wireless: ath10k: remove unnecessary pci_set_drvdata()
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22
23 #include "core.h"
24 #include "debug.h"
25
26 #include "targaddrs.h"
27 #include "bmi.h"
28
29 #include "hif.h"
30 #include "htc.h"
31
32 #include "ce.h"
33 #include "pci.h"
34
35 static unsigned int ath10k_target_ps;
36 module_param(ath10k_target_ps, uint, 0644);
37 MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
38
39 #define QCA988X_2_0_DEVICE_ID (0x003c)
40
41 static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
42 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
43 {0}
44 };
45
46 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
47 u32 *data);
48
49 static void ath10k_pci_process_ce(struct ath10k *ar);
50 static int ath10k_pci_post_rx(struct ath10k *ar);
51 static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
52 int num);
53 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info);
54 static void ath10k_pci_stop_ce(struct ath10k *ar);
55 static void ath10k_pci_device_reset(struct ath10k *ar);
56 static int ath10k_pci_reset_target(struct ath10k *ar);
57 static int ath10k_pci_start_intr(struct ath10k *ar);
58 static void ath10k_pci_stop_intr(struct ath10k *ar);
59
60 static const struct ce_attr host_ce_config_wlan[] = {
61 /* CE0: host->target HTC control and raw streams */
62 {
63 .flags = CE_ATTR_FLAGS,
64 .src_nentries = 16,
65 .src_sz_max = 256,
66 .dest_nentries = 0,
67 },
68
69 /* CE1: target->host HTT + HTC control */
70 {
71 .flags = CE_ATTR_FLAGS,
72 .src_nentries = 0,
73 .src_sz_max = 512,
74 .dest_nentries = 512,
75 },
76
77 /* CE2: target->host WMI */
78 {
79 .flags = CE_ATTR_FLAGS,
80 .src_nentries = 0,
81 .src_sz_max = 2048,
82 .dest_nentries = 32,
83 },
84
85 /* CE3: host->target WMI */
86 {
87 .flags = CE_ATTR_FLAGS,
88 .src_nentries = 32,
89 .src_sz_max = 2048,
90 .dest_nentries = 0,
91 },
92
93 /* CE4: host->target HTT */
94 {
95 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
96 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
97 .src_sz_max = 256,
98 .dest_nentries = 0,
99 },
100
101 /* CE5: unused */
102 {
103 .flags = CE_ATTR_FLAGS,
104 .src_nentries = 0,
105 .src_sz_max = 0,
106 .dest_nentries = 0,
107 },
108
109 /* CE6: target autonomous hif_memcpy */
110 {
111 .flags = CE_ATTR_FLAGS,
112 .src_nentries = 0,
113 .src_sz_max = 0,
114 .dest_nentries = 0,
115 },
116
117 /* CE7: ce_diag, the Diagnostic Window */
118 {
119 .flags = CE_ATTR_FLAGS,
120 .src_nentries = 2,
121 .src_sz_max = DIAG_TRANSFER_LIMIT,
122 .dest_nentries = 2,
123 },
124 };
125
126 /* Target firmware's Copy Engine configuration. */
127 static const struct ce_pipe_config target_ce_config_wlan[] = {
128 /* CE0: host->target HTC control and raw streams */
129 {
130 .pipenum = 0,
131 .pipedir = PIPEDIR_OUT,
132 .nentries = 32,
133 .nbytes_max = 256,
134 .flags = CE_ATTR_FLAGS,
135 .reserved = 0,
136 },
137
138 /* CE1: target->host HTT + HTC control */
139 {
140 .pipenum = 1,
141 .pipedir = PIPEDIR_IN,
142 .nentries = 32,
143 .nbytes_max = 512,
144 .flags = CE_ATTR_FLAGS,
145 .reserved = 0,
146 },
147
148 /* CE2: target->host WMI */
149 {
150 .pipenum = 2,
151 .pipedir = PIPEDIR_IN,
152 .nentries = 32,
153 .nbytes_max = 2048,
154 .flags = CE_ATTR_FLAGS,
155 .reserved = 0,
156 },
157
158 /* CE3: host->target WMI */
159 {
160 .pipenum = 3,
161 .pipedir = PIPEDIR_OUT,
162 .nentries = 32,
163 .nbytes_max = 2048,
164 .flags = CE_ATTR_FLAGS,
165 .reserved = 0,
166 },
167
168 /* CE4: host->target HTT */
169 {
170 .pipenum = 4,
171 .pipedir = PIPEDIR_OUT,
172 .nentries = 256,
173 .nbytes_max = 256,
174 .flags = CE_ATTR_FLAGS,
175 .reserved = 0,
176 },
177
178 /* NB: 50% of src nentries, since tx has 2 frags */
179
180 /* CE5: unused */
181 {
182 .pipenum = 5,
183 .pipedir = PIPEDIR_OUT,
184 .nentries = 32,
185 .nbytes_max = 2048,
186 .flags = CE_ATTR_FLAGS,
187 .reserved = 0,
188 },
189
190 /* CE6: Reserved for target autonomous hif_memcpy */
191 {
192 .pipenum = 6,
193 .pipedir = PIPEDIR_INOUT,
194 .nentries = 32,
195 .nbytes_max = 4096,
196 .flags = CE_ATTR_FLAGS,
197 .reserved = 0,
198 },
199
200 /* CE7 used only by Host */
201 };
202
203 /*
204 * Diagnostic read/write access is provided for startup/config/debug usage.
205 * Caller must guarantee proper alignment, when applicable, and single user
206 * at any moment.
207 */
208 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
209 int nbytes)
210 {
211 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
212 int ret = 0;
213 u32 buf;
214 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
215 unsigned int id;
216 unsigned int flags;
217 struct ath10k_ce_pipe *ce_diag;
218 /* Host buffer address in CE space */
219 u32 ce_data;
220 dma_addr_t ce_data_base = 0;
221 void *data_buf = NULL;
222 int i;
223
224 /*
225 * This code cannot handle reads to non-memory space. Redirect to the
226 * register read fn but preserve the multi word read capability of
227 * this fn
228 */
229 if (address < DRAM_BASE_ADDRESS) {
230 if (!IS_ALIGNED(address, 4) ||
231 !IS_ALIGNED((unsigned long)data, 4))
232 return -EIO;
233
234 while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
235 ar, address, (u32 *)data)) == 0)) {
236 nbytes -= sizeof(u32);
237 address += sizeof(u32);
238 data += sizeof(u32);
239 }
240 return ret;
241 }
242
243 ce_diag = ar_pci->ce_diag;
244
245 /*
246 * Allocate a temporary bounce buffer to hold caller's data
247 * to be DMA'ed from Target. This guarantees
248 * 1) 4-byte alignment
249 * 2) Buffer in DMA-able space
250 */
251 orig_nbytes = nbytes;
252 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
253 orig_nbytes,
254 &ce_data_base);
255
256 if (!data_buf) {
257 ret = -ENOMEM;
258 goto done;
259 }
260 memset(data_buf, 0, orig_nbytes);
261
262 remaining_bytes = orig_nbytes;
263 ce_data = ce_data_base;
264 while (remaining_bytes) {
265 nbytes = min_t(unsigned int, remaining_bytes,
266 DIAG_TRANSFER_LIMIT);
267
268 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
269 if (ret != 0)
270 goto done;
271
272 /* Request CE to send from Target(!) address to Host buffer */
273 /*
274 * The address supplied by the caller is in the
275 * Target CPU virtual address space.
276 *
277 * In order to use this address with the diagnostic CE,
278 * convert it from Target CPU virtual address space
279 * to CE address space
280 */
281 ath10k_pci_wake(ar);
282 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
283 address);
284 ath10k_pci_sleep(ar);
285
286 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
287 0);
288 if (ret)
289 goto done;
290
291 i = 0;
292 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
293 &completed_nbytes,
294 &id) != 0) {
295 mdelay(1);
296 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
297 ret = -EBUSY;
298 goto done;
299 }
300 }
301
302 if (nbytes != completed_nbytes) {
303 ret = -EIO;
304 goto done;
305 }
306
307 if (buf != (u32) address) {
308 ret = -EIO;
309 goto done;
310 }
311
312 i = 0;
313 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
314 &completed_nbytes,
315 &id, &flags) != 0) {
316 mdelay(1);
317
318 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
319 ret = -EBUSY;
320 goto done;
321 }
322 }
323
324 if (nbytes != completed_nbytes) {
325 ret = -EIO;
326 goto done;
327 }
328
329 if (buf != ce_data) {
330 ret = -EIO;
331 goto done;
332 }
333
334 remaining_bytes -= nbytes;
335 address += nbytes;
336 ce_data += nbytes;
337 }
338
339 done:
340 if (ret == 0) {
341 /* Copy data from allocated DMA buf to caller's buf */
342 WARN_ON_ONCE(orig_nbytes & 3);
343 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
344 ((u32 *)data)[i] =
345 __le32_to_cpu(((__le32 *)data_buf)[i]);
346 }
347 } else
348 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
349 __func__, address);
350
351 if (data_buf)
352 pci_free_consistent(ar_pci->pdev, orig_nbytes,
353 data_buf, ce_data_base);
354
355 return ret;
356 }
357
358 /* Read 4-byte aligned data from Target memory or register */
359 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
360 u32 *data)
361 {
362 /* Assume range doesn't cross this boundary */
363 if (address >= DRAM_BASE_ADDRESS)
364 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
365
366 ath10k_pci_wake(ar);
367 *data = ath10k_pci_read32(ar, address);
368 ath10k_pci_sleep(ar);
369 return 0;
370 }
371
372 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
373 const void *data, int nbytes)
374 {
375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 int ret = 0;
377 u32 buf;
378 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
379 unsigned int id;
380 unsigned int flags;
381 struct ath10k_ce_pipe *ce_diag;
382 void *data_buf = NULL;
383 u32 ce_data; /* Host buffer address in CE space */
384 dma_addr_t ce_data_base = 0;
385 int i;
386
387 ce_diag = ar_pci->ce_diag;
388
389 /*
390 * Allocate a temporary bounce buffer to hold caller's data
391 * to be DMA'ed to Target. This guarantees
392 * 1) 4-byte alignment
393 * 2) Buffer in DMA-able space
394 */
395 orig_nbytes = nbytes;
396 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
397 orig_nbytes,
398 &ce_data_base);
399 if (!data_buf) {
400 ret = -ENOMEM;
401 goto done;
402 }
403
404 /* Copy caller's data to allocated DMA buf */
405 WARN_ON_ONCE(orig_nbytes & 3);
406 for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
407 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
408
409 /*
410 * The address supplied by the caller is in the
411 * Target CPU virtual address space.
412 *
413 * In order to use this address with the diagnostic CE,
414 * convert it from
415 * Target CPU virtual address space
416 * to
417 * CE address space
418 */
419 ath10k_pci_wake(ar);
420 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
421 ath10k_pci_sleep(ar);
422
423 remaining_bytes = orig_nbytes;
424 ce_data = ce_data_base;
425 while (remaining_bytes) {
426 /* FIXME: check cast */
427 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
428
429 /* Set up to receive directly into Target(!) address */
430 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
431 if (ret != 0)
432 goto done;
433
434 /*
435 * Request CE to send caller-supplied data that
436 * was copied to bounce buffer to Target(!) address.
437 */
438 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
439 nbytes, 0, 0);
440 if (ret != 0)
441 goto done;
442
443 i = 0;
444 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
445 &completed_nbytes,
446 &id) != 0) {
447 mdelay(1);
448
449 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
450 ret = -EBUSY;
451 goto done;
452 }
453 }
454
455 if (nbytes != completed_nbytes) {
456 ret = -EIO;
457 goto done;
458 }
459
460 if (buf != ce_data) {
461 ret = -EIO;
462 goto done;
463 }
464
465 i = 0;
466 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
467 &completed_nbytes,
468 &id, &flags) != 0) {
469 mdelay(1);
470
471 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
472 ret = -EBUSY;
473 goto done;
474 }
475 }
476
477 if (nbytes != completed_nbytes) {
478 ret = -EIO;
479 goto done;
480 }
481
482 if (buf != address) {
483 ret = -EIO;
484 goto done;
485 }
486
487 remaining_bytes -= nbytes;
488 address += nbytes;
489 ce_data += nbytes;
490 }
491
492 done:
493 if (data_buf) {
494 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
495 ce_data_base);
496 }
497
498 if (ret != 0)
499 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
500 address);
501
502 return ret;
503 }
504
505 /* Write 4B data to Target memory or register */
506 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
507 u32 data)
508 {
509 /* Assume range doesn't cross this boundary */
510 if (address >= DRAM_BASE_ADDRESS)
511 return ath10k_pci_diag_write_mem(ar, address, &data,
512 sizeof(u32));
513
514 ath10k_pci_wake(ar);
515 ath10k_pci_write32(ar, address, data);
516 ath10k_pci_sleep(ar);
517 return 0;
518 }
519
520 static bool ath10k_pci_target_is_awake(struct ath10k *ar)
521 {
522 void __iomem *mem = ath10k_pci_priv(ar)->mem;
523 u32 val;
524 val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
525 RTC_STATE_ADDRESS);
526 return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
527 }
528
529 static void ath10k_pci_wait(struct ath10k *ar)
530 {
531 int n = 100;
532
533 while (n-- && !ath10k_pci_target_is_awake(ar))
534 msleep(10);
535
536 if (n < 0)
537 ath10k_warn("Unable to wakeup target\n");
538 }
539
540 int ath10k_do_pci_wake(struct ath10k *ar)
541 {
542 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
543 void __iomem *pci_addr = ar_pci->mem;
544 int tot_delay = 0;
545 int curr_delay = 5;
546
547 if (atomic_read(&ar_pci->keep_awake_count) == 0) {
548 /* Force AWAKE */
549 iowrite32(PCIE_SOC_WAKE_V_MASK,
550 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
551 PCIE_SOC_WAKE_ADDRESS);
552 }
553 atomic_inc(&ar_pci->keep_awake_count);
554
555 if (ar_pci->verified_awake)
556 return 0;
557
558 for (;;) {
559 if (ath10k_pci_target_is_awake(ar)) {
560 ar_pci->verified_awake = true;
561 return 0;
562 }
563
564 if (tot_delay > PCIE_WAKE_TIMEOUT) {
565 ath10k_warn("target took longer %d us to wake up (awake count %d)\n",
566 PCIE_WAKE_TIMEOUT,
567 atomic_read(&ar_pci->keep_awake_count));
568 return -ETIMEDOUT;
569 }
570
571 udelay(curr_delay);
572 tot_delay += curr_delay;
573
574 if (curr_delay < 50)
575 curr_delay += 5;
576 }
577 }
578
579 void ath10k_do_pci_sleep(struct ath10k *ar)
580 {
581 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
582 void __iomem *pci_addr = ar_pci->mem;
583
584 if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
585 /* Allow sleep */
586 ar_pci->verified_awake = false;
587 iowrite32(PCIE_SOC_WAKE_RESET,
588 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
589 PCIE_SOC_WAKE_ADDRESS);
590 }
591 }
592
593 /*
594 * FIXME: Handle OOM properly.
595 */
596 static inline
597 struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info)
598 {
599 struct ath10k_pci_compl *compl = NULL;
600
601 spin_lock_bh(&pipe_info->pipe_lock);
602 if (list_empty(&pipe_info->compl_free)) {
603 ath10k_warn("Completion buffers are full\n");
604 goto exit;
605 }
606 compl = list_first_entry(&pipe_info->compl_free,
607 struct ath10k_pci_compl, list);
608 list_del(&compl->list);
609 exit:
610 spin_unlock_bh(&pipe_info->pipe_lock);
611 return compl;
612 }
613
614 /* Called by lower (CE) layer when a send to Target completes. */
615 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state,
616 void *transfer_context,
617 u32 ce_data,
618 unsigned int nbytes,
619 unsigned int transfer_id)
620 {
621 struct ath10k *ar = ce_state->ar;
622 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
623 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
624 struct ath10k_pci_compl *compl;
625 bool process = false;
626
627 do {
628 /*
629 * For the send completion of an item in sendlist, just
630 * increment num_sends_allowed. The upper layer callback will
631 * be triggered when last fragment is done with send.
632 */
633 if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
634 spin_lock_bh(&pipe_info->pipe_lock);
635 pipe_info->num_sends_allowed++;
636 spin_unlock_bh(&pipe_info->pipe_lock);
637 continue;
638 }
639
640 compl = get_free_compl(pipe_info);
641 if (!compl)
642 break;
643
644 compl->state = ATH10K_PCI_COMPL_SEND;
645 compl->ce_state = ce_state;
646 compl->pipe_info = pipe_info;
647 compl->skb = transfer_context;
648 compl->nbytes = nbytes;
649 compl->transfer_id = transfer_id;
650 compl->flags = 0;
651
652 /*
653 * Add the completion to the processing queue.
654 */
655 spin_lock_bh(&ar_pci->compl_lock);
656 list_add_tail(&compl->list, &ar_pci->compl_process);
657 spin_unlock_bh(&ar_pci->compl_lock);
658
659 process = true;
660 } while (ath10k_ce_completed_send_next(ce_state,
661 &transfer_context,
662 &ce_data, &nbytes,
663 &transfer_id) == 0);
664
665 /*
666 * If only some of the items within a sendlist have completed,
667 * don't invoke completion processing until the entire sendlist
668 * has been sent.
669 */
670 if (!process)
671 return;
672
673 ath10k_pci_process_ce(ar);
674 }
675
676 /* Called by lower (CE) layer when data is received from the Target. */
677 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state,
678 void *transfer_context, u32 ce_data,
679 unsigned int nbytes,
680 unsigned int transfer_id,
681 unsigned int flags)
682 {
683 struct ath10k *ar = ce_state->ar;
684 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
685 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
686 struct ath10k_pci_compl *compl;
687 struct sk_buff *skb;
688
689 do {
690 compl = get_free_compl(pipe_info);
691 if (!compl)
692 break;
693
694 compl->state = ATH10K_PCI_COMPL_RECV;
695 compl->ce_state = ce_state;
696 compl->pipe_info = pipe_info;
697 compl->skb = transfer_context;
698 compl->nbytes = nbytes;
699 compl->transfer_id = transfer_id;
700 compl->flags = flags;
701
702 skb = transfer_context;
703 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
704 skb->len + skb_tailroom(skb),
705 DMA_FROM_DEVICE);
706 /*
707 * Add the completion to the processing queue.
708 */
709 spin_lock_bh(&ar_pci->compl_lock);
710 list_add_tail(&compl->list, &ar_pci->compl_process);
711 spin_unlock_bh(&ar_pci->compl_lock);
712
713 } while (ath10k_ce_completed_recv_next(ce_state,
714 &transfer_context,
715 &ce_data, &nbytes,
716 &transfer_id,
717 &flags) == 0);
718
719 ath10k_pci_process_ce(ar);
720 }
721
722 /* Send the first nbytes bytes of the buffer */
723 static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
724 unsigned int transfer_id,
725 unsigned int bytes, struct sk_buff *nbuf)
726 {
727 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
728 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
729 struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe_id]);
730 struct ath10k_ce_pipe *ce_hdl = pipe_info->ce_hdl;
731 struct ce_sendlist sendlist;
732 unsigned int len;
733 u32 flags = 0;
734 int ret;
735
736 memset(&sendlist, 0, sizeof(struct ce_sendlist));
737
738 len = min(bytes, nbuf->len);
739 bytes -= len;
740
741 if (len & 3)
742 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
743
744 ath10k_dbg(ATH10K_DBG_PCI,
745 "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
746 nbuf->data, (unsigned long long) skb_cb->paddr,
747 nbuf->len, len);
748 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
749 "ath10k tx: data: ",
750 nbuf->data, nbuf->len);
751
752 ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
753
754 /* Make sure we have resources to handle this request */
755 spin_lock_bh(&pipe_info->pipe_lock);
756 if (!pipe_info->num_sends_allowed) {
757 ath10k_warn("Pipe: %d is full\n", pipe_id);
758 spin_unlock_bh(&pipe_info->pipe_lock);
759 return -ENOSR;
760 }
761 pipe_info->num_sends_allowed--;
762 spin_unlock_bh(&pipe_info->pipe_lock);
763
764 ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
765 if (ret)
766 ath10k_warn("CE send failed: %p\n", nbuf);
767
768 return ret;
769 }
770
771 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
772 {
773 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
774 struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe]);
775 int ret;
776
777 spin_lock_bh(&pipe_info->pipe_lock);
778 ret = pipe_info->num_sends_allowed;
779 spin_unlock_bh(&pipe_info->pipe_lock);
780
781 return ret;
782 }
783
784 static void ath10k_pci_hif_dump_area(struct ath10k *ar)
785 {
786 u32 reg_dump_area = 0;
787 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
788 u32 host_addr;
789 int ret;
790 u32 i;
791
792 ath10k_err("firmware crashed!\n");
793 ath10k_err("hardware name %s version 0x%x\n",
794 ar->hw_params.name, ar->target_version);
795 ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
796 ar->fw_version_minor, ar->fw_version_release,
797 ar->fw_version_build);
798
799 host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
800 if (ath10k_pci_diag_read_mem(ar, host_addr,
801 &reg_dump_area, sizeof(u32)) != 0) {
802 ath10k_warn("could not read hi_failure_state\n");
803 return;
804 }
805
806 ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
807
808 ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
809 &reg_dump_values[0],
810 REG_DUMP_COUNT_QCA988X * sizeof(u32));
811 if (ret != 0) {
812 ath10k_err("could not dump FW Dump Area\n");
813 return;
814 }
815
816 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
817
818 ath10k_err("target Register Dump\n");
819 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
820 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
821 i,
822 reg_dump_values[i],
823 reg_dump_values[i + 1],
824 reg_dump_values[i + 2],
825 reg_dump_values[i + 3]);
826
827 ieee80211_queue_work(ar->hw, &ar->restart_work);
828 }
829
830 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
831 int force)
832 {
833 if (!force) {
834 int resources;
835 /*
836 * Decide whether to actually poll for completions, or just
837 * wait for a later chance.
838 * If there seem to be plenty of resources left, then just wait
839 * since checking involves reading a CE register, which is a
840 * relatively expensive operation.
841 */
842 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
843
844 /*
845 * If at least 50% of the total resources are still available,
846 * don't bother checking again yet.
847 */
848 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
849 return;
850 }
851 ath10k_ce_per_engine_service(ar, pipe);
852 }
853
854 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
855 struct ath10k_hif_cb *callbacks)
856 {
857 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
858
859 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
860
861 memcpy(&ar_pci->msg_callbacks_current, callbacks,
862 sizeof(ar_pci->msg_callbacks_current));
863 }
864
865 static int ath10k_pci_start_ce(struct ath10k *ar)
866 {
867 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
868 struct ath10k_ce_pipe *ce_diag = ar_pci->ce_diag;
869 const struct ce_attr *attr;
870 struct ath10k_pci_pipe *pipe_info;
871 struct ath10k_pci_compl *compl;
872 int i, pipe_num, completions, disable_interrupts;
873
874 spin_lock_init(&ar_pci->compl_lock);
875 INIT_LIST_HEAD(&ar_pci->compl_process);
876
877 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
878 pipe_info = &ar_pci->pipe_info[pipe_num];
879
880 spin_lock_init(&pipe_info->pipe_lock);
881 INIT_LIST_HEAD(&pipe_info->compl_free);
882
883 /* Handle Diagnostic CE specially */
884 if (pipe_info->ce_hdl == ce_diag)
885 continue;
886
887 attr = &host_ce_config_wlan[pipe_num];
888 completions = 0;
889
890 if (attr->src_nentries) {
891 disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
892 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
893 ath10k_pci_ce_send_done,
894 disable_interrupts);
895 completions += attr->src_nentries;
896 pipe_info->num_sends_allowed = attr->src_nentries - 1;
897 }
898
899 if (attr->dest_nentries) {
900 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
901 ath10k_pci_ce_recv_data);
902 completions += attr->dest_nentries;
903 }
904
905 if (completions == 0)
906 continue;
907
908 for (i = 0; i < completions; i++) {
909 compl = kmalloc(sizeof(*compl), GFP_KERNEL);
910 if (!compl) {
911 ath10k_warn("No memory for completion state\n");
912 ath10k_pci_stop_ce(ar);
913 return -ENOMEM;
914 }
915
916 compl->state = ATH10K_PCI_COMPL_FREE;
917 list_add_tail(&compl->list, &pipe_info->compl_free);
918 }
919 }
920
921 return 0;
922 }
923
924 static void ath10k_pci_stop_ce(struct ath10k *ar)
925 {
926 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
927 struct ath10k_pci_compl *compl;
928 struct sk_buff *skb;
929 int i;
930
931 ath10k_ce_disable_interrupts(ar);
932
933 /* Cancel the pending tasklet */
934 tasklet_kill(&ar_pci->intr_tq);
935
936 for (i = 0; i < CE_COUNT; i++)
937 tasklet_kill(&ar_pci->pipe_info[i].intr);
938
939 /* Mark pending completions as aborted, so that upper layers free up
940 * their associated resources */
941 spin_lock_bh(&ar_pci->compl_lock);
942 list_for_each_entry(compl, &ar_pci->compl_process, list) {
943 skb = compl->skb;
944 ATH10K_SKB_CB(skb)->is_aborted = true;
945 }
946 spin_unlock_bh(&ar_pci->compl_lock);
947 }
948
949 static void ath10k_pci_cleanup_ce(struct ath10k *ar)
950 {
951 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
952 struct ath10k_pci_compl *compl, *tmp;
953 struct ath10k_pci_pipe *pipe_info;
954 struct sk_buff *netbuf;
955 int pipe_num;
956
957 /* Free pending completions. */
958 spin_lock_bh(&ar_pci->compl_lock);
959 if (!list_empty(&ar_pci->compl_process))
960 ath10k_warn("pending completions still present! possible memory leaks.\n");
961
962 list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
963 list_del(&compl->list);
964 netbuf = compl->skb;
965 dev_kfree_skb_any(netbuf);
966 kfree(compl);
967 }
968 spin_unlock_bh(&ar_pci->compl_lock);
969
970 /* Free unused completions for each pipe. */
971 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
972 pipe_info = &ar_pci->pipe_info[pipe_num];
973
974 spin_lock_bh(&pipe_info->pipe_lock);
975 list_for_each_entry_safe(compl, tmp,
976 &pipe_info->compl_free, list) {
977 list_del(&compl->list);
978 kfree(compl);
979 }
980 spin_unlock_bh(&pipe_info->pipe_lock);
981 }
982 }
983
984 static void ath10k_pci_process_ce(struct ath10k *ar)
985 {
986 struct ath10k_pci *ar_pci = ar->hif.priv;
987 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
988 struct ath10k_pci_compl *compl;
989 struct sk_buff *skb;
990 unsigned int nbytes;
991 int ret, send_done = 0;
992
993 /* Upper layers aren't ready to handle tx/rx completions in parallel so
994 * we must serialize all completion processing. */
995
996 spin_lock_bh(&ar_pci->compl_lock);
997 if (ar_pci->compl_processing) {
998 spin_unlock_bh(&ar_pci->compl_lock);
999 return;
1000 }
1001 ar_pci->compl_processing = true;
1002 spin_unlock_bh(&ar_pci->compl_lock);
1003
1004 for (;;) {
1005 spin_lock_bh(&ar_pci->compl_lock);
1006 if (list_empty(&ar_pci->compl_process)) {
1007 spin_unlock_bh(&ar_pci->compl_lock);
1008 break;
1009 }
1010 compl = list_first_entry(&ar_pci->compl_process,
1011 struct ath10k_pci_compl, list);
1012 list_del(&compl->list);
1013 spin_unlock_bh(&ar_pci->compl_lock);
1014
1015 switch (compl->state) {
1016 case ATH10K_PCI_COMPL_SEND:
1017 cb->tx_completion(ar,
1018 compl->skb,
1019 compl->transfer_id);
1020 send_done = 1;
1021 break;
1022 case ATH10K_PCI_COMPL_RECV:
1023 ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
1024 if (ret) {
1025 ath10k_warn("Unable to post recv buffer for pipe: %d\n",
1026 compl->pipe_info->pipe_num);
1027 break;
1028 }
1029
1030 skb = compl->skb;
1031 nbytes = compl->nbytes;
1032
1033 ath10k_dbg(ATH10K_DBG_PCI,
1034 "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
1035 skb, nbytes);
1036 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
1037 "ath10k rx: ", skb->data, nbytes);
1038
1039 if (skb->len + skb_tailroom(skb) >= nbytes) {
1040 skb_trim(skb, 0);
1041 skb_put(skb, nbytes);
1042 cb->rx_completion(ar, skb,
1043 compl->pipe_info->pipe_num);
1044 } else {
1045 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
1046 nbytes,
1047 skb->len + skb_tailroom(skb));
1048 }
1049 break;
1050 case ATH10K_PCI_COMPL_FREE:
1051 ath10k_warn("free completion cannot be processed\n");
1052 break;
1053 default:
1054 ath10k_warn("invalid completion state (%d)\n",
1055 compl->state);
1056 break;
1057 }
1058
1059 compl->state = ATH10K_PCI_COMPL_FREE;
1060
1061 /*
1062 * Add completion back to the pipe's free list.
1063 */
1064 spin_lock_bh(&compl->pipe_info->pipe_lock);
1065 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
1066 compl->pipe_info->num_sends_allowed += send_done;
1067 spin_unlock_bh(&compl->pipe_info->pipe_lock);
1068 }
1069
1070 spin_lock_bh(&ar_pci->compl_lock);
1071 ar_pci->compl_processing = false;
1072 spin_unlock_bh(&ar_pci->compl_lock);
1073 }
1074
1075 /* TODO - temporary mapping while we have too few CE's */
1076 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1077 u16 service_id, u8 *ul_pipe,
1078 u8 *dl_pipe, int *ul_is_polled,
1079 int *dl_is_polled)
1080 {
1081 int ret = 0;
1082
1083 /* polling for received messages not supported */
1084 *dl_is_polled = 0;
1085
1086 switch (service_id) {
1087 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1088 /*
1089 * Host->target HTT gets its own pipe, so it can be polled
1090 * while other pipes are interrupt driven.
1091 */
1092 *ul_pipe = 4;
1093 /*
1094 * Use the same target->host pipe for HTC ctrl, HTC raw
1095 * streams, and HTT.
1096 */
1097 *dl_pipe = 1;
1098 break;
1099
1100 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1101 case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
1102 /*
1103 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
1104 * HTC_CTRL_RSVD_SVC could share the same pipe as the
1105 * WMI services. So, if another CE is needed, change
1106 * this to *ul_pipe = 3, which frees up CE 0.
1107 */
1108 /* *ul_pipe = 3; */
1109 *ul_pipe = 0;
1110 *dl_pipe = 1;
1111 break;
1112
1113 case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1114 case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1115 case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1116 case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1117
1118 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1119 *ul_pipe = 3;
1120 *dl_pipe = 2;
1121 break;
1122
1123 /* pipe 5 unused */
1124 /* pipe 6 reserved */
1125 /* pipe 7 reserved */
1126
1127 default:
1128 ret = -1;
1129 break;
1130 }
1131 *ul_is_polled =
1132 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1133
1134 return ret;
1135 }
1136
1137 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1138 u8 *ul_pipe, u8 *dl_pipe)
1139 {
1140 int ul_is_polled, dl_is_polled;
1141
1142 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1143 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1144 ul_pipe,
1145 dl_pipe,
1146 &ul_is_polled,
1147 &dl_is_polled);
1148 }
1149
1150 static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
1151 int num)
1152 {
1153 struct ath10k *ar = pipe_info->hif_ce_state;
1154 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1155 struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl;
1156 struct sk_buff *skb;
1157 dma_addr_t ce_data;
1158 int i, ret = 0;
1159
1160 if (pipe_info->buf_sz == 0)
1161 return 0;
1162
1163 for (i = 0; i < num; i++) {
1164 skb = dev_alloc_skb(pipe_info->buf_sz);
1165 if (!skb) {
1166 ath10k_warn("could not allocate skbuff for pipe %d\n",
1167 num);
1168 ret = -ENOMEM;
1169 goto err;
1170 }
1171
1172 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1173
1174 ce_data = dma_map_single(ar->dev, skb->data,
1175 skb->len + skb_tailroom(skb),
1176 DMA_FROM_DEVICE);
1177
1178 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1179 ath10k_warn("could not dma map skbuff\n");
1180 dev_kfree_skb_any(skb);
1181 ret = -EIO;
1182 goto err;
1183 }
1184
1185 ATH10K_SKB_CB(skb)->paddr = ce_data;
1186
1187 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1188 pipe_info->buf_sz,
1189 PCI_DMA_FROMDEVICE);
1190
1191 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1192 ce_data);
1193 if (ret) {
1194 ath10k_warn("could not enqueue to pipe %d (%d)\n",
1195 num, ret);
1196 goto err;
1197 }
1198 }
1199
1200 return ret;
1201
1202 err:
1203 ath10k_pci_rx_pipe_cleanup(pipe_info);
1204 return ret;
1205 }
1206
1207 static int ath10k_pci_post_rx(struct ath10k *ar)
1208 {
1209 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1210 struct ath10k_pci_pipe *pipe_info;
1211 const struct ce_attr *attr;
1212 int pipe_num, ret = 0;
1213
1214 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1215 pipe_info = &ar_pci->pipe_info[pipe_num];
1216 attr = &host_ce_config_wlan[pipe_num];
1217
1218 if (attr->dest_nentries == 0)
1219 continue;
1220
1221 ret = ath10k_pci_post_rx_pipe(pipe_info,
1222 attr->dest_nentries - 1);
1223 if (ret) {
1224 ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
1225 pipe_num);
1226
1227 for (; pipe_num >= 0; pipe_num--) {
1228 pipe_info = &ar_pci->pipe_info[pipe_num];
1229 ath10k_pci_rx_pipe_cleanup(pipe_info);
1230 }
1231 return ret;
1232 }
1233 }
1234
1235 return 0;
1236 }
1237
1238 static int ath10k_pci_hif_start(struct ath10k *ar)
1239 {
1240 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1241 int ret;
1242
1243 ret = ath10k_pci_start_ce(ar);
1244 if (ret) {
1245 ath10k_warn("could not start CE (%d)\n", ret);
1246 return ret;
1247 }
1248
1249 /* Post buffers once to start things off. */
1250 ret = ath10k_pci_post_rx(ar);
1251 if (ret) {
1252 ath10k_warn("could not post rx pipes (%d)\n", ret);
1253 return ret;
1254 }
1255
1256 ar_pci->started = 1;
1257 return 0;
1258 }
1259
1260 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1261 {
1262 struct ath10k *ar;
1263 struct ath10k_pci *ar_pci;
1264 struct ath10k_ce_pipe *ce_hdl;
1265 u32 buf_sz;
1266 struct sk_buff *netbuf;
1267 u32 ce_data;
1268
1269 buf_sz = pipe_info->buf_sz;
1270
1271 /* Unused Copy Engine */
1272 if (buf_sz == 0)
1273 return;
1274
1275 ar = pipe_info->hif_ce_state;
1276 ar_pci = ath10k_pci_priv(ar);
1277
1278 if (!ar_pci->started)
1279 return;
1280
1281 ce_hdl = pipe_info->ce_hdl;
1282
1283 while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1284 &ce_data) == 0) {
1285 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1286 netbuf->len + skb_tailroom(netbuf),
1287 DMA_FROM_DEVICE);
1288 dev_kfree_skb_any(netbuf);
1289 }
1290 }
1291
1292 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1293 {
1294 struct ath10k *ar;
1295 struct ath10k_pci *ar_pci;
1296 struct ath10k_ce_pipe *ce_hdl;
1297 struct sk_buff *netbuf;
1298 u32 ce_data;
1299 unsigned int nbytes;
1300 unsigned int id;
1301 u32 buf_sz;
1302
1303 buf_sz = pipe_info->buf_sz;
1304
1305 /* Unused Copy Engine */
1306 if (buf_sz == 0)
1307 return;
1308
1309 ar = pipe_info->hif_ce_state;
1310 ar_pci = ath10k_pci_priv(ar);
1311
1312 if (!ar_pci->started)
1313 return;
1314
1315 ce_hdl = pipe_info->ce_hdl;
1316
1317 while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1318 &ce_data, &nbytes, &id) == 0) {
1319 if (netbuf != CE_SENDLIST_ITEM_CTXT)
1320 /*
1321 * Indicate the completion to higer layer to free
1322 * the buffer
1323 */
1324 ATH10K_SKB_CB(netbuf)->is_aborted = true;
1325 ar_pci->msg_callbacks_current.tx_completion(ar,
1326 netbuf,
1327 id);
1328 }
1329 }
1330
1331 /*
1332 * Cleanup residual buffers for device shutdown:
1333 * buffers that were enqueued for receive
1334 * buffers that were to be sent
1335 * Note: Buffers that had completed but which were
1336 * not yet processed are on a completion queue. They
1337 * are handled when the completion thread shuts down.
1338 */
1339 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1340 {
1341 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1342 int pipe_num;
1343
1344 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1345 struct ath10k_pci_pipe *pipe_info;
1346
1347 pipe_info = &ar_pci->pipe_info[pipe_num];
1348 ath10k_pci_rx_pipe_cleanup(pipe_info);
1349 ath10k_pci_tx_pipe_cleanup(pipe_info);
1350 }
1351 }
1352
1353 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1354 {
1355 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1356 struct ath10k_pci_pipe *pipe_info;
1357 int pipe_num;
1358
1359 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1360 pipe_info = &ar_pci->pipe_info[pipe_num];
1361 if (pipe_info->ce_hdl) {
1362 ath10k_ce_deinit(pipe_info->ce_hdl);
1363 pipe_info->ce_hdl = NULL;
1364 pipe_info->buf_sz = 0;
1365 }
1366 }
1367 }
1368
1369 static void ath10k_pci_disable_irqs(struct ath10k *ar)
1370 {
1371 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1372 int i;
1373
1374 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1375 disable_irq(ar_pci->pdev->irq + i);
1376 }
1377
1378 static void ath10k_pci_hif_stop(struct ath10k *ar)
1379 {
1380 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1381
1382 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1383
1384 /* Irqs are never explicitly re-enabled. They are implicitly re-enabled
1385 * by ath10k_pci_start_intr(). */
1386 ath10k_pci_disable_irqs(ar);
1387
1388 ath10k_pci_stop_ce(ar);
1389
1390 /* At this point, asynchronous threads are stopped, the target should
1391 * not DMA nor interrupt. We process the leftovers and then free
1392 * everything else up. */
1393
1394 ath10k_pci_process_ce(ar);
1395 ath10k_pci_cleanup_ce(ar);
1396 ath10k_pci_buffer_cleanup(ar);
1397
1398 ar_pci->started = 0;
1399 }
1400
1401 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1402 void *req, u32 req_len,
1403 void *resp, u32 *resp_len)
1404 {
1405 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1406 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1407 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1408 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1409 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1410 dma_addr_t req_paddr = 0;
1411 dma_addr_t resp_paddr = 0;
1412 struct bmi_xfer xfer = {};
1413 void *treq, *tresp = NULL;
1414 int ret = 0;
1415
1416 if (resp && !resp_len)
1417 return -EINVAL;
1418
1419 if (resp && resp_len && *resp_len == 0)
1420 return -EINVAL;
1421
1422 treq = kmemdup(req, req_len, GFP_KERNEL);
1423 if (!treq)
1424 return -ENOMEM;
1425
1426 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1427 ret = dma_mapping_error(ar->dev, req_paddr);
1428 if (ret)
1429 goto err_dma;
1430
1431 if (resp && resp_len) {
1432 tresp = kzalloc(*resp_len, GFP_KERNEL);
1433 if (!tresp) {
1434 ret = -ENOMEM;
1435 goto err_req;
1436 }
1437
1438 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1439 DMA_FROM_DEVICE);
1440 ret = dma_mapping_error(ar->dev, resp_paddr);
1441 if (ret)
1442 goto err_req;
1443
1444 xfer.wait_for_resp = true;
1445 xfer.resp_len = 0;
1446
1447 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1448 }
1449
1450 init_completion(&xfer.done);
1451
1452 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1453 if (ret)
1454 goto err_resp;
1455
1456 ret = wait_for_completion_timeout(&xfer.done,
1457 BMI_COMMUNICATION_TIMEOUT_HZ);
1458 if (ret <= 0) {
1459 u32 unused_buffer;
1460 unsigned int unused_nbytes;
1461 unsigned int unused_id;
1462
1463 ret = -ETIMEDOUT;
1464 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1465 &unused_nbytes, &unused_id);
1466 } else {
1467 /* non-zero means we did not time out */
1468 ret = 0;
1469 }
1470
1471 err_resp:
1472 if (resp) {
1473 u32 unused_buffer;
1474
1475 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1476 dma_unmap_single(ar->dev, resp_paddr,
1477 *resp_len, DMA_FROM_DEVICE);
1478 }
1479 err_req:
1480 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1481
1482 if (ret == 0 && resp_len) {
1483 *resp_len = min(*resp_len, xfer.resp_len);
1484 memcpy(resp, tresp, xfer.resp_len);
1485 }
1486 err_dma:
1487 kfree(treq);
1488 kfree(tresp);
1489
1490 return ret;
1491 }
1492
1493 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state,
1494 void *transfer_context,
1495 u32 data,
1496 unsigned int nbytes,
1497 unsigned int transfer_id)
1498 {
1499 struct bmi_xfer *xfer = transfer_context;
1500
1501 if (xfer->wait_for_resp)
1502 return;
1503
1504 complete(&xfer->done);
1505 }
1506
1507 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state,
1508 void *transfer_context,
1509 u32 data,
1510 unsigned int nbytes,
1511 unsigned int transfer_id,
1512 unsigned int flags)
1513 {
1514 struct bmi_xfer *xfer = transfer_context;
1515
1516 if (!xfer->wait_for_resp) {
1517 ath10k_warn("unexpected: BMI data received; ignoring\n");
1518 return;
1519 }
1520
1521 xfer->resp_len = nbytes;
1522 complete(&xfer->done);
1523 }
1524
1525 /*
1526 * Map from service/endpoint to Copy Engine.
1527 * This table is derived from the CE_PCI TABLE, above.
1528 * It is passed to the Target at startup for use by firmware.
1529 */
1530 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1531 {
1532 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1533 PIPEDIR_OUT, /* out = UL = host -> target */
1534 3,
1535 },
1536 {
1537 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1538 PIPEDIR_IN, /* in = DL = target -> host */
1539 2,
1540 },
1541 {
1542 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1543 PIPEDIR_OUT, /* out = UL = host -> target */
1544 3,
1545 },
1546 {
1547 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1548 PIPEDIR_IN, /* in = DL = target -> host */
1549 2,
1550 },
1551 {
1552 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1553 PIPEDIR_OUT, /* out = UL = host -> target */
1554 3,
1555 },
1556 {
1557 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1558 PIPEDIR_IN, /* in = DL = target -> host */
1559 2,
1560 },
1561 {
1562 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1563 PIPEDIR_OUT, /* out = UL = host -> target */
1564 3,
1565 },
1566 {
1567 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1568 PIPEDIR_IN, /* in = DL = target -> host */
1569 2,
1570 },
1571 {
1572 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1573 PIPEDIR_OUT, /* out = UL = host -> target */
1574 3,
1575 },
1576 {
1577 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1578 PIPEDIR_IN, /* in = DL = target -> host */
1579 2,
1580 },
1581 {
1582 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1583 PIPEDIR_OUT, /* out = UL = host -> target */
1584 0, /* could be moved to 3 (share with WMI) */
1585 },
1586 {
1587 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1588 PIPEDIR_IN, /* in = DL = target -> host */
1589 1,
1590 },
1591 {
1592 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1593 PIPEDIR_OUT, /* out = UL = host -> target */
1594 0,
1595 },
1596 {
1597 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1598 PIPEDIR_IN, /* in = DL = target -> host */
1599 1,
1600 },
1601 {
1602 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1603 PIPEDIR_OUT, /* out = UL = host -> target */
1604 4,
1605 },
1606 {
1607 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1608 PIPEDIR_IN, /* in = DL = target -> host */
1609 1,
1610 },
1611
1612 /* (Additions here) */
1613
1614 { /* Must be last */
1615 0,
1616 0,
1617 0,
1618 },
1619 };
1620
1621 /*
1622 * Send an interrupt to the device to wake up the Target CPU
1623 * so it has an opportunity to notice any changed state.
1624 */
1625 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1626 {
1627 int ret;
1628 u32 core_ctrl;
1629
1630 ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1631 CORE_CTRL_ADDRESS,
1632 &core_ctrl);
1633 if (ret) {
1634 ath10k_warn("Unable to read core ctrl\n");
1635 return ret;
1636 }
1637
1638 /* A_INUM_FIRMWARE interrupt to Target CPU */
1639 core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1640
1641 ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1642 CORE_CTRL_ADDRESS,
1643 core_ctrl);
1644 if (ret)
1645 ath10k_warn("Unable to set interrupt mask\n");
1646
1647 return ret;
1648 }
1649
1650 static int ath10k_pci_init_config(struct ath10k *ar)
1651 {
1652 u32 interconnect_targ_addr;
1653 u32 pcie_state_targ_addr = 0;
1654 u32 pipe_cfg_targ_addr = 0;
1655 u32 svc_to_pipe_map = 0;
1656 u32 pcie_config_flags = 0;
1657 u32 ealloc_value;
1658 u32 ealloc_targ_addr;
1659 u32 flag2_value;
1660 u32 flag2_targ_addr;
1661 int ret = 0;
1662
1663 /* Download to Target the CE Config and the service-to-CE map */
1664 interconnect_targ_addr =
1665 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1666
1667 /* Supply Target-side CE configuration */
1668 ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1669 &pcie_state_targ_addr);
1670 if (ret != 0) {
1671 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1672 return ret;
1673 }
1674
1675 if (pcie_state_targ_addr == 0) {
1676 ret = -EIO;
1677 ath10k_err("Invalid pcie state addr\n");
1678 return ret;
1679 }
1680
1681 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1682 offsetof(struct pcie_state,
1683 pipe_cfg_addr),
1684 &pipe_cfg_targ_addr);
1685 if (ret != 0) {
1686 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1687 return ret;
1688 }
1689
1690 if (pipe_cfg_targ_addr == 0) {
1691 ret = -EIO;
1692 ath10k_err("Invalid pipe cfg addr\n");
1693 return ret;
1694 }
1695
1696 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1697 target_ce_config_wlan,
1698 sizeof(target_ce_config_wlan));
1699
1700 if (ret != 0) {
1701 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1702 return ret;
1703 }
1704
1705 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1706 offsetof(struct pcie_state,
1707 svc_to_pipe_map),
1708 &svc_to_pipe_map);
1709 if (ret != 0) {
1710 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1711 return ret;
1712 }
1713
1714 if (svc_to_pipe_map == 0) {
1715 ret = -EIO;
1716 ath10k_err("Invalid svc_to_pipe map\n");
1717 return ret;
1718 }
1719
1720 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1721 target_service_to_ce_map_wlan,
1722 sizeof(target_service_to_ce_map_wlan));
1723 if (ret != 0) {
1724 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1725 return ret;
1726 }
1727
1728 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1729 offsetof(struct pcie_state,
1730 config_flags),
1731 &pcie_config_flags);
1732 if (ret != 0) {
1733 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1734 return ret;
1735 }
1736
1737 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1738
1739 ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1740 offsetof(struct pcie_state, config_flags),
1741 &pcie_config_flags,
1742 sizeof(pcie_config_flags));
1743 if (ret != 0) {
1744 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1745 return ret;
1746 }
1747
1748 /* configure early allocation */
1749 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1750
1751 ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1752 if (ret != 0) {
1753 ath10k_err("Faile to get early alloc val: %d\n", ret);
1754 return ret;
1755 }
1756
1757 /* first bank is switched to IRAM */
1758 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1759 HI_EARLY_ALLOC_MAGIC_MASK);
1760 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1761 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1762
1763 ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1764 if (ret != 0) {
1765 ath10k_err("Failed to set early alloc val: %d\n", ret);
1766 return ret;
1767 }
1768
1769 /* Tell Target to proceed with initialization */
1770 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1771
1772 ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1773 if (ret != 0) {
1774 ath10k_err("Failed to get option val: %d\n", ret);
1775 return ret;
1776 }
1777
1778 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1779
1780 ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1781 if (ret != 0) {
1782 ath10k_err("Failed to set option val: %d\n", ret);
1783 return ret;
1784 }
1785
1786 return 0;
1787 }
1788
1789
1790
1791 static int ath10k_pci_ce_init(struct ath10k *ar)
1792 {
1793 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1794 struct ath10k_pci_pipe *pipe_info;
1795 const struct ce_attr *attr;
1796 int pipe_num;
1797
1798 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1799 pipe_info = &ar_pci->pipe_info[pipe_num];
1800 pipe_info->pipe_num = pipe_num;
1801 pipe_info->hif_ce_state = ar;
1802 attr = &host_ce_config_wlan[pipe_num];
1803
1804 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1805 if (pipe_info->ce_hdl == NULL) {
1806 ath10k_err("Unable to initialize CE for pipe: %d\n",
1807 pipe_num);
1808
1809 /* It is safe to call it here. It checks if ce_hdl is
1810 * valid for each pipe */
1811 ath10k_pci_ce_deinit(ar);
1812 return -1;
1813 }
1814
1815 if (pipe_num == ar_pci->ce_count - 1) {
1816 /*
1817 * Reserve the ultimate CE for
1818 * diagnostic Window support
1819 */
1820 ar_pci->ce_diag =
1821 ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
1822 continue;
1823 }
1824
1825 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1826 }
1827
1828 /*
1829 * Initially, establish CE completion handlers for use with BMI.
1830 * These are overwritten with generic handlers after we exit BMI phase.
1831 */
1832 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1833 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
1834 ath10k_pci_bmi_send_done, 0);
1835
1836 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1837 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
1838 ath10k_pci_bmi_recv_data);
1839
1840 return 0;
1841 }
1842
1843 static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1844 {
1845 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1846 u32 fw_indicator_address, fw_indicator;
1847
1848 ath10k_pci_wake(ar);
1849
1850 fw_indicator_address = ar_pci->fw_indicator_address;
1851 fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1852
1853 if (fw_indicator & FW_IND_EVENT_PENDING) {
1854 /* ACK: clear Target-side pending event */
1855 ath10k_pci_write32(ar, fw_indicator_address,
1856 fw_indicator & ~FW_IND_EVENT_PENDING);
1857
1858 if (ar_pci->started) {
1859 ath10k_pci_hif_dump_area(ar);
1860 } else {
1861 /*
1862 * Probable Target failure before we're prepared
1863 * to handle it. Generally unexpected.
1864 */
1865 ath10k_warn("early firmware event indicated\n");
1866 }
1867 }
1868
1869 ath10k_pci_sleep(ar);
1870 }
1871
1872 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1873 {
1874 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1875 int ret;
1876
1877 ret = ath10k_pci_start_intr(ar);
1878 if (ret) {
1879 ath10k_err("could not start interrupt handling (%d)\n", ret);
1880 goto err;
1881 }
1882
1883 /*
1884 * Bring the target up cleanly.
1885 *
1886 * The target may be in an undefined state with an AUX-powered Target
1887 * and a Host in WoW mode. If the Host crashes, loses power, or is
1888 * restarted (without unloading the driver) then the Target is left
1889 * (aux) powered and running. On a subsequent driver load, the Target
1890 * is in an unexpected state. We try to catch that here in order to
1891 * reset the Target and retry the probe.
1892 */
1893 ath10k_pci_device_reset(ar);
1894
1895 ret = ath10k_pci_reset_target(ar);
1896 if (ret)
1897 goto err_irq;
1898
1899 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1900 /* Force AWAKE forever */
1901 ath10k_do_pci_wake(ar);
1902
1903 ret = ath10k_pci_ce_init(ar);
1904 if (ret)
1905 goto err_ps;
1906
1907 ret = ath10k_pci_init_config(ar);
1908 if (ret)
1909 goto err_ce;
1910
1911 ret = ath10k_pci_wake_target_cpu(ar);
1912 if (ret) {
1913 ath10k_err("could not wake up target CPU (%d)\n", ret);
1914 goto err_ce;
1915 }
1916
1917 return 0;
1918
1919 err_ce:
1920 ath10k_pci_ce_deinit(ar);
1921 err_ps:
1922 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1923 ath10k_do_pci_sleep(ar);
1924 err_irq:
1925 ath10k_pci_stop_intr(ar);
1926 err:
1927 return ret;
1928 }
1929
1930 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1931 {
1932 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1933
1934 ath10k_pci_stop_intr(ar);
1935
1936 ath10k_pci_ce_deinit(ar);
1937 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1938 ath10k_do_pci_sleep(ar);
1939 }
1940
1941 #ifdef CONFIG_PM
1942
1943 #define ATH10K_PCI_PM_CONTROL 0x44
1944
1945 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1946 {
1947 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1948 struct pci_dev *pdev = ar_pci->pdev;
1949 u32 val;
1950
1951 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1952
1953 if ((val & 0x000000ff) != 0x3) {
1954 pci_save_state(pdev);
1955 pci_disable_device(pdev);
1956 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1957 (val & 0xffffff00) | 0x03);
1958 }
1959
1960 return 0;
1961 }
1962
1963 static int ath10k_pci_hif_resume(struct ath10k *ar)
1964 {
1965 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1966 struct pci_dev *pdev = ar_pci->pdev;
1967 u32 val;
1968
1969 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1970
1971 if ((val & 0x000000ff) != 0) {
1972 pci_restore_state(pdev);
1973 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1974 val & 0xffffff00);
1975 /*
1976 * Suspend/Resume resets the PCI configuration space,
1977 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1978 * to keep PCI Tx retries from interfering with C3 CPU state
1979 */
1980 pci_read_config_dword(pdev, 0x40, &val);
1981
1982 if ((val & 0x0000ff00) != 0)
1983 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1984 }
1985
1986 return 0;
1987 }
1988 #endif
1989
1990 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1991 .send_head = ath10k_pci_hif_send_head,
1992 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
1993 .start = ath10k_pci_hif_start,
1994 .stop = ath10k_pci_hif_stop,
1995 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
1996 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
1997 .send_complete_check = ath10k_pci_hif_send_complete_check,
1998 .set_callbacks = ath10k_pci_hif_set_callbacks,
1999 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2000 .power_up = ath10k_pci_hif_power_up,
2001 .power_down = ath10k_pci_hif_power_down,
2002 #ifdef CONFIG_PM
2003 .suspend = ath10k_pci_hif_suspend,
2004 .resume = ath10k_pci_hif_resume,
2005 #endif
2006 };
2007
2008 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2009 {
2010 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2011 struct ath10k_pci *ar_pci = pipe->ar_pci;
2012
2013 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2014 }
2015
2016 static void ath10k_msi_err_tasklet(unsigned long data)
2017 {
2018 struct ath10k *ar = (struct ath10k *)data;
2019
2020 ath10k_pci_fw_interrupt_handler(ar);
2021 }
2022
2023 /*
2024 * Handler for a per-engine interrupt on a PARTICULAR CE.
2025 * This is used in cases where each CE has a private MSI interrupt.
2026 */
2027 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2028 {
2029 struct ath10k *ar = arg;
2030 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2031 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2032
2033 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2034 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
2035 return IRQ_HANDLED;
2036 }
2037
2038 /*
2039 * NOTE: We are able to derive ce_id from irq because we
2040 * use a one-to-one mapping for CE's 0..5.
2041 * CE's 6 & 7 do not use interrupts at all.
2042 *
2043 * This mapping must be kept in sync with the mapping
2044 * used by firmware.
2045 */
2046 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2047 return IRQ_HANDLED;
2048 }
2049
2050 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2051 {
2052 struct ath10k *ar = arg;
2053 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2054
2055 tasklet_schedule(&ar_pci->msi_fw_err);
2056 return IRQ_HANDLED;
2057 }
2058
2059 /*
2060 * Top-level interrupt handler for all PCI interrupts from a Target.
2061 * When a block of MSI interrupts is allocated, this top-level handler
2062 * is not used; instead, we directly call the correct sub-handler.
2063 */
2064 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2065 {
2066 struct ath10k *ar = arg;
2067 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2068
2069 if (ar_pci->num_msi_intrs == 0) {
2070 /*
2071 * IMPORTANT: INTR_CLR regiser has to be set after
2072 * INTR_ENABLE is set to 0, otherwise interrupt can not be
2073 * really cleared.
2074 */
2075 iowrite32(0, ar_pci->mem +
2076 (SOC_CORE_BASE_ADDRESS |
2077 PCIE_INTR_ENABLE_ADDRESS));
2078 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2079 PCIE_INTR_CE_MASK_ALL,
2080 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2081 PCIE_INTR_CLR_ADDRESS));
2082 /*
2083 * IMPORTANT: this extra read transaction is required to
2084 * flush the posted write buffer.
2085 */
2086 (void) ioread32(ar_pci->mem +
2087 (SOC_CORE_BASE_ADDRESS |
2088 PCIE_INTR_ENABLE_ADDRESS));
2089 }
2090
2091 tasklet_schedule(&ar_pci->intr_tq);
2092
2093 return IRQ_HANDLED;
2094 }
2095
2096 static void ath10k_pci_tasklet(unsigned long data)
2097 {
2098 struct ath10k *ar = (struct ath10k *)data;
2099 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2100
2101 ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
2102 ath10k_ce_per_engine_service_any(ar);
2103
2104 if (ar_pci->num_msi_intrs == 0) {
2105 /* Enable Legacy PCI line interrupts */
2106 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2107 PCIE_INTR_CE_MASK_ALL,
2108 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2109 PCIE_INTR_ENABLE_ADDRESS));
2110 /*
2111 * IMPORTANT: this extra read transaction is required to
2112 * flush the posted write buffer
2113 */
2114 (void) ioread32(ar_pci->mem +
2115 (SOC_CORE_BASE_ADDRESS |
2116 PCIE_INTR_ENABLE_ADDRESS));
2117 }
2118 }
2119
2120 static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
2121 {
2122 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2123 int ret;
2124 int i;
2125
2126 ret = pci_enable_msi_block(ar_pci->pdev, num);
2127 if (ret)
2128 return ret;
2129
2130 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2131 ath10k_pci_msi_fw_handler,
2132 IRQF_SHARED, "ath10k_pci", ar);
2133 if (ret) {
2134 ath10k_warn("request_irq(%d) failed %d\n",
2135 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2136
2137 pci_disable_msi(ar_pci->pdev);
2138 return ret;
2139 }
2140
2141 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2142 ret = request_irq(ar_pci->pdev->irq + i,
2143 ath10k_pci_per_engine_handler,
2144 IRQF_SHARED, "ath10k_pci", ar);
2145 if (ret) {
2146 ath10k_warn("request_irq(%d) failed %d\n",
2147 ar_pci->pdev->irq + i, ret);
2148
2149 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2150 free_irq(ar_pci->pdev->irq + i, ar);
2151
2152 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2153 pci_disable_msi(ar_pci->pdev);
2154 return ret;
2155 }
2156 }
2157
2158 ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
2159 return 0;
2160 }
2161
2162 static int ath10k_pci_start_intr_msi(struct ath10k *ar)
2163 {
2164 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2165 int ret;
2166
2167 ret = pci_enable_msi(ar_pci->pdev);
2168 if (ret < 0)
2169 return ret;
2170
2171 ret = request_irq(ar_pci->pdev->irq,
2172 ath10k_pci_interrupt_handler,
2173 IRQF_SHARED, "ath10k_pci", ar);
2174 if (ret < 0) {
2175 pci_disable_msi(ar_pci->pdev);
2176 return ret;
2177 }
2178
2179 ath10k_info("MSI interrupt handling\n");
2180 return 0;
2181 }
2182
2183 static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
2184 {
2185 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2186 int ret;
2187
2188 ret = request_irq(ar_pci->pdev->irq,
2189 ath10k_pci_interrupt_handler,
2190 IRQF_SHARED, "ath10k_pci", ar);
2191 if (ret < 0)
2192 return ret;
2193
2194 /*
2195 * Make sure to wake the Target before enabling Legacy
2196 * Interrupt.
2197 */
2198 iowrite32(PCIE_SOC_WAKE_V_MASK,
2199 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2200 PCIE_SOC_WAKE_ADDRESS);
2201
2202 ath10k_pci_wait(ar);
2203
2204 /*
2205 * A potential race occurs here: The CORE_BASE write
2206 * depends on target correctly decoding AXI address but
2207 * host won't know when target writes BAR to CORE_CTRL.
2208 * This write might get lost if target has NOT written BAR.
2209 * For now, fix the race by repeating the write in below
2210 * synchronization checking.
2211 */
2212 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2213 PCIE_INTR_CE_MASK_ALL,
2214 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2215 PCIE_INTR_ENABLE_ADDRESS));
2216 iowrite32(PCIE_SOC_WAKE_RESET,
2217 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2218 PCIE_SOC_WAKE_ADDRESS);
2219
2220 ath10k_info("legacy interrupt handling\n");
2221 return 0;
2222 }
2223
2224 static int ath10k_pci_start_intr(struct ath10k *ar)
2225 {
2226 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2227 int num = MSI_NUM_REQUEST;
2228 int ret;
2229 int i;
2230
2231 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
2232 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2233 (unsigned long) ar);
2234
2235 for (i = 0; i < CE_COUNT; i++) {
2236 ar_pci->pipe_info[i].ar_pci = ar_pci;
2237 tasklet_init(&ar_pci->pipe_info[i].intr,
2238 ath10k_pci_ce_tasklet,
2239 (unsigned long)&ar_pci->pipe_info[i]);
2240 }
2241
2242 if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2243 num = 1;
2244
2245 if (num > 1) {
2246 ret = ath10k_pci_start_intr_msix(ar, num);
2247 if (ret == 0)
2248 goto exit;
2249
2250 ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
2251 num = 1;
2252 }
2253
2254 if (num == 1) {
2255 ret = ath10k_pci_start_intr_msi(ar);
2256 if (ret == 0)
2257 goto exit;
2258
2259 ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
2260 ret);
2261 num = 0;
2262 }
2263
2264 ret = ath10k_pci_start_intr_legacy(ar);
2265
2266 exit:
2267 ar_pci->num_msi_intrs = num;
2268 ar_pci->ce_count = CE_COUNT;
2269 return ret;
2270 }
2271
2272 static void ath10k_pci_stop_intr(struct ath10k *ar)
2273 {
2274 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2275 int i;
2276
2277 /* There's at least one interrupt irregardless whether its legacy INTR
2278 * or MSI or MSI-X */
2279 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2280 free_irq(ar_pci->pdev->irq + i, ar);
2281
2282 if (ar_pci->num_msi_intrs > 0)
2283 pci_disable_msi(ar_pci->pdev);
2284 }
2285
2286 static int ath10k_pci_reset_target(struct ath10k *ar)
2287 {
2288 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2289 int wait_limit = 300; /* 3 sec */
2290
2291 /* Wait for Target to finish initialization before we proceed. */
2292 iowrite32(PCIE_SOC_WAKE_V_MASK,
2293 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2294 PCIE_SOC_WAKE_ADDRESS);
2295
2296 ath10k_pci_wait(ar);
2297
2298 while (wait_limit-- &&
2299 !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2300 FW_IND_INITIALIZED)) {
2301 if (ar_pci->num_msi_intrs == 0)
2302 /* Fix potential race by repeating CORE_BASE writes */
2303 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2304 PCIE_INTR_CE_MASK_ALL,
2305 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2306 PCIE_INTR_ENABLE_ADDRESS));
2307 mdelay(10);
2308 }
2309
2310 if (wait_limit < 0) {
2311 ath10k_err("Target stalled\n");
2312 iowrite32(PCIE_SOC_WAKE_RESET,
2313 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2314 PCIE_SOC_WAKE_ADDRESS);
2315 return -EIO;
2316 }
2317
2318 iowrite32(PCIE_SOC_WAKE_RESET,
2319 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2320 PCIE_SOC_WAKE_ADDRESS);
2321
2322 return 0;
2323 }
2324
2325 static void ath10k_pci_device_reset(struct ath10k *ar)
2326 {
2327 int i;
2328 u32 val;
2329
2330 if (!SOC_GLOBAL_RESET_ADDRESS)
2331 return;
2332
2333 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
2334 PCIE_SOC_WAKE_V_MASK);
2335 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2336 if (ath10k_pci_target_is_awake(ar))
2337 break;
2338 msleep(1);
2339 }
2340
2341 /* Put Target, including PCIe, into RESET. */
2342 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2343 val |= 1;
2344 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2345
2346 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2347 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2348 RTC_STATE_COLD_RESET_MASK)
2349 break;
2350 msleep(1);
2351 }
2352
2353 /* Pull Target, including PCIe, out of RESET. */
2354 val &= ~1;
2355 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2356
2357 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2358 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2359 RTC_STATE_COLD_RESET_MASK))
2360 break;
2361 msleep(1);
2362 }
2363
2364 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2365 }
2366
2367 static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2368 {
2369 int i;
2370
2371 for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2372 if (!test_bit(i, ar_pci->features))
2373 continue;
2374
2375 switch (i) {
2376 case ATH10K_PCI_FEATURE_MSI_X:
2377 ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
2378 break;
2379 case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2380 ath10k_dbg(ATH10K_DBG_PCI, "QCA98XX SoC power save enabled\n");
2381 break;
2382 }
2383 }
2384 }
2385
2386 static int ath10k_pci_probe(struct pci_dev *pdev,
2387 const struct pci_device_id *pci_dev)
2388 {
2389 void __iomem *mem;
2390 int ret = 0;
2391 struct ath10k *ar;
2392 struct ath10k_pci *ar_pci;
2393 u32 lcr_val, chip_id;
2394
2395 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2396
2397 ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2398 if (ar_pci == NULL)
2399 return -ENOMEM;
2400
2401 ar_pci->pdev = pdev;
2402 ar_pci->dev = &pdev->dev;
2403
2404 switch (pci_dev->device) {
2405 case QCA988X_2_0_DEVICE_ID:
2406 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2407 break;
2408 default:
2409 ret = -ENODEV;
2410 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2411 goto err_ar_pci;
2412 }
2413
2414 if (ath10k_target_ps)
2415 set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2416
2417 ath10k_pci_dump_features(ar_pci);
2418
2419 ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2420 if (!ar) {
2421 ath10k_err("ath10k_core_create failed!\n");
2422 ret = -EINVAL;
2423 goto err_ar_pci;
2424 }
2425
2426 ar_pci->ar = ar;
2427 ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2428 atomic_set(&ar_pci->keep_awake_count, 0);
2429
2430 pci_set_drvdata(pdev, ar);
2431
2432 /*
2433 * Without any knowledge of the Host, the Target may have been reset or
2434 * power cycled and its Config Space may no longer reflect the PCI
2435 * address space that was assigned earlier by the PCI infrastructure.
2436 * Refresh it now.
2437 */
2438 ret = pci_assign_resource(pdev, BAR_NUM);
2439 if (ret) {
2440 ath10k_err("cannot assign PCI space: %d\n", ret);
2441 goto err_ar;
2442 }
2443
2444 ret = pci_enable_device(pdev);
2445 if (ret) {
2446 ath10k_err("cannot enable PCI device: %d\n", ret);
2447 goto err_ar;
2448 }
2449
2450 /* Request MMIO resources */
2451 ret = pci_request_region(pdev, BAR_NUM, "ath");
2452 if (ret) {
2453 ath10k_err("PCI MMIO reservation error: %d\n", ret);
2454 goto err_device;
2455 }
2456
2457 /*
2458 * Target structures have a limit of 32 bit DMA pointers.
2459 * DMA pointers can be wider than 32 bits by default on some systems.
2460 */
2461 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2462 if (ret) {
2463 ath10k_err("32-bit DMA not available: %d\n", ret);
2464 goto err_region;
2465 }
2466
2467 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2468 if (ret) {
2469 ath10k_err("cannot enable 32-bit consistent DMA\n");
2470 goto err_region;
2471 }
2472
2473 /* Set bus master bit in PCI_COMMAND to enable DMA */
2474 pci_set_master(pdev);
2475
2476 /*
2477 * Temporary FIX: disable ASPM
2478 * Will be removed after the OTP is programmed
2479 */
2480 pci_read_config_dword(pdev, 0x80, &lcr_val);
2481 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2482
2483 /* Arrange for access to Target SoC registers. */
2484 mem = pci_iomap(pdev, BAR_NUM, 0);
2485 if (!mem) {
2486 ath10k_err("PCI iomap error\n");
2487 ret = -EIO;
2488 goto err_master;
2489 }
2490
2491 ar_pci->mem = mem;
2492
2493 spin_lock_init(&ar_pci->ce_lock);
2494
2495 ret = ath10k_do_pci_wake(ar);
2496 if (ret) {
2497 ath10k_err("Failed to get chip id: %d\n", ret);
2498 return ret;
2499 }
2500
2501 chip_id = ath10k_pci_read32(ar,
2502 RTC_SOC_BASE_ADDRESS + SOC_CHIP_ID_ADDRESS);
2503
2504 ath10k_do_pci_sleep(ar);
2505
2506 ret = ath10k_core_register(ar, chip_id);
2507 if (ret) {
2508 ath10k_err("could not register driver core (%d)\n", ret);
2509 goto err_iomap;
2510 }
2511
2512 return 0;
2513
2514 err_iomap:
2515 pci_iounmap(pdev, mem);
2516 err_master:
2517 pci_clear_master(pdev);
2518 err_region:
2519 pci_release_region(pdev, BAR_NUM);
2520 err_device:
2521 pci_disable_device(pdev);
2522 err_ar:
2523 ath10k_core_destroy(ar);
2524 err_ar_pci:
2525 /* call HIF PCI free here */
2526 kfree(ar_pci);
2527
2528 return ret;
2529 }
2530
2531 static void ath10k_pci_remove(struct pci_dev *pdev)
2532 {
2533 struct ath10k *ar = pci_get_drvdata(pdev);
2534 struct ath10k_pci *ar_pci;
2535
2536 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2537
2538 if (!ar)
2539 return;
2540
2541 ar_pci = ath10k_pci_priv(ar);
2542
2543 if (!ar_pci)
2544 return;
2545
2546 tasklet_kill(&ar_pci->msi_fw_err);
2547
2548 ath10k_core_unregister(ar);
2549
2550 pci_iounmap(pdev, ar_pci->mem);
2551 pci_release_region(pdev, BAR_NUM);
2552 pci_clear_master(pdev);
2553 pci_disable_device(pdev);
2554
2555 ath10k_core_destroy(ar);
2556 kfree(ar_pci);
2557 }
2558
2559 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2560
2561 static struct pci_driver ath10k_pci_driver = {
2562 .name = "ath10k_pci",
2563 .id_table = ath10k_pci_id_table,
2564 .probe = ath10k_pci_probe,
2565 .remove = ath10k_pci_remove,
2566 };
2567
2568 static int __init ath10k_pci_init(void)
2569 {
2570 int ret;
2571
2572 ret = pci_register_driver(&ath10k_pci_driver);
2573 if (ret)
2574 ath10k_err("pci_register_driver failed [%d]\n", ret);
2575
2576 return ret;
2577 }
2578 module_init(ath10k_pci_init);
2579
2580 static void __exit ath10k_pci_exit(void)
2581 {
2582 pci_unregister_driver(&ath10k_pci_driver);
2583 }
2584
2585 module_exit(ath10k_pci_exit);
2586
2587 MODULE_AUTHOR("Qualcomm Atheros");
2588 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2589 MODULE_LICENSE("Dual BSD/GPL");
2590 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2591 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2592 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
This page took 0.084824 seconds and 6 git commands to generate.