanup(arvif);
3319 spin_unlock_bh(&ar->data_lock);
3320
3321 ret = ath10k_spectral_vif_stop(arvif);
3322 if (ret)
3323 ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n",
3324 arvif->vdev_id, ret);
3325
3326 ar->free_vdev_map |= 1LL << arvif->vdev_id;
3327 list_del(&arvif->list);
3328
3329 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
3330 ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr);
3331 if (ret)
3332 ath10k_warn(ar, "failed to remove peer for AP vdev %i: %d\n",
3333 arvif->vdev_id, ret);
3334
3335 kfree(arvif->u.ap.noa_data);
3336 }
3337
3338 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
3339 arvif->vdev_id);
3340
3341 ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
3342 if (ret)
3343 ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n",
3344 arvif->vdev_id, ret);
3345
3346 ath10k_peer_cleanup(ar, arvif->vdev_id);
3347
3348 mutex_unlock(&ar->conf_mutex);
3349 }
3350
3351 /*
3352 * FIXME: Has to be verified.
3353 */
3354 #define SUPPORTED_FILTERS \
3355 (FIF_PROMISC_IN_BSS | \
3356 FIF_ALLMULTI | \
3357 FIF_CONTROL | \
3358 FIF_PSPOLL | \
3359 FIF_OTHER_BSS | \
3360 FIF_BCN_PRBRESP_PROMISC | \
3361 FIF_PROBE_REQ | \
3362 FIF_FCSFAIL)
3363
3364 static void ath10k_configure_filter(struct ieee80211_hw *hw,
3365 unsigned int changed_flags,
3366 unsigned int *total_flags,
3367 u64 multicast)
3368 {
3369 struct ath10k *ar = hw->priv;
3370 int ret;
3371
3372 mutex_lock(&ar->conf_mutex);
3373
3374 changed_flags &= SUPPORTED_FILTERS;
3375 *total_flags &= SUPPORTED_FILTERS;
3376 ar->filter_flags = *total_flags;
3377
3378 ret = ath10k_monitor_recalc(ar);
3379 if (ret)
3380 ath10k_warn(ar, "failed to recalc montior: %d\n", ret);
3381
3382 mutex_unlock(&ar->conf_mutex);
3383 }
3384
3385 static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
3386 struct ieee80211_vif *vif,
3387 struct ieee80211_bss_conf *info,
3388 u32 changed)
3389 {
3390 struct ath10k *ar = hw->priv;
3391 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3392 int ret = 0;
3393 u32 vdev_param, pdev_param, slottime, preamble;
3394
3395 mutex_lock(&ar->conf_mutex);
3396
3397 if (changed & BSS_CHANGED_IBSS)
3398 ath10k_control_ibss(arvif, info, vif->addr);
3399
3400 if (changed & BSS_CHANGED_BEACON_INT) {
3401 arvif->beacon_interval = info->beacon_int;
3402 vdev_param = ar->wmi.vdev_param->beacon_interval;
3403 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3404 arvif->beacon_interval);
3405 ath10k_dbg(ar, ATH10K_DBG_MAC,
3406 "mac vdev %d beacon_interval %d\n",
3407 arvif->vdev_id, arvif->beacon_interval);
3408
3409 if (ret)
3410 ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n",
3411 arvif->vdev_id, ret);
3412 }
3413
3414 if (changed & BSS_CHANGED_BEACON) {
3415 ath10k_dbg(ar, ATH10K_DBG_MAC,
3416 "vdev %d set beacon tx mode to staggered\n",
3417 arvif->vdev_id);
3418
3419 pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
3420 ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
3421 WMI_BEACON_STAGGERED_MODE);
3422 if (ret)
3423 ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n",
3424 arvif->vdev_id, ret);
3425
3426 ret = ath10k_mac_setup_bcn_tmpl(arvif);
3427 if (ret)
3428 ath10k_warn(ar, "failed to update beacon template: %d\n",
3429 ret);
3430 }
3431
3432 if (changed & BSS_CHANGED_AP_PROBE_RESP) {
3433 ret = ath10k_mac_setup_prb_tmpl(arvif);
3434 if (ret)
3435 ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n",
3436 arvif->vdev_id, ret);
3437 }
3438
3439 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
3440 arvif->dtim_period = info->dtim_period;
3441
3442 ath10k_dbg(ar, ATH10K_DBG_MAC,
3443 "mac vdev %d dtim_period %d\n",
3444 arvif->vdev_id, arvif->dtim_period);
3445
3446 vdev_param = ar->wmi.vdev_param->dtim_period;
3447 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3448 arvif->dtim_period);
3449 if (ret)
3450 ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n",
3451 arvif->vdev_id, ret);
3452 }
3453
3454 if (changed & BSS_CHANGED_SSID &&
3455 vif->type == NL80211_IFTYPE_AP) {
3456 arvif->u.ap.ssid_len = info->ssid_len;
3457 if (info->ssid_len)
3458 memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
3459 arvif->u.ap.hidden_ssid = info->hidden_ssid;
3460 }
3461
3462 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
3463 ether_addr_copy(arvif->bssid, info->bssid);
3464
3465 if (changed & BSS_CHANGED_BEACON_ENABLED)
3466 ath10k_control_beaconing(arvif, info);
3467
3468 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3469 arvif->use_cts_prot = info->use_cts_prot;
3470 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n",
3471 arvif->vdev_id, info->use_cts_prot);
3472
3473 ret = ath10k_recalc_rtscts_prot(arvif);
3474 if (ret)
3475 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
3476 arvif->vdev_id, ret);
3477 }
3478
3479 if (changed & BSS_CHANGED_ERP_SLOT) {
3480 if (info->use_short_slot)
3481 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
3482
3483 else
3484 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
3485
3486 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
3487 arvif->vdev_id, slottime);
3488
3489 vdev_param = ar->wmi.vdev_param->slot_time;
3490 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3491 slottime);
3492 if (ret)
3493 ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n",
3494 arvif->vdev_id, ret);
3495 }
3496
3497 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3498 if (info->use_short_preamble)
3499 preamble = WMI_VDEV_PREAMBLE_SHORT;
3500 else
3501 preamble = WMI_VDEV_PREAMBLE_LONG;
3502
3503 ath10k_dbg(ar, ATH10K_DBG_MAC,
3504 "mac vdev %d preamble %dn",
3505 arvif->vdev_id, preamble);
3506
3507 vdev_param = ar->wmi.vdev_param->preamble;
3508 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3509 preamble);
3510 if (ret)
3511 ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n",
3512 arvif->vdev_id, ret);
3513 }
3514
3515 if (changed & BSS_CHANGED_ASSOC) {
3516 if (info->assoc) {
3517 /* Workaround: Make sure monitor vdev is not running
3518 * when associating to prevent some firmware revisions
3519 * (e.g. 10.1 and 10.2) from crashing.
3520 */
3521 if (ar->monitor_started)
3522 ath10k_monitor_stop(ar);
3523 ath10k_bss_assoc(hw, vif, info);
3524 ath10k_monitor_recalc(ar);
3525 } else {
3526 ath10k_bss_disassoc(hw, vif);
3527 }
3528 }
3529
3530 if (changed & BSS_CHANGED_TXPOWER) {
3531 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n",
3532 arvif->vdev_id, info->txpower);
3533
3534 arvif->txpower = info->txpower;
3535 ret = ath10k_mac_txpower_recalc(ar);
3536 if (ret)
3537 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
3538 }
3539
3540 if (changed & BSS_CHANGED_PS) {
3541 ret = ath10k_mac_vif_setup_ps(arvif);
3542 if (ret)
3543 ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n",
3544 arvif->vdev_id, ret);
3545 }
3546
3547 mutex_unlock(&ar->conf_mutex);
3548 }
3549
3550 static int ath10k_hw_scan(struct ieee80211_hw *hw,
3551 struct ieee80211_vif *vif,
3552 struct ieee80211_scan_request *hw_req)
3553 {
3554 struct ath10k *ar = hw->priv;
3555 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3556 struct cfg80211_scan_request *req = &hw_req->req;
3557 struct wmi_start_scan_arg arg;
3558 int ret = 0;
3559 int i;
3560
3561 mutex_lock(&ar->conf_mutex);
3562
3563 spin_lock_bh(&ar->data_lock);
3564 switch (ar->scan.state) {
3565 case ATH10K_SCAN_IDLE:
3566 reinit_completion(&ar->scan.started);
3567 reinit_completion(&ar->scan.completed);
3568 ar->scan.state = ATH10K_SCAN_STARTING;
3569 ar->scan.is_roc = false;
3570 ar->scan.vdev_id = arvif->vdev_id;
3571 ret = 0;
3572 break;
3573 case ATH10K_SCAN_STARTING:
3574 case ATH10K_SCAN_RUNNING:
3575 case ATH10K_SCAN_ABORTING:
3576 ret = -EBUSY;
3577 break;
3578 }
3579 spin_unlock_bh(&ar->data_lock);
3580
3581 if (ret)
3582 goto exit;
3583
3584 memset(&arg, 0, sizeof(arg));
3585 ath10k_wmi_start_scan_init(ar, &arg);
3586 arg.vdev_id = arvif->vdev_id;
3587 arg.scan_id = ATH10K_SCAN_ID;
3588
3589 if (!req->no_cck)
3590 arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES;
3591
3592 if (req->ie_len) {
3593 arg.ie_len = req->ie_len;
3594 memcpy(arg.ie, req->ie, arg.ie_len);
3595 }
3596
3597 if (req->n_ssids) {
3598 arg.n_ssids = req->n_ssids;
3599 for (i = 0; i < arg.n_ssids; i++) {
3600 arg.ssids[i].len = req->ssids[i].ssid_len;
3601 arg.ssids[i].ssid = req->ssids[i].ssid;
3602 }
3603 } else {
3604 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
3605 }
3606
3607 if (req->n_channels) {
3608 arg.n_channels = req->n_channels;
3609 for (i = 0; i < arg.n_channels; i++)
3610 arg.channels[i] = req->channels[i]->center_freq;
3611 }
3612
3613 ret = ath10k_start_scan(ar, &arg);
3614 if (ret) {
3615 ath10k_warn(ar, "failed to start hw scan: %d\n", ret);
3616 spin_lock_bh(&ar->data_lock);
3617 ar->scan.state = ATH10K_SCAN_IDLE;
3618 spin_unlock_bh(&ar->data_lock);
3619 }
3620
3621 exit:
3622 mutex_unlock(&ar->conf_mutex);
3623 return ret;
3624 }
3625
3626 static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
3627 struct ieee80211_vif *vif)
3628 {
3629 struct ath10k *ar = hw->priv;
3630
3631 mutex_lock(&ar->conf_mutex);
3632 ath10k_scan_abort(ar);
3633 mutex_unlock(&ar->conf_mutex);
3634
3635 cancel_delayed_work_sync(&ar->scan.timeout);
3636 }
3637
3638 static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
3639 struct ath10k_vif *arvif,
3640 enum set_key_cmd cmd,
3641 struct ieee80211_key_conf *key)
3642 {
3643 u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
3644 int ret;
3645
3646 /* 10.1 firmware branch requires default key index to be set to group
3647 * key index after installing it. Otherwise FW/HW Txes corrupted
3648 * frames with multi-vif APs. This is not required for main firmware
3649 * branch (e.g. 636).
3650 *
3651 * FIXME: This has been tested only in AP. It remains unknown if this
3652 * is required for multi-vif STA interfaces on 10.1 */
3653
3654 if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
3655 return;
3656
3657 if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
3658 return;
3659
3660 if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
3661 return;
3662
3663 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
3664 return;
3665
3666 if (cmd != SET_KEY)
3667 return;
3668
3669 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
3670 key->keyidx);
3671 if (ret)
3672 ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n",
3673 arvif->vdev_id, ret);
3674 }
3675
3676 static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
3677 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3678 struct ieee80211_key_conf *key)
3679 {
3680 struct ath10k *ar = hw->priv;
3681 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3682 struct ath10k_peer *peer;
3683 const u8 *peer_addr;
3684 bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
3685 key->cipher == WLAN_CIPHER_SUITE_WEP104;
3686 int ret = 0;
3687
3688 if (key->keyidx > WMI_MAX_KEY_INDEX)
3689 return -ENOSPC;
3690
3691 mutex_lock(&ar->conf_mutex);
3692
3693 if (sta)
3694 peer_addr = sta->addr;
3695 else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
3696 peer_addr = vif->bss_conf.bssid;
3697 else
3698 peer_addr = vif->addr;
3699
3700 key->hw_key_idx = key->keyidx;
3701
3702 /* the peer should not disappear in mid-way (unless FW goes awry) since
3703 * we already hold conf_mutex. we just make sure its there now. */
3704 spin_lock_bh(&ar->data_lock);
3705 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
3706 spin_unlock_bh(&ar->data_lock);
3707
3708 if (!peer) {
3709 if (cmd == SET_KEY) {
3710 ath10k_warn(ar, "failed to install key for non-existent peer %pM\n",
3711 peer_addr);
3712 ret = -EOPNOTSUPP;
3713 goto exit;
3714 } else {
3715 /* if the peer doesn't exist there is no key to disable
3716 * anymore */
3717 goto exit;
3718 }
3719 }
3720
3721 if (is_wep) {
3722 if (cmd == SET_KEY)
3723 arvif->wep_keys[key->keyidx] = key;
3724 else
3725 arvif->wep_keys[key->keyidx] = NULL;
3726
3727 if (cmd == DISABLE_KEY)
3728 ath10k_clear_vdev_key(arvif, key);
3729 }
3730
3731 ret = ath10k_install_key(arvif, key, cmd, peer_addr);
3732 if (ret) {
3733 ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n",
3734 arvif->vdev_id, peer_addr, ret);
3735 goto exit;
3736 }
3737
3738 ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);
3739
3740 spin_lock_bh(&ar->data_lock);
3741 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
3742 if (peer && cmd == SET_KEY)
3743 peer->keys[key->keyidx] = key;
3744 else if (peer && cmd == DISABLE_KEY)
3745 peer->keys[key->keyidx] = NULL;
3746 else if (peer == NULL)
3747 /* impossible unless FW goes crazy */
3748 ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr);
3749 spin_unlock_bh(&ar->data_lock);
3750
3751 exit:
3752 mutex_unlock(&ar->conf_mutex);
3753 return ret;
3754 }
3755
3756 static void ath10k_sta_rc_update_wk(struct work_struct *wk)
3757 {
3758 struct ath10k *ar;
3759 struct ath10k_vif *arvif;
3760 struct ath10k_sta *arsta;
3761 struct ieee80211_sta *sta;
3762 u32 changed, bw, nss, smps;
3763 int err;
3764
3765 arsta = container_of(wk, struct ath10k_sta, update_wk);
3766 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
3767 arvif = arsta->arvif;
3768 ar = arvif->ar;
3769
3770 spin_lock_bh(&ar->data_lock);
3771
3772 changed = arsta->changed;
3773 arsta->changed = 0;
3774
3775 bw = arsta->bw;
3776 nss = arsta->nss;
3777 smps = arsta->smps;
3778
3779 spin_unlock_bh(&ar->data_lock);
3780
3781 mutex_lock(&ar->conf_mutex);
3782
3783 if (changed & IEEE80211_RC_BW_CHANGED) {
3784 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n",
3785 sta->addr, bw);
3786
3787 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
3788 WMI_PEER_CHAN_WIDTH, bw);
3789 if (err)
3790 ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n",
3791 sta->addr, bw, err);
3792 }
3793
3794 if (changed & IEEE80211_RC_NSS_CHANGED) {
3795 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n",
3796 sta->addr, nss);
3797
3798 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
3799 WMI_PEER_NSS, nss);
3800 if (err)
3801 ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n",
3802 sta->addr, nss, err);
3803 }
3804
3805 if (changed & IEEE80211_RC_SMPS_CHANGED) {
3806 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n",
3807 sta->addr, smps);
3808
3809 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
3810 WMI_PEER_SMPS_STATE, smps);
3811 if (err)
3812 ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n",
3813 sta->addr, smps, err);
3814 }
3815
3816 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED ||
3817 changed & IEEE80211_RC_NSS_CHANGED) {
3818 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates/nss\n",
3819 sta->addr);
3820
3821 err = ath10k_station_assoc(ar, arvif->vif, sta, true);
3822 if (err)
3823 ath10k_warn(ar, "failed to reassociate station: %pM\n",
3824 sta->addr);
3825 }
3826
3827 mutex_unlock(&ar->conf_mutex);
3828 }
3829
3830 static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif)
3831 {
3832 struct ath10k *ar = arvif->ar;
3833
3834 lockdep_assert_held(&ar->conf_mutex);
3835
3836 if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
3837 arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
3838 return 0;
3839
3840 if (ar->num_stations >= ar->max_num_stations)
3841 return -ENOBUFS;
3842
3843 ar->num_stations++;
3844
3845 return 0;
3846 }
3847
3848 static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif)
3849 {
3850 struct ath10k *ar = arvif->ar;
3851
3852 lockdep_assert_held(&ar->conf_mutex);
3853
3854 if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
3855 arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
3856 return;
3857
3858 ar->num_stations--;
3859 }
3860
3861 static int ath10k_sta_state(struct ieee80211_hw *hw,
3862 struct ieee80211_vif *vif,
3863 struct ieee80211_sta *sta,
3864 enum ieee80211_sta_state old_state,
3865 enum ieee80211_sta_state new_state)
3866 {
3867 struct ath10k *ar = hw->priv;
3868 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3869 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
3870 int ret = 0;
3871
3872 if (old_state == IEEE80211_STA_NOTEXIST &&
3873 new_state == IEEE80211_STA_NONE) {
3874 memset(arsta, 0, sizeof(*arsta));
3875 arsta->arvif = arvif;
3876 INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
3877 }
3878
3879 /* cancel must be done outside the mutex to avoid deadlock */
3880 if ((old_state == IEEE80211_STA_NONE &&
3881 new_state == IEEE80211_STA_NOTEXIST))
3882 cancel_work_sync(&arsta->update_wk);
3883
3884 mutex_lock(&ar->conf_mutex);
3885
3886 if (old_state == IEEE80211_STA_NOTEXIST &&
3887 new_state == IEEE80211_STA_NONE) {
3888 /*
3889 * New station addition.
3890 */
3891 ath10k_dbg(ar, ATH10K_DBG_MAC,
3892 "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n",
3893 arvif->vdev_id, sta->addr,
3894 ar->num_stations + 1, ar->max_num_stations,
3895 ar->num_peers + 1, ar->max_num_peers);
3896
3897 ret = ath10k_mac_inc_num_stations(arvif);
3898 if (ret) {
3899 ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n",
3900 ar->max_num_stations);
3901 goto exit;
3902 }
3903
3904 ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr);
3905 if (ret) {
3906 ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n",
3907 sta->addr, arvif->vdev_id, ret);
3908 ath10k_mac_dec_num_stations(arvif);
3909 goto exit;
3910 }
3911
3912 if (vif->type == NL80211_IFTYPE_STATION) {
3913 WARN_ON(arvif->is_started);
3914
3915 ret = ath10k_vdev_start(arvif);
3916 if (ret) {
3917 ath10k_warn(ar, "failed to start vdev %i: %d\n",
3918 arvif->vdev_id, ret);
3919 WARN_ON(ath10k_peer_delete(ar, arvif->vdev_id,
3920 sta->addr));
3921 ath10k_mac_dec_num_stations(arvif);
3922 goto exit;
3923 }
3924
3925 arvif->is_started = true;
3926 }
3927 } else if ((old_state == IEEE80211_STA_NONE &&
3928 new_state == IEEE80211_STA_NOTEXIST)) {
3929 /*
3930 * Existing station deletion.
3931 */
3932 ath10k_dbg(ar, ATH10K_DBG_MAC,
3933 "mac vdev %d peer delete %pM (sta gone)\n",
3934 arvif->vdev_id, sta->addr);
3935
3936 if (vif->type == NL80211_IFTYPE_STATION) {
3937 WARN_ON(!arvif->is_started);
3938
3939 ret = ath10k_vdev_stop(arvif);
3940 if (ret)
3941 ath10k_warn(ar, "failed to stop vdev %i: %d\n",
3942 arvif->vdev_id, ret);
3943
3944 arvif->is_started = false;
3945 }
3946
3947 ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
3948 if (ret)
3949 ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n",
3950 sta->addr, arvif->vdev_id, ret);
3951
3952 ath10k_mac_dec_num_stations(arvif);
3953 } else if (old_state == IEEE80211_STA_AUTH &&
3954 new_state == IEEE80211_STA_ASSOC &&
3955 (vif->type == NL80211_IFTYPE_AP ||
3956 vif->type == NL80211_IFTYPE_ADHOC)) {
3957 /*
3958 * New association.
3959 */
3960 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n",
3961 sta->addr);
3962
3963 ret = ath10k_station_assoc(ar, vif, sta, false);
3964 if (ret)
3965 ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n",
3966 sta->addr, arvif->vdev_id, ret);
3967 } else if (old_state == IEEE80211_STA_ASSOC &&
3968 new_state == IEEE80211_STA_AUTH &&
3969 (vif->type == NL80211_IFTYPE_AP ||
3970 vif->type == NL80211_IFTYPE_ADHOC)) {
3971 /*
3972 * Disassociation.
3973 */
3974 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
3975 sta->addr);
3976
3977 ret = ath10k_station_disassoc(ar, vif, sta);
3978 if (ret)
3979 ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n",
3980 sta->addr, arvif->vdev_id, ret);
3981 }
3982 exit:
3983 mutex_unlock(&ar->conf_mutex);
3984 return ret;
3985 }
3986
3987 static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
3988 u16 ac, bool enable)
3989 {
3990 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3991 struct wmi_sta_uapsd_auto_trig_arg arg = {};
3992 u32 prio = 0, acc = 0;
3993 u32 value = 0;
3994 int ret = 0;
3995
3996 lockdep_assert_held(&ar->conf_mutex);
3997
3998 if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
3999 return 0;
4000
4001 switch (ac) {
4002 case IEEE80211_AC_VO:
4003 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
4004 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
4005 prio = 7;
4006 acc = 3;
4007 break;
4008 case IEEE80211_AC_VI:
4009 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
4010 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
4011 prio = 5;
4012 acc = 2;
4013 break;
4014 case IEEE80211_AC_BE:
4015 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
4016 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
4017 prio = 2;
4018 acc = 1;
4019 break;
4020 case IEEE80211_AC_BK:
4021 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
4022 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
4023 prio = 0;
4024 acc = 0;
4025 break;
4026 }
4027
4028 if (enable)
4029 arvif->u.sta.uapsd |= value;
4030 else
4031 arvif->u.sta.uapsd &= ~value;
4032
4033 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
4034 WMI_STA_PS_PARAM_UAPSD,
4035 arvif->u.sta.uapsd);
4036 if (ret) {
4037 ath10k_warn(ar, "failed to set uapsd params: %d\n", ret);
4038 goto exit;
4039 }
4040
4041 if (arvif->u.sta.uapsd)
4042 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
4043 else
4044 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
4045
4046 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
4047 WMI_STA_PS_PARAM_RX_WAKE_POLICY,
4048 value);
4049 if (ret)
4050 ath10k_warn(ar, "failed to set rx wake param: %d\n", ret);
4051
4052 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
4053 if (ret) {
4054 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
4055 arvif->vdev_id, ret);
4056 return ret;
4057 }
4058
4059 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
4060 if (ret) {
4061 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
4062 arvif->vdev_id, ret);
4063 return ret;
4064 }
4065
4066 if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) ||
4067 test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) {
4068 /* Only userspace can make an educated decision when to send
4069 * trigger frame. The following effectively disables u-UAPSD
4070 * autotrigger in firmware (which is enabled by default
4071 * provided the autotrigger service is available).
4072 */
4073
4074 arg.wmm_ac = acc;
4075 arg.user_priority = prio;
4076 arg.service_interval = 0;
4077 arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
4078 arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
4079
4080 ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id,
4081 arvif->bssid, &arg, 1);
4082 if (ret) {
4083 ath10k_warn(ar, "failed to set uapsd auto trigger %d\n",
4084 ret);
4085 return ret;
4086 }
4087 }
4088
4089 exit:
4090 return ret;
4091 }
4092
4093 static int ath10k_conf_tx(struct ieee80211_hw *hw,
4094 struct ieee80211_vif *vif, u16 ac,
4095 const struct ieee80211_tx_queue_params *params)
4096 {
4097 struct ath10k *ar = hw->priv;
4098 struct wmi_wmm_params_arg *p = NULL;
4099 int ret;
4100
4101 mutex_lock(&ar->conf_mutex);
4102
4103 switch (ac) {
4104 case IEEE80211_AC_VO:
4105 p = &ar->wmm_params.ac_vo;
4106 break;
4107 case IEEE80211_AC_VI:
4108 p = &ar->wmm_params.ac_vi;
4109 break;
4110 case IEEE80211_AC_BE:
4111 p = &ar->wmm_params.ac_be;
4112 break;
4113 case IEEE80211_AC_BK:
4114 p = &ar->wmm_params.ac_bk;
4115 break;
4116 }
4117
4118 if (WARN_ON(!p)) {
4119 ret = -EINVAL;
4120 goto exit;
4121 }
4122
4123 p->cwmin = params->cw_min;
4124 p->cwmax = params->cw_max;
4125 p->aifs = params->aifs;
4126
4127 /*
4128 * The channel time duration programmed in the HW is in absolute
4129 * microseconds, while mac80211 gives the txop in units of
4130 * 32 microseconds.
4131 */
4132 p->txop = params->txop * 32;
4133
4134 /* FIXME: FW accepts wmm params per hw, not per vif */
4135 ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params);
4136 if (ret) {
4137 ath10k_warn(ar, "failed to set wmm params: %d\n", ret);
4138 goto exit;
4139 }
4140
4141 ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
4142 if (ret)
4143 ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret);
4144
4145 exit:
4146 mutex_unlock(&ar->conf_mutex);
4147 return ret;
4148 }
4149
4150 #define ATH10K_ROC_TIMEOUT_HZ (2*HZ)
4151
4152 static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
4153 struct ieee80211_vif *vif,
4154 struct ieee80211_channel *chan,
4155 int duration,
4156 enum ieee80211_roc_type type)
4157 {
4158 struct ath10k *ar = hw->priv;
4159 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4160 struct wmi_start_scan_arg arg;
4161 int ret = 0;
4162
4163 mutex_lock(&ar->conf_mutex);
4164
4165 spin_lock_bh(&ar->data_lock);
4166 switch (ar->scan.state) {
4167 case ATH10K_SCAN_IDLE:
4168 reinit_completion(&ar->scan.started);
4169 reinit_completion(&ar->scan.completed);
4170 reinit_completion(&ar->scan.on_channel);
4171 ar->scan.state = ATH10K_SCAN_STARTING;
4172 ar->scan.is_roc = true;
4173 ar->scan.vdev_id = arvif->vdev_id;
4174 ar->scan.roc_freq = chan->center_freq;
4175 ret = 0;
4176 break;
4177 case ATH10K_SCAN_STARTING:
4178 case ATH10K_SCAN_RUNNING:
4179 case ATH10K_SCAN_ABORTING:
4180 ret = -EBUSY;
4181 break;
4182 }
4183 spin_unlock_bh(&ar->data_lock);
4184
4185 if (ret)
4186 goto exit;
4187
4188 duration = max(duration, WMI_SCAN_CHAN_MIN_TIME_MSEC);
4189
4190 memset(&arg, 0, sizeof(arg));
4191 ath10k_wmi_start_scan_init(ar, &arg);
4192 arg.vdev_id = arvif->vdev_id;
4193 arg.scan_id = ATH10K_SCAN_ID;
4194 arg.n_channels = 1;
4195 arg.channels[0] = chan->center_freq;
4196 arg.dwell_time_active = duration;
4197 arg.dwell_time_passive = duration;
4198 arg.max_scan_time = 2 * duration;
4199 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
4200 arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
4201
4202 ret = ath10k_start_scan(ar, &arg);
4203 if (ret) {
4204 ath10k_warn(ar, "failed to start roc scan: %d\n", ret);
4205 spin_lock_bh(&ar->data_lock);
4206 ar->scan.state = ATH10K_SCAN_IDLE;
4207 spin_unlock_bh(&ar->data_lock);
4208 goto exit;
4209 }
4210
4211 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ);
4212 if (ret == 0) {
4213 ath10k_warn(ar, "failed to switch to channel for roc scan\n");
4214
4215 ret = ath10k_scan_stop(ar);
4216 if (ret)
4217 ath10k_warn(ar, "failed to stop scan: %d\n", ret);
4218
4219 ret = -ETIMEDOUT;
4220 goto exit;
4221 }
4222
4223 ret = 0;
4224 exit:
4225 mutex_unlock(&ar->conf_mutex);
4226 return ret;
4227 }
4228
4229 static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw)
4230 {
4231 struct ath10k *ar = hw->priv;
4232
4233 mutex_lock(&ar->conf_mutex);
4234 ath10k_scan_abort(ar);
4235 mutex_unlock(&ar->conf_mutex);
4236
4237 cancel_delayed_work_sync(&ar->scan.timeout);
4238
4239 return 0;
4240 }
4241
4242 /*
4243 * Both RTS and Fragmentation threshold are interface-specific
4244 * in ath10k, but device-specific in mac80211.
4245 */
4246
4247 static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
4248 {
4249 struct ath10k *ar = hw->priv;
4250 struct ath10k_vif *arvif;
4251 int ret = 0;
4252
4253 mutex_lock(&ar->conf_mutex);
4254 list_for_each_entry(arvif, &ar->arvifs, list) {
4255 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
4256 arvif->vdev_id, value);
4257
4258 ret = ath10k_mac_set_rts(arvif, value);
4259 if (ret) {
4260 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
4261 arvif->vdev_id, ret);
4262 break;
4263 }
4264 }
4265 mutex_unlock(&ar->conf_mutex);
4266
4267 return ret;
4268 }
4269
4270 static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4271 u32 queues, bool drop)
4272 {
4273 struct ath10k *ar = hw->priv;
4274 bool skip;
4275 int ret;
4276
4277 /* mac80211 doesn't care if we really xmit queued frames or not
4278 * we'll collect those frames either way if we stop/delete vdevs */
4279 if (drop)
4280 return;
4281
4282 mutex_lock(&ar->conf_mutex);
4283
4284 if (ar->state == ATH10K_STATE_WEDGED)
4285 goto skip;
4286
4287 ret = wait_event_timeout(ar->htt.empty_tx_wq, ({
4288 bool empty;
4289
4290 spin_lock_bh(&ar->htt.tx_lock);
4291 empty = (ar->htt.num_pending_tx == 0);
4292 spin_unlock_bh(&ar->htt.tx_lock);
4293
4294 skip = (ar->state == ATH10K_STATE_WEDGED) ||
4295 test_bit(ATH10K_FLAG_CRASH_FLUSH,
4296 &ar->dev_flags);
4297
4298 (empty || skip);
4299 }), ATH10K_FLUSH_TIMEOUT_HZ);
4300
4301 if (ret <= 0 || skip)
4302 ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %i\n",
4303 skip, ar->state, ret);
4304
4305 skip:
4306 mutex_unlock(&ar->conf_mutex);
4307 }
4308
4309 /* TODO: Implement this function properly
4310 * For now it is needed to reply to Probe Requests in IBSS mode.
4311 * Propably we need this information from FW.
4312 */
4313 static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
4314 {
4315 return 1;
4316 }
4317
4318 #ifdef CONFIG_PM
4319 static int ath10k_suspend(struct ieee80211_hw *hw,
4320 struct cfg80211_wowlan *wowlan)
4321 {
4322 struct ath10k *ar = hw->priv;
4323 int ret;
4324
4325 mutex_lock(&ar->conf_mutex);
4326
4327 ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND);
4328 if (ret) {
4329 if (ret == -ETIMEDOUT)
4330 goto resume;
4331 ret = 1;
4332 goto exit;
4333 }
4334
4335 ret = ath10k_hif_suspend(ar);
4336 if (ret) {
4337 ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
4338 goto resume;
4339 }
4340
4341 ret = 0;
4342 goto exit;
4343 resume:
4344 ret = ath10k_wmi_pdev_resume_target(ar);
4345 if (ret)
4346 ath10k_warn(ar, "failed to resume target: %d\n", ret);
4347
4348 ret = 1;
4349 exit:
4350 mutex_unlock(&ar->conf_mutex);
4351 return ret;
4352 }
4353
4354 static int ath10k_resume(struct ieee80211_hw *hw)
4355 {
4356 struct ath10k *ar = hw->priv;
4357 int ret;
4358
4359 mutex_lock(&ar->conf_mutex);
4360
4361 ret = ath10k_hif_resume(ar);
4362 if (ret) {
4363 ath10k_warn(ar, "failed to resume hif: %d\n", ret);
4364 ret = 1;
4365 goto exit;
4366 }
4367
4368 ret = ath10k_wmi_pdev_resume_target(ar);
4369 if (ret) {
4370 ath10k_warn(ar, "failed to resume target: %d\n", ret);
4371 ret = 1;
4372 goto exit;
4373 }
4374
4375 ret = 0;
4376 exit:
4377 mutex_unlock(&ar->conf_mutex);
4378 return ret;
4379 }
4380 #endif
4381
4382 static void ath10k_reconfig_complete(struct ieee80211_hw *hw,
4383 enum ieee80211_reconfig_type reconfig_type)
4384 {
4385 struct ath10k *ar = hw->priv;
4386
4387 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
4388 return;
4389
4390 mutex_lock(&ar->conf_mutex);
4391
4392 /* If device failed to restart it will be in a different state, e.g.
4393 * ATH10K_STATE_WEDGED */
4394 if (ar->state == ATH10K_STATE_RESTARTED) {
4395 ath10k_info(ar, "device successfully recovered\n");
4396 ar->state = ATH10K_STATE_ON;
4397 ieee80211_wake_queues(ar->hw);
4398 }
4399
4400 mutex_unlock(&ar->conf_mutex);
4401 }
4402
4403 static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
4404 struct survey_info *survey)
4405 {
4406 struct ath10k *ar = hw->priv;
4407 struct ieee80211_supported_band *sband;
4408 struct survey_info *ar_survey = &ar->survey[idx];
4409 int ret = 0;
4410
4411 mutex_lock(&ar->conf_mutex);
4412
4413 sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ];
4414 if (sband && idx >= sband->n_channels) {
4415 idx -= sband->n_channels;
4416 sband = NULL;
4417 }
4418
4419 if (!sband)
4420 sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ];
4421
4422 if (!sband || idx >= sband->n_channels) {
4423 ret = -ENOENT;
4424 goto exit;
4425 }
4426
4427 spin_lock_bh(&ar->data_lock);
4428 memcpy(survey, ar_survey, sizeof(*survey));
4429 spin_unlock_bh(&ar->data_lock);
4430
4431 survey->channel = &sband->channels[idx];
4432
4433 if (ar->rx_channel == survey->channel)
4434 survey->filled |= SURVEY_INFO_IN_USE;
4435
4436 exit:
4437 mutex_unlock(&ar->conf_mutex);
4438 return ret;
4439 }
4440
4441 /* Helper table for legacy fixed_rate/bitrate_mask */
4442 static const u8 cck_ofdm_rate[] = {
4443 /* CCK */
4444 3, /* 1Mbps */
4445 2, /* 2Mbps */
4446 1, /* 5.5Mbps */
4447 0, /* 11Mbps */
4448 /* OFDM */
4449 3, /* 6Mbps */
4450 7, /* 9Mbps */
4451 2, /* 12Mbps */
4452 6, /* 18Mbps */
4453 1, /* 24Mbps */
4454 5, /* 36Mbps */
4455 0, /* 48Mbps */
4456 4, /* 54Mbps */
4457 };
4458
4459 /* Check if only one bit set */
4460 static int ath10k_check_single_mask(u32 mask)
4461 {
4462 int bit;
4463
4464 bit = ffs(mask);
4465 if (!bit)
4466 return 0;
4467
4468 mask &= ~BIT(bit - 1);
4469 if (mask)
4470 return 2;
4471
4472 return 1;
4473 }
4474
4475 static bool
4476 ath10k_default_bitrate_mask(struct ath10k *ar,
4477 enum ieee80211_band band,
4478 const struct cfg80211_bitrate_mask *mask)
4479 {
4480 u32 legacy = 0x00ff;
4481 u8 ht = 0xff, i;
4482 u16 vht = 0x3ff;
4483 u16 nrf = ar->num_rf_chains;
4484
4485 if (ar->cfg_tx_chainmask)
4486 nrf = get_nss_from_chainmask(ar->cfg_tx_chainmask);
4487
4488 switch (band) {
4489 case IEEE80211_BAND_2GHZ:
4490 legacy = 0x00fff;
4491 vht = 0;
4492 break;
4493 case IEEE80211_BAND_5GHZ:
4494 break;
4495 default:
4496 return false;
4497 }
4498
4499 if (mask->control[band].legacy != legacy)
4500 return false;
4501
4502 for (i = 0; i < nrf; i++)
4503 if (mask->control[band].ht_mcs[i] != ht)
4504 return false;
4505
4506 for (i = 0; i < nrf; i++)
4507 if (mask->control[band].vht_mcs[i] != vht)
4508 return false;
4509
4510 return true;
4511 }
4512
4513 static bool
4514 ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask,
4515 enum ieee80211_band band,
4516 u8 *fixed_nss)
4517 {
4518 int ht_nss = 0, vht_nss = 0, i;
4519
4520 /* check legacy */
4521 if (ath10k_check_single_mask(mask->control[band].legacy))
4522 return false;
4523
4524 /* check HT */
4525 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) {
4526 if (mask->control[band].ht_mcs[i] == 0xff)
4527 continue;
4528 else if (mask->control[band].ht_mcs[i] == 0x00)
4529 break;
4530
4531 return false;
4532 }
4533
4534 ht_nss = i;
4535
4536 /* check VHT */
4537 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
4538 if (mask->control[band].vht_mcs[i] == 0x03ff)
4539 continue;
4540 else if (mask->control[band].vht_mcs[i] == 0x0000)
4541 break;
4542
4543 return false;
4544 }
4545
4546 vht_nss = i;
4547
4548 if (ht_nss > 0 && vht_nss > 0)
4549 return false;
4550
4551 if (ht_nss)
4552 *fixed_nss = ht_nss;
4553 else if (vht_nss)
4554 *fixed_nss = vht_nss;
4555 else
4556 return false;
4557
4558 return true;
4559 }
4560
4561 static bool
4562 ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask,
4563 enum ieee80211_band band,
4564 enum wmi_rate_preamble *preamble)
4565 {
4566 int legacy = 0, ht = 0, vht = 0, i;
4567
4568 *preamble = WMI_RATE_PREAMBLE_OFDM;
4569
4570 /* check legacy */
4571 legacy = ath10k_check_single_mask(mask->control[band].legacy);
4572 if (legacy > 1)
4573 return false;
4574
4575 /* check HT */
4576 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
4577 ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]);
4578 if (ht > 1)
4579 return false;
4580
4581 /* check VHT */
4582 for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
4583 vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]);
4584 if (vht > 1)
4585 return false;
4586
4587 /* Currently we support only one fixed_rate */
4588 if ((legacy + ht + vht) != 1)
4589 return false;
4590
4591 if (ht)
4592 *preamble = WMI_RATE_PREAMBLE_HT;
4593 else if (vht)
4594 *preamble = WMI_RATE_PREAMBLE_VHT;
4595
4596 return true;
4597 }
4598
4599 static bool
4600 ath10k_bitrate_mask_rate(struct ath10k *ar,
4601 const struct cfg80211_bitrate_mask *mask,
4602 enum ieee80211_band band,
4603 u8 *fixed_rate,
4604 u8 *fixed_nss)
4605 {
4606 u8 rate = 0, pream = 0, nss = 0, i;
4607 enum wmi_rate_preamble preamble;
4608
4609 /* Check if single rate correct */
4610 if (!ath10k_bitrate_mask_correct(mask, band, &preamble))
4611 return false;
4612
4613 pream = preamble;
4614
4615 switch (preamble) {
4616 case WMI_RATE_PREAMBLE_CCK:
4617 case WMI_RATE_PREAMBLE_OFDM:
4618 i = ffs(mask->control[band].legacy) - 1;
4619
4620 if (band == IEEE80211_BAND_2GHZ && i < 4)
4621 pream = WMI_RATE_PREAMBLE_CCK;
4622
4623 if (band == IEEE80211_BAND_5GHZ)
4624 i += 4;
4625
4626 if (i >= ARRAY_SIZE(cck_ofdm_rate))
4627 return false;
4628
4629 rate = cck_ofdm_rate[i];
4630 break;
4631 case WMI_RATE_PREAMBLE_HT:
4632 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
4633 if (mask->control[band].ht_mcs[i])
4634 break;
4635
4636 if (i == IEEE80211_HT_MCS_MASK_LEN)
4637 return false;
4638
4639 rate = ffs(mask->control[band].ht_mcs[i]) - 1;
4640 nss = i;
4641 break;
4642 case WMI_RATE_PREAMBLE_VHT:
4643 for (i = 0; i < NL80211_VHT_NSS_MAX; i++)
4644 if (mask->control[band].vht_mcs[i])
4645 break;
4646
4647 if (i == NL80211_VHT_NSS_MAX)
4648 return false;
4649
4650 rate = ffs(mask->control[band].vht_mcs[i]) - 1;
4651 nss = i;
4652 break;
4653 }
4654
4655 *fixed_nss = nss + 1;
4656 nss <<= 4;
4657 pream <<= 6;
4658
4659 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n",
4660 pream, nss, rate);
4661
4662 *fixed_rate = pream | nss | rate;
4663
4664 return true;
4665 }
4666
4667 static bool ath10k_get_fixed_rate_nss(struct ath10k *ar,
4668 const struct cfg80211_bitrate_mask *mask,
4669 enum ieee80211_band band,
4670 u8 *fixed_rate,
4671 u8 *fixed_nss)
4672 {
4673 /* First check full NSS mask, if we can simply limit NSS */
4674 if (ath10k_bitrate_mask_nss(mask, band, fixed_nss))
4675 return true;
4676
4677 /* Next Check single rate is set */
4678 return ath10k_bitrate_mask_rate(ar, mask, band, fixed_rate, fixed_nss);
4679 }
4680
4681 static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif,
4682 u8 fixed_rate,
4683 u8 fixed_nss,
4684 u8 force_sgi)
4685 {
4686 struct ath10k *ar = arvif->ar;
4687 u32 vdev_param;
4688 int ret = 0;
4689
4690 mutex_lock(&ar->conf_mutex);
4691
4692 if (arvif->fixed_rate == fixed_rate &&
4693 arvif->fixed_nss == fixed_nss &&
4694 arvif->force_sgi == force_sgi)
4695 goto exit;
4696
4697 if (fixed_rate == WMI_FIXED_RATE_NONE)
4698 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n");
4699
4700 if (force_sgi)
4701 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac force sgi\n");
4702
4703 vdev_param = ar->wmi.vdev_param->fixed_rate;
4704 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
4705 vdev_param, fixed_rate);
4706 if (ret) {
4707 ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n",
4708 fixed_rate, ret);
4709 ret = -EINVAL;
4710 goto exit;
4711 }
4712
4713 arvif->fixed_rate = fixed_rate;
4714
4715 vdev_param = ar->wmi.vdev_param->nss;
4716 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
4717 vdev_param, fixed_nss);
4718
4719 if (ret) {
4720 ath10k_warn(ar, "failed to set fixed nss param %d: %d\n",
4721 fixed_nss, ret);
4722 ret = -EINVAL;
4723 goto exit;
4724 }
4725
4726 arvif->fixed_nss = fixed_nss;
4727
4728 vdev_param = ar->wmi.vdev_param->sgi;
4729 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4730 force_sgi);
4731
4732 if (ret) {
4733 ath10k_warn(ar, "failed to set sgi param %d: %d\n",
4734 force_sgi, ret);
4735 ret = -EINVAL;
4736 goto exit;
4737 }
4738
4739 arvif->force_sgi = force_sgi;
4740
4741 exit:
4742 mutex_unlock(&ar->conf_mutex);
4743 return ret;
4744 }
4745
4746 static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw,
4747 struct ieee80211_vif *vif,
4748 const struct cfg80211_bitrate_mask *mask)
4749 {
4750 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4751 struct ath10k *ar = arvif->ar;
4752 enum ieee80211_band band = ar->hw->conf.chandef.chan->band;
4753 u8 fixed_rate = WMI_FIXED_RATE_NONE;
4754 u8 fixed_nss = ar->num_rf_chains;
4755 u8 force_sgi;
4756
4757 if (ar->cfg_tx_chainmask)
4758 fixed_nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);
4759
4760 force_sgi = mask->control[band].gi;
4761 if (force_sgi == NL80211_TXRATE_FORCE_LGI)
4762 return -EINVAL;
4763
4764 if (!ath10k_default_bitrate_mask(ar, band, mask)) {
4765 if (!ath10k_get_fixed_rate_nss(ar, mask, band,
4766 &fixed_rate,
4767 &fixed_nss))
4768 return -EINVAL;
4769 }
4770
4771 if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) {
4772 ath10k_warn(ar, "failed to force SGI usage for default rate settings\n");
4773 return -EINVAL;
4774 }
4775
4776 return ath10k_set_fixed_rate_param(arvif, fixed_rate,
4777 fixed_nss, force_sgi);
4778 }
4779
4780 static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
4781 struct ieee80211_vif *vif,
4782 struct ieee80211_sta *sta,
4783 u32 changed)
4784 {
4785 struct ath10k *ar = hw->priv;
4786 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
4787 u32 bw, smps;
4788
4789 spin_lock_bh(&ar->data_lock);
4790
4791 ath10k_dbg(ar, ATH10K_DBG_MAC,
4792 "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
4793 sta->addr, changed, sta->bandwidth, sta->rx_nss,
4794 sta->smps_mode);
4795
4796 if (changed & IEEE80211_RC_BW_CHANGED) {
4797 bw = WMI_PEER_CHWIDTH_20MHZ;
4798
4799 switch (sta->bandwidth) {
4800 case IEEE80211_STA_RX_BW_20:
4801 bw = WMI_PEER_CHWIDTH_20MHZ;
4802 break;
4803 case IEEE80211_STA_RX_BW_40:
4804 bw = WMI_PEER_CHWIDTH_40MHZ;
4805 break;
4806 case IEEE80211_STA_RX_BW_80:
4807 bw = WMI_PEER_CHWIDTH_80MHZ;
4808 break;
4809 case IEEE80211_STA_RX_BW_160:
4810 ath10k_warn(ar, "Invalid bandwith %d in rc update for %pM\n",
4811 sta->bandwidth, sta->addr);
4812 bw = WMI_PEER_CHWIDTH_20MHZ;
4813 break;
4814 }
4815
4816 arsta->bw = bw;
4817 }
4818
4819 if (changed & IEEE80211_RC_NSS_CHANGED)
4820 arsta->nss = sta->rx_nss;
4821
4822 if (changed & IEEE80211_RC_SMPS_CHANGED) {
4823 smps = WMI_PEER_SMPS_PS_NONE;
4824
4825 switch (sta->smps_mode) {
4826 case IEEE80211_SMPS_AUTOMATIC:
4827 case IEEE80211_SMPS_OFF:
4828 smps = WMI_PEER_SMPS_PS_NONE;
4829 break;
4830 case IEEE80211_SMPS_STATIC:
4831 smps = WMI_PEER_SMPS_STATIC;
4832 break;
4833 case IEEE80211_SMPS_DYNAMIC:
4834 smps = WMI_PEER_SMPS_DYNAMIC;
4835 break;
4836 case IEEE80211_SMPS_NUM_MODES:
4837 ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n",
4838 sta->smps_mode, sta->addr);
4839 smps = WMI_PEER_SMPS_PS_NONE;
4840 break;
4841 }
4842
4843 arsta->smps = smps;
4844 }
4845
4846 arsta->changed |= changed;
4847
4848 spin_unlock_bh(&ar->data_lock);
4849
4850 ieee80211_queue_work(hw, &arsta->update_wk);
4851 }
4852
4853 static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4854 {
4855 /*
4856 * FIXME: Return 0 for time being. Need to figure out whether FW
4857 * has the API to fetch 64-bit local TSF
4858 */
4859
4860 return 0;
4861 }
4862
4863 static int ath10k_ampdu_action(struct ieee80211_hw *hw,
4864 struct ieee80211_vif *vif,
4865 enum ieee80211_ampdu_mlme_action action,
4866 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
4867 u8 buf_size)
4868 {
4869 struct ath10k *ar = hw->priv;
4870 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4871
4872 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n",
4873 arvif->vdev_id, sta->addr, tid, action);
4874
4875 switch (action) {
4876 case IEEE80211_AMPDU_RX_START:
4877 case IEEE80211_AMPDU_RX_STOP:
4878 /* HTT AddBa/DelBa events trigger mac80211 Rx BA session
4879 * creation/removal. Do we need to verify this?
4880 */
4881 return 0;
4882 case IEEE80211_AMPDU_TX_START:
4883 case IEEE80211_AMPDU_TX_STOP_CONT:
4884 case IEEE80211_AMPDU_TX_STOP_FLUSH:
4885 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
4886 case IEEE80211_AMPDU_TX_OPERATIONAL:
4887 /* Firmware offloads Tx aggregation entirely so deny mac80211
4888 * Tx aggregation requests.
4889 */
4890 return -EOPNOTSUPP;
4891 }
4892
4893 return -EINVAL;
4894 }
4895
4896 static const struct ieee80211_ops ath10k_ops = {
4897 .tx = ath10k_tx,
4898 .start = ath10k_start,
4899 .stop = ath10k_stop,
4900 .config = ath10k_config,
4901 .add_interface = ath10k_add_interface,
4902 .remove_interface = ath10k_remove_interface,
4903 .configure_filter = ath10k_configure_filter,
4904 .bss_info_changed = ath10k_bss_info_changed,
4905 .hw_scan = ath10k_hw_scan,
4906 .cancel_hw_scan = ath10k_cancel_hw_scan,
4907 .set_key = ath10k_set_key,
4908 .sta_state = ath10k_sta_state,
4909 .conf_tx = ath10k_conf_tx,
4910 .remain_on_channel = ath10k_remain_on_channel,
4911 .cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
4912 .set_rts_threshold = ath10k_set_rts_threshold,
4913 .flush = ath10k_flush,
4914 .tx_last_beacon = ath10k_tx_last_beacon,
4915 .set_antenna = ath10k_set_antenna,
4916 .get_antenna = ath10k_get_antenna,
4917 .reconfig_complete = ath10k_reconfig_complete,
4918 .get_survey = ath10k_get_survey,
4919 .set_bitrate_mask = ath10k_set_bitrate_mask,
4920 .sta_rc_update = ath10k_sta_rc_update,
4921 .get_tsf = ath10k_get_tsf,
4922 .ampdu_action = ath10k_ampdu_action,
4923 .get_et_sset_count = ath10k_debug_get_et_sset_count,
4924 .get_et_stats = ath10k_debug_get_et_stats,
4925 .get_et_strings = ath10k_debug_get_et_strings,
4926
4927 CFG80211_TESTMODE_CMD(ath10k_tm_cmd)
4928
4929 #ifdef CONFIG_PM
4930 .suspend = ath10k_suspend,
4931 .resume = ath10k_resume,
4932 #endif
4933 #ifdef CONFIG_MAC80211_DEBUGFS
4934 .sta_add_debugfs = ath10k_sta_add_debugfs,
4935 #endif
4936 };
4937
4938 #define RATETAB_ENT(_rate, _rateid, _flags) { \
4939 .bitrate = (_rate), \
4940 .flags = (_flags), \
4941 .hw_value = (_rateid), \
4942 }
4943
4944 #define CHAN2G(_channel, _freq, _flags) { \
4945 .band = IEEE80211_BAND_2GHZ, \
4946 .hw_value = (_channel), \
4947 .center_freq = (_freq), \
4948 .flags = (_flags), \
4949 .max_antenna_gain = 0, \
4950 .max_power = 30, \
4951 }
4952
4953 #define CHAN5G(_channel, _freq, _flags) { \
4954 .band = IEEE80211_BAND_5GHZ, \
4955 .hw_value = (_channel), \
4956 .center_freq = (_freq), \
4957 .flags = (_flags), \
4958 .max_antenna_gain = 0, \
4959 .max_power = 30, \
4960 }
4961
4962 static const struct ieee80211_channel ath10k_2ghz_channels[] = {
4963 CHAN2G(1, 2412, 0),
4964 CHAN2G(2, 2417, 0),
4965 CHAN2G(3, 2422, 0),
4966 CHAN2G(4, 2427, 0),
4967 CHAN2G(5, 2432, 0),
4968 CHAN2G(6, 2437, 0),
4969 CHAN2G(7, 2442, 0),
4970 CHAN2G(8, 2447, 0),
4971 CHAN2G(9, 2452, 0),
4972 CHAN2G(10, 2457, 0),
4973 CHAN2G(11, 2462, 0),
4974 CHAN2G(12, 2467, 0),
4975 CHAN2G(13, 2472, 0),
4976 CHAN2G(14, 2484, 0),
4977 };
4978
4979 static const struct ieee80211_channel ath10k_5ghz_channels[] = {
4980 CHAN5G(36, 5180, 0),
4981 CHAN5G(40, 5200, 0),
4982 CHAN5G(44, 5220, 0),
4983 CHAN5G(48, 5240, 0),
4984 CHAN5G(52, 5260, 0),
4985 CHAN5G(56, 5280, 0),
4986 CHAN5G(60, 5300, 0),
4987 CHAN5G(64, 5320, 0),
4988 CHAN5G(100, 5500, 0),
4989 CHAN5G(104, 5520, 0),
4990 CHAN5G(108, 5540, 0),
4991 CHAN5G(112, 5560, 0),
4992 CHAN5G(116, 5580, 0),
4993 CHAN5G(120, 5600, 0),
4994 CHAN5G(124, 5620, 0),
4995 CHAN5G(128, 5640, 0),
4996 CHAN5G(132, 5660, 0),
4997 CHAN5G(136, 5680, 0),
4998 CHAN5G(140, 5700, 0),
4999 CHAN5G(149, 5745, 0),
5000 CHAN5G(153, 5765, 0),
5001 CHAN5G(157, 5785, 0),
5002 CHAN5G(161, 5805, 0),
5003 CHAN5G(165, 5825, 0),
5004 };
5005
5006 /* Note: Be careful if you re-order these. There is code which depends on this
5007 * ordering.
5008 */
5009 static struct ieee80211_rate ath10k_rates[] = {
5010 /* CCK */
5011 RATETAB_ENT(10, 0x82, 0),
5012 RATETAB_ENT(20, 0x84, 0),
5013 RATETAB_ENT(55, 0x8b, 0),
5014 RATETAB_ENT(110, 0x96, 0),
5015 /* OFDM */
5016 RATETAB_ENT(60, 0x0c, 0),
5017 RATETAB_ENT(90, 0x12, 0),
5018 RATETAB_ENT(120, 0x18, 0),
5019 RATETAB_ENT(180, 0x24, 0),
5020 RATETAB_ENT(240, 0x30, 0),
5021 RATETAB_ENT(360, 0x48, 0),
5022 RATETAB_ENT(480, 0x60, 0),
5023 RATETAB_ENT(540, 0x6c, 0),
5024 };
5025
5026 #define ath10k_a_rates (ath10k_rates + 4)
5027 #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4)
5028 #define ath10k_g_rates (ath10k_rates + 0)
5029 #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
5030
5031 struct ath10k *ath10k_mac_create(size_t priv_size)
5032 {
5033 struct ieee80211_hw *hw;
5034 struct ath10k *ar;
5035
5036 hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, &ath10k_ops);
5037 if (!hw)
5038 return NULL;
5039
5040 ar = hw->priv;
5041 ar->hw = hw;
5042
5043 return ar;
5044 }
5045
5046 void ath10k_mac_destroy(struct ath10k *ar)
5047 {
5048 ieee80211_free_hw(ar->hw);
5049 }
5050
5051 static const struct ieee80211_iface_limit ath10k_if_limits[] = {
5052 {
5053 .max = 8,
5054 .types = BIT(NL80211_IFTYPE_STATION)
5055 | BIT(NL80211_IFTYPE_P2P_CLIENT)
5056 },
5057 {
5058 .max = 3,
5059 .types = BIT(NL80211_IFTYPE_P2P_GO)
5060 },
5061 {
5062 .max = 1,
5063 .types = BIT(NL80211_IFTYPE_P2P_DEVICE)
5064 },
5065 {
5066 .max = 7,
5067 .types = BIT(NL80211_IFTYPE_AP)
5068 },
5069 };
5070
5071 static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
5072 {
5073 .max = 8,
5074 .types = BIT(NL80211_IFTYPE_AP)
5075 },
5076 };
5077
5078 static const struct ieee80211_iface_combination ath10k_if_comb[] = {
5079 {
5080 .limits = ath10k_if_limits,
5081 .n_limits = ARRAY_SIZE(ath10k_if_limits),
5082 .max_interfaces = 8,
5083 .num_different_channels = 1,
5084 .beacon_int_infra_match = true,
5085 },
5086 };
5087
5088 static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
5089 {
5090 .limits = ath10k_10x_if_limits,
5091 .n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
5092 .max_interfaces = 8,
5093 .num_different_channels = 1,
5094 .beacon_int_infra_match = true,
5095 #ifdef CONFIG_ATH10K_DFS_CERTIFIED
5096 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
5097 BIT(NL80211_CHAN_WIDTH_20) |
5098 BIT(NL80211_CHAN_WIDTH_40) |
5099 BIT(NL80211_CHAN_WIDTH_80),
5100 #endif
5101 },
5102 };
5103
5104 static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
5105 {
5106 struct ieee80211_sta_vht_cap vht_cap = {0};
5107 u16 mcs_map;
5108 int i;
5109
5110 vht_cap.vht_supported = 1;
5111 vht_cap.cap = ar->vht_cap_info;
5112
5113 mcs_map = 0;
5114 for (i = 0; i < 8; i++) {
5115 if (i < ar->num_rf_chains)
5116 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2);
5117 else
5118 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2);
5119 }
5120
5121 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
5122 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
5123
5124 return vht_cap;
5125 }
5126
5127 static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
5128 {
5129 int i;
5130 struct ieee80211_sta_ht_cap ht_cap = {0};
5131
5132 if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
5133 return ht_cap;
5134
5135 ht_cap.ht_supported = 1;
5136 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
5137 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
5138 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
5139 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
5140 ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
5141
5142 if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
5143 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
5144
5145 if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
5146 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
5147
5148 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
5149 u32 smps;
5150
5151 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
5152 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
5153
5154 ht_cap.cap |= smps;
5155 }
5156
5157 if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC)
5158 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
5159
5160 if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
5161 u32 stbc;
5162
5163 stbc = ar->ht_cap_info;
5164 stbc &= WMI_HT_CAP_RX_STBC;
5165 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
5166 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
5167 stbc &= IEEE80211_HT_CAP_RX_STBC;
5168
5169 ht_cap.cap |= stbc;
5170 }
5171
5172 if (ar->ht_cap_info & WMI_HT_CAP_LDPC)
5173 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
5174
5175 if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
5176 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
5177
5178 /* max AMSDU is implicitly taken from vht_cap_info */
5179 if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
5180 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
5181
5182 for (i = 0; i < ar->num_rf_chains; i++)
5183 ht_cap.mcs.rx_mask[i] = 0xFF;
5184
5185 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
5186
5187 return ht_cap;
5188 }
5189
5190 static void ath10k_get_arvif_iter(void *data, u8 *mac,
5191 struct ieee80211_vif *vif)
5192 {
5193 struct ath10k_vif_iter *arvif_iter = data;
5194 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5195
5196 if (arvif->vdev_id == arvif_iter->vdev_id)
5197 arvif_iter->arvif = arvif;
5198 }
5199
5200 struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
5201 {
5202 struct ath10k_vif_iter arvif_iter;
5203 u32 flags;
5204
5205 memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
5206 arvif_iter.vdev_id = vdev_id;
5207
5208 flags = IEEE80211_IFACE_ITER_RESUME_ALL;
5209 ieee80211_iterate_active_interfaces_atomic(ar->hw,
5210 flags,
5211 ath10k_get_arvif_iter,
5212 &arvif_iter);
5213 if (!arvif_iter.arvif) {
5214 ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id);
5215 return NULL;
5216 }
5217
5218 return arvif_iter.arvif;
5219 }
5220
5221 int ath10k_mac_register(struct ath10k *ar)
5222 {
5223 struct ieee80211_supported_band *band;
5224 struct ieee80211_sta_vht_cap vht_cap;
5225 struct ieee80211_sta_ht_cap ht_cap;
5226 void *channels;
5227 int ret;
5228
5229 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
5230
5231 SET_IEEE80211_DEV(ar->hw, ar->dev);
5232
5233 ht_cap = ath10k_get_ht_cap(ar);
5234 vht_cap = ath10k_create_vht_cap(ar);
5235
5236 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
5237 channels = kmemdup(ath10k_2ghz_channels,
5238 sizeof(ath10k_2ghz_channels),
5239 GFP_KERNEL);
5240 if (!channels) {
5241 ret = -ENOMEM;
5242 goto err_free;
5243 }
5244
5245 band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
5246 band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
5247 band->channels = channels;
5248 band->n_bitrates = ath10k_g_rates_size;
5249 band->bitrates = ath10k_g_rates;
5250 band->ht_cap = ht_cap;
5251
5252 /* vht is not supported in 2.4 GHz */
5253
5254 ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band;
5255 }
5256
5257 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
5258 channels = kmemdup(ath10k_5ghz_channels,
5259 sizeof(ath10k_5ghz_channels),
5260 GFP_KERNEL);
5261 if (!channels) {
5262 ret = -ENOMEM;
5263 goto err_free;
5264 }
5265
5266 band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
5267 band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
5268 band->channels = channels;
5269 band->n_bitrates = ath10k_a_rates_size;
5270 band->bitrates = ath10k_a_rates;
5271 band->ht_cap = ht_cap;
5272 band->vht_cap = vht_cap;
5273 ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band;
5274 }
5275
5276 ar->hw->wiphy->interface_modes =
5277 BIT(NL80211_IFTYPE_STATION) |
5278 BIT(NL80211_IFTYPE_AP);
5279
5280 ar->hw->wiphy->available_antennas_rx = ar->supp_rx_chainmask;
5281 ar->hw->wiphy->available_antennas_tx = ar->supp_tx_chainmask;
5282
5283 if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features))
5284 ar->hw->wiphy->interface_modes |=
5285 BIT(NL80211_IFTYPE_P2P_DEVICE) |
5286 BIT(NL80211_IFTYPE_P2P_CLIENT) |
5287 BIT(NL80211_IFTYPE_P2P_GO);
5288
5289 ar->hw->flags = IEEE80211_HW_SIGNAL_DBM |
5290 IEEE80211_HW_SUPPORTS_PS |
5291 IEEE80211_HW_SUPPORTS_DYNAMIC_PS |
5292 IEEE80211_HW_SUPPORTS_UAPSD |
5293 IEEE80211_HW_MFP_CAPABLE |
5294 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
5295 IEEE80211_HW_HAS_RATE_CONTROL |
5296 IEEE80211_HW_AP_LINK_PS |
5297 IEEE80211_HW_SPECTRUM_MGMT;
5298
5299 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
5300
5301 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
5302 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
5303
5304 if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
5305 ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
5306 ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW;
5307 }
5308
5309 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
5310 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
5311
5312 ar->hw->vif_data_size = sizeof(struct ath10k_vif);
5313 ar->hw->sta_data_size = sizeof(struct ath10k_sta);
5314
5315 ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
5316
5317 if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) {
5318 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
5319
5320 /* Firmware delivers WPS/P2P Probe Requests frames to driver so
5321 * that userspace (e.g. wpa_supplicant/hostapd) can generate
5322 * correct Probe Responses. This is more of a hack advert..
5323 */
5324 ar->hw->wiphy->probe_resp_offload |=
5325 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
5326 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
5327 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
5328 }
5329
5330 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
5331 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
5332 ar->hw->wiphy->max_remain_on_channel_duration = 5000;
5333
5334 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
5335 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE;
5336
5337 /*
5338 * on LL hardware queues are managed entirely by the FW
5339 * so we only advertise to mac we can do the queues thing
5340 */
5341 ar->hw->queues = 4;
5342
5343 switch (ar->wmi.op_version) {
5344 case ATH10K_FW_WMI_OP_VERSION_MAIN:
5345 case ATH10K_FW_WMI_OP_VERSION_TLV:
5346 ar->hw->wiphy->iface_combinations = ath10k_if_comb;
5347 ar->hw->wiphy->n_iface_combinations =
5348 ARRAY_SIZE(ath10k_if_comb);
5349 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
5350 break;
5351 case ATH10K_FW_WMI_OP_VERSION_10_1:
5352 case ATH10K_FW_WMI_OP_VERSION_10_2:
5353 case ATH10K_FW_WMI_OP_VERSION_10_2_4:
5354 ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
5355 ar->hw->wiphy->n_iface_combinations =
5356 ARRAY_SIZE(ath10k_10x_if_comb);
5357 break;
5358 case ATH10K_FW_WMI_OP_VERSION_UNSET:
5359 case ATH10K_FW_WMI_OP_VERSION_MAX:
5360 WARN_ON(1);
5361 ret = -EINVAL;
5362 goto err_free;
5363 }
5364
5365 ar->hw->netdev_features = NETIF_F_HW_CSUM;
5366
5367 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) {
5368 /* Init ath dfs pattern detector */
5369 ar->ath_common.debug_mask = ATH_DBG_DFS;
5370 ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
5371 NL80211_DFS_UNSET);
5372
5373 if (!ar->dfs_detector)
5374 ath10k_warn(ar, "failed to initialise DFS pattern detector\n");
5375 }
5376
5377 ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
5378 ath10k_reg_notifier);
5379 if (ret) {
5380 ath10k_err(ar, "failed to initialise regulatory: %i\n", ret);
5381 goto err_free;
5382 }
5383
5384 ret = ieee80211_register_hw(ar->hw);
5385 if (ret) {
5386 ath10k_err(ar, "failed to register ieee80211: %d\n", ret);
5387 goto err_free;
5388 }
5389
5390 if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
5391 ret = regulatory_hint(ar->hw->wiphy,
5392 ar->ath_common.regulatory.alpha2);
5393 if (ret)
5394 goto err_unregister;
5395 }
5396
5397 return 0;
5398
5399 err_unregister:
5400 ieee80211_unregister_hw(ar->hw);
5401 err_free:
5402 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
5403 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
5404
5405 return ret;
5406 }
5407
5408 void ath10k_mac_unregister(struct ath10k *ar)
5409 {
5410 ieee80211_unregister_hw(ar->hw);
5411
5412 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
5413 ar->dfs_detector->exit(ar->dfs_detector);
5414
5415 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
5416 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
5417
5418 SET_IEEE80211_DEV(ar->hw, NULL);
5419 }
This page took 0.308411 seconds and 5 git commands to generate.