Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22
23 #include "core.h"
24 #include "debug.h"
25
26 #include "targaddrs.h"
27 #include "bmi.h"
28
29 #include "hif.h"
30 #include "htc.h"
31
32 #include "ce.h"
33 #include "pci.h"
34
35 static unsigned int ath10k_target_ps;
36 module_param(ath10k_target_ps, uint, 0644);
37 MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
38
39 #define QCA988X_1_0_DEVICE_ID (0xabcd)
40 #define QCA988X_2_0_DEVICE_ID (0x003c)
41
42 static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
43 { PCI_VDEVICE(ATHEROS, QCA988X_1_0_DEVICE_ID) }, /* PCI-E QCA988X V1 */
44 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
45 {0}
46 };
47
48 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
49 u32 *data);
50
51 static void ath10k_pci_process_ce(struct ath10k *ar);
52 static int ath10k_pci_post_rx(struct ath10k *ar);
53 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
54 int num);
55 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info);
56 static void ath10k_pci_stop_ce(struct ath10k *ar);
57 static void ath10k_pci_device_reset(struct ath10k *ar);
58 static int ath10k_pci_reset_target(struct ath10k *ar);
59 static int ath10k_pci_start_intr(struct ath10k *ar);
60 static void ath10k_pci_stop_intr(struct ath10k *ar);
61
62 static const struct ce_attr host_ce_config_wlan[] = {
63 /* host->target HTC control and raw streams */
64 { /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,},
65 /* could be moved to share CE3 */
66 /* target->host HTT + HTC control */
67 { /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,},
68 /* target->host WMI */
69 { /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,},
70 /* host->target WMI */
71 { /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,},
72 /* host->target HTT */
73 { /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0,
74 CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,},
75 /* unused */
76 { /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
77 /* Target autonomous hif_memcpy */
78 { /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
79 /* ce_diag, the Diagnostic Window */
80 { /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,},
81 };
82
83 /* Target firmware's Copy Engine configuration. */
84 static const struct ce_pipe_config target_ce_config_wlan[] = {
85 /* host->target HTC control and raw streams */
86 { /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,},
87 /* target->host HTT + HTC control */
88 { /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,},
89 /* target->host WMI */
90 { /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,},
91 /* host->target WMI */
92 { /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
93 /* host->target HTT */
94 { /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,},
95 /* NB: 50% of src nentries, since tx has 2 frags */
96 /* unused */
97 { /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
98 /* Reserved for target autonomous hif_memcpy */
99 { /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,},
100 /* CE7 used only by Host */
101 };
102
103 /*
104 * Diagnostic read/write access is provided for startup/config/debug usage.
105 * Caller must guarantee proper alignment, when applicable, and single user
106 * at any moment.
107 */
108 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
109 int nbytes)
110 {
111 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
112 int ret = 0;
113 u32 buf;
114 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
115 unsigned int id;
116 unsigned int flags;
117 struct ce_state *ce_diag;
118 /* Host buffer address in CE space */
119 u32 ce_data;
120 dma_addr_t ce_data_base = 0;
121 void *data_buf = NULL;
122 int i;
123
124 /*
125 * This code cannot handle reads to non-memory space. Redirect to the
126 * register read fn but preserve the multi word read capability of
127 * this fn
128 */
129 if (address < DRAM_BASE_ADDRESS) {
130 if (!IS_ALIGNED(address, 4) ||
131 !IS_ALIGNED((unsigned long)data, 4))
132 return -EIO;
133
134 while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
135 ar, address, (u32 *)data)) == 0)) {
136 nbytes -= sizeof(u32);
137 address += sizeof(u32);
138 data += sizeof(u32);
139 }
140 return ret;
141 }
142
143 ce_diag = ar_pci->ce_diag;
144
145 /*
146 * Allocate a temporary bounce buffer to hold caller's data
147 * to be DMA'ed from Target. This guarantees
148 * 1) 4-byte alignment
149 * 2) Buffer in DMA-able space
150 */
151 orig_nbytes = nbytes;
152 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
153 orig_nbytes,
154 &ce_data_base);
155
156 if (!data_buf) {
157 ret = -ENOMEM;
158 goto done;
159 }
160 memset(data_buf, 0, orig_nbytes);
161
162 remaining_bytes = orig_nbytes;
163 ce_data = ce_data_base;
164 while (remaining_bytes) {
165 nbytes = min_t(unsigned int, remaining_bytes,
166 DIAG_TRANSFER_LIMIT);
167
168 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
169 if (ret != 0)
170 goto done;
171
172 /* Request CE to send from Target(!) address to Host buffer */
173 /*
174 * The address supplied by the caller is in the
175 * Target CPU virtual address space.
176 *
177 * In order to use this address with the diagnostic CE,
178 * convert it from Target CPU virtual address space
179 * to CE address space
180 */
181 ath10k_pci_wake(ar);
182 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
183 address);
184 ath10k_pci_sleep(ar);
185
186 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
187 0);
188 if (ret)
189 goto done;
190
191 i = 0;
192 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
193 &completed_nbytes,
194 &id) != 0) {
195 mdelay(1);
196 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
197 ret = -EBUSY;
198 goto done;
199 }
200 }
201
202 if (nbytes != completed_nbytes) {
203 ret = -EIO;
204 goto done;
205 }
206
207 if (buf != (u32) address) {
208 ret = -EIO;
209 goto done;
210 }
211
212 i = 0;
213 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
214 &completed_nbytes,
215 &id, &flags) != 0) {
216 mdelay(1);
217
218 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
219 ret = -EBUSY;
220 goto done;
221 }
222 }
223
224 if (nbytes != completed_nbytes) {
225 ret = -EIO;
226 goto done;
227 }
228
229 if (buf != ce_data) {
230 ret = -EIO;
231 goto done;
232 }
233
234 remaining_bytes -= nbytes;
235 address += nbytes;
236 ce_data += nbytes;
237 }
238
239 done:
240 if (ret == 0) {
241 /* Copy data from allocated DMA buf to caller's buf */
242 WARN_ON_ONCE(orig_nbytes & 3);
243 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
244 ((u32 *)data)[i] =
245 __le32_to_cpu(((__le32 *)data_buf)[i]);
246 }
247 } else
248 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
249 __func__, address);
250
251 if (data_buf)
252 pci_free_consistent(ar_pci->pdev, orig_nbytes,
253 data_buf, ce_data_base);
254
255 return ret;
256 }
257
258 /* Read 4-byte aligned data from Target memory or register */
259 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
260 u32 *data)
261 {
262 /* Assume range doesn't cross this boundary */
263 if (address >= DRAM_BASE_ADDRESS)
264 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
265
266 ath10k_pci_wake(ar);
267 *data = ath10k_pci_read32(ar, address);
268 ath10k_pci_sleep(ar);
269 return 0;
270 }
271
272 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
273 const void *data, int nbytes)
274 {
275 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
276 int ret = 0;
277 u32 buf;
278 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
279 unsigned int id;
280 unsigned int flags;
281 struct ce_state *ce_diag;
282 void *data_buf = NULL;
283 u32 ce_data; /* Host buffer address in CE space */
284 dma_addr_t ce_data_base = 0;
285 int i;
286
287 ce_diag = ar_pci->ce_diag;
288
289 /*
290 * Allocate a temporary bounce buffer to hold caller's data
291 * to be DMA'ed to Target. This guarantees
292 * 1) 4-byte alignment
293 * 2) Buffer in DMA-able space
294 */
295 orig_nbytes = nbytes;
296 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
297 orig_nbytes,
298 &ce_data_base);
299 if (!data_buf) {
300 ret = -ENOMEM;
301 goto done;
302 }
303
304 /* Copy caller's data to allocated DMA buf */
305 WARN_ON_ONCE(orig_nbytes & 3);
306 for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
307 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
308
309 /*
310 * The address supplied by the caller is in the
311 * Target CPU virtual address space.
312 *
313 * In order to use this address with the diagnostic CE,
314 * convert it from
315 * Target CPU virtual address space
316 * to
317 * CE address space
318 */
319 ath10k_pci_wake(ar);
320 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
321 ath10k_pci_sleep(ar);
322
323 remaining_bytes = orig_nbytes;
324 ce_data = ce_data_base;
325 while (remaining_bytes) {
326 /* FIXME: check cast */
327 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
328
329 /* Set up to receive directly into Target(!) address */
330 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
331 if (ret != 0)
332 goto done;
333
334 /*
335 * Request CE to send caller-supplied data that
336 * was copied to bounce buffer to Target(!) address.
337 */
338 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
339 nbytes, 0, 0);
340 if (ret != 0)
341 goto done;
342
343 i = 0;
344 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
345 &completed_nbytes,
346 &id) != 0) {
347 mdelay(1);
348
349 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
350 ret = -EBUSY;
351 goto done;
352 }
353 }
354
355 if (nbytes != completed_nbytes) {
356 ret = -EIO;
357 goto done;
358 }
359
360 if (buf != ce_data) {
361 ret = -EIO;
362 goto done;
363 }
364
365 i = 0;
366 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
367 &completed_nbytes,
368 &id, &flags) != 0) {
369 mdelay(1);
370
371 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
372 ret = -EBUSY;
373 goto done;
374 }
375 }
376
377 if (nbytes != completed_nbytes) {
378 ret = -EIO;
379 goto done;
380 }
381
382 if (buf != address) {
383 ret = -EIO;
384 goto done;
385 }
386
387 remaining_bytes -= nbytes;
388 address += nbytes;
389 ce_data += nbytes;
390 }
391
392 done:
393 if (data_buf) {
394 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
395 ce_data_base);
396 }
397
398 if (ret != 0)
399 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
400 address);
401
402 return ret;
403 }
404
405 /* Write 4B data to Target memory or register */
406 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
407 u32 data)
408 {
409 /* Assume range doesn't cross this boundary */
410 if (address >= DRAM_BASE_ADDRESS)
411 return ath10k_pci_diag_write_mem(ar, address, &data,
412 sizeof(u32));
413
414 ath10k_pci_wake(ar);
415 ath10k_pci_write32(ar, address, data);
416 ath10k_pci_sleep(ar);
417 return 0;
418 }
419
420 static bool ath10k_pci_target_is_awake(struct ath10k *ar)
421 {
422 void __iomem *mem = ath10k_pci_priv(ar)->mem;
423 u32 val;
424 val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
425 RTC_STATE_ADDRESS);
426 return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
427 }
428
429 static void ath10k_pci_wait(struct ath10k *ar)
430 {
431 int n = 100;
432
433 while (n-- && !ath10k_pci_target_is_awake(ar))
434 msleep(10);
435
436 if (n < 0)
437 ath10k_warn("Unable to wakeup target\n");
438 }
439
440 void ath10k_do_pci_wake(struct ath10k *ar)
441 {
442 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 void __iomem *pci_addr = ar_pci->mem;
444 int tot_delay = 0;
445 int curr_delay = 5;
446
447 if (atomic_read(&ar_pci->keep_awake_count) == 0) {
448 /* Force AWAKE */
449 iowrite32(PCIE_SOC_WAKE_V_MASK,
450 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
451 PCIE_SOC_WAKE_ADDRESS);
452 }
453 atomic_inc(&ar_pci->keep_awake_count);
454
455 if (ar_pci->verified_awake)
456 return;
457
458 for (;;) {
459 if (ath10k_pci_target_is_awake(ar)) {
460 ar_pci->verified_awake = true;
461 break;
462 }
463
464 if (tot_delay > PCIE_WAKE_TIMEOUT) {
465 ath10k_warn("target takes too long to wake up (awake count %d)\n",
466 atomic_read(&ar_pci->keep_awake_count));
467 break;
468 }
469
470 udelay(curr_delay);
471 tot_delay += curr_delay;
472
473 if (curr_delay < 50)
474 curr_delay += 5;
475 }
476 }
477
478 void ath10k_do_pci_sleep(struct ath10k *ar)
479 {
480 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
481 void __iomem *pci_addr = ar_pci->mem;
482
483 if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
484 /* Allow sleep */
485 ar_pci->verified_awake = false;
486 iowrite32(PCIE_SOC_WAKE_RESET,
487 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
488 PCIE_SOC_WAKE_ADDRESS);
489 }
490 }
491
492 /*
493 * FIXME: Handle OOM properly.
494 */
495 static inline
496 struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info)
497 {
498 struct ath10k_pci_compl *compl = NULL;
499
500 spin_lock_bh(&pipe_info->pipe_lock);
501 if (list_empty(&pipe_info->compl_free)) {
502 ath10k_warn("Completion buffers are full\n");
503 goto exit;
504 }
505 compl = list_first_entry(&pipe_info->compl_free,
506 struct ath10k_pci_compl, list);
507 list_del(&compl->list);
508 exit:
509 spin_unlock_bh(&pipe_info->pipe_lock);
510 return compl;
511 }
512
513 /* Called by lower (CE) layer when a send to Target completes. */
514 static void ath10k_pci_ce_send_done(struct ce_state *ce_state,
515 void *transfer_context,
516 u32 ce_data,
517 unsigned int nbytes,
518 unsigned int transfer_id)
519 {
520 struct ath10k *ar = ce_state->ar;
521 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
522 struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id];
523 struct ath10k_pci_compl *compl;
524 bool process = false;
525
526 do {
527 /*
528 * For the send completion of an item in sendlist, just
529 * increment num_sends_allowed. The upper layer callback will
530 * be triggered when last fragment is done with send.
531 */
532 if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
533 spin_lock_bh(&pipe_info->pipe_lock);
534 pipe_info->num_sends_allowed++;
535 spin_unlock_bh(&pipe_info->pipe_lock);
536 continue;
537 }
538
539 compl = get_free_compl(pipe_info);
540 if (!compl)
541 break;
542
543 compl->send_or_recv = HIF_CE_COMPLETE_SEND;
544 compl->ce_state = ce_state;
545 compl->pipe_info = pipe_info;
546 compl->transfer_context = transfer_context;
547 compl->nbytes = nbytes;
548 compl->transfer_id = transfer_id;
549 compl->flags = 0;
550
551 /*
552 * Add the completion to the processing queue.
553 */
554 spin_lock_bh(&ar_pci->compl_lock);
555 list_add_tail(&compl->list, &ar_pci->compl_process);
556 spin_unlock_bh(&ar_pci->compl_lock);
557
558 process = true;
559 } while (ath10k_ce_completed_send_next(ce_state,
560 &transfer_context,
561 &ce_data, &nbytes,
562 &transfer_id) == 0);
563
564 /*
565 * If only some of the items within a sendlist have completed,
566 * don't invoke completion processing until the entire sendlist
567 * has been sent.
568 */
569 if (!process)
570 return;
571
572 ath10k_pci_process_ce(ar);
573 }
574
575 /* Called by lower (CE) layer when data is received from the Target. */
576 static void ath10k_pci_ce_recv_data(struct ce_state *ce_state,
577 void *transfer_context, u32 ce_data,
578 unsigned int nbytes,
579 unsigned int transfer_id,
580 unsigned int flags)
581 {
582 struct ath10k *ar = ce_state->ar;
583 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
584 struct hif_ce_pipe_info *pipe_info = &ar_pci->pipe_info[ce_state->id];
585 struct ath10k_pci_compl *compl;
586 struct sk_buff *skb;
587
588 do {
589 compl = get_free_compl(pipe_info);
590 if (!compl)
591 break;
592
593 compl->send_or_recv = HIF_CE_COMPLETE_RECV;
594 compl->ce_state = ce_state;
595 compl->pipe_info = pipe_info;
596 compl->transfer_context = transfer_context;
597 compl->nbytes = nbytes;
598 compl->transfer_id = transfer_id;
599 compl->flags = flags;
600
601 skb = transfer_context;
602 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
603 skb->len + skb_tailroom(skb),
604 DMA_FROM_DEVICE);
605 /*
606 * Add the completion to the processing queue.
607 */
608 spin_lock_bh(&ar_pci->compl_lock);
609 list_add_tail(&compl->list, &ar_pci->compl_process);
610 spin_unlock_bh(&ar_pci->compl_lock);
611
612 } while (ath10k_ce_completed_recv_next(ce_state,
613 &transfer_context,
614 &ce_data, &nbytes,
615 &transfer_id,
616 &flags) == 0);
617
618 ath10k_pci_process_ce(ar);
619 }
620
621 /* Send the first nbytes bytes of the buffer */
622 static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
623 unsigned int transfer_id,
624 unsigned int bytes, struct sk_buff *nbuf)
625 {
626 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]);
629 struct ce_state *ce_hdl = pipe_info->ce_hdl;
630 struct ce_sendlist sendlist;
631 unsigned int len;
632 u32 flags = 0;
633 int ret;
634
635 memset(&sendlist, 0, sizeof(struct ce_sendlist));
636
637 len = min(bytes, nbuf->len);
638 bytes -= len;
639
640 if (len & 3)
641 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
642
643 ath10k_dbg(ATH10K_DBG_PCI,
644 "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
645 nbuf->data, (unsigned long long) skb_cb->paddr,
646 nbuf->len, len);
647 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
648 "ath10k tx: data: ",
649 nbuf->data, nbuf->len);
650
651 ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
652
653 /* Make sure we have resources to handle this request */
654 spin_lock_bh(&pipe_info->pipe_lock);
655 if (!pipe_info->num_sends_allowed) {
656 ath10k_warn("Pipe: %d is full\n", pipe_id);
657 spin_unlock_bh(&pipe_info->pipe_lock);
658 return -ENOSR;
659 }
660 pipe_info->num_sends_allowed--;
661 spin_unlock_bh(&pipe_info->pipe_lock);
662
663 ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
664 if (ret)
665 ath10k_warn("CE send failed: %p\n", nbuf);
666
667 return ret;
668 }
669
670 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
671 {
672 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
673 struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]);
674 int ret;
675
676 spin_lock_bh(&pipe_info->pipe_lock);
677 ret = pipe_info->num_sends_allowed;
678 spin_unlock_bh(&pipe_info->pipe_lock);
679
680 return ret;
681 }
682
683 static void ath10k_pci_hif_dump_area(struct ath10k *ar)
684 {
685 u32 reg_dump_area = 0;
686 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
687 u32 host_addr;
688 int ret;
689 u32 i;
690
691 ath10k_err("firmware crashed!\n");
692 ath10k_err("hardware name %s version 0x%x\n",
693 ar->hw_params.name, ar->target_version);
694 ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
695 ar->fw_version_minor, ar->fw_version_release,
696 ar->fw_version_build);
697
698 host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
699 if (ath10k_pci_diag_read_mem(ar, host_addr,
700 &reg_dump_area, sizeof(u32)) != 0) {
701 ath10k_warn("could not read hi_failure_state\n");
702 return;
703 }
704
705 ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
706
707 ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
708 &reg_dump_values[0],
709 REG_DUMP_COUNT_QCA988X * sizeof(u32));
710 if (ret != 0) {
711 ath10k_err("could not dump FW Dump Area\n");
712 return;
713 }
714
715 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
716
717 ath10k_err("target Register Dump\n");
718 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
719 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
720 i,
721 reg_dump_values[i],
722 reg_dump_values[i + 1],
723 reg_dump_values[i + 2],
724 reg_dump_values[i + 3]);
725
726 ieee80211_queue_work(ar->hw, &ar->restart_work);
727 }
728
729 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
730 int force)
731 {
732 if (!force) {
733 int resources;
734 /*
735 * Decide whether to actually poll for completions, or just
736 * wait for a later chance.
737 * If there seem to be plenty of resources left, then just wait
738 * since checking involves reading a CE register, which is a
739 * relatively expensive operation.
740 */
741 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
742
743 /*
744 * If at least 50% of the total resources are still available,
745 * don't bother checking again yet.
746 */
747 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
748 return;
749 }
750 ath10k_ce_per_engine_service(ar, pipe);
751 }
752
753 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
754 struct ath10k_hif_cb *callbacks)
755 {
756 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757
758 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
759
760 memcpy(&ar_pci->msg_callbacks_current, callbacks,
761 sizeof(ar_pci->msg_callbacks_current));
762 }
763
764 static int ath10k_pci_start_ce(struct ath10k *ar)
765 {
766 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
767 struct ce_state *ce_diag = ar_pci->ce_diag;
768 const struct ce_attr *attr;
769 struct hif_ce_pipe_info *pipe_info;
770 struct ath10k_pci_compl *compl;
771 int i, pipe_num, completions, disable_interrupts;
772
773 spin_lock_init(&ar_pci->compl_lock);
774 INIT_LIST_HEAD(&ar_pci->compl_process);
775
776 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
777 pipe_info = &ar_pci->pipe_info[pipe_num];
778
779 spin_lock_init(&pipe_info->pipe_lock);
780 INIT_LIST_HEAD(&pipe_info->compl_free);
781
782 /* Handle Diagnostic CE specially */
783 if (pipe_info->ce_hdl == ce_diag)
784 continue;
785
786 attr = &host_ce_config_wlan[pipe_num];
787 completions = 0;
788
789 if (attr->src_nentries) {
790 disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
791 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
792 ath10k_pci_ce_send_done,
793 disable_interrupts);
794 completions += attr->src_nentries;
795 pipe_info->num_sends_allowed = attr->src_nentries - 1;
796 }
797
798 if (attr->dest_nentries) {
799 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
800 ath10k_pci_ce_recv_data);
801 completions += attr->dest_nentries;
802 }
803
804 if (completions == 0)
805 continue;
806
807 for (i = 0; i < completions; i++) {
808 compl = kmalloc(sizeof(struct ath10k_pci_compl),
809 GFP_KERNEL);
810 if (!compl) {
811 ath10k_warn("No memory for completion state\n");
812 ath10k_pci_stop_ce(ar);
813 return -ENOMEM;
814 }
815
816 compl->send_or_recv = HIF_CE_COMPLETE_FREE;
817 list_add_tail(&compl->list, &pipe_info->compl_free);
818 }
819 }
820
821 return 0;
822 }
823
824 static void ath10k_pci_stop_ce(struct ath10k *ar)
825 {
826 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
827 struct ath10k_pci_compl *compl;
828 struct sk_buff *skb;
829 int i;
830
831 ath10k_ce_disable_interrupts(ar);
832
833 /* Cancel the pending tasklet */
834 tasklet_kill(&ar_pci->intr_tq);
835
836 for (i = 0; i < CE_COUNT; i++)
837 tasklet_kill(&ar_pci->pipe_info[i].intr);
838
839 /* Mark pending completions as aborted, so that upper layers free up
840 * their associated resources */
841 spin_lock_bh(&ar_pci->compl_lock);
842 list_for_each_entry(compl, &ar_pci->compl_process, list) {
843 skb = (struct sk_buff *)compl->transfer_context;
844 ATH10K_SKB_CB(skb)->is_aborted = true;
845 }
846 spin_unlock_bh(&ar_pci->compl_lock);
847 }
848
849 static void ath10k_pci_cleanup_ce(struct ath10k *ar)
850 {
851 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852 struct ath10k_pci_compl *compl, *tmp;
853 struct hif_ce_pipe_info *pipe_info;
854 struct sk_buff *netbuf;
855 int pipe_num;
856
857 /* Free pending completions. */
858 spin_lock_bh(&ar_pci->compl_lock);
859 if (!list_empty(&ar_pci->compl_process))
860 ath10k_warn("pending completions still present! possible memory leaks.\n");
861
862 list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
863 list_del(&compl->list);
864 netbuf = (struct sk_buff *)compl->transfer_context;
865 dev_kfree_skb_any(netbuf);
866 kfree(compl);
867 }
868 spin_unlock_bh(&ar_pci->compl_lock);
869
870 /* Free unused completions for each pipe. */
871 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
872 pipe_info = &ar_pci->pipe_info[pipe_num];
873
874 spin_lock_bh(&pipe_info->pipe_lock);
875 list_for_each_entry_safe(compl, tmp,
876 &pipe_info->compl_free, list) {
877 list_del(&compl->list);
878 kfree(compl);
879 }
880 spin_unlock_bh(&pipe_info->pipe_lock);
881 }
882 }
883
884 static void ath10k_pci_process_ce(struct ath10k *ar)
885 {
886 struct ath10k_pci *ar_pci = ar->hif.priv;
887 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
888 struct ath10k_pci_compl *compl;
889 struct sk_buff *skb;
890 unsigned int nbytes;
891 int ret, send_done = 0;
892
893 /* Upper layers aren't ready to handle tx/rx completions in parallel so
894 * we must serialize all completion processing. */
895
896 spin_lock_bh(&ar_pci->compl_lock);
897 if (ar_pci->compl_processing) {
898 spin_unlock_bh(&ar_pci->compl_lock);
899 return;
900 }
901 ar_pci->compl_processing = true;
902 spin_unlock_bh(&ar_pci->compl_lock);
903
904 for (;;) {
905 spin_lock_bh(&ar_pci->compl_lock);
906 if (list_empty(&ar_pci->compl_process)) {
907 spin_unlock_bh(&ar_pci->compl_lock);
908 break;
909 }
910 compl = list_first_entry(&ar_pci->compl_process,
911 struct ath10k_pci_compl, list);
912 list_del(&compl->list);
913 spin_unlock_bh(&ar_pci->compl_lock);
914
915 if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) {
916 cb->tx_completion(ar,
917 compl->transfer_context,
918 compl->transfer_id);
919 send_done = 1;
920 } else {
921 ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
922 if (ret) {
923 ath10k_warn("Unable to post recv buffer for pipe: %d\n",
924 compl->pipe_info->pipe_num);
925 break;
926 }
927
928 skb = (struct sk_buff *)compl->transfer_context;
929 nbytes = compl->nbytes;
930
931 ath10k_dbg(ATH10K_DBG_PCI,
932 "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
933 skb, nbytes);
934 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
935 "ath10k rx: ", skb->data, nbytes);
936
937 if (skb->len + skb_tailroom(skb) >= nbytes) {
938 skb_trim(skb, 0);
939 skb_put(skb, nbytes);
940 cb->rx_completion(ar, skb,
941 compl->pipe_info->pipe_num);
942 } else {
943 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
944 nbytes,
945 skb->len + skb_tailroom(skb));
946 }
947 }
948
949 compl->send_or_recv = HIF_CE_COMPLETE_FREE;
950
951 /*
952 * Add completion back to the pipe's free list.
953 */
954 spin_lock_bh(&compl->pipe_info->pipe_lock);
955 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
956 compl->pipe_info->num_sends_allowed += send_done;
957 spin_unlock_bh(&compl->pipe_info->pipe_lock);
958 }
959
960 spin_lock_bh(&ar_pci->compl_lock);
961 ar_pci->compl_processing = false;
962 spin_unlock_bh(&ar_pci->compl_lock);
963 }
964
965 /* TODO - temporary mapping while we have too few CE's */
966 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
967 u16 service_id, u8 *ul_pipe,
968 u8 *dl_pipe, int *ul_is_polled,
969 int *dl_is_polled)
970 {
971 int ret = 0;
972
973 /* polling for received messages not supported */
974 *dl_is_polled = 0;
975
976 switch (service_id) {
977 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
978 /*
979 * Host->target HTT gets its own pipe, so it can be polled
980 * while other pipes are interrupt driven.
981 */
982 *ul_pipe = 4;
983 /*
984 * Use the same target->host pipe for HTC ctrl, HTC raw
985 * streams, and HTT.
986 */
987 *dl_pipe = 1;
988 break;
989
990 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
991 case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
992 /*
993 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
994 * HTC_CTRL_RSVD_SVC could share the same pipe as the
995 * WMI services. So, if another CE is needed, change
996 * this to *ul_pipe = 3, which frees up CE 0.
997 */
998 /* *ul_pipe = 3; */
999 *ul_pipe = 0;
1000 *dl_pipe = 1;
1001 break;
1002
1003 case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1004 case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1005 case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1006 case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1007
1008 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1009 *ul_pipe = 3;
1010 *dl_pipe = 2;
1011 break;
1012
1013 /* pipe 5 unused */
1014 /* pipe 6 reserved */
1015 /* pipe 7 reserved */
1016
1017 default:
1018 ret = -1;
1019 break;
1020 }
1021 *ul_is_polled =
1022 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1023
1024 return ret;
1025 }
1026
1027 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1028 u8 *ul_pipe, u8 *dl_pipe)
1029 {
1030 int ul_is_polled, dl_is_polled;
1031
1032 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1033 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1034 ul_pipe,
1035 dl_pipe,
1036 &ul_is_polled,
1037 &dl_is_polled);
1038 }
1039
1040 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
1041 int num)
1042 {
1043 struct ath10k *ar = pipe_info->hif_ce_state;
1044 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1045 struct ce_state *ce_state = pipe_info->ce_hdl;
1046 struct sk_buff *skb;
1047 dma_addr_t ce_data;
1048 int i, ret = 0;
1049
1050 if (pipe_info->buf_sz == 0)
1051 return 0;
1052
1053 for (i = 0; i < num; i++) {
1054 skb = dev_alloc_skb(pipe_info->buf_sz);
1055 if (!skb) {
1056 ath10k_warn("could not allocate skbuff for pipe %d\n",
1057 num);
1058 ret = -ENOMEM;
1059 goto err;
1060 }
1061
1062 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1063
1064 ce_data = dma_map_single(ar->dev, skb->data,
1065 skb->len + skb_tailroom(skb),
1066 DMA_FROM_DEVICE);
1067
1068 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1069 ath10k_warn("could not dma map skbuff\n");
1070 dev_kfree_skb_any(skb);
1071 ret = -EIO;
1072 goto err;
1073 }
1074
1075 ATH10K_SKB_CB(skb)->paddr = ce_data;
1076
1077 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1078 pipe_info->buf_sz,
1079 PCI_DMA_FROMDEVICE);
1080
1081 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1082 ce_data);
1083 if (ret) {
1084 ath10k_warn("could not enqueue to pipe %d (%d)\n",
1085 num, ret);
1086 goto err;
1087 }
1088 }
1089
1090 return ret;
1091
1092 err:
1093 ath10k_pci_rx_pipe_cleanup(pipe_info);
1094 return ret;
1095 }
1096
1097 static int ath10k_pci_post_rx(struct ath10k *ar)
1098 {
1099 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1100 struct hif_ce_pipe_info *pipe_info;
1101 const struct ce_attr *attr;
1102 int pipe_num, ret = 0;
1103
1104 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1105 pipe_info = &ar_pci->pipe_info[pipe_num];
1106 attr = &host_ce_config_wlan[pipe_num];
1107
1108 if (attr->dest_nentries == 0)
1109 continue;
1110
1111 ret = ath10k_pci_post_rx_pipe(pipe_info,
1112 attr->dest_nentries - 1);
1113 if (ret) {
1114 ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
1115 pipe_num);
1116
1117 for (; pipe_num >= 0; pipe_num--) {
1118 pipe_info = &ar_pci->pipe_info[pipe_num];
1119 ath10k_pci_rx_pipe_cleanup(pipe_info);
1120 }
1121 return ret;
1122 }
1123 }
1124
1125 return 0;
1126 }
1127
1128 static int ath10k_pci_hif_start(struct ath10k *ar)
1129 {
1130 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1131 int ret;
1132
1133 ret = ath10k_pci_start_ce(ar);
1134 if (ret) {
1135 ath10k_warn("could not start CE (%d)\n", ret);
1136 return ret;
1137 }
1138
1139 /* Post buffers once to start things off. */
1140 ret = ath10k_pci_post_rx(ar);
1141 if (ret) {
1142 ath10k_warn("could not post rx pipes (%d)\n", ret);
1143 return ret;
1144 }
1145
1146 ar_pci->started = 1;
1147 return 0;
1148 }
1149
1150 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1151 {
1152 struct ath10k *ar;
1153 struct ath10k_pci *ar_pci;
1154 struct ce_state *ce_hdl;
1155 u32 buf_sz;
1156 struct sk_buff *netbuf;
1157 u32 ce_data;
1158
1159 buf_sz = pipe_info->buf_sz;
1160
1161 /* Unused Copy Engine */
1162 if (buf_sz == 0)
1163 return;
1164
1165 ar = pipe_info->hif_ce_state;
1166 ar_pci = ath10k_pci_priv(ar);
1167
1168 if (!ar_pci->started)
1169 return;
1170
1171 ce_hdl = pipe_info->ce_hdl;
1172
1173 while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1174 &ce_data) == 0) {
1175 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1176 netbuf->len + skb_tailroom(netbuf),
1177 DMA_FROM_DEVICE);
1178 dev_kfree_skb_any(netbuf);
1179 }
1180 }
1181
1182 static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1183 {
1184 struct ath10k *ar;
1185 struct ath10k_pci *ar_pci;
1186 struct ce_state *ce_hdl;
1187 struct sk_buff *netbuf;
1188 u32 ce_data;
1189 unsigned int nbytes;
1190 unsigned int id;
1191 u32 buf_sz;
1192
1193 buf_sz = pipe_info->buf_sz;
1194
1195 /* Unused Copy Engine */
1196 if (buf_sz == 0)
1197 return;
1198
1199 ar = pipe_info->hif_ce_state;
1200 ar_pci = ath10k_pci_priv(ar);
1201
1202 if (!ar_pci->started)
1203 return;
1204
1205 ce_hdl = pipe_info->ce_hdl;
1206
1207 while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1208 &ce_data, &nbytes, &id) == 0) {
1209 if (netbuf != CE_SENDLIST_ITEM_CTXT)
1210 /*
1211 * Indicate the completion to higer layer to free
1212 * the buffer
1213 */
1214 ATH10K_SKB_CB(netbuf)->is_aborted = true;
1215 ar_pci->msg_callbacks_current.tx_completion(ar,
1216 netbuf,
1217 id);
1218 }
1219 }
1220
1221 /*
1222 * Cleanup residual buffers for device shutdown:
1223 * buffers that were enqueued for receive
1224 * buffers that were to be sent
1225 * Note: Buffers that had completed but which were
1226 * not yet processed are on a completion queue. They
1227 * are handled when the completion thread shuts down.
1228 */
1229 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1230 {
1231 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1232 int pipe_num;
1233
1234 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1235 struct hif_ce_pipe_info *pipe_info;
1236
1237 pipe_info = &ar_pci->pipe_info[pipe_num];
1238 ath10k_pci_rx_pipe_cleanup(pipe_info);
1239 ath10k_pci_tx_pipe_cleanup(pipe_info);
1240 }
1241 }
1242
1243 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1244 {
1245 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1246 struct hif_ce_pipe_info *pipe_info;
1247 int pipe_num;
1248
1249 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1250 pipe_info = &ar_pci->pipe_info[pipe_num];
1251 if (pipe_info->ce_hdl) {
1252 ath10k_ce_deinit(pipe_info->ce_hdl);
1253 pipe_info->ce_hdl = NULL;
1254 pipe_info->buf_sz = 0;
1255 }
1256 }
1257 }
1258
1259 static void ath10k_pci_disable_irqs(struct ath10k *ar)
1260 {
1261 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1262 int i;
1263
1264 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1265 disable_irq(ar_pci->pdev->irq + i);
1266 }
1267
1268 static void ath10k_pci_hif_stop(struct ath10k *ar)
1269 {
1270 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1271
1272 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1273
1274 /* Irqs are never explicitly re-enabled. They are implicitly re-enabled
1275 * by ath10k_pci_start_intr(). */
1276 ath10k_pci_disable_irqs(ar);
1277
1278 ath10k_pci_stop_ce(ar);
1279
1280 /* At this point, asynchronous threads are stopped, the target should
1281 * not DMA nor interrupt. We process the leftovers and then free
1282 * everything else up. */
1283
1284 ath10k_pci_process_ce(ar);
1285 ath10k_pci_cleanup_ce(ar);
1286 ath10k_pci_buffer_cleanup(ar);
1287
1288 ar_pci->started = 0;
1289 }
1290
1291 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1292 void *req, u32 req_len,
1293 void *resp, u32 *resp_len)
1294 {
1295 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1296 struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl;
1297 struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl;
1298 dma_addr_t req_paddr = 0;
1299 dma_addr_t resp_paddr = 0;
1300 struct bmi_xfer xfer = {};
1301 void *treq, *tresp = NULL;
1302 int ret = 0;
1303
1304 if (resp && !resp_len)
1305 return -EINVAL;
1306
1307 if (resp && resp_len && *resp_len == 0)
1308 return -EINVAL;
1309
1310 treq = kmemdup(req, req_len, GFP_KERNEL);
1311 if (!treq)
1312 return -ENOMEM;
1313
1314 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1315 ret = dma_mapping_error(ar->dev, req_paddr);
1316 if (ret)
1317 goto err_dma;
1318
1319 if (resp && resp_len) {
1320 tresp = kzalloc(*resp_len, GFP_KERNEL);
1321 if (!tresp) {
1322 ret = -ENOMEM;
1323 goto err_req;
1324 }
1325
1326 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1327 DMA_FROM_DEVICE);
1328 ret = dma_mapping_error(ar->dev, resp_paddr);
1329 if (ret)
1330 goto err_req;
1331
1332 xfer.wait_for_resp = true;
1333 xfer.resp_len = 0;
1334
1335 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1336 }
1337
1338 init_completion(&xfer.done);
1339
1340 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1341 if (ret)
1342 goto err_resp;
1343
1344 ret = wait_for_completion_timeout(&xfer.done,
1345 BMI_COMMUNICATION_TIMEOUT_HZ);
1346 if (ret <= 0) {
1347 u32 unused_buffer;
1348 unsigned int unused_nbytes;
1349 unsigned int unused_id;
1350
1351 ret = -ETIMEDOUT;
1352 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1353 &unused_nbytes, &unused_id);
1354 } else {
1355 /* non-zero means we did not time out */
1356 ret = 0;
1357 }
1358
1359 err_resp:
1360 if (resp) {
1361 u32 unused_buffer;
1362
1363 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1364 dma_unmap_single(ar->dev, resp_paddr,
1365 *resp_len, DMA_FROM_DEVICE);
1366 }
1367 err_req:
1368 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1369
1370 if (ret == 0 && resp_len) {
1371 *resp_len = min(*resp_len, xfer.resp_len);
1372 memcpy(resp, tresp, xfer.resp_len);
1373 }
1374 err_dma:
1375 kfree(treq);
1376 kfree(tresp);
1377
1378 return ret;
1379 }
1380
1381 static void ath10k_pci_bmi_send_done(struct ce_state *ce_state,
1382 void *transfer_context,
1383 u32 data,
1384 unsigned int nbytes,
1385 unsigned int transfer_id)
1386 {
1387 struct bmi_xfer *xfer = transfer_context;
1388
1389 if (xfer->wait_for_resp)
1390 return;
1391
1392 complete(&xfer->done);
1393 }
1394
1395 static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state,
1396 void *transfer_context,
1397 u32 data,
1398 unsigned int nbytes,
1399 unsigned int transfer_id,
1400 unsigned int flags)
1401 {
1402 struct bmi_xfer *xfer = transfer_context;
1403
1404 if (!xfer->wait_for_resp) {
1405 ath10k_warn("unexpected: BMI data received; ignoring\n");
1406 return;
1407 }
1408
1409 xfer->resp_len = nbytes;
1410 complete(&xfer->done);
1411 }
1412
1413 /*
1414 * Map from service/endpoint to Copy Engine.
1415 * This table is derived from the CE_PCI TABLE, above.
1416 * It is passed to the Target at startup for use by firmware.
1417 */
1418 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1419 {
1420 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1421 PIPEDIR_OUT, /* out = UL = host -> target */
1422 3,
1423 },
1424 {
1425 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1426 PIPEDIR_IN, /* in = DL = target -> host */
1427 2,
1428 },
1429 {
1430 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1431 PIPEDIR_OUT, /* out = UL = host -> target */
1432 3,
1433 },
1434 {
1435 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1436 PIPEDIR_IN, /* in = DL = target -> host */
1437 2,
1438 },
1439 {
1440 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1441 PIPEDIR_OUT, /* out = UL = host -> target */
1442 3,
1443 },
1444 {
1445 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1446 PIPEDIR_IN, /* in = DL = target -> host */
1447 2,
1448 },
1449 {
1450 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1451 PIPEDIR_OUT, /* out = UL = host -> target */
1452 3,
1453 },
1454 {
1455 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1456 PIPEDIR_IN, /* in = DL = target -> host */
1457 2,
1458 },
1459 {
1460 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1461 PIPEDIR_OUT, /* out = UL = host -> target */
1462 3,
1463 },
1464 {
1465 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1466 PIPEDIR_IN, /* in = DL = target -> host */
1467 2,
1468 },
1469 {
1470 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1471 PIPEDIR_OUT, /* out = UL = host -> target */
1472 0, /* could be moved to 3 (share with WMI) */
1473 },
1474 {
1475 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1476 PIPEDIR_IN, /* in = DL = target -> host */
1477 1,
1478 },
1479 {
1480 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1481 PIPEDIR_OUT, /* out = UL = host -> target */
1482 0,
1483 },
1484 {
1485 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1486 PIPEDIR_IN, /* in = DL = target -> host */
1487 1,
1488 },
1489 {
1490 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1491 PIPEDIR_OUT, /* out = UL = host -> target */
1492 4,
1493 },
1494 {
1495 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1496 PIPEDIR_IN, /* in = DL = target -> host */
1497 1,
1498 },
1499
1500 /* (Additions here) */
1501
1502 { /* Must be last */
1503 0,
1504 0,
1505 0,
1506 },
1507 };
1508
1509 /*
1510 * Send an interrupt to the device to wake up the Target CPU
1511 * so it has an opportunity to notice any changed state.
1512 */
1513 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1514 {
1515 int ret;
1516 u32 core_ctrl;
1517
1518 ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1519 CORE_CTRL_ADDRESS,
1520 &core_ctrl);
1521 if (ret) {
1522 ath10k_warn("Unable to read core ctrl\n");
1523 return ret;
1524 }
1525
1526 /* A_INUM_FIRMWARE interrupt to Target CPU */
1527 core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1528
1529 ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1530 CORE_CTRL_ADDRESS,
1531 core_ctrl);
1532 if (ret)
1533 ath10k_warn("Unable to set interrupt mask\n");
1534
1535 return ret;
1536 }
1537
1538 static int ath10k_pci_init_config(struct ath10k *ar)
1539 {
1540 u32 interconnect_targ_addr;
1541 u32 pcie_state_targ_addr = 0;
1542 u32 pipe_cfg_targ_addr = 0;
1543 u32 svc_to_pipe_map = 0;
1544 u32 pcie_config_flags = 0;
1545 u32 ealloc_value;
1546 u32 ealloc_targ_addr;
1547 u32 flag2_value;
1548 u32 flag2_targ_addr;
1549 int ret = 0;
1550
1551 /* Download to Target the CE Config and the service-to-CE map */
1552 interconnect_targ_addr =
1553 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1554
1555 /* Supply Target-side CE configuration */
1556 ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1557 &pcie_state_targ_addr);
1558 if (ret != 0) {
1559 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1560 return ret;
1561 }
1562
1563 if (pcie_state_targ_addr == 0) {
1564 ret = -EIO;
1565 ath10k_err("Invalid pcie state addr\n");
1566 return ret;
1567 }
1568
1569 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1570 offsetof(struct pcie_state,
1571 pipe_cfg_addr),
1572 &pipe_cfg_targ_addr);
1573 if (ret != 0) {
1574 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1575 return ret;
1576 }
1577
1578 if (pipe_cfg_targ_addr == 0) {
1579 ret = -EIO;
1580 ath10k_err("Invalid pipe cfg addr\n");
1581 return ret;
1582 }
1583
1584 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1585 target_ce_config_wlan,
1586 sizeof(target_ce_config_wlan));
1587
1588 if (ret != 0) {
1589 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1590 return ret;
1591 }
1592
1593 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1594 offsetof(struct pcie_state,
1595 svc_to_pipe_map),
1596 &svc_to_pipe_map);
1597 if (ret != 0) {
1598 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1599 return ret;
1600 }
1601
1602 if (svc_to_pipe_map == 0) {
1603 ret = -EIO;
1604 ath10k_err("Invalid svc_to_pipe map\n");
1605 return ret;
1606 }
1607
1608 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1609 target_service_to_ce_map_wlan,
1610 sizeof(target_service_to_ce_map_wlan));
1611 if (ret != 0) {
1612 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1613 return ret;
1614 }
1615
1616 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1617 offsetof(struct pcie_state,
1618 config_flags),
1619 &pcie_config_flags);
1620 if (ret != 0) {
1621 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1622 return ret;
1623 }
1624
1625 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1626
1627 ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1628 offsetof(struct pcie_state, config_flags),
1629 &pcie_config_flags,
1630 sizeof(pcie_config_flags));
1631 if (ret != 0) {
1632 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1633 return ret;
1634 }
1635
1636 /* configure early allocation */
1637 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1638
1639 ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1640 if (ret != 0) {
1641 ath10k_err("Faile to get early alloc val: %d\n", ret);
1642 return ret;
1643 }
1644
1645 /* first bank is switched to IRAM */
1646 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1647 HI_EARLY_ALLOC_MAGIC_MASK);
1648 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1649 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1650
1651 ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1652 if (ret != 0) {
1653 ath10k_err("Failed to set early alloc val: %d\n", ret);
1654 return ret;
1655 }
1656
1657 /* Tell Target to proceed with initialization */
1658 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1659
1660 ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1661 if (ret != 0) {
1662 ath10k_err("Failed to get option val: %d\n", ret);
1663 return ret;
1664 }
1665
1666 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1667
1668 ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1669 if (ret != 0) {
1670 ath10k_err("Failed to set option val: %d\n", ret);
1671 return ret;
1672 }
1673
1674 return 0;
1675 }
1676
1677
1678
1679 static int ath10k_pci_ce_init(struct ath10k *ar)
1680 {
1681 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1682 struct hif_ce_pipe_info *pipe_info;
1683 const struct ce_attr *attr;
1684 int pipe_num;
1685
1686 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1687 pipe_info = &ar_pci->pipe_info[pipe_num];
1688 pipe_info->pipe_num = pipe_num;
1689 pipe_info->hif_ce_state = ar;
1690 attr = &host_ce_config_wlan[pipe_num];
1691
1692 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1693 if (pipe_info->ce_hdl == NULL) {
1694 ath10k_err("Unable to initialize CE for pipe: %d\n",
1695 pipe_num);
1696
1697 /* It is safe to call it here. It checks if ce_hdl is
1698 * valid for each pipe */
1699 ath10k_pci_ce_deinit(ar);
1700 return -1;
1701 }
1702
1703 if (pipe_num == ar_pci->ce_count - 1) {
1704 /*
1705 * Reserve the ultimate CE for
1706 * diagnostic Window support
1707 */
1708 ar_pci->ce_diag =
1709 ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
1710 continue;
1711 }
1712
1713 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1714 }
1715
1716 /*
1717 * Initially, establish CE completion handlers for use with BMI.
1718 * These are overwritten with generic handlers after we exit BMI phase.
1719 */
1720 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1721 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
1722 ath10k_pci_bmi_send_done, 0);
1723
1724 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1725 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
1726 ath10k_pci_bmi_recv_data);
1727
1728 return 0;
1729 }
1730
1731 static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1732 {
1733 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1734 u32 fw_indicator_address, fw_indicator;
1735
1736 ath10k_pci_wake(ar);
1737
1738 fw_indicator_address = ar_pci->fw_indicator_address;
1739 fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1740
1741 if (fw_indicator & FW_IND_EVENT_PENDING) {
1742 /* ACK: clear Target-side pending event */
1743 ath10k_pci_write32(ar, fw_indicator_address,
1744 fw_indicator & ~FW_IND_EVENT_PENDING);
1745
1746 if (ar_pci->started) {
1747 ath10k_pci_hif_dump_area(ar);
1748 } else {
1749 /*
1750 * Probable Target failure before we're prepared
1751 * to handle it. Generally unexpected.
1752 */
1753 ath10k_warn("early firmware event indicated\n");
1754 }
1755 }
1756
1757 ath10k_pci_sleep(ar);
1758 }
1759
1760 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1761 {
1762 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1763 int ret;
1764
1765 ret = ath10k_pci_start_intr(ar);
1766 if (ret) {
1767 ath10k_err("could not start interrupt handling (%d)\n", ret);
1768 goto err;
1769 }
1770
1771 /*
1772 * Bring the target up cleanly.
1773 *
1774 * The target may be in an undefined state with an AUX-powered Target
1775 * and a Host in WoW mode. If the Host crashes, loses power, or is
1776 * restarted (without unloading the driver) then the Target is left
1777 * (aux) powered and running. On a subsequent driver load, the Target
1778 * is in an unexpected state. We try to catch that here in order to
1779 * reset the Target and retry the probe.
1780 */
1781 ath10k_pci_device_reset(ar);
1782
1783 ret = ath10k_pci_reset_target(ar);
1784 if (ret)
1785 goto err_irq;
1786
1787 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1788 /* Force AWAKE forever */
1789 ath10k_do_pci_wake(ar);
1790
1791 ret = ath10k_pci_ce_init(ar);
1792 if (ret)
1793 goto err_ps;
1794
1795 ret = ath10k_pci_init_config(ar);
1796 if (ret)
1797 goto err_ce;
1798
1799 ret = ath10k_pci_wake_target_cpu(ar);
1800 if (ret) {
1801 ath10k_err("could not wake up target CPU (%d)\n", ret);
1802 goto err_ce;
1803 }
1804
1805 return 0;
1806
1807 err_ce:
1808 ath10k_pci_ce_deinit(ar);
1809 err_ps:
1810 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1811 ath10k_do_pci_sleep(ar);
1812 err_irq:
1813 ath10k_pci_stop_intr(ar);
1814 err:
1815 return ret;
1816 }
1817
1818 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1819 {
1820 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1821
1822 ath10k_pci_stop_intr(ar);
1823
1824 ath10k_pci_ce_deinit(ar);
1825 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1826 ath10k_do_pci_sleep(ar);
1827 }
1828
1829 #ifdef CONFIG_PM
1830
1831 #define ATH10K_PCI_PM_CONTROL 0x44
1832
1833 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1834 {
1835 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1836 struct pci_dev *pdev = ar_pci->pdev;
1837 u32 val;
1838
1839 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1840
1841 if ((val & 0x000000ff) != 0x3) {
1842 pci_save_state(pdev);
1843 pci_disable_device(pdev);
1844 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1845 (val & 0xffffff00) | 0x03);
1846 }
1847
1848 return 0;
1849 }
1850
1851 static int ath10k_pci_hif_resume(struct ath10k *ar)
1852 {
1853 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1854 struct pci_dev *pdev = ar_pci->pdev;
1855 u32 val;
1856
1857 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1858
1859 if ((val & 0x000000ff) != 0) {
1860 pci_restore_state(pdev);
1861 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1862 val & 0xffffff00);
1863 /*
1864 * Suspend/Resume resets the PCI configuration space,
1865 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1866 * to keep PCI Tx retries from interfering with C3 CPU state
1867 */
1868 pci_read_config_dword(pdev, 0x40, &val);
1869
1870 if ((val & 0x0000ff00) != 0)
1871 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1872 }
1873
1874 return 0;
1875 }
1876 #endif
1877
1878 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1879 .send_head = ath10k_pci_hif_send_head,
1880 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
1881 .start = ath10k_pci_hif_start,
1882 .stop = ath10k_pci_hif_stop,
1883 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
1884 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
1885 .send_complete_check = ath10k_pci_hif_send_complete_check,
1886 .set_callbacks = ath10k_pci_hif_set_callbacks,
1887 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
1888 .power_up = ath10k_pci_hif_power_up,
1889 .power_down = ath10k_pci_hif_power_down,
1890 #ifdef CONFIG_PM
1891 .suspend = ath10k_pci_hif_suspend,
1892 .resume = ath10k_pci_hif_resume,
1893 #endif
1894 };
1895
1896 static void ath10k_pci_ce_tasklet(unsigned long ptr)
1897 {
1898 struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr;
1899 struct ath10k_pci *ar_pci = pipe->ar_pci;
1900
1901 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
1902 }
1903
1904 static void ath10k_msi_err_tasklet(unsigned long data)
1905 {
1906 struct ath10k *ar = (struct ath10k *)data;
1907
1908 ath10k_pci_fw_interrupt_handler(ar);
1909 }
1910
1911 /*
1912 * Handler for a per-engine interrupt on a PARTICULAR CE.
1913 * This is used in cases where each CE has a private MSI interrupt.
1914 */
1915 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
1916 {
1917 struct ath10k *ar = arg;
1918 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1919 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
1920
1921 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
1922 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
1923 return IRQ_HANDLED;
1924 }
1925
1926 /*
1927 * NOTE: We are able to derive ce_id from irq because we
1928 * use a one-to-one mapping for CE's 0..5.
1929 * CE's 6 & 7 do not use interrupts at all.
1930 *
1931 * This mapping must be kept in sync with the mapping
1932 * used by firmware.
1933 */
1934 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
1935 return IRQ_HANDLED;
1936 }
1937
1938 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
1939 {
1940 struct ath10k *ar = arg;
1941 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1942
1943 tasklet_schedule(&ar_pci->msi_fw_err);
1944 return IRQ_HANDLED;
1945 }
1946
1947 /*
1948 * Top-level interrupt handler for all PCI interrupts from a Target.
1949 * When a block of MSI interrupts is allocated, this top-level handler
1950 * is not used; instead, we directly call the correct sub-handler.
1951 */
1952 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
1953 {
1954 struct ath10k *ar = arg;
1955 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1956
1957 if (ar_pci->num_msi_intrs == 0) {
1958 /*
1959 * IMPORTANT: INTR_CLR regiser has to be set after
1960 * INTR_ENABLE is set to 0, otherwise interrupt can not be
1961 * really cleared.
1962 */
1963 iowrite32(0, ar_pci->mem +
1964 (SOC_CORE_BASE_ADDRESS |
1965 PCIE_INTR_ENABLE_ADDRESS));
1966 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1967 PCIE_INTR_CE_MASK_ALL,
1968 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1969 PCIE_INTR_CLR_ADDRESS));
1970 /*
1971 * IMPORTANT: this extra read transaction is required to
1972 * flush the posted write buffer.
1973 */
1974 (void) ioread32(ar_pci->mem +
1975 (SOC_CORE_BASE_ADDRESS |
1976 PCIE_INTR_ENABLE_ADDRESS));
1977 }
1978
1979 tasklet_schedule(&ar_pci->intr_tq);
1980
1981 return IRQ_HANDLED;
1982 }
1983
1984 static void ath10k_pci_tasklet(unsigned long data)
1985 {
1986 struct ath10k *ar = (struct ath10k *)data;
1987 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1988
1989 ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
1990 ath10k_ce_per_engine_service_any(ar);
1991
1992 if (ar_pci->num_msi_intrs == 0) {
1993 /* Enable Legacy PCI line interrupts */
1994 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1995 PCIE_INTR_CE_MASK_ALL,
1996 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1997 PCIE_INTR_ENABLE_ADDRESS));
1998 /*
1999 * IMPORTANT: this extra read transaction is required to
2000 * flush the posted write buffer
2001 */
2002 (void) ioread32(ar_pci->mem +
2003 (SOC_CORE_BASE_ADDRESS |
2004 PCIE_INTR_ENABLE_ADDRESS));
2005 }
2006 }
2007
2008 static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
2009 {
2010 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2011 int ret;
2012 int i;
2013
2014 ret = pci_enable_msi_block(ar_pci->pdev, num);
2015 if (ret)
2016 return ret;
2017
2018 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2019 ath10k_pci_msi_fw_handler,
2020 IRQF_SHARED, "ath10k_pci", ar);
2021 if (ret) {
2022 ath10k_warn("request_irq(%d) failed %d\n",
2023 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2024
2025 pci_disable_msi(ar_pci->pdev);
2026 return ret;
2027 }
2028
2029 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2030 ret = request_irq(ar_pci->pdev->irq + i,
2031 ath10k_pci_per_engine_handler,
2032 IRQF_SHARED, "ath10k_pci", ar);
2033 if (ret) {
2034 ath10k_warn("request_irq(%d) failed %d\n",
2035 ar_pci->pdev->irq + i, ret);
2036
2037 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2038 free_irq(ar_pci->pdev->irq + i, ar);
2039
2040 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2041 pci_disable_msi(ar_pci->pdev);
2042 return ret;
2043 }
2044 }
2045
2046 ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
2047 return 0;
2048 }
2049
2050 static int ath10k_pci_start_intr_msi(struct ath10k *ar)
2051 {
2052 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2053 int ret;
2054
2055 ret = pci_enable_msi(ar_pci->pdev);
2056 if (ret < 0)
2057 return ret;
2058
2059 ret = request_irq(ar_pci->pdev->irq,
2060 ath10k_pci_interrupt_handler,
2061 IRQF_SHARED, "ath10k_pci", ar);
2062 if (ret < 0) {
2063 pci_disable_msi(ar_pci->pdev);
2064 return ret;
2065 }
2066
2067 ath10k_info("MSI interrupt handling\n");
2068 return 0;
2069 }
2070
2071 static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
2072 {
2073 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074 int ret;
2075
2076 ret = request_irq(ar_pci->pdev->irq,
2077 ath10k_pci_interrupt_handler,
2078 IRQF_SHARED, "ath10k_pci", ar);
2079 if (ret < 0)
2080 return ret;
2081
2082 /*
2083 * Make sure to wake the Target before enabling Legacy
2084 * Interrupt.
2085 */
2086 iowrite32(PCIE_SOC_WAKE_V_MASK,
2087 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2088 PCIE_SOC_WAKE_ADDRESS);
2089
2090 ath10k_pci_wait(ar);
2091
2092 /*
2093 * A potential race occurs here: The CORE_BASE write
2094 * depends on target correctly decoding AXI address but
2095 * host won't know when target writes BAR to CORE_CTRL.
2096 * This write might get lost if target has NOT written BAR.
2097 * For now, fix the race by repeating the write in below
2098 * synchronization checking.
2099 */
2100 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2101 PCIE_INTR_CE_MASK_ALL,
2102 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2103 PCIE_INTR_ENABLE_ADDRESS));
2104 iowrite32(PCIE_SOC_WAKE_RESET,
2105 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2106 PCIE_SOC_WAKE_ADDRESS);
2107
2108 ath10k_info("legacy interrupt handling\n");
2109 return 0;
2110 }
2111
2112 static int ath10k_pci_start_intr(struct ath10k *ar)
2113 {
2114 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2115 int num = MSI_NUM_REQUEST;
2116 int ret;
2117 int i;
2118
2119 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
2120 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2121 (unsigned long) ar);
2122
2123 for (i = 0; i < CE_COUNT; i++) {
2124 ar_pci->pipe_info[i].ar_pci = ar_pci;
2125 tasklet_init(&ar_pci->pipe_info[i].intr,
2126 ath10k_pci_ce_tasklet,
2127 (unsigned long)&ar_pci->pipe_info[i]);
2128 }
2129
2130 if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2131 num = 1;
2132
2133 if (num > 1) {
2134 ret = ath10k_pci_start_intr_msix(ar, num);
2135 if (ret == 0)
2136 goto exit;
2137
2138 ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
2139 num = 1;
2140 }
2141
2142 if (num == 1) {
2143 ret = ath10k_pci_start_intr_msi(ar);
2144 if (ret == 0)
2145 goto exit;
2146
2147 ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
2148 ret);
2149 num = 0;
2150 }
2151
2152 ret = ath10k_pci_start_intr_legacy(ar);
2153
2154 exit:
2155 ar_pci->num_msi_intrs = num;
2156 ar_pci->ce_count = CE_COUNT;
2157 return ret;
2158 }
2159
2160 static void ath10k_pci_stop_intr(struct ath10k *ar)
2161 {
2162 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2163 int i;
2164
2165 /* There's at least one interrupt irregardless whether its legacy INTR
2166 * or MSI or MSI-X */
2167 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2168 free_irq(ar_pci->pdev->irq + i, ar);
2169
2170 if (ar_pci->num_msi_intrs > 0)
2171 pci_disable_msi(ar_pci->pdev);
2172 }
2173
2174 static int ath10k_pci_reset_target(struct ath10k *ar)
2175 {
2176 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2177 int wait_limit = 300; /* 3 sec */
2178
2179 /* Wait for Target to finish initialization before we proceed. */
2180 iowrite32(PCIE_SOC_WAKE_V_MASK,
2181 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2182 PCIE_SOC_WAKE_ADDRESS);
2183
2184 ath10k_pci_wait(ar);
2185
2186 while (wait_limit-- &&
2187 !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2188 FW_IND_INITIALIZED)) {
2189 if (ar_pci->num_msi_intrs == 0)
2190 /* Fix potential race by repeating CORE_BASE writes */
2191 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2192 PCIE_INTR_CE_MASK_ALL,
2193 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2194 PCIE_INTR_ENABLE_ADDRESS));
2195 mdelay(10);
2196 }
2197
2198 if (wait_limit < 0) {
2199 ath10k_err("Target stalled\n");
2200 iowrite32(PCIE_SOC_WAKE_RESET,
2201 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2202 PCIE_SOC_WAKE_ADDRESS);
2203 return -EIO;
2204 }
2205
2206 iowrite32(PCIE_SOC_WAKE_RESET,
2207 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2208 PCIE_SOC_WAKE_ADDRESS);
2209
2210 return 0;
2211 }
2212
2213 static void ath10k_pci_device_reset(struct ath10k *ar)
2214 {
2215 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2216 void __iomem *mem = ar_pci->mem;
2217 int i;
2218 u32 val;
2219
2220 if (!SOC_GLOBAL_RESET_ADDRESS)
2221 return;
2222
2223 if (!mem)
2224 return;
2225
2226 ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
2227 PCIE_SOC_WAKE_V_MASK);
2228 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2229 if (ath10k_pci_target_is_awake(ar))
2230 break;
2231 msleep(1);
2232 }
2233
2234 /* Put Target, including PCIe, into RESET. */
2235 val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
2236 val |= 1;
2237 ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2238
2239 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2240 if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2241 RTC_STATE_COLD_RESET_MASK)
2242 break;
2243 msleep(1);
2244 }
2245
2246 /* Pull Target, including PCIe, out of RESET. */
2247 val &= ~1;
2248 ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2249
2250 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2251 if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2252 RTC_STATE_COLD_RESET_MASK))
2253 break;
2254 msleep(1);
2255 }
2256
2257 ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2258 }
2259
2260 static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2261 {
2262 int i;
2263
2264 for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2265 if (!test_bit(i, ar_pci->features))
2266 continue;
2267
2268 switch (i) {
2269 case ATH10K_PCI_FEATURE_MSI_X:
2270 ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
2271 break;
2272 case ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND:
2273 ath10k_dbg(ATH10K_DBG_PCI, "QCA988X_1.0 workaround enabled\n");
2274 break;
2275 case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2276 ath10k_dbg(ATH10K_DBG_PCI, "QCA98XX SoC power save enabled\n");
2277 break;
2278 }
2279 }
2280 }
2281
2282 static int ath10k_pci_probe(struct pci_dev *pdev,
2283 const struct pci_device_id *pci_dev)
2284 {
2285 void __iomem *mem;
2286 int ret = 0;
2287 struct ath10k *ar;
2288 struct ath10k_pci *ar_pci;
2289 u32 lcr_val;
2290
2291 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2292
2293 ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2294 if (ar_pci == NULL)
2295 return -ENOMEM;
2296
2297 ar_pci->pdev = pdev;
2298 ar_pci->dev = &pdev->dev;
2299
2300 switch (pci_dev->device) {
2301 case QCA988X_1_0_DEVICE_ID:
2302 set_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features);
2303 break;
2304 case QCA988X_2_0_DEVICE_ID:
2305 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2306 break;
2307 default:
2308 ret = -ENODEV;
2309 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2310 goto err_ar_pci;
2311 }
2312
2313 if (ath10k_target_ps)
2314 set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2315
2316 ath10k_pci_dump_features(ar_pci);
2317
2318 ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2319 if (!ar) {
2320 ath10k_err("ath10k_core_create failed!\n");
2321 ret = -EINVAL;
2322 goto err_ar_pci;
2323 }
2324
2325 /* Enable QCA988X_1.0 HW workarounds */
2326 if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features))
2327 spin_lock_init(&ar_pci->hw_v1_workaround_lock);
2328
2329 ar_pci->ar = ar;
2330 ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2331 atomic_set(&ar_pci->keep_awake_count, 0);
2332
2333 pci_set_drvdata(pdev, ar);
2334
2335 /*
2336 * Without any knowledge of the Host, the Target may have been reset or
2337 * power cycled and its Config Space may no longer reflect the PCI
2338 * address space that was assigned earlier by the PCI infrastructure.
2339 * Refresh it now.
2340 */
2341 ret = pci_assign_resource(pdev, BAR_NUM);
2342 if (ret) {
2343 ath10k_err("cannot assign PCI space: %d\n", ret);
2344 goto err_ar;
2345 }
2346
2347 ret = pci_enable_device(pdev);
2348 if (ret) {
2349 ath10k_err("cannot enable PCI device: %d\n", ret);
2350 goto err_ar;
2351 }
2352
2353 /* Request MMIO resources */
2354 ret = pci_request_region(pdev, BAR_NUM, "ath");
2355 if (ret) {
2356 ath10k_err("PCI MMIO reservation error: %d\n", ret);
2357 goto err_device;
2358 }
2359
2360 /*
2361 * Target structures have a limit of 32 bit DMA pointers.
2362 * DMA pointers can be wider than 32 bits by default on some systems.
2363 */
2364 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2365 if (ret) {
2366 ath10k_err("32-bit DMA not available: %d\n", ret);
2367 goto err_region;
2368 }
2369
2370 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2371 if (ret) {
2372 ath10k_err("cannot enable 32-bit consistent DMA\n");
2373 goto err_region;
2374 }
2375
2376 /* Set bus master bit in PCI_COMMAND to enable DMA */
2377 pci_set_master(pdev);
2378
2379 /*
2380 * Temporary FIX: disable ASPM
2381 * Will be removed after the OTP is programmed
2382 */
2383 pci_read_config_dword(pdev, 0x80, &lcr_val);
2384 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2385
2386 /* Arrange for access to Target SoC registers. */
2387 mem = pci_iomap(pdev, BAR_NUM, 0);
2388 if (!mem) {
2389 ath10k_err("PCI iomap error\n");
2390 ret = -EIO;
2391 goto err_master;
2392 }
2393
2394 ar_pci->mem = mem;
2395
2396 spin_lock_init(&ar_pci->ce_lock);
2397
2398 ar_pci->cacheline_sz = dma_get_cache_alignment();
2399
2400 ret = ath10k_core_register(ar);
2401 if (ret) {
2402 ath10k_err("could not register driver core (%d)\n", ret);
2403 goto err_iomap;
2404 }
2405
2406 return 0;
2407
2408 err_iomap:
2409 pci_iounmap(pdev, mem);
2410 err_master:
2411 pci_clear_master(pdev);
2412 err_region:
2413 pci_release_region(pdev, BAR_NUM);
2414 err_device:
2415 pci_disable_device(pdev);
2416 err_ar:
2417 pci_set_drvdata(pdev, NULL);
2418 ath10k_core_destroy(ar);
2419 err_ar_pci:
2420 /* call HIF PCI free here */
2421 kfree(ar_pci);
2422
2423 return ret;
2424 }
2425
2426 static void ath10k_pci_remove(struct pci_dev *pdev)
2427 {
2428 struct ath10k *ar = pci_get_drvdata(pdev);
2429 struct ath10k_pci *ar_pci;
2430
2431 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2432
2433 if (!ar)
2434 return;
2435
2436 ar_pci = ath10k_pci_priv(ar);
2437
2438 if (!ar_pci)
2439 return;
2440
2441 tasklet_kill(&ar_pci->msi_fw_err);
2442
2443 ath10k_core_unregister(ar);
2444
2445 pci_set_drvdata(pdev, NULL);
2446 pci_iounmap(pdev, ar_pci->mem);
2447 pci_release_region(pdev, BAR_NUM);
2448 pci_clear_master(pdev);
2449 pci_disable_device(pdev);
2450
2451 ath10k_core_destroy(ar);
2452 kfree(ar_pci);
2453 }
2454
2455 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2456
2457 static struct pci_driver ath10k_pci_driver = {
2458 .name = "ath10k_pci",
2459 .id_table = ath10k_pci_id_table,
2460 .probe = ath10k_pci_probe,
2461 .remove = ath10k_pci_remove,
2462 };
2463
2464 static int __init ath10k_pci_init(void)
2465 {
2466 int ret;
2467
2468 ret = pci_register_driver(&ath10k_pci_driver);
2469 if (ret)
2470 ath10k_err("pci_register_driver failed [%d]\n", ret);
2471
2472 return ret;
2473 }
2474 module_init(ath10k_pci_init);
2475
2476 static void __exit ath10k_pci_exit(void)
2477 {
2478 pci_unregister_driver(&ath10k_pci_driver);
2479 }
2480
2481 module_exit(ath10k_pci_exit);
2482
2483 MODULE_AUTHOR("Qualcomm Atheros");
2484 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2485 MODULE_LICENSE("Dual BSD/GPL");
2486 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_FW_FILE);
2487 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_OTP_FILE);
2488 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_BOARD_DATA_FILE);
2489 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2490 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2491 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
This page took 0.080835 seconds and 6 git commands to generate.