Merge branch 'for-linville' of git://github.com/kvalo/ath
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_irq_mode {
37 ATH10K_PCI_IRQ_AUTO = 0,
38 ATH10K_PCI_IRQ_LEGACY = 1,
39 ATH10K_PCI_IRQ_MSI = 2,
40 };
41
42 enum ath10k_pci_reset_mode {
43 ATH10K_PCI_RESET_AUTO = 0,
44 ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60 #define QCA988X_2_0_DEVICE_ID (0x003c)
61
62 static const struct pci_device_id ath10k_pci_id_table[] = {
63 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
64 {0}
65 };
66
67 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
68 u32 *data);
69
70 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
71 static int ath10k_pci_cold_reset(struct ath10k *ar);
72 static int ath10k_pci_warm_reset(struct ath10k *ar);
73 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
74 static int ath10k_pci_init_irq(struct ath10k *ar);
75 static int ath10k_pci_deinit_irq(struct ath10k *ar);
76 static int ath10k_pci_request_irq(struct ath10k *ar);
77 static void ath10k_pci_free_irq(struct ath10k *ar);
78 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
79 struct ath10k_ce_pipe *rx_pipe,
80 struct bmi_xfer *xfer);
81
82 static const struct ce_attr host_ce_config_wlan[] = {
83 /* CE0: host->target HTC control and raw streams */
84 {
85 .flags = CE_ATTR_FLAGS,
86 .src_nentries = 16,
87 .src_sz_max = 256,
88 .dest_nentries = 0,
89 },
90
91 /* CE1: target->host HTT + HTC control */
92 {
93 .flags = CE_ATTR_FLAGS,
94 .src_nentries = 0,
95 .src_sz_max = 512,
96 .dest_nentries = 512,
97 },
98
99 /* CE2: target->host WMI */
100 {
101 .flags = CE_ATTR_FLAGS,
102 .src_nentries = 0,
103 .src_sz_max = 2048,
104 .dest_nentries = 32,
105 },
106
107 /* CE3: host->target WMI */
108 {
109 .flags = CE_ATTR_FLAGS,
110 .src_nentries = 32,
111 .src_sz_max = 2048,
112 .dest_nentries = 0,
113 },
114
115 /* CE4: host->target HTT */
116 {
117 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
118 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
119 .src_sz_max = 256,
120 .dest_nentries = 0,
121 },
122
123 /* CE5: unused */
124 {
125 .flags = CE_ATTR_FLAGS,
126 .src_nentries = 0,
127 .src_sz_max = 0,
128 .dest_nentries = 0,
129 },
130
131 /* CE6: target autonomous hif_memcpy */
132 {
133 .flags = CE_ATTR_FLAGS,
134 .src_nentries = 0,
135 .src_sz_max = 0,
136 .dest_nentries = 0,
137 },
138
139 /* CE7: ce_diag, the Diagnostic Window */
140 {
141 .flags = CE_ATTR_FLAGS,
142 .src_nentries = 2,
143 .src_sz_max = DIAG_TRANSFER_LIMIT,
144 .dest_nentries = 2,
145 },
146 };
147
148 /* Target firmware's Copy Engine configuration. */
149 static const struct ce_pipe_config target_ce_config_wlan[] = {
150 /* CE0: host->target HTC control and raw streams */
151 {
152 .pipenum = __cpu_to_le32(0),
153 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
154 .nentries = __cpu_to_le32(32),
155 .nbytes_max = __cpu_to_le32(256),
156 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
157 .reserved = __cpu_to_le32(0),
158 },
159
160 /* CE1: target->host HTT + HTC control */
161 {
162 .pipenum = __cpu_to_le32(1),
163 .pipedir = __cpu_to_le32(PIPEDIR_IN),
164 .nentries = __cpu_to_le32(32),
165 .nbytes_max = __cpu_to_le32(512),
166 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
167 .reserved = __cpu_to_le32(0),
168 },
169
170 /* CE2: target->host WMI */
171 {
172 .pipenum = __cpu_to_le32(2),
173 .pipedir = __cpu_to_le32(PIPEDIR_IN),
174 .nentries = __cpu_to_le32(32),
175 .nbytes_max = __cpu_to_le32(2048),
176 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
177 .reserved = __cpu_to_le32(0),
178 },
179
180 /* CE3: host->target WMI */
181 {
182 .pipenum = __cpu_to_le32(3),
183 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
184 .nentries = __cpu_to_le32(32),
185 .nbytes_max = __cpu_to_le32(2048),
186 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
187 .reserved = __cpu_to_le32(0),
188 },
189
190 /* CE4: host->target HTT */
191 {
192 .pipenum = __cpu_to_le32(4),
193 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
194 .nentries = __cpu_to_le32(256),
195 .nbytes_max = __cpu_to_le32(256),
196 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
197 .reserved = __cpu_to_le32(0),
198 },
199
200 /* NB: 50% of src nentries, since tx has 2 frags */
201
202 /* CE5: unused */
203 {
204 .pipenum = __cpu_to_le32(5),
205 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
206 .nentries = __cpu_to_le32(32),
207 .nbytes_max = __cpu_to_le32(2048),
208 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
209 .reserved = __cpu_to_le32(0),
210 },
211
212 /* CE6: Reserved for target autonomous hif_memcpy */
213 {
214 .pipenum = __cpu_to_le32(6),
215 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
216 .nentries = __cpu_to_le32(32),
217 .nbytes_max = __cpu_to_le32(4096),
218 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
219 .reserved = __cpu_to_le32(0),
220 },
221
222 /* CE7 used only by Host */
223 };
224
225 /*
226 * Map from service/endpoint to Copy Engine.
227 * This table is derived from the CE_PCI TABLE, above.
228 * It is passed to the Target at startup for use by firmware.
229 */
230 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
231 {
232 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
233 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
234 __cpu_to_le32(3),
235 },
236 {
237 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
238 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
239 __cpu_to_le32(2),
240 },
241 {
242 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
243 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
244 __cpu_to_le32(3),
245 },
246 {
247 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
248 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
249 __cpu_to_le32(2),
250 },
251 {
252 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
253 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
254 __cpu_to_le32(3),
255 },
256 {
257 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
258 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
259 __cpu_to_le32(2),
260 },
261 {
262 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
263 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
264 __cpu_to_le32(3),
265 },
266 {
267 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
268 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
269 __cpu_to_le32(2),
270 },
271 {
272 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
273 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
274 __cpu_to_le32(3),
275 },
276 {
277 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
278 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
279 __cpu_to_le32(2),
280 },
281 {
282 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
283 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
284 __cpu_to_le32(0),
285 },
286 {
287 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
288 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
289 __cpu_to_le32(1),
290 },
291 { /* not used */
292 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
293 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
294 __cpu_to_le32(0),
295 },
296 { /* not used */
297 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
298 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
299 __cpu_to_le32(1),
300 },
301 {
302 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
303 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
304 __cpu_to_le32(4),
305 },
306 {
307 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
308 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
309 __cpu_to_le32(1),
310 },
311
312 /* (Additions here) */
313
314 { /* must be last */
315 __cpu_to_le32(0),
316 __cpu_to_le32(0),
317 __cpu_to_le32(0),
318 },
319 };
320
321 static bool ath10k_pci_irq_pending(struct ath10k *ar)
322 {
323 u32 cause;
324
325 /* Check if the shared legacy irq is for us */
326 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
327 PCIE_INTR_CAUSE_ADDRESS);
328 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
329 return true;
330
331 return false;
332 }
333
334 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
335 {
336 /* IMPORTANT: INTR_CLR register has to be set after
337 * INTR_ENABLE is set to 0, otherwise interrupt can not be
338 * really cleared. */
339 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
340 0);
341 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
342 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
343
344 /* IMPORTANT: this extra read transaction is required to
345 * flush the posted write buffer. */
346 (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
347 PCIE_INTR_ENABLE_ADDRESS);
348 }
349
350 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
351 {
352 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
353 PCIE_INTR_ENABLE_ADDRESS,
354 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
355
356 /* IMPORTANT: this extra read transaction is required to
357 * flush the posted write buffer. */
358 (void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
359 PCIE_INTR_ENABLE_ADDRESS);
360 }
361
362 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
363 {
364 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
365
366 if (ar_pci->num_msi_intrs > 1)
367 return "msi-x";
368 else if (ar_pci->num_msi_intrs == 1)
369 return "msi";
370 else
371 return "legacy";
372 }
373
374 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
375 {
376 struct ath10k *ar = pipe->hif_ce_state;
377 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
378 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
379 struct sk_buff *skb;
380 dma_addr_t paddr;
381 int ret;
382
383 lockdep_assert_held(&ar_pci->ce_lock);
384
385 skb = dev_alloc_skb(pipe->buf_sz);
386 if (!skb)
387 return -ENOMEM;
388
389 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
390
391 paddr = dma_map_single(ar->dev, skb->data,
392 skb->len + skb_tailroom(skb),
393 DMA_FROM_DEVICE);
394 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
395 ath10k_warn(ar, "failed to dma map pci rx buf\n");
396 dev_kfree_skb_any(skb);
397 return -EIO;
398 }
399
400 ATH10K_SKB_CB(skb)->paddr = paddr;
401
402 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
403 if (ret) {
404 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
405 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
406 DMA_FROM_DEVICE);
407 dev_kfree_skb_any(skb);
408 return ret;
409 }
410
411 return 0;
412 }
413
414 static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
415 {
416 struct ath10k *ar = pipe->hif_ce_state;
417 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
418 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
419 int ret, num;
420
421 lockdep_assert_held(&ar_pci->ce_lock);
422
423 if (pipe->buf_sz == 0)
424 return;
425
426 if (!ce_pipe->dest_ring)
427 return;
428
429 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
430 while (num--) {
431 ret = __ath10k_pci_rx_post_buf(pipe);
432 if (ret) {
433 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
434 mod_timer(&ar_pci->rx_post_retry, jiffies +
435 ATH10K_PCI_RX_POST_RETRY_MS);
436 break;
437 }
438 }
439 }
440
441 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
442 {
443 struct ath10k *ar = pipe->hif_ce_state;
444 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
445
446 spin_lock_bh(&ar_pci->ce_lock);
447 __ath10k_pci_rx_post_pipe(pipe);
448 spin_unlock_bh(&ar_pci->ce_lock);
449 }
450
451 static void ath10k_pci_rx_post(struct ath10k *ar)
452 {
453 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
454 int i;
455
456 spin_lock_bh(&ar_pci->ce_lock);
457 for (i = 0; i < CE_COUNT; i++)
458 __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
459 spin_unlock_bh(&ar_pci->ce_lock);
460 }
461
462 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
463 {
464 struct ath10k *ar = (void *)ptr;
465
466 ath10k_pci_rx_post(ar);
467 }
468
469 /*
470 * Diagnostic read/write access is provided for startup/config/debug usage.
471 * Caller must guarantee proper alignment, when applicable, and single user
472 * at any moment.
473 */
474 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
475 int nbytes)
476 {
477 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
478 int ret = 0;
479 u32 buf;
480 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
481 unsigned int id;
482 unsigned int flags;
483 struct ath10k_ce_pipe *ce_diag;
484 /* Host buffer address in CE space */
485 u32 ce_data;
486 dma_addr_t ce_data_base = 0;
487 void *data_buf = NULL;
488 int i;
489
490 /*
491 * This code cannot handle reads to non-memory space. Redirect to the
492 * register read fn but preserve the multi word read capability of
493 * this fn
494 */
495 if (address < DRAM_BASE_ADDRESS) {
496 if (!IS_ALIGNED(address, 4) ||
497 !IS_ALIGNED((unsigned long)data, 4))
498 return -EIO;
499
500 while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
501 ar, address, (u32 *)data)) == 0)) {
502 nbytes -= sizeof(u32);
503 address += sizeof(u32);
504 data += sizeof(u32);
505 }
506 return ret;
507 }
508
509 ce_diag = ar_pci->ce_diag;
510
511 /*
512 * Allocate a temporary bounce buffer to hold caller's data
513 * to be DMA'ed from Target. This guarantees
514 * 1) 4-byte alignment
515 * 2) Buffer in DMA-able space
516 */
517 orig_nbytes = nbytes;
518 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
519 orig_nbytes,
520 &ce_data_base,
521 GFP_ATOMIC);
522
523 if (!data_buf) {
524 ret = -ENOMEM;
525 goto done;
526 }
527 memset(data_buf, 0, orig_nbytes);
528
529 remaining_bytes = orig_nbytes;
530 ce_data = ce_data_base;
531 while (remaining_bytes) {
532 nbytes = min_t(unsigned int, remaining_bytes,
533 DIAG_TRANSFER_LIMIT);
534
535 ret = ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
536 if (ret != 0)
537 goto done;
538
539 /* Request CE to send from Target(!) address to Host buffer */
540 /*
541 * The address supplied by the caller is in the
542 * Target CPU virtual address space.
543 *
544 * In order to use this address with the diagnostic CE,
545 * convert it from Target CPU virtual address space
546 * to CE address space
547 */
548 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
549 address);
550
551 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
552 0);
553 if (ret)
554 goto done;
555
556 i = 0;
557 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
558 &completed_nbytes,
559 &id) != 0) {
560 mdelay(1);
561 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
562 ret = -EBUSY;
563 goto done;
564 }
565 }
566
567 if (nbytes != completed_nbytes) {
568 ret = -EIO;
569 goto done;
570 }
571
572 if (buf != (u32) address) {
573 ret = -EIO;
574 goto done;
575 }
576
577 i = 0;
578 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
579 &completed_nbytes,
580 &id, &flags) != 0) {
581 mdelay(1);
582
583 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
584 ret = -EBUSY;
585 goto done;
586 }
587 }
588
589 if (nbytes != completed_nbytes) {
590 ret = -EIO;
591 goto done;
592 }
593
594 if (buf != ce_data) {
595 ret = -EIO;
596 goto done;
597 }
598
599 remaining_bytes -= nbytes;
600 address += nbytes;
601 ce_data += nbytes;
602 }
603
604 done:
605 if (ret == 0)
606 memcpy(data, data_buf, orig_nbytes);
607 else
608 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
609 address, ret);
610
611 if (data_buf)
612 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
613 ce_data_base);
614
615 return ret;
616 }
617
618 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
619 {
620 __le32 val = 0;
621 int ret;
622
623 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
624 *value = __le32_to_cpu(val);
625
626 return ret;
627 }
628
629 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
630 u32 src, u32 len)
631 {
632 u32 host_addr, addr;
633 int ret;
634
635 host_addr = host_interest_item_address(src);
636
637 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
638 if (ret != 0) {
639 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
640 src, ret);
641 return ret;
642 }
643
644 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
645 if (ret != 0) {
646 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
647 addr, len, ret);
648 return ret;
649 }
650
651 return 0;
652 }
653
654 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
655 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len);
656
657 /* Read 4-byte aligned data from Target memory or register */
658 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
659 u32 *data)
660 {
661 /* Assume range doesn't cross this boundary */
662 if (address >= DRAM_BASE_ADDRESS)
663 return ath10k_pci_diag_read32(ar, address, data);
664
665 *data = ath10k_pci_read32(ar, address);
666 return 0;
667 }
668
669 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
670 const void *data, int nbytes)
671 {
672 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
673 int ret = 0;
674 u32 buf;
675 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
676 unsigned int id;
677 unsigned int flags;
678 struct ath10k_ce_pipe *ce_diag;
679 void *data_buf = NULL;
680 u32 ce_data; /* Host buffer address in CE space */
681 dma_addr_t ce_data_base = 0;
682 int i;
683
684 ce_diag = ar_pci->ce_diag;
685
686 /*
687 * Allocate a temporary bounce buffer to hold caller's data
688 * to be DMA'ed to Target. This guarantees
689 * 1) 4-byte alignment
690 * 2) Buffer in DMA-able space
691 */
692 orig_nbytes = nbytes;
693 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
694 orig_nbytes,
695 &ce_data_base,
696 GFP_ATOMIC);
697 if (!data_buf) {
698 ret = -ENOMEM;
699 goto done;
700 }
701
702 /* Copy caller's data to allocated DMA buf */
703 memcpy(data_buf, data, orig_nbytes);
704
705 /*
706 * The address supplied by the caller is in the
707 * Target CPU virtual address space.
708 *
709 * In order to use this address with the diagnostic CE,
710 * convert it from
711 * Target CPU virtual address space
712 * to
713 * CE address space
714 */
715 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
716
717 remaining_bytes = orig_nbytes;
718 ce_data = ce_data_base;
719 while (remaining_bytes) {
720 /* FIXME: check cast */
721 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
722
723 /* Set up to receive directly into Target(!) address */
724 ret = ath10k_ce_rx_post_buf(ce_diag, NULL, address);
725 if (ret != 0)
726 goto done;
727
728 /*
729 * Request CE to send caller-supplied data that
730 * was copied to bounce buffer to Target(!) address.
731 */
732 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
733 nbytes, 0, 0);
734 if (ret != 0)
735 goto done;
736
737 i = 0;
738 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
739 &completed_nbytes,
740 &id) != 0) {
741 mdelay(1);
742
743 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
744 ret = -EBUSY;
745 goto done;
746 }
747 }
748
749 if (nbytes != completed_nbytes) {
750 ret = -EIO;
751 goto done;
752 }
753
754 if (buf != ce_data) {
755 ret = -EIO;
756 goto done;
757 }
758
759 i = 0;
760 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
761 &completed_nbytes,
762 &id, &flags) != 0) {
763 mdelay(1);
764
765 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
766 ret = -EBUSY;
767 goto done;
768 }
769 }
770
771 if (nbytes != completed_nbytes) {
772 ret = -EIO;
773 goto done;
774 }
775
776 if (buf != address) {
777 ret = -EIO;
778 goto done;
779 }
780
781 remaining_bytes -= nbytes;
782 address += nbytes;
783 ce_data += nbytes;
784 }
785
786 done:
787 if (data_buf) {
788 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
789 ce_data_base);
790 }
791
792 if (ret != 0)
793 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
794 address, ret);
795
796 return ret;
797 }
798
799 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
800 {
801 __le32 val = __cpu_to_le32(value);
802
803 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
804 }
805
806 /* Write 4B data to Target memory or register */
807 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
808 u32 data)
809 {
810 /* Assume range doesn't cross this boundary */
811 if (address >= DRAM_BASE_ADDRESS)
812 return ath10k_pci_diag_write32(ar, address, data);
813
814 ath10k_pci_write32(ar, address, data);
815 return 0;
816 }
817
818 static bool ath10k_pci_is_awake(struct ath10k *ar)
819 {
820 u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
821
822 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
823 }
824
825 static int ath10k_pci_wake_wait(struct ath10k *ar)
826 {
827 int tot_delay = 0;
828 int curr_delay = 5;
829
830 while (tot_delay < PCIE_WAKE_TIMEOUT) {
831 if (ath10k_pci_is_awake(ar))
832 return 0;
833
834 udelay(curr_delay);
835 tot_delay += curr_delay;
836
837 if (curr_delay < 50)
838 curr_delay += 5;
839 }
840
841 return -ETIMEDOUT;
842 }
843
844 static int ath10k_pci_wake(struct ath10k *ar)
845 {
846 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
847 PCIE_SOC_WAKE_V_MASK);
848 return ath10k_pci_wake_wait(ar);
849 }
850
851 static void ath10k_pci_sleep(struct ath10k *ar)
852 {
853 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
854 PCIE_SOC_WAKE_RESET);
855 }
856
857 /* Called by lower (CE) layer when a send to Target completes. */
858 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
859 {
860 struct ath10k *ar = ce_state->ar;
861 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
862 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
863 void *transfer_context;
864 u32 ce_data;
865 unsigned int nbytes;
866 unsigned int transfer_id;
867
868 while (ath10k_ce_completed_send_next(ce_state, &transfer_context,
869 &ce_data, &nbytes,
870 &transfer_id) == 0) {
871 /* no need to call tx completion for NULL pointers */
872 if (transfer_context == NULL)
873 continue;
874
875 cb->tx_completion(ar, transfer_context, transfer_id);
876 }
877 }
878
879 /* Called by lower (CE) layer when data is received from the Target. */
880 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
881 {
882 struct ath10k *ar = ce_state->ar;
883 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
884 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
885 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
886 struct sk_buff *skb;
887 void *transfer_context;
888 u32 ce_data;
889 unsigned int nbytes, max_nbytes;
890 unsigned int transfer_id;
891 unsigned int flags;
892
893 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
894 &ce_data, &nbytes, &transfer_id,
895 &flags) == 0) {
896 skb = transfer_context;
897 max_nbytes = skb->len + skb_tailroom(skb);
898 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
899 max_nbytes, DMA_FROM_DEVICE);
900
901 if (unlikely(max_nbytes < nbytes)) {
902 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
903 nbytes, max_nbytes);
904 dev_kfree_skb_any(skb);
905 continue;
906 }
907
908 skb_put(skb, nbytes);
909 cb->rx_completion(ar, skb, pipe_info->pipe_num);
910 }
911
912 ath10k_pci_rx_post_pipe(pipe_info);
913 }
914
915 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
916 struct ath10k_hif_sg_item *items, int n_items)
917 {
918 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
919 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
920 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
921 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
922 unsigned int nentries_mask;
923 unsigned int sw_index;
924 unsigned int write_index;
925 int err, i = 0;
926
927 spin_lock_bh(&ar_pci->ce_lock);
928
929 nentries_mask = src_ring->nentries_mask;
930 sw_index = src_ring->sw_index;
931 write_index = src_ring->write_index;
932
933 if (unlikely(CE_RING_DELTA(nentries_mask,
934 write_index, sw_index - 1) < n_items)) {
935 err = -ENOBUFS;
936 goto err;
937 }
938
939 for (i = 0; i < n_items - 1; i++) {
940 ath10k_dbg(ar, ATH10K_DBG_PCI,
941 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
942 i, items[i].paddr, items[i].len, n_items);
943 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
944 items[i].vaddr, items[i].len);
945
946 err = ath10k_ce_send_nolock(ce_pipe,
947 items[i].transfer_context,
948 items[i].paddr,
949 items[i].len,
950 items[i].transfer_id,
951 CE_SEND_FLAG_GATHER);
952 if (err)
953 goto err;
954 }
955
956 /* `i` is equal to `n_items -1` after for() */
957
958 ath10k_dbg(ar, ATH10K_DBG_PCI,
959 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
960 i, items[i].paddr, items[i].len, n_items);
961 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
962 items[i].vaddr, items[i].len);
963
964 err = ath10k_ce_send_nolock(ce_pipe,
965 items[i].transfer_context,
966 items[i].paddr,
967 items[i].len,
968 items[i].transfer_id,
969 0);
970 if (err)
971 goto err;
972
973 spin_unlock_bh(&ar_pci->ce_lock);
974 return 0;
975
976 err:
977 for (; i > 0; i--)
978 __ath10k_ce_send_revert(ce_pipe);
979
980 spin_unlock_bh(&ar_pci->ce_lock);
981 return err;
982 }
983
984 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
985 {
986 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
987
988 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
989
990 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
991 }
992
993 static void ath10k_pci_dump_registers(struct ath10k *ar,
994 struct ath10k_fw_crash_data *crash_data)
995 {
996 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
997 int i, ret;
998
999 lockdep_assert_held(&ar->data_lock);
1000
1001 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1002 hi_failure_state,
1003 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1004 if (ret) {
1005 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1006 return;
1007 }
1008
1009 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1010
1011 ath10k_err(ar, "firmware register dump:\n");
1012 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1013 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1014 i,
1015 __le32_to_cpu(reg_dump_values[i]),
1016 __le32_to_cpu(reg_dump_values[i + 1]),
1017 __le32_to_cpu(reg_dump_values[i + 2]),
1018 __le32_to_cpu(reg_dump_values[i + 3]));
1019
1020 if (!crash_data)
1021 return;
1022
1023 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1024 crash_data->registers[i] = reg_dump_values[i];
1025 }
1026
1027 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1028 {
1029 struct ath10k_fw_crash_data *crash_data;
1030 char uuid[50];
1031
1032 spin_lock_bh(&ar->data_lock);
1033
1034 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1035
1036 if (crash_data)
1037 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1038 else
1039 scnprintf(uuid, sizeof(uuid), "n/a");
1040
1041 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1042 ath10k_print_driver_info(ar);
1043 ath10k_pci_dump_registers(ar, crash_data);
1044
1045 spin_unlock_bh(&ar->data_lock);
1046
1047 queue_work(ar->workqueue, &ar->restart_work);
1048 }
1049
1050 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1051 int force)
1052 {
1053 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1054
1055 if (!force) {
1056 int resources;
1057 /*
1058 * Decide whether to actually poll for completions, or just
1059 * wait for a later chance.
1060 * If there seem to be plenty of resources left, then just wait
1061 * since checking involves reading a CE register, which is a
1062 * relatively expensive operation.
1063 */
1064 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1065
1066 /*
1067 * If at least 50% of the total resources are still available,
1068 * don't bother checking again yet.
1069 */
1070 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1071 return;
1072 }
1073 ath10k_ce_per_engine_service(ar, pipe);
1074 }
1075
1076 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1077 struct ath10k_hif_cb *callbacks)
1078 {
1079 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1080
1081 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1082
1083 memcpy(&ar_pci->msg_callbacks_current, callbacks,
1084 sizeof(ar_pci->msg_callbacks_current));
1085 }
1086
1087 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1088 {
1089 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1090 int i;
1091
1092 tasklet_kill(&ar_pci->intr_tq);
1093 tasklet_kill(&ar_pci->msi_fw_err);
1094
1095 for (i = 0; i < CE_COUNT; i++)
1096 tasklet_kill(&ar_pci->pipe_info[i].intr);
1097
1098 del_timer_sync(&ar_pci->rx_post_retry);
1099 }
1100
1101 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1102 u16 service_id, u8 *ul_pipe,
1103 u8 *dl_pipe, int *ul_is_polled,
1104 int *dl_is_polled)
1105 {
1106 const struct service_to_pipe *entry;
1107 bool ul_set = false, dl_set = false;
1108 int i;
1109
1110 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1111
1112 /* polling for received messages not supported */
1113 *dl_is_polled = 0;
1114
1115 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1116 entry = &target_service_to_ce_map_wlan[i];
1117
1118 if (__le32_to_cpu(entry->service_id) != service_id)
1119 continue;
1120
1121 switch (__le32_to_cpu(entry->pipedir)) {
1122 case PIPEDIR_NONE:
1123 break;
1124 case PIPEDIR_IN:
1125 WARN_ON(dl_set);
1126 *dl_pipe = __le32_to_cpu(entry->pipenum);
1127 dl_set = true;
1128 break;
1129 case PIPEDIR_OUT:
1130 WARN_ON(ul_set);
1131 *ul_pipe = __le32_to_cpu(entry->pipenum);
1132 ul_set = true;
1133 break;
1134 case PIPEDIR_INOUT:
1135 WARN_ON(dl_set);
1136 WARN_ON(ul_set);
1137 *dl_pipe = __le32_to_cpu(entry->pipenum);
1138 *ul_pipe = __le32_to_cpu(entry->pipenum);
1139 dl_set = true;
1140 ul_set = true;
1141 break;
1142 }
1143 }
1144
1145 if (WARN_ON(!ul_set || !dl_set))
1146 return -ENOENT;
1147
1148 *ul_is_polled =
1149 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1150
1151 return 0;
1152 }
1153
1154 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1155 u8 *ul_pipe, u8 *dl_pipe)
1156 {
1157 int ul_is_polled, dl_is_polled;
1158
1159 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1160
1161 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1162 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1163 ul_pipe,
1164 dl_pipe,
1165 &ul_is_polled,
1166 &dl_is_polled);
1167 }
1168
1169 static void ath10k_pci_irq_disable(struct ath10k *ar)
1170 {
1171 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1172 int i;
1173
1174 ath10k_ce_disable_interrupts(ar);
1175
1176 /* Regardless how many interrupts were assigned for MSI the first one
1177 * is always used for firmware indications (crashes). There's no way to
1178 * mask the irq in the device so call disable_irq(). Legacy (shared)
1179 * interrupts can be masked on the device though.
1180 */
1181 if (ar_pci->num_msi_intrs > 0)
1182 disable_irq(ar_pci->pdev->irq);
1183 else
1184 ath10k_pci_disable_and_clear_legacy_irq(ar);
1185
1186 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1187 synchronize_irq(ar_pci->pdev->irq + i);
1188 }
1189
1190 static void ath10k_pci_irq_enable(struct ath10k *ar)
1191 {
1192 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1193
1194 ath10k_ce_enable_interrupts(ar);
1195
1196 /* See comment in ath10k_pci_irq_disable() */
1197 if (ar_pci->num_msi_intrs > 0)
1198 enable_irq(ar_pci->pdev->irq);
1199 else
1200 ath10k_pci_enable_legacy_irq(ar);
1201 }
1202
1203 static int ath10k_pci_hif_start(struct ath10k *ar)
1204 {
1205 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1206
1207 ath10k_pci_irq_enable(ar);
1208 ath10k_pci_rx_post(ar);
1209
1210 return 0;
1211 }
1212
1213 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1214 {
1215 struct ath10k *ar;
1216 struct ath10k_pci *ar_pci;
1217 struct ath10k_ce_pipe *ce_hdl;
1218 u32 buf_sz;
1219 struct sk_buff *netbuf;
1220 u32 ce_data;
1221
1222 buf_sz = pipe_info->buf_sz;
1223
1224 /* Unused Copy Engine */
1225 if (buf_sz == 0)
1226 return;
1227
1228 ar = pipe_info->hif_ce_state;
1229 ar_pci = ath10k_pci_priv(ar);
1230 ce_hdl = pipe_info->ce_hdl;
1231
1232 while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1233 &ce_data) == 0) {
1234 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1235 netbuf->len + skb_tailroom(netbuf),
1236 DMA_FROM_DEVICE);
1237 dev_kfree_skb_any(netbuf);
1238 }
1239 }
1240
1241 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1242 {
1243 struct ath10k *ar;
1244 struct ath10k_pci *ar_pci;
1245 struct ath10k_ce_pipe *ce_hdl;
1246 struct sk_buff *netbuf;
1247 u32 ce_data;
1248 unsigned int nbytes;
1249 unsigned int id;
1250 u32 buf_sz;
1251
1252 buf_sz = pipe_info->buf_sz;
1253
1254 /* Unused Copy Engine */
1255 if (buf_sz == 0)
1256 return;
1257
1258 ar = pipe_info->hif_ce_state;
1259 ar_pci = ath10k_pci_priv(ar);
1260 ce_hdl = pipe_info->ce_hdl;
1261
1262 while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1263 &ce_data, &nbytes, &id) == 0) {
1264 /* no need to call tx completion for NULL pointers */
1265 if (!netbuf)
1266 continue;
1267
1268 ar_pci->msg_callbacks_current.tx_completion(ar,
1269 netbuf,
1270 id);
1271 }
1272 }
1273
1274 /*
1275 * Cleanup residual buffers for device shutdown:
1276 * buffers that were enqueued for receive
1277 * buffers that were to be sent
1278 * Note: Buffers that had completed but which were
1279 * not yet processed are on a completion queue. They
1280 * are handled when the completion thread shuts down.
1281 */
1282 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1283 {
1284 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1285 int pipe_num;
1286
1287 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1288 struct ath10k_pci_pipe *pipe_info;
1289
1290 pipe_info = &ar_pci->pipe_info[pipe_num];
1291 ath10k_pci_rx_pipe_cleanup(pipe_info);
1292 ath10k_pci_tx_pipe_cleanup(pipe_info);
1293 }
1294 }
1295
1296 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1297 {
1298 int i;
1299
1300 for (i = 0; i < CE_COUNT; i++)
1301 ath10k_ce_deinit_pipe(ar, i);
1302 }
1303
1304 static void ath10k_pci_flush(struct ath10k *ar)
1305 {
1306 ath10k_pci_kill_tasklet(ar);
1307 ath10k_pci_buffer_cleanup(ar);
1308 }
1309
1310 static void ath10k_pci_hif_stop(struct ath10k *ar)
1311 {
1312 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1313
1314 ath10k_pci_irq_disable(ar);
1315 ath10k_pci_flush(ar);
1316
1317 /* Most likely the device has HTT Rx ring configured. The only way to
1318 * prevent the device from accessing (and possible corrupting) host
1319 * memory is to reset the chip now.
1320 */
1321 ath10k_pci_warm_reset(ar);
1322 }
1323
1324 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1325 void *req, u32 req_len,
1326 void *resp, u32 *resp_len)
1327 {
1328 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1329 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1330 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1331 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1332 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1333 dma_addr_t req_paddr = 0;
1334 dma_addr_t resp_paddr = 0;
1335 struct bmi_xfer xfer = {};
1336 void *treq, *tresp = NULL;
1337 int ret = 0;
1338
1339 might_sleep();
1340
1341 if (resp && !resp_len)
1342 return -EINVAL;
1343
1344 if (resp && resp_len && *resp_len == 0)
1345 return -EINVAL;
1346
1347 treq = kmemdup(req, req_len, GFP_KERNEL);
1348 if (!treq)
1349 return -ENOMEM;
1350
1351 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1352 ret = dma_mapping_error(ar->dev, req_paddr);
1353 if (ret)
1354 goto err_dma;
1355
1356 if (resp && resp_len) {
1357 tresp = kzalloc(*resp_len, GFP_KERNEL);
1358 if (!tresp) {
1359 ret = -ENOMEM;
1360 goto err_req;
1361 }
1362
1363 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1364 DMA_FROM_DEVICE);
1365 ret = dma_mapping_error(ar->dev, resp_paddr);
1366 if (ret)
1367 goto err_req;
1368
1369 xfer.wait_for_resp = true;
1370 xfer.resp_len = 0;
1371
1372 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1373 }
1374
1375 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1376 if (ret)
1377 goto err_resp;
1378
1379 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1380 if (ret) {
1381 u32 unused_buffer;
1382 unsigned int unused_nbytes;
1383 unsigned int unused_id;
1384
1385 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1386 &unused_nbytes, &unused_id);
1387 } else {
1388 /* non-zero means we did not time out */
1389 ret = 0;
1390 }
1391
1392 err_resp:
1393 if (resp) {
1394 u32 unused_buffer;
1395
1396 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1397 dma_unmap_single(ar->dev, resp_paddr,
1398 *resp_len, DMA_FROM_DEVICE);
1399 }
1400 err_req:
1401 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1402
1403 if (ret == 0 && resp_len) {
1404 *resp_len = min(*resp_len, xfer.resp_len);
1405 memcpy(resp, tresp, xfer.resp_len);
1406 }
1407 err_dma:
1408 kfree(treq);
1409 kfree(tresp);
1410
1411 return ret;
1412 }
1413
1414 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1415 {
1416 struct bmi_xfer *xfer;
1417 u32 ce_data;
1418 unsigned int nbytes;
1419 unsigned int transfer_id;
1420
1421 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1422 &nbytes, &transfer_id))
1423 return;
1424
1425 xfer->tx_done = true;
1426 }
1427
1428 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1429 {
1430 struct ath10k *ar = ce_state->ar;
1431 struct bmi_xfer *xfer;
1432 u32 ce_data;
1433 unsigned int nbytes;
1434 unsigned int transfer_id;
1435 unsigned int flags;
1436
1437 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1438 &nbytes, &transfer_id, &flags))
1439 return;
1440
1441 if (!xfer->wait_for_resp) {
1442 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1443 return;
1444 }
1445
1446 xfer->resp_len = nbytes;
1447 xfer->rx_done = true;
1448 }
1449
1450 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1451 struct ath10k_ce_pipe *rx_pipe,
1452 struct bmi_xfer *xfer)
1453 {
1454 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1455
1456 while (time_before_eq(jiffies, timeout)) {
1457 ath10k_pci_bmi_send_done(tx_pipe);
1458 ath10k_pci_bmi_recv_data(rx_pipe);
1459
1460 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1461 return 0;
1462
1463 schedule();
1464 }
1465
1466 return -ETIMEDOUT;
1467 }
1468
1469 /*
1470 * Send an interrupt to the device to wake up the Target CPU
1471 * so it has an opportunity to notice any changed state.
1472 */
1473 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1474 {
1475 int ret;
1476 u32 core_ctrl;
1477
1478 ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1479 CORE_CTRL_ADDRESS,
1480 &core_ctrl);
1481 if (ret) {
1482 ath10k_warn(ar, "failed to read core_ctrl: %d\n", ret);
1483 return ret;
1484 }
1485
1486 /* A_INUM_FIRMWARE interrupt to Target CPU */
1487 core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1488
1489 ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1490 CORE_CTRL_ADDRESS,
1491 core_ctrl);
1492 if (ret) {
1493 ath10k_warn(ar, "failed to set target CPU interrupt mask: %d\n",
1494 ret);
1495 return ret;
1496 }
1497
1498 return 0;
1499 }
1500
1501 static int ath10k_pci_init_config(struct ath10k *ar)
1502 {
1503 u32 interconnect_targ_addr;
1504 u32 pcie_state_targ_addr = 0;
1505 u32 pipe_cfg_targ_addr = 0;
1506 u32 svc_to_pipe_map = 0;
1507 u32 pcie_config_flags = 0;
1508 u32 ealloc_value;
1509 u32 ealloc_targ_addr;
1510 u32 flag2_value;
1511 u32 flag2_targ_addr;
1512 int ret = 0;
1513
1514 /* Download to Target the CE Config and the service-to-CE map */
1515 interconnect_targ_addr =
1516 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1517
1518 /* Supply Target-side CE configuration */
1519 ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1520 &pcie_state_targ_addr);
1521 if (ret != 0) {
1522 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1523 return ret;
1524 }
1525
1526 if (pcie_state_targ_addr == 0) {
1527 ret = -EIO;
1528 ath10k_err(ar, "Invalid pcie state addr\n");
1529 return ret;
1530 }
1531
1532 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1533 offsetof(struct pcie_state,
1534 pipe_cfg_addr),
1535 &pipe_cfg_targ_addr);
1536 if (ret != 0) {
1537 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1538 return ret;
1539 }
1540
1541 if (pipe_cfg_targ_addr == 0) {
1542 ret = -EIO;
1543 ath10k_err(ar, "Invalid pipe cfg addr\n");
1544 return ret;
1545 }
1546
1547 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1548 target_ce_config_wlan,
1549 sizeof(target_ce_config_wlan));
1550
1551 if (ret != 0) {
1552 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1553 return ret;
1554 }
1555
1556 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1557 offsetof(struct pcie_state,
1558 svc_to_pipe_map),
1559 &svc_to_pipe_map);
1560 if (ret != 0) {
1561 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1562 return ret;
1563 }
1564
1565 if (svc_to_pipe_map == 0) {
1566 ret = -EIO;
1567 ath10k_err(ar, "Invalid svc_to_pipe map\n");
1568 return ret;
1569 }
1570
1571 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1572 target_service_to_ce_map_wlan,
1573 sizeof(target_service_to_ce_map_wlan));
1574 if (ret != 0) {
1575 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1576 return ret;
1577 }
1578
1579 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1580 offsetof(struct pcie_state,
1581 config_flags),
1582 &pcie_config_flags);
1583 if (ret != 0) {
1584 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1585 return ret;
1586 }
1587
1588 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1589
1590 ret = ath10k_pci_diag_write_access(ar, pcie_state_targ_addr +
1591 offsetof(struct pcie_state, config_flags),
1592 pcie_config_flags);
1593 if (ret != 0) {
1594 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1595 return ret;
1596 }
1597
1598 /* configure early allocation */
1599 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1600
1601 ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1602 if (ret != 0) {
1603 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1604 return ret;
1605 }
1606
1607 /* first bank is switched to IRAM */
1608 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1609 HI_EARLY_ALLOC_MAGIC_MASK);
1610 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1611 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1612
1613 ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1614 if (ret != 0) {
1615 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1616 return ret;
1617 }
1618
1619 /* Tell Target to proceed with initialization */
1620 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1621
1622 ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1623 if (ret != 0) {
1624 ath10k_err(ar, "Failed to get option val: %d\n", ret);
1625 return ret;
1626 }
1627
1628 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1629
1630 ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1631 if (ret != 0) {
1632 ath10k_err(ar, "Failed to set option val: %d\n", ret);
1633 return ret;
1634 }
1635
1636 return 0;
1637 }
1638
1639 static int ath10k_pci_alloc_ce(struct ath10k *ar)
1640 {
1641 int i, ret;
1642
1643 for (i = 0; i < CE_COUNT; i++) {
1644 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
1645 if (ret) {
1646 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1647 i, ret);
1648 return ret;
1649 }
1650 }
1651
1652 return 0;
1653 }
1654
1655 static void ath10k_pci_free_ce(struct ath10k *ar)
1656 {
1657 int i;
1658
1659 for (i = 0; i < CE_COUNT; i++)
1660 ath10k_ce_free_pipe(ar, i);
1661 }
1662
1663 static int ath10k_pci_ce_init(struct ath10k *ar)
1664 {
1665 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1666 struct ath10k_pci_pipe *pipe_info;
1667 const struct ce_attr *attr;
1668 int pipe_num, ret;
1669
1670 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1671 pipe_info = &ar_pci->pipe_info[pipe_num];
1672 pipe_info->ce_hdl = &ar_pci->ce_states[pipe_num];
1673 pipe_info->pipe_num = pipe_num;
1674 pipe_info->hif_ce_state = ar;
1675 attr = &host_ce_config_wlan[pipe_num];
1676
1677 ret = ath10k_ce_init_pipe(ar, pipe_num, attr,
1678 ath10k_pci_ce_send_done,
1679 ath10k_pci_ce_recv_data);
1680 if (ret) {
1681 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1682 pipe_num, ret);
1683 return ret;
1684 }
1685
1686 if (pipe_num == CE_COUNT - 1) {
1687 /*
1688 * Reserve the ultimate CE for
1689 * diagnostic Window support
1690 */
1691 ar_pci->ce_diag = pipe_info->ce_hdl;
1692 continue;
1693 }
1694
1695 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1696 }
1697
1698 return 0;
1699 }
1700
1701 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1702 {
1703 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1704 FW_IND_EVENT_PENDING;
1705 }
1706
1707 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1708 {
1709 u32 val;
1710
1711 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1712 val &= ~FW_IND_EVENT_PENDING;
1713 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1714 }
1715
1716 /* this function effectively clears target memory controller assert line */
1717 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1718 {
1719 u32 val;
1720
1721 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1722 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1723 val | SOC_RESET_CONTROL_SI0_RST_MASK);
1724 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1725
1726 msleep(10);
1727
1728 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1729 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1730 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1731 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1732
1733 msleep(10);
1734 }
1735
1736 static int ath10k_pci_warm_reset(struct ath10k *ar)
1737 {
1738 u32 val;
1739
1740 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1741
1742 /* debug */
1743 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1744 PCIE_INTR_CAUSE_ADDRESS);
1745 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n",
1746 val);
1747
1748 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1749 CPU_INTR_ADDRESS);
1750 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
1751 val);
1752
1753 /* disable pending irqs */
1754 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1755 PCIE_INTR_ENABLE_ADDRESS, 0);
1756
1757 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1758 PCIE_INTR_CLR_ADDRESS, ~0);
1759
1760 msleep(100);
1761
1762 /* clear fw indicator */
1763 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1764
1765 /* clear target LF timer interrupts */
1766 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1767 SOC_LF_TIMER_CONTROL0_ADDRESS);
1768 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1769 SOC_LF_TIMER_CONTROL0_ADDRESS,
1770 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1771
1772 /* reset CE */
1773 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1774 SOC_RESET_CONTROL_ADDRESS);
1775 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1776 val | SOC_RESET_CONTROL_CE_RST_MASK);
1777 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1778 SOC_RESET_CONTROL_ADDRESS);
1779 msleep(10);
1780
1781 /* unreset CE */
1782 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1783 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1784 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1785 SOC_RESET_CONTROL_ADDRESS);
1786 msleep(10);
1787
1788 ath10k_pci_warm_reset_si0(ar);
1789
1790 /* debug */
1791 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1792 PCIE_INTR_CAUSE_ADDRESS);
1793 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n",
1794 val);
1795
1796 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1797 CPU_INTR_ADDRESS);
1798 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
1799 val);
1800
1801 /* CPU warm reset */
1802 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1803 SOC_RESET_CONTROL_ADDRESS);
1804 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1805 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1806
1807 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1808 SOC_RESET_CONTROL_ADDRESS);
1809 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target reset state: 0x%08x\n",
1810 val);
1811
1812 msleep(100);
1813
1814 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
1815
1816 return 0;
1817 }
1818
1819 static int __ath10k_pci_hif_power_up(struct ath10k *ar, bool cold_reset)
1820 {
1821 int ret;
1822
1823 /*
1824 * Bring the target up cleanly.
1825 *
1826 * The target may be in an undefined state with an AUX-powered Target
1827 * and a Host in WoW mode. If the Host crashes, loses power, or is
1828 * restarted (without unloading the driver) then the Target is left
1829 * (aux) powered and running. On a subsequent driver load, the Target
1830 * is in an unexpected state. We try to catch that here in order to
1831 * reset the Target and retry the probe.
1832 */
1833 if (cold_reset)
1834 ret = ath10k_pci_cold_reset(ar);
1835 else
1836 ret = ath10k_pci_warm_reset(ar);
1837
1838 if (ret) {
1839 ath10k_err(ar, "failed to reset target: %d\n", ret);
1840 goto err;
1841 }
1842
1843 ret = ath10k_pci_ce_init(ar);
1844 if (ret) {
1845 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
1846 goto err;
1847 }
1848
1849 ret = ath10k_pci_wait_for_target_init(ar);
1850 if (ret) {
1851 ath10k_err(ar, "failed to wait for target to init: %d\n", ret);
1852 goto err_ce;
1853 }
1854
1855 ret = ath10k_pci_init_config(ar);
1856 if (ret) {
1857 ath10k_err(ar, "failed to setup init config: %d\n", ret);
1858 goto err_ce;
1859 }
1860
1861 ret = ath10k_pci_wake_target_cpu(ar);
1862 if (ret) {
1863 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
1864 goto err_ce;
1865 }
1866
1867 return 0;
1868
1869 err_ce:
1870 ath10k_pci_ce_deinit(ar);
1871 ath10k_pci_warm_reset(ar);
1872 err:
1873 return ret;
1874 }
1875
1876 static int ath10k_pci_hif_power_up_warm(struct ath10k *ar)
1877 {
1878 int i, ret;
1879
1880 /*
1881 * Sometime warm reset succeeds after retries.
1882 *
1883 * FIXME: It might be possible to tune ath10k_pci_warm_reset() to work
1884 * at first try.
1885 */
1886 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
1887 ret = __ath10k_pci_hif_power_up(ar, false);
1888 if (ret == 0)
1889 break;
1890
1891 ath10k_warn(ar, "failed to warm reset (attempt %d out of %d): %d\n",
1892 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, ret);
1893 }
1894
1895 return ret;
1896 }
1897
1898 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1899 {
1900 int ret;
1901
1902 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
1903
1904 /*
1905 * Hardware CUS232 version 2 has some issues with cold reset and the
1906 * preferred (and safer) way to perform a device reset is through a
1907 * warm reset.
1908 *
1909 * Warm reset doesn't always work though so fall back to cold reset may
1910 * be necessary.
1911 */
1912 ret = ath10k_pci_hif_power_up_warm(ar);
1913 if (ret) {
1914 ath10k_warn(ar, "failed to power up target using warm reset: %d\n",
1915 ret);
1916
1917 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY)
1918 return ret;
1919
1920 ath10k_warn(ar, "trying cold reset\n");
1921
1922 ret = __ath10k_pci_hif_power_up(ar, true);
1923 if (ret) {
1924 ath10k_err(ar, "failed to power up target using cold reset too (%d)\n",
1925 ret);
1926 return ret;
1927 }
1928 }
1929
1930 return 0;
1931 }
1932
1933 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1934 {
1935 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
1936
1937 ath10k_pci_warm_reset(ar);
1938 }
1939
1940 #ifdef CONFIG_PM
1941
1942 #define ATH10K_PCI_PM_CONTROL 0x44
1943
1944 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1945 {
1946 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1947 struct pci_dev *pdev = ar_pci->pdev;
1948 u32 val;
1949
1950 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1951
1952 if ((val & 0x000000ff) != 0x3) {
1953 pci_save_state(pdev);
1954 pci_disable_device(pdev);
1955 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1956 (val & 0xffffff00) | 0x03);
1957 }
1958
1959 return 0;
1960 }
1961
1962 static int ath10k_pci_hif_resume(struct ath10k *ar)
1963 {
1964 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1965 struct pci_dev *pdev = ar_pci->pdev;
1966 u32 val;
1967
1968 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1969
1970 if ((val & 0x000000ff) != 0) {
1971 pci_restore_state(pdev);
1972 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1973 val & 0xffffff00);
1974 /*
1975 * Suspend/Resume resets the PCI configuration space,
1976 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1977 * to keep PCI Tx retries from interfering with C3 CPU state
1978 */
1979 pci_read_config_dword(pdev, 0x40, &val);
1980
1981 if ((val & 0x0000ff00) != 0)
1982 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1983 }
1984
1985 return 0;
1986 }
1987 #endif
1988
1989 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1990 .tx_sg = ath10k_pci_hif_tx_sg,
1991 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
1992 .start = ath10k_pci_hif_start,
1993 .stop = ath10k_pci_hif_stop,
1994 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
1995 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
1996 .send_complete_check = ath10k_pci_hif_send_complete_check,
1997 .set_callbacks = ath10k_pci_hif_set_callbacks,
1998 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
1999 .power_up = ath10k_pci_hif_power_up,
2000 .power_down = ath10k_pci_hif_power_down,
2001 #ifdef CONFIG_PM
2002 .suspend = ath10k_pci_hif_suspend,
2003 .resume = ath10k_pci_hif_resume,
2004 #endif
2005 };
2006
2007 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2008 {
2009 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2010 struct ath10k_pci *ar_pci = pipe->ar_pci;
2011
2012 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2013 }
2014
2015 static void ath10k_msi_err_tasklet(unsigned long data)
2016 {
2017 struct ath10k *ar = (struct ath10k *)data;
2018
2019 if (!ath10k_pci_has_fw_crashed(ar)) {
2020 ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2021 return;
2022 }
2023
2024 ath10k_pci_fw_crashed_clear(ar);
2025 ath10k_pci_fw_crashed_dump(ar);
2026 }
2027
2028 /*
2029 * Handler for a per-engine interrupt on a PARTICULAR CE.
2030 * This is used in cases where each CE has a private MSI interrupt.
2031 */
2032 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2033 {
2034 struct ath10k *ar = arg;
2035 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2036 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2037
2038 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2039 ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2040 ce_id);
2041 return IRQ_HANDLED;
2042 }
2043
2044 /*
2045 * NOTE: We are able to derive ce_id from irq because we
2046 * use a one-to-one mapping for CE's 0..5.
2047 * CE's 6 & 7 do not use interrupts at all.
2048 *
2049 * This mapping must be kept in sync with the mapping
2050 * used by firmware.
2051 */
2052 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2053 return IRQ_HANDLED;
2054 }
2055
2056 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2057 {
2058 struct ath10k *ar = arg;
2059 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2060
2061 tasklet_schedule(&ar_pci->msi_fw_err);
2062 return IRQ_HANDLED;
2063 }
2064
2065 /*
2066 * Top-level interrupt handler for all PCI interrupts from a Target.
2067 * When a block of MSI interrupts is allocated, this top-level handler
2068 * is not used; instead, we directly call the correct sub-handler.
2069 */
2070 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2071 {
2072 struct ath10k *ar = arg;
2073 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074
2075 if (ar_pci->num_msi_intrs == 0) {
2076 if (!ath10k_pci_irq_pending(ar))
2077 return IRQ_NONE;
2078
2079 ath10k_pci_disable_and_clear_legacy_irq(ar);
2080 }
2081
2082 tasklet_schedule(&ar_pci->intr_tq);
2083
2084 return IRQ_HANDLED;
2085 }
2086
2087 static void ath10k_pci_tasklet(unsigned long data)
2088 {
2089 struct ath10k *ar = (struct ath10k *)data;
2090 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2091
2092 if (ath10k_pci_has_fw_crashed(ar)) {
2093 ath10k_pci_fw_crashed_clear(ar);
2094 ath10k_pci_fw_crashed_dump(ar);
2095 return;
2096 }
2097
2098 ath10k_ce_per_engine_service_any(ar);
2099
2100 /* Re-enable legacy irq that was disabled in the irq handler */
2101 if (ar_pci->num_msi_intrs == 0)
2102 ath10k_pci_enable_legacy_irq(ar);
2103 }
2104
2105 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2106 {
2107 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2108 int ret, i;
2109
2110 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2111 ath10k_pci_msi_fw_handler,
2112 IRQF_SHARED, "ath10k_pci", ar);
2113 if (ret) {
2114 ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2115 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2116 return ret;
2117 }
2118
2119 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2120 ret = request_irq(ar_pci->pdev->irq + i,
2121 ath10k_pci_per_engine_handler,
2122 IRQF_SHARED, "ath10k_pci", ar);
2123 if (ret) {
2124 ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2125 ar_pci->pdev->irq + i, ret);
2126
2127 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2128 free_irq(ar_pci->pdev->irq + i, ar);
2129
2130 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2131 return ret;
2132 }
2133 }
2134
2135 return 0;
2136 }
2137
2138 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2139 {
2140 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2141 int ret;
2142
2143 ret = request_irq(ar_pci->pdev->irq,
2144 ath10k_pci_interrupt_handler,
2145 IRQF_SHARED, "ath10k_pci", ar);
2146 if (ret) {
2147 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2148 ar_pci->pdev->irq, ret);
2149 return ret;
2150 }
2151
2152 return 0;
2153 }
2154
2155 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2156 {
2157 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2158 int ret;
2159
2160 ret = request_irq(ar_pci->pdev->irq,
2161 ath10k_pci_interrupt_handler,
2162 IRQF_SHARED, "ath10k_pci", ar);
2163 if (ret) {
2164 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2165 ar_pci->pdev->irq, ret);
2166 return ret;
2167 }
2168
2169 return 0;
2170 }
2171
2172 static int ath10k_pci_request_irq(struct ath10k *ar)
2173 {
2174 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2175
2176 switch (ar_pci->num_msi_intrs) {
2177 case 0:
2178 return ath10k_pci_request_irq_legacy(ar);
2179 case 1:
2180 return ath10k_pci_request_irq_msi(ar);
2181 case MSI_NUM_REQUEST:
2182 return ath10k_pci_request_irq_msix(ar);
2183 }
2184
2185 ath10k_warn(ar, "unknown irq configuration upon request\n");
2186 return -EINVAL;
2187 }
2188
2189 static void ath10k_pci_free_irq(struct ath10k *ar)
2190 {
2191 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2192 int i;
2193
2194 /* There's at least one interrupt irregardless whether its legacy INTR
2195 * or MSI or MSI-X */
2196 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2197 free_irq(ar_pci->pdev->irq + i, ar);
2198 }
2199
2200 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2201 {
2202 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2203 int i;
2204
2205 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2206 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2207 (unsigned long)ar);
2208
2209 for (i = 0; i < CE_COUNT; i++) {
2210 ar_pci->pipe_info[i].ar_pci = ar_pci;
2211 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2212 (unsigned long)&ar_pci->pipe_info[i]);
2213 }
2214 }
2215
2216 static int ath10k_pci_init_irq(struct ath10k *ar)
2217 {
2218 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2219 int ret;
2220
2221 ath10k_pci_init_irq_tasklets(ar);
2222
2223 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2224 ath10k_info(ar, "limiting irq mode to: %d\n",
2225 ath10k_pci_irq_mode);
2226
2227 /* Try MSI-X */
2228 if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2229 ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2230 ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2231 ar_pci->num_msi_intrs);
2232 if (ret > 0)
2233 return 0;
2234
2235 /* fall-through */
2236 }
2237
2238 /* Try MSI */
2239 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2240 ar_pci->num_msi_intrs = 1;
2241 ret = pci_enable_msi(ar_pci->pdev);
2242 if (ret == 0)
2243 return 0;
2244
2245 /* fall-through */
2246 }
2247
2248 /* Try legacy irq
2249 *
2250 * A potential race occurs here: The CORE_BASE write
2251 * depends on target correctly decoding AXI address but
2252 * host won't know when target writes BAR to CORE_CTRL.
2253 * This write might get lost if target has NOT written BAR.
2254 * For now, fix the race by repeating the write in below
2255 * synchronization checking. */
2256 ar_pci->num_msi_intrs = 0;
2257
2258 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2259 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2260
2261 return 0;
2262 }
2263
2264 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2265 {
2266 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2267 0);
2268 }
2269
2270 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2271 {
2272 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2273
2274 switch (ar_pci->num_msi_intrs) {
2275 case 0:
2276 ath10k_pci_deinit_irq_legacy(ar);
2277 return 0;
2278 case 1:
2279 /* fall-through */
2280 case MSI_NUM_REQUEST:
2281 pci_disable_msi(ar_pci->pdev);
2282 return 0;
2283 default:
2284 pci_disable_msi(ar_pci->pdev);
2285 }
2286
2287 ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2288 return -EINVAL;
2289 }
2290
2291 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2292 {
2293 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2294 unsigned long timeout;
2295 u32 val;
2296
2297 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2298
2299 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2300
2301 do {
2302 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2303
2304 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2305 val);
2306
2307 /* target should never return this */
2308 if (val == 0xffffffff)
2309 continue;
2310
2311 /* the device has crashed so don't bother trying anymore */
2312 if (val & FW_IND_EVENT_PENDING)
2313 break;
2314
2315 if (val & FW_IND_INITIALIZED)
2316 break;
2317
2318 if (ar_pci->num_msi_intrs == 0)
2319 /* Fix potential race by repeating CORE_BASE writes */
2320 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
2321 PCIE_INTR_ENABLE_ADDRESS,
2322 PCIE_INTR_FIRMWARE_MASK |
2323 PCIE_INTR_CE_MASK_ALL);
2324
2325 mdelay(10);
2326 } while (time_before(jiffies, timeout));
2327
2328 if (val == 0xffffffff) {
2329 ath10k_err(ar, "failed to read device register, device is gone\n");
2330 return -EIO;
2331 }
2332
2333 if (val & FW_IND_EVENT_PENDING) {
2334 ath10k_warn(ar, "device has crashed during init\n");
2335 ath10k_pci_fw_crashed_clear(ar);
2336 ath10k_pci_fw_crashed_dump(ar);
2337 return -ECOMM;
2338 }
2339
2340 if (!(val & FW_IND_INITIALIZED)) {
2341 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2342 val);
2343 return -ETIMEDOUT;
2344 }
2345
2346 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2347 return 0;
2348 }
2349
2350 static int ath10k_pci_cold_reset(struct ath10k *ar)
2351 {
2352 int i;
2353 u32 val;
2354
2355 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2356
2357 /* Put Target, including PCIe, into RESET. */
2358 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2359 val |= 1;
2360 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2361
2362 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2363 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2364 RTC_STATE_COLD_RESET_MASK)
2365 break;
2366 msleep(1);
2367 }
2368
2369 /* Pull Target, including PCIe, out of RESET. */
2370 val &= ~1;
2371 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2372
2373 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2374 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2375 RTC_STATE_COLD_RESET_MASK))
2376 break;
2377 msleep(1);
2378 }
2379
2380 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2381
2382 return 0;
2383 }
2384
2385 static int ath10k_pci_claim(struct ath10k *ar)
2386 {
2387 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2388 struct pci_dev *pdev = ar_pci->pdev;
2389 u32 lcr_val;
2390 int ret;
2391
2392 pci_set_drvdata(pdev, ar);
2393
2394 ret = pci_enable_device(pdev);
2395 if (ret) {
2396 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2397 return ret;
2398 }
2399
2400 ret = pci_request_region(pdev, BAR_NUM, "ath");
2401 if (ret) {
2402 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2403 ret);
2404 goto err_device;
2405 }
2406
2407 /* Target expects 32 bit DMA. Enforce it. */
2408 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2409 if (ret) {
2410 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2411 goto err_region;
2412 }
2413
2414 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2415 if (ret) {
2416 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2417 ret);
2418 goto err_region;
2419 }
2420
2421 pci_set_master(pdev);
2422
2423 /* Workaround: Disable ASPM */
2424 pci_read_config_dword(pdev, 0x80, &lcr_val);
2425 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2426
2427 /* Arrange for access to Target SoC registers. */
2428 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2429 if (!ar_pci->mem) {
2430 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2431 ret = -EIO;
2432 goto err_master;
2433 }
2434
2435 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2436 return 0;
2437
2438 err_master:
2439 pci_clear_master(pdev);
2440
2441 err_region:
2442 pci_release_region(pdev, BAR_NUM);
2443
2444 err_device:
2445 pci_disable_device(pdev);
2446
2447 return ret;
2448 }
2449
2450 static void ath10k_pci_release(struct ath10k *ar)
2451 {
2452 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2453 struct pci_dev *pdev = ar_pci->pdev;
2454
2455 pci_iounmap(pdev, ar_pci->mem);
2456 pci_release_region(pdev, BAR_NUM);
2457 pci_clear_master(pdev);
2458 pci_disable_device(pdev);
2459 }
2460
2461 static int ath10k_pci_probe(struct pci_dev *pdev,
2462 const struct pci_device_id *pci_dev)
2463 {
2464 int ret = 0;
2465 struct ath10k *ar;
2466 struct ath10k_pci *ar_pci;
2467 u32 chip_id;
2468
2469 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev,
2470 &ath10k_pci_hif_ops);
2471 if (!ar) {
2472 dev_err(&pdev->dev, "failed to allocate core\n");
2473 return -ENOMEM;
2474 }
2475
2476 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2477
2478 ar_pci = ath10k_pci_priv(ar);
2479 ar_pci->pdev = pdev;
2480 ar_pci->dev = &pdev->dev;
2481 ar_pci->ar = ar;
2482
2483 spin_lock_init(&ar_pci->ce_lock);
2484 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2485 (unsigned long)ar);
2486
2487 ret = ath10k_pci_claim(ar);
2488 if (ret) {
2489 ath10k_err(ar, "failed to claim device: %d\n", ret);
2490 goto err_core_destroy;
2491 }
2492
2493 ret = ath10k_pci_wake(ar);
2494 if (ret) {
2495 ath10k_err(ar, "failed to wake up: %d\n", ret);
2496 goto err_release;
2497 }
2498
2499 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2500 if (chip_id == 0xffffffff) {
2501 ath10k_err(ar, "failed to get chip id\n");
2502 goto err_sleep;
2503 }
2504
2505 ret = ath10k_pci_alloc_ce(ar);
2506 if (ret) {
2507 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2508 ret);
2509 goto err_sleep;
2510 }
2511
2512 ath10k_pci_ce_deinit(ar);
2513
2514 ret = ath10k_ce_disable_interrupts(ar);
2515 if (ret) {
2516 ath10k_err(ar, "failed to disable copy engine interrupts: %d\n",
2517 ret);
2518 goto err_free_ce;
2519 }
2520
2521 /* Workaround: There's no known way to mask all possible interrupts via
2522 * device CSR. The only way to make sure device doesn't assert
2523 * interrupts is to reset it. Interrupts are then disabled on host
2524 * after handlers are registered.
2525 */
2526 ath10k_pci_warm_reset(ar);
2527
2528 ret = ath10k_pci_init_irq(ar);
2529 if (ret) {
2530 ath10k_err(ar, "failed to init irqs: %d\n", ret);
2531 goto err_free_ce;
2532 }
2533
2534 ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2535 ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2536 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2537
2538 ret = ath10k_pci_request_irq(ar);
2539 if (ret) {
2540 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2541 goto err_deinit_irq;
2542 }
2543
2544 /* This shouldn't race as the device has been reset above. */
2545 ath10k_pci_irq_disable(ar);
2546
2547 ret = ath10k_core_register(ar, chip_id);
2548 if (ret) {
2549 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2550 goto err_free_irq;
2551 }
2552
2553 return 0;
2554
2555 err_free_irq:
2556 ath10k_pci_free_irq(ar);
2557
2558 err_deinit_irq:
2559 ath10k_pci_deinit_irq(ar);
2560
2561 err_free_ce:
2562 ath10k_pci_free_ce(ar);
2563
2564 err_sleep:
2565 ath10k_pci_sleep(ar);
2566
2567 err_release:
2568 ath10k_pci_release(ar);
2569
2570 err_core_destroy:
2571 ath10k_core_destroy(ar);
2572
2573 return ret;
2574 }
2575
2576 static void ath10k_pci_remove(struct pci_dev *pdev)
2577 {
2578 struct ath10k *ar = pci_get_drvdata(pdev);
2579 struct ath10k_pci *ar_pci;
2580
2581 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2582
2583 if (!ar)
2584 return;
2585
2586 ar_pci = ath10k_pci_priv(ar);
2587
2588 if (!ar_pci)
2589 return;
2590
2591 ath10k_core_unregister(ar);
2592 ath10k_pci_free_irq(ar);
2593 ath10k_pci_deinit_irq(ar);
2594 ath10k_pci_ce_deinit(ar);
2595 ath10k_pci_free_ce(ar);
2596 ath10k_pci_sleep(ar);
2597 ath10k_pci_release(ar);
2598 ath10k_core_destroy(ar);
2599 }
2600
2601 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2602
2603 static struct pci_driver ath10k_pci_driver = {
2604 .name = "ath10k_pci",
2605 .id_table = ath10k_pci_id_table,
2606 .probe = ath10k_pci_probe,
2607 .remove = ath10k_pci_remove,
2608 };
2609
2610 static int __init ath10k_pci_init(void)
2611 {
2612 int ret;
2613
2614 ret = pci_register_driver(&ath10k_pci_driver);
2615 if (ret)
2616 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2617 ret);
2618
2619 return ret;
2620 }
2621 module_init(ath10k_pci_init);
2622
2623 static void __exit ath10k_pci_exit(void)
2624 {
2625 pci_unregister_driver(&ath10k_pci_driver);
2626 }
2627
2628 module_exit(ath10k_pci_exit);
2629
2630 MODULE_AUTHOR("Qualcomm Atheros");
2631 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2632 MODULE_LICENSE("Dual BSD/GPL");
2633 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_3_FILE);
2634 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
This page took 0.088892 seconds and 5 git commands to generate.