Merge remote-tracking branch 'regmap/topic/core' into regmap-next
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_irq_mode {
37 ATH10K_PCI_IRQ_AUTO = 0,
38 ATH10K_PCI_IRQ_LEGACY = 1,
39 ATH10K_PCI_IRQ_MSI = 2,
40 };
41
42 enum ath10k_pci_reset_mode {
43 ATH10K_PCI_RESET_AUTO = 0,
44 ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60 #define QCA988X_2_0_DEVICE_ID (0x003c)
61
62 static const struct pci_device_id ath10k_pci_id_table[] = {
63 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
64 {0}
65 };
66
67 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
68 static int ath10k_pci_cold_reset(struct ath10k *ar);
69 static int ath10k_pci_warm_reset(struct ath10k *ar);
70 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
71 static int ath10k_pci_init_irq(struct ath10k *ar);
72 static int ath10k_pci_deinit_irq(struct ath10k *ar);
73 static int ath10k_pci_request_irq(struct ath10k *ar);
74 static void ath10k_pci_free_irq(struct ath10k *ar);
75 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
76 struct ath10k_ce_pipe *rx_pipe,
77 struct bmi_xfer *xfer);
78
79 static const struct ce_attr host_ce_config_wlan[] = {
80 /* CE0: host->target HTC control and raw streams */
81 {
82 .flags = CE_ATTR_FLAGS,
83 .src_nentries = 16,
84 .src_sz_max = 256,
85 .dest_nentries = 0,
86 },
87
88 /* CE1: target->host HTT + HTC control */
89 {
90 .flags = CE_ATTR_FLAGS,
91 .src_nentries = 0,
92 .src_sz_max = 512,
93 .dest_nentries = 512,
94 },
95
96 /* CE2: target->host WMI */
97 {
98 .flags = CE_ATTR_FLAGS,
99 .src_nentries = 0,
100 .src_sz_max = 2048,
101 .dest_nentries = 32,
102 },
103
104 /* CE3: host->target WMI */
105 {
106 .flags = CE_ATTR_FLAGS,
107 .src_nentries = 32,
108 .src_sz_max = 2048,
109 .dest_nentries = 0,
110 },
111
112 /* CE4: host->target HTT */
113 {
114 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
115 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
116 .src_sz_max = 256,
117 .dest_nentries = 0,
118 },
119
120 /* CE5: unused */
121 {
122 .flags = CE_ATTR_FLAGS,
123 .src_nentries = 0,
124 .src_sz_max = 0,
125 .dest_nentries = 0,
126 },
127
128 /* CE6: target autonomous hif_memcpy */
129 {
130 .flags = CE_ATTR_FLAGS,
131 .src_nentries = 0,
132 .src_sz_max = 0,
133 .dest_nentries = 0,
134 },
135
136 /* CE7: ce_diag, the Diagnostic Window */
137 {
138 .flags = CE_ATTR_FLAGS,
139 .src_nentries = 2,
140 .src_sz_max = DIAG_TRANSFER_LIMIT,
141 .dest_nentries = 2,
142 },
143 };
144
145 /* Target firmware's Copy Engine configuration. */
146 static const struct ce_pipe_config target_ce_config_wlan[] = {
147 /* CE0: host->target HTC control and raw streams */
148 {
149 .pipenum = __cpu_to_le32(0),
150 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
151 .nentries = __cpu_to_le32(32),
152 .nbytes_max = __cpu_to_le32(256),
153 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
154 .reserved = __cpu_to_le32(0),
155 },
156
157 /* CE1: target->host HTT + HTC control */
158 {
159 .pipenum = __cpu_to_le32(1),
160 .pipedir = __cpu_to_le32(PIPEDIR_IN),
161 .nentries = __cpu_to_le32(32),
162 .nbytes_max = __cpu_to_le32(512),
163 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
164 .reserved = __cpu_to_le32(0),
165 },
166
167 /* CE2: target->host WMI */
168 {
169 .pipenum = __cpu_to_le32(2),
170 .pipedir = __cpu_to_le32(PIPEDIR_IN),
171 .nentries = __cpu_to_le32(32),
172 .nbytes_max = __cpu_to_le32(2048),
173 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
174 .reserved = __cpu_to_le32(0),
175 },
176
177 /* CE3: host->target WMI */
178 {
179 .pipenum = __cpu_to_le32(3),
180 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
181 .nentries = __cpu_to_le32(32),
182 .nbytes_max = __cpu_to_le32(2048),
183 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
184 .reserved = __cpu_to_le32(0),
185 },
186
187 /* CE4: host->target HTT */
188 {
189 .pipenum = __cpu_to_le32(4),
190 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
191 .nentries = __cpu_to_le32(256),
192 .nbytes_max = __cpu_to_le32(256),
193 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
194 .reserved = __cpu_to_le32(0),
195 },
196
197 /* NB: 50% of src nentries, since tx has 2 frags */
198
199 /* CE5: unused */
200 {
201 .pipenum = __cpu_to_le32(5),
202 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
203 .nentries = __cpu_to_le32(32),
204 .nbytes_max = __cpu_to_le32(2048),
205 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
206 .reserved = __cpu_to_le32(0),
207 },
208
209 /* CE6: Reserved for target autonomous hif_memcpy */
210 {
211 .pipenum = __cpu_to_le32(6),
212 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
213 .nentries = __cpu_to_le32(32),
214 .nbytes_max = __cpu_to_le32(4096),
215 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
216 .reserved = __cpu_to_le32(0),
217 },
218
219 /* CE7 used only by Host */
220 };
221
222 /*
223 * Map from service/endpoint to Copy Engine.
224 * This table is derived from the CE_PCI TABLE, above.
225 * It is passed to the Target at startup for use by firmware.
226 */
227 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
228 {
229 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
230 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
231 __cpu_to_le32(3),
232 },
233 {
234 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
235 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
236 __cpu_to_le32(2),
237 },
238 {
239 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
240 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
241 __cpu_to_le32(3),
242 },
243 {
244 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
245 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
246 __cpu_to_le32(2),
247 },
248 {
249 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
250 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
251 __cpu_to_le32(3),
252 },
253 {
254 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
255 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
256 __cpu_to_le32(2),
257 },
258 {
259 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
260 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
261 __cpu_to_le32(3),
262 },
263 {
264 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
265 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
266 __cpu_to_le32(2),
267 },
268 {
269 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
270 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
271 __cpu_to_le32(3),
272 },
273 {
274 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
275 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
276 __cpu_to_le32(2),
277 },
278 {
279 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
280 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
281 __cpu_to_le32(0),
282 },
283 {
284 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
285 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
286 __cpu_to_le32(1),
287 },
288 { /* not used */
289 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
290 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
291 __cpu_to_le32(0),
292 },
293 { /* not used */
294 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
295 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
296 __cpu_to_le32(1),
297 },
298 {
299 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
300 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
301 __cpu_to_le32(4),
302 },
303 {
304 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
305 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
306 __cpu_to_le32(1),
307 },
308
309 /* (Additions here) */
310
311 { /* must be last */
312 __cpu_to_le32(0),
313 __cpu_to_le32(0),
314 __cpu_to_le32(0),
315 },
316 };
317
318 static bool ath10k_pci_irq_pending(struct ath10k *ar)
319 {
320 u32 cause;
321
322 /* Check if the shared legacy irq is for us */
323 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
324 PCIE_INTR_CAUSE_ADDRESS);
325 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
326 return true;
327
328 return false;
329 }
330
331 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
332 {
333 /* IMPORTANT: INTR_CLR register has to be set after
334 * INTR_ENABLE is set to 0, otherwise interrupt can not be
335 * really cleared. */
336 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
337 0);
338 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
339 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
340
341 /* IMPORTANT: this extra read transaction is required to
342 * flush the posted write buffer. */
343 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
344 PCIE_INTR_ENABLE_ADDRESS);
345 }
346
347 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
348 {
349 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
350 PCIE_INTR_ENABLE_ADDRESS,
351 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
352
353 /* IMPORTANT: this extra read transaction is required to
354 * flush the posted write buffer. */
355 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
356 PCIE_INTR_ENABLE_ADDRESS);
357 }
358
359 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
360 {
361 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362
363 if (ar_pci->num_msi_intrs > 1)
364 return "msi-x";
365
366 if (ar_pci->num_msi_intrs == 1)
367 return "msi";
368
369 return "legacy";
370 }
371
372 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
373 {
374 struct ath10k *ar = pipe->hif_ce_state;
375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
377 struct sk_buff *skb;
378 dma_addr_t paddr;
379 int ret;
380
381 lockdep_assert_held(&ar_pci->ce_lock);
382
383 skb = dev_alloc_skb(pipe->buf_sz);
384 if (!skb)
385 return -ENOMEM;
386
387 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
388
389 paddr = dma_map_single(ar->dev, skb->data,
390 skb->len + skb_tailroom(skb),
391 DMA_FROM_DEVICE);
392 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
393 ath10k_warn(ar, "failed to dma map pci rx buf\n");
394 dev_kfree_skb_any(skb);
395 return -EIO;
396 }
397
398 ATH10K_SKB_CB(skb)->paddr = paddr;
399
400 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
401 if (ret) {
402 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
403 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
404 DMA_FROM_DEVICE);
405 dev_kfree_skb_any(skb);
406 return ret;
407 }
408
409 return 0;
410 }
411
412 static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
413 {
414 struct ath10k *ar = pipe->hif_ce_state;
415 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
416 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
417 int ret, num;
418
419 lockdep_assert_held(&ar_pci->ce_lock);
420
421 if (pipe->buf_sz == 0)
422 return;
423
424 if (!ce_pipe->dest_ring)
425 return;
426
427 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
428 while (num--) {
429 ret = __ath10k_pci_rx_post_buf(pipe);
430 if (ret) {
431 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
432 mod_timer(&ar_pci->rx_post_retry, jiffies +
433 ATH10K_PCI_RX_POST_RETRY_MS);
434 break;
435 }
436 }
437 }
438
439 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
440 {
441 struct ath10k *ar = pipe->hif_ce_state;
442 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443
444 spin_lock_bh(&ar_pci->ce_lock);
445 __ath10k_pci_rx_post_pipe(pipe);
446 spin_unlock_bh(&ar_pci->ce_lock);
447 }
448
449 static void ath10k_pci_rx_post(struct ath10k *ar)
450 {
451 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 int i;
453
454 spin_lock_bh(&ar_pci->ce_lock);
455 for (i = 0; i < CE_COUNT; i++)
456 __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
457 spin_unlock_bh(&ar_pci->ce_lock);
458 }
459
460 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
461 {
462 struct ath10k *ar = (void *)ptr;
463
464 ath10k_pci_rx_post(ar);
465 }
466
467 /*
468 * Diagnostic read/write access is provided for startup/config/debug usage.
469 * Caller must guarantee proper alignment, when applicable, and single user
470 * at any moment.
471 */
472 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
473 int nbytes)
474 {
475 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
476 int ret = 0;
477 u32 buf;
478 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
479 unsigned int id;
480 unsigned int flags;
481 struct ath10k_ce_pipe *ce_diag;
482 /* Host buffer address in CE space */
483 u32 ce_data;
484 dma_addr_t ce_data_base = 0;
485 void *data_buf = NULL;
486 int i;
487
488 spin_lock_bh(&ar_pci->ce_lock);
489
490 ce_diag = ar_pci->ce_diag;
491
492 /*
493 * Allocate a temporary bounce buffer to hold caller's data
494 * to be DMA'ed from Target. This guarantees
495 * 1) 4-byte alignment
496 * 2) Buffer in DMA-able space
497 */
498 orig_nbytes = nbytes;
499 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
500 orig_nbytes,
501 &ce_data_base,
502 GFP_ATOMIC);
503
504 if (!data_buf) {
505 ret = -ENOMEM;
506 goto done;
507 }
508 memset(data_buf, 0, orig_nbytes);
509
510 remaining_bytes = orig_nbytes;
511 ce_data = ce_data_base;
512 while (remaining_bytes) {
513 nbytes = min_t(unsigned int, remaining_bytes,
514 DIAG_TRANSFER_LIMIT);
515
516 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
517 if (ret != 0)
518 goto done;
519
520 /* Request CE to send from Target(!) address to Host buffer */
521 /*
522 * The address supplied by the caller is in the
523 * Target CPU virtual address space.
524 *
525 * In order to use this address with the diagnostic CE,
526 * convert it from Target CPU virtual address space
527 * to CE address space
528 */
529 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
530 address);
531
532 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
533 0);
534 if (ret)
535 goto done;
536
537 i = 0;
538 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
539 &completed_nbytes,
540 &id) != 0) {
541 mdelay(1);
542 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
543 ret = -EBUSY;
544 goto done;
545 }
546 }
547
548 if (nbytes != completed_nbytes) {
549 ret = -EIO;
550 goto done;
551 }
552
553 if (buf != (u32)address) {
554 ret = -EIO;
555 goto done;
556 }
557
558 i = 0;
559 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
560 &completed_nbytes,
561 &id, &flags) != 0) {
562 mdelay(1);
563
564 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
565 ret = -EBUSY;
566 goto done;
567 }
568 }
569
570 if (nbytes != completed_nbytes) {
571 ret = -EIO;
572 goto done;
573 }
574
575 if (buf != ce_data) {
576 ret = -EIO;
577 goto done;
578 }
579
580 remaining_bytes -= nbytes;
581 address += nbytes;
582 ce_data += nbytes;
583 }
584
585 done:
586 if (ret == 0)
587 memcpy(data, data_buf, orig_nbytes);
588 else
589 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
590 address, ret);
591
592 if (data_buf)
593 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
594 ce_data_base);
595
596 spin_unlock_bh(&ar_pci->ce_lock);
597
598 return ret;
599 }
600
601 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
602 {
603 __le32 val = 0;
604 int ret;
605
606 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
607 *value = __le32_to_cpu(val);
608
609 return ret;
610 }
611
612 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
613 u32 src, u32 len)
614 {
615 u32 host_addr, addr;
616 int ret;
617
618 host_addr = host_interest_item_address(src);
619
620 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
621 if (ret != 0) {
622 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
623 src, ret);
624 return ret;
625 }
626
627 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
628 if (ret != 0) {
629 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
630 addr, len, ret);
631 return ret;
632 }
633
634 return 0;
635 }
636
637 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
638 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
639
640 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
641 const void *data, int nbytes)
642 {
643 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
644 int ret = 0;
645 u32 buf;
646 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
647 unsigned int id;
648 unsigned int flags;
649 struct ath10k_ce_pipe *ce_diag;
650 void *data_buf = NULL;
651 u32 ce_data; /* Host buffer address in CE space */
652 dma_addr_t ce_data_base = 0;
653 int i;
654
655 spin_lock_bh(&ar_pci->ce_lock);
656
657 ce_diag = ar_pci->ce_diag;
658
659 /*
660 * Allocate a temporary bounce buffer to hold caller's data
661 * to be DMA'ed to Target. This guarantees
662 * 1) 4-byte alignment
663 * 2) Buffer in DMA-able space
664 */
665 orig_nbytes = nbytes;
666 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
667 orig_nbytes,
668 &ce_data_base,
669 GFP_ATOMIC);
670 if (!data_buf) {
671 ret = -ENOMEM;
672 goto done;
673 }
674
675 /* Copy caller's data to allocated DMA buf */
676 memcpy(data_buf, data, orig_nbytes);
677
678 /*
679 * The address supplied by the caller is in the
680 * Target CPU virtual address space.
681 *
682 * In order to use this address with the diagnostic CE,
683 * convert it from
684 * Target CPU virtual address space
685 * to
686 * CE address space
687 */
688 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
689
690 remaining_bytes = orig_nbytes;
691 ce_data = ce_data_base;
692 while (remaining_bytes) {
693 /* FIXME: check cast */
694 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
695
696 /* Set up to receive directly into Target(!) address */
697 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
698 if (ret != 0)
699 goto done;
700
701 /*
702 * Request CE to send caller-supplied data that
703 * was copied to bounce buffer to Target(!) address.
704 */
705 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
706 nbytes, 0, 0);
707 if (ret != 0)
708 goto done;
709
710 i = 0;
711 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
712 &completed_nbytes,
713 &id) != 0) {
714 mdelay(1);
715
716 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
717 ret = -EBUSY;
718 goto done;
719 }
720 }
721
722 if (nbytes != completed_nbytes) {
723 ret = -EIO;
724 goto done;
725 }
726
727 if (buf != ce_data) {
728 ret = -EIO;
729 goto done;
730 }
731
732 i = 0;
733 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
734 &completed_nbytes,
735 &id, &flags) != 0) {
736 mdelay(1);
737
738 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
739 ret = -EBUSY;
740 goto done;
741 }
742 }
743
744 if (nbytes != completed_nbytes) {
745 ret = -EIO;
746 goto done;
747 }
748
749 if (buf != address) {
750 ret = -EIO;
751 goto done;
752 }
753
754 remaining_bytes -= nbytes;
755 address += nbytes;
756 ce_data += nbytes;
757 }
758
759 done:
760 if (data_buf) {
761 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
762 ce_data_base);
763 }
764
765 if (ret != 0)
766 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
767 address, ret);
768
769 spin_unlock_bh(&ar_pci->ce_lock);
770
771 return ret;
772 }
773
774 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
775 {
776 __le32 val = __cpu_to_le32(value);
777
778 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
779 }
780
781 static bool ath10k_pci_is_awake(struct ath10k *ar)
782 {
783 u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
784
785 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
786 }
787
788 static int ath10k_pci_wake_wait(struct ath10k *ar)
789 {
790 int tot_delay = 0;
791 int curr_delay = 5;
792
793 while (tot_delay < PCIE_WAKE_TIMEOUT) {
794 if (ath10k_pci_is_awake(ar))
795 return 0;
796
797 udelay(curr_delay);
798 tot_delay += curr_delay;
799
800 if (curr_delay < 50)
801 curr_delay += 5;
802 }
803
804 return -ETIMEDOUT;
805 }
806
807 static int ath10k_pci_wake(struct ath10k *ar)
808 {
809 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
810 PCIE_SOC_WAKE_V_MASK);
811 return ath10k_pci_wake_wait(ar);
812 }
813
814 static void ath10k_pci_sleep(struct ath10k *ar)
815 {
816 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
817 PCIE_SOC_WAKE_RESET);
818 }
819
820 /* Called by lower (CE) layer when a send to Target completes. */
821 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
822 {
823 struct ath10k *ar = ce_state->ar;
824 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
825 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
826 struct sk_buff_head list;
827 struct sk_buff *skb;
828 u32 ce_data;
829 unsigned int nbytes;
830 unsigned int transfer_id;
831
832 __skb_queue_head_init(&list);
833 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb, &ce_data,
834 &nbytes, &transfer_id) == 0) {
835 /* no need to call tx completion for NULL pointers */
836 if (skb == NULL)
837 continue;
838
839 __skb_queue_tail(&list, skb);
840 }
841
842 while ((skb = __skb_dequeue(&list)))
843 cb->tx_completion(ar, skb);
844 }
845
846 /* Called by lower (CE) layer when data is received from the Target. */
847 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
848 {
849 struct ath10k *ar = ce_state->ar;
850 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
851 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
852 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
853 struct sk_buff *skb;
854 struct sk_buff_head list;
855 void *transfer_context;
856 u32 ce_data;
857 unsigned int nbytes, max_nbytes;
858 unsigned int transfer_id;
859 unsigned int flags;
860
861 __skb_queue_head_init(&list);
862 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
863 &ce_data, &nbytes, &transfer_id,
864 &flags) == 0) {
865 skb = transfer_context;
866 max_nbytes = skb->len + skb_tailroom(skb);
867 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
868 max_nbytes, DMA_FROM_DEVICE);
869
870 if (unlikely(max_nbytes < nbytes)) {
871 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
872 nbytes, max_nbytes);
873 dev_kfree_skb_any(skb);
874 continue;
875 }
876
877 skb_put(skb, nbytes);
878 __skb_queue_tail(&list, skb);
879 }
880
881 while ((skb = __skb_dequeue(&list))) {
882 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
883 ce_state->id, skb->len);
884 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
885 skb->data, skb->len);
886
887 cb->rx_completion(ar, skb);
888 }
889
890 ath10k_pci_rx_post_pipe(pipe_info);
891 }
892
893 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
894 struct ath10k_hif_sg_item *items, int n_items)
895 {
896 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
897 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
898 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
899 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
900 unsigned int nentries_mask;
901 unsigned int sw_index;
902 unsigned int write_index;
903 int err, i = 0;
904
905 spin_lock_bh(&ar_pci->ce_lock);
906
907 nentries_mask = src_ring->nentries_mask;
908 sw_index = src_ring->sw_index;
909 write_index = src_ring->write_index;
910
911 if (unlikely(CE_RING_DELTA(nentries_mask,
912 write_index, sw_index - 1) < n_items)) {
913 err = -ENOBUFS;
914 goto err;
915 }
916
917 for (i = 0; i < n_items - 1; i++) {
918 ath10k_dbg(ar, ATH10K_DBG_PCI,
919 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
920 i, items[i].paddr, items[i].len, n_items);
921 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
922 items[i].vaddr, items[i].len);
923
924 err = ath10k_ce_send_nolock(ce_pipe,
925 items[i].transfer_context,
926 items[i].paddr,
927 items[i].len,
928 items[i].transfer_id,
929 CE_SEND_FLAG_GATHER);
930 if (err)
931 goto err;
932 }
933
934 /* `i` is equal to `n_items -1` after for() */
935
936 ath10k_dbg(ar, ATH10K_DBG_PCI,
937 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
938 i, items[i].paddr, items[i].len, n_items);
939 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
940 items[i].vaddr, items[i].len);
941
942 err = ath10k_ce_send_nolock(ce_pipe,
943 items[i].transfer_context,
944 items[i].paddr,
945 items[i].len,
946 items[i].transfer_id,
947 0);
948 if (err)
949 goto err;
950
951 spin_unlock_bh(&ar_pci->ce_lock);
952 return 0;
953
954 err:
955 for (; i > 0; i--)
956 __ath10k_ce_send_revert(ce_pipe);
957
958 spin_unlock_bh(&ar_pci->ce_lock);
959 return err;
960 }
961
962 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
963 size_t buf_len)
964 {
965 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
966 }
967
968 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
969 {
970 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
971
972 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
973
974 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
975 }
976
977 static void ath10k_pci_dump_registers(struct ath10k *ar,
978 struct ath10k_fw_crash_data *crash_data)
979 {
980 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
981 int i, ret;
982
983 lockdep_assert_held(&ar->data_lock);
984
985 ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
986 hi_failure_state,
987 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
988 if (ret) {
989 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
990 return;
991 }
992
993 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
994
995 ath10k_err(ar, "firmware register dump:\n");
996 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
997 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
998 i,
999 __le32_to_cpu(reg_dump_values[i]),
1000 __le32_to_cpu(reg_dump_values[i + 1]),
1001 __le32_to_cpu(reg_dump_values[i + 2]),
1002 __le32_to_cpu(reg_dump_values[i + 3]));
1003
1004 if (!crash_data)
1005 return;
1006
1007 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1008 crash_data->registers[i] = reg_dump_values[i];
1009 }
1010
1011 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1012 {
1013 struct ath10k_fw_crash_data *crash_data;
1014 char uuid[50];
1015
1016 spin_lock_bh(&ar->data_lock);
1017
1018 ar->stats.fw_crash_counter++;
1019
1020 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1021
1022 if (crash_data)
1023 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1024 else
1025 scnprintf(uuid, sizeof(uuid), "n/a");
1026
1027 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1028 ath10k_print_driver_info(ar);
1029 ath10k_pci_dump_registers(ar, crash_data);
1030
1031 spin_unlock_bh(&ar->data_lock);
1032
1033 queue_work(ar->workqueue, &ar->restart_work);
1034 }
1035
1036 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1037 int force)
1038 {
1039 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1040
1041 if (!force) {
1042 int resources;
1043 /*
1044 * Decide whether to actually poll for completions, or just
1045 * wait for a later chance.
1046 * If there seem to be plenty of resources left, then just wait
1047 * since checking involves reading a CE register, which is a
1048 * relatively expensive operation.
1049 */
1050 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1051
1052 /*
1053 * If at least 50% of the total resources are still available,
1054 * don't bother checking again yet.
1055 */
1056 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1057 return;
1058 }
1059 ath10k_ce_per_engine_service(ar, pipe);
1060 }
1061
1062 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1063 struct ath10k_hif_cb *callbacks)
1064 {
1065 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1066
1067 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1068
1069 memcpy(&ar_pci->msg_callbacks_current, callbacks,
1070 sizeof(ar_pci->msg_callbacks_current));
1071 }
1072
1073 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1074 {
1075 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1076 int i;
1077
1078 tasklet_kill(&ar_pci->intr_tq);
1079 tasklet_kill(&ar_pci->msi_fw_err);
1080
1081 for (i = 0; i < CE_COUNT; i++)
1082 tasklet_kill(&ar_pci->pipe_info[i].intr);
1083
1084 del_timer_sync(&ar_pci->rx_post_retry);
1085 }
1086
1087 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1088 u16 service_id, u8 *ul_pipe,
1089 u8 *dl_pipe, int *ul_is_polled,
1090 int *dl_is_polled)
1091 {
1092 const struct service_to_pipe *entry;
1093 bool ul_set = false, dl_set = false;
1094 int i;
1095
1096 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1097
1098 /* polling for received messages not supported */
1099 *dl_is_polled = 0;
1100
1101 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1102 entry = &target_service_to_ce_map_wlan[i];
1103
1104 if (__le32_to_cpu(entry->service_id) != service_id)
1105 continue;
1106
1107 switch (__le32_to_cpu(entry->pipedir)) {
1108 case PIPEDIR_NONE:
1109 break;
1110 case PIPEDIR_IN:
1111 WARN_ON(dl_set);
1112 *dl_pipe = __le32_to_cpu(entry->pipenum);
1113 dl_set = true;
1114 break;
1115 case PIPEDIR_OUT:
1116 WARN_ON(ul_set);
1117 *ul_pipe = __le32_to_cpu(entry->pipenum);
1118 ul_set = true;
1119 break;
1120 case PIPEDIR_INOUT:
1121 WARN_ON(dl_set);
1122 WARN_ON(ul_set);
1123 *dl_pipe = __le32_to_cpu(entry->pipenum);
1124 *ul_pipe = __le32_to_cpu(entry->pipenum);
1125 dl_set = true;
1126 ul_set = true;
1127 break;
1128 }
1129 }
1130
1131 if (WARN_ON(!ul_set || !dl_set))
1132 return -ENOENT;
1133
1134 *ul_is_polled =
1135 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1136
1137 return 0;
1138 }
1139
1140 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1141 u8 *ul_pipe, u8 *dl_pipe)
1142 {
1143 int ul_is_polled, dl_is_polled;
1144
1145 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1146
1147 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1148 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1149 ul_pipe,
1150 dl_pipe,
1151 &ul_is_polled,
1152 &dl_is_polled);
1153 }
1154
1155 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1156 {
1157 u32 val;
1158
1159 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1160 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1161
1162 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1163 }
1164
1165 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1166 {
1167 u32 val;
1168
1169 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1170 val |= CORE_CTRL_PCIE_REG_31_MASK;
1171
1172 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1173 }
1174
1175 static void ath10k_pci_irq_disable(struct ath10k *ar)
1176 {
1177 ath10k_ce_disable_interrupts(ar);
1178 ath10k_pci_disable_and_clear_legacy_irq(ar);
1179 ath10k_pci_irq_msi_fw_mask(ar);
1180 }
1181
1182 static void ath10k_pci_irq_sync(struct ath10k *ar)
1183 {
1184 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1185 int i;
1186
1187 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1188 synchronize_irq(ar_pci->pdev->irq + i);
1189 }
1190
1191 static void ath10k_pci_irq_enable(struct ath10k *ar)
1192 {
1193 ath10k_ce_enable_interrupts(ar);
1194 ath10k_pci_enable_legacy_irq(ar);
1195 ath10k_pci_irq_msi_fw_unmask(ar);
1196 }
1197
1198 static int ath10k_pci_hif_start(struct ath10k *ar)
1199 {
1200 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1201
1202 ath10k_pci_irq_enable(ar);
1203 ath10k_pci_rx_post(ar);
1204
1205 return 0;
1206 }
1207
1208 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1209 {
1210 struct ath10k *ar;
1211 struct ath10k_ce_pipe *ce_pipe;
1212 struct ath10k_ce_ring *ce_ring;
1213 struct sk_buff *skb;
1214 int i;
1215
1216 ar = pci_pipe->hif_ce_state;
1217 ce_pipe = pci_pipe->ce_hdl;
1218 ce_ring = ce_pipe->dest_ring;
1219
1220 if (!ce_ring)
1221 return;
1222
1223 if (!pci_pipe->buf_sz)
1224 return;
1225
1226 for (i = 0; i < ce_ring->nentries; i++) {
1227 skb = ce_ring->per_transfer_context[i];
1228 if (!skb)
1229 continue;
1230
1231 ce_ring->per_transfer_context[i] = NULL;
1232
1233 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1234 skb->len + skb_tailroom(skb),
1235 DMA_FROM_DEVICE);
1236 dev_kfree_skb_any(skb);
1237 }
1238 }
1239
1240 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1241 {
1242 struct ath10k *ar;
1243 struct ath10k_pci *ar_pci;
1244 struct ath10k_ce_pipe *ce_pipe;
1245 struct ath10k_ce_ring *ce_ring;
1246 struct ce_desc *ce_desc;
1247 struct sk_buff *skb;
1248 unsigned int id;
1249 int i;
1250
1251 ar = pci_pipe->hif_ce_state;
1252 ar_pci = ath10k_pci_priv(ar);
1253 ce_pipe = pci_pipe->ce_hdl;
1254 ce_ring = ce_pipe->src_ring;
1255
1256 if (!ce_ring)
1257 return;
1258
1259 if (!pci_pipe->buf_sz)
1260 return;
1261
1262 ce_desc = ce_ring->shadow_base;
1263 if (WARN_ON(!ce_desc))
1264 return;
1265
1266 for (i = 0; i < ce_ring->nentries; i++) {
1267 skb = ce_ring->per_transfer_context[i];
1268 if (!skb)
1269 continue;
1270
1271 ce_ring->per_transfer_context[i] = NULL;
1272 id = MS(__le16_to_cpu(ce_desc[i].flags),
1273 CE_DESC_FLAGS_META_DATA);
1274
1275 ar_pci->msg_callbacks_current.tx_completion(ar, skb);
1276 }
1277 }
1278
1279 /*
1280 * Cleanup residual buffers for device shutdown:
1281 * buffers that were enqueued for receive
1282 * buffers that were to be sent
1283 * Note: Buffers that had completed but which were
1284 * not yet processed are on a completion queue. They
1285 * are handled when the completion thread shuts down.
1286 */
1287 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1288 {
1289 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1290 int pipe_num;
1291
1292 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1293 struct ath10k_pci_pipe *pipe_info;
1294
1295 pipe_info = &ar_pci->pipe_info[pipe_num];
1296 ath10k_pci_rx_pipe_cleanup(pipe_info);
1297 ath10k_pci_tx_pipe_cleanup(pipe_info);
1298 }
1299 }
1300
1301 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1302 {
1303 int i;
1304
1305 for (i = 0; i < CE_COUNT; i++)
1306 ath10k_ce_deinit_pipe(ar, i);
1307 }
1308
1309 static void ath10k_pci_flush(struct ath10k *ar)
1310 {
1311 ath10k_pci_kill_tasklet(ar);
1312 ath10k_pci_buffer_cleanup(ar);
1313 }
1314
1315 static void ath10k_pci_hif_stop(struct ath10k *ar)
1316 {
1317 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1318
1319 /* Most likely the device has HTT Rx ring configured. The only way to
1320 * prevent the device from accessing (and possible corrupting) host
1321 * memory is to reset the chip now.
1322 *
1323 * There's also no known way of masking MSI interrupts on the device.
1324 * For ranged MSI the CE-related interrupts can be masked. However
1325 * regardless how many MSI interrupts are assigned the first one
1326 * is always used for firmware indications (crashes) and cannot be
1327 * masked. To prevent the device from asserting the interrupt reset it
1328 * before proceeding with cleanup.
1329 */
1330 ath10k_pci_warm_reset(ar);
1331
1332 ath10k_pci_irq_disable(ar);
1333 ath10k_pci_irq_sync(ar);
1334 ath10k_pci_flush(ar);
1335 }
1336
1337 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1338 void *req, u32 req_len,
1339 void *resp, u32 *resp_len)
1340 {
1341 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1342 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1343 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1344 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1345 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1346 dma_addr_t req_paddr = 0;
1347 dma_addr_t resp_paddr = 0;
1348 struct bmi_xfer xfer = {};
1349 void *treq, *tresp = NULL;
1350 int ret = 0;
1351
1352 might_sleep();
1353
1354 if (resp && !resp_len)
1355 return -EINVAL;
1356
1357 if (resp && resp_len && *resp_len == 0)
1358 return -EINVAL;
1359
1360 treq = kmemdup(req, req_len, GFP_KERNEL);
1361 if (!treq)
1362 return -ENOMEM;
1363
1364 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1365 ret = dma_mapping_error(ar->dev, req_paddr);
1366 if (ret)
1367 goto err_dma;
1368
1369 if (resp && resp_len) {
1370 tresp = kzalloc(*resp_len, GFP_KERNEL);
1371 if (!tresp) {
1372 ret = -ENOMEM;
1373 goto err_req;
1374 }
1375
1376 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1377 DMA_FROM_DEVICE);
1378 ret = dma_mapping_error(ar->dev, resp_paddr);
1379 if (ret)
1380 goto err_req;
1381
1382 xfer.wait_for_resp = true;
1383 xfer.resp_len = 0;
1384
1385 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1386 }
1387
1388 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1389 if (ret)
1390 goto err_resp;
1391
1392 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1393 if (ret) {
1394 u32 unused_buffer;
1395 unsigned int unused_nbytes;
1396 unsigned int unused_id;
1397
1398 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1399 &unused_nbytes, &unused_id);
1400 } else {
1401 /* non-zero means we did not time out */
1402 ret = 0;
1403 }
1404
1405 err_resp:
1406 if (resp) {
1407 u32 unused_buffer;
1408
1409 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1410 dma_unmap_single(ar->dev, resp_paddr,
1411 *resp_len, DMA_FROM_DEVICE);
1412 }
1413 err_req:
1414 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1415
1416 if (ret == 0 && resp_len) {
1417 *resp_len = min(*resp_len, xfer.resp_len);
1418 memcpy(resp, tresp, xfer.resp_len);
1419 }
1420 err_dma:
1421 kfree(treq);
1422 kfree(tresp);
1423
1424 return ret;
1425 }
1426
1427 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1428 {
1429 struct bmi_xfer *xfer;
1430 u32 ce_data;
1431 unsigned int nbytes;
1432 unsigned int transfer_id;
1433
1434 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1435 &nbytes, &transfer_id))
1436 return;
1437
1438 xfer->tx_done = true;
1439 }
1440
1441 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1442 {
1443 struct ath10k *ar = ce_state->ar;
1444 struct bmi_xfer *xfer;
1445 u32 ce_data;
1446 unsigned int nbytes;
1447 unsigned int transfer_id;
1448 unsigned int flags;
1449
1450 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1451 &nbytes, &transfer_id, &flags))
1452 return;
1453
1454 if (WARN_ON_ONCE(!xfer))
1455 return;
1456
1457 if (!xfer->wait_for_resp) {
1458 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1459 return;
1460 }
1461
1462 xfer->resp_len = nbytes;
1463 xfer->rx_done = true;
1464 }
1465
1466 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1467 struct ath10k_ce_pipe *rx_pipe,
1468 struct bmi_xfer *xfer)
1469 {
1470 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1471
1472 while (time_before_eq(jiffies, timeout)) {
1473 ath10k_pci_bmi_send_done(tx_pipe);
1474 ath10k_pci_bmi_recv_data(rx_pipe);
1475
1476 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1477 return 0;
1478
1479 schedule();
1480 }
1481
1482 return -ETIMEDOUT;
1483 }
1484
1485 /*
1486 * Send an interrupt to the device to wake up the Target CPU
1487 * so it has an opportunity to notice any changed state.
1488 */
1489 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1490 {
1491 u32 addr, val;
1492
1493 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1494 val = ath10k_pci_read32(ar, addr);
1495 val |= CORE_CTRL_CPU_INTR_MASK;
1496 ath10k_pci_write32(ar, addr, val);
1497
1498 return 0;
1499 }
1500
1501 static int ath10k_pci_init_config(struct ath10k *ar)
1502 {
1503 u32 interconnect_targ_addr;
1504 u32 pcie_state_targ_addr = 0;
1505 u32 pipe_cfg_targ_addr = 0;
1506 u32 svc_to_pipe_map = 0;
1507 u32 pcie_config_flags = 0;
1508 u32 ealloc_value;
1509 u32 ealloc_targ_addr;
1510 u32 flag2_value;
1511 u32 flag2_targ_addr;
1512 int ret = 0;
1513
1514 /* Download to Target the CE Config and the service-to-CE map */
1515 interconnect_targ_addr =
1516 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1517
1518 /* Supply Target-side CE configuration */
1519 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1520 &pcie_state_targ_addr);
1521 if (ret != 0) {
1522 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1523 return ret;
1524 }
1525
1526 if (pcie_state_targ_addr == 0) {
1527 ret = -EIO;
1528 ath10k_err(ar, "Invalid pcie state addr\n");
1529 return ret;
1530 }
1531
1532 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1533 offsetof(struct pcie_state,
1534 pipe_cfg_addr)),
1535 &pipe_cfg_targ_addr);
1536 if (ret != 0) {
1537 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1538 return ret;
1539 }
1540
1541 if (pipe_cfg_targ_addr == 0) {
1542 ret = -EIO;
1543 ath10k_err(ar, "Invalid pipe cfg addr\n");
1544 return ret;
1545 }
1546
1547 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1548 target_ce_config_wlan,
1549 sizeof(target_ce_config_wlan));
1550
1551 if (ret != 0) {
1552 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1553 return ret;
1554 }
1555
1556 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1557 offsetof(struct pcie_state,
1558 svc_to_pipe_map)),
1559 &svc_to_pipe_map);
1560 if (ret != 0) {
1561 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1562 return ret;
1563 }
1564
1565 if (svc_to_pipe_map == 0) {
1566 ret = -EIO;
1567 ath10k_err(ar, "Invalid svc_to_pipe map\n");
1568 return ret;
1569 }
1570
1571 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1572 target_service_to_ce_map_wlan,
1573 sizeof(target_service_to_ce_map_wlan));
1574 if (ret != 0) {
1575 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1576 return ret;
1577 }
1578
1579 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1580 offsetof(struct pcie_state,
1581 config_flags)),
1582 &pcie_config_flags);
1583 if (ret != 0) {
1584 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1585 return ret;
1586 }
1587
1588 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1589
1590 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1591 offsetof(struct pcie_state,
1592 config_flags)),
1593 pcie_config_flags);
1594 if (ret != 0) {
1595 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1596 return ret;
1597 }
1598
1599 /* configure early allocation */
1600 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1601
1602 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1603 if (ret != 0) {
1604 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1605 return ret;
1606 }
1607
1608 /* first bank is switched to IRAM */
1609 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1610 HI_EARLY_ALLOC_MAGIC_MASK);
1611 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1612 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1613
1614 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
1615 if (ret != 0) {
1616 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1617 return ret;
1618 }
1619
1620 /* Tell Target to proceed with initialization */
1621 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1622
1623 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
1624 if (ret != 0) {
1625 ath10k_err(ar, "Failed to get option val: %d\n", ret);
1626 return ret;
1627 }
1628
1629 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1630
1631 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
1632 if (ret != 0) {
1633 ath10k_err(ar, "Failed to set option val: %d\n", ret);
1634 return ret;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
1641 {
1642 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1643 struct ath10k_pci_pipe *pipe;
1644 int i, ret;
1645
1646 for (i = 0; i < CE_COUNT; i++) {
1647 pipe = &ar_pci->pipe_info[i];
1648 pipe->ce_hdl = &ar_pci->ce_states[i];
1649 pipe->pipe_num = i;
1650 pipe->hif_ce_state = ar;
1651
1652 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i],
1653 ath10k_pci_ce_send_done,
1654 ath10k_pci_ce_recv_data);
1655 if (ret) {
1656 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1657 i, ret);
1658 return ret;
1659 }
1660
1661 /* Last CE is Diagnostic Window */
1662 if (i == CE_COUNT - 1) {
1663 ar_pci->ce_diag = pipe->ce_hdl;
1664 continue;
1665 }
1666
1667 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
1668 }
1669
1670 return 0;
1671 }
1672
1673 static void ath10k_pci_free_pipes(struct ath10k *ar)
1674 {
1675 int i;
1676
1677 for (i = 0; i < CE_COUNT; i++)
1678 ath10k_ce_free_pipe(ar, i);
1679 }
1680
1681 static int ath10k_pci_init_pipes(struct ath10k *ar)
1682 {
1683 int i, ret;
1684
1685 for (i = 0; i < CE_COUNT; i++) {
1686 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
1687 if (ret) {
1688 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1689 i, ret);
1690 return ret;
1691 }
1692 }
1693
1694 return 0;
1695 }
1696
1697 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1698 {
1699 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1700 FW_IND_EVENT_PENDING;
1701 }
1702
1703 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1704 {
1705 u32 val;
1706
1707 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1708 val &= ~FW_IND_EVENT_PENDING;
1709 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1710 }
1711
1712 /* this function effectively clears target memory controller assert line */
1713 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1714 {
1715 u32 val;
1716
1717 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1718 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1719 val | SOC_RESET_CONTROL_SI0_RST_MASK);
1720 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1721
1722 msleep(10);
1723
1724 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1725 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1726 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1727 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1728
1729 msleep(10);
1730 }
1731
1732 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
1733 {
1734 u32 val;
1735
1736 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1737
1738 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1739 SOC_RESET_CONTROL_ADDRESS);
1740 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1741 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1742 }
1743
1744 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
1745 {
1746 u32 val;
1747
1748 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1749 SOC_RESET_CONTROL_ADDRESS);
1750
1751 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1752 val | SOC_RESET_CONTROL_CE_RST_MASK);
1753 msleep(10);
1754 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1755 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1756 }
1757
1758 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
1759 {
1760 u32 val;
1761
1762 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1763 SOC_LF_TIMER_CONTROL0_ADDRESS);
1764 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1765 SOC_LF_TIMER_CONTROL0_ADDRESS,
1766 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1767 }
1768
1769 static int ath10k_pci_warm_reset(struct ath10k *ar)
1770 {
1771 int ret;
1772
1773 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1774
1775 spin_lock_bh(&ar->data_lock);
1776 ar->stats.fw_warm_reset_counter++;
1777 spin_unlock_bh(&ar->data_lock);
1778
1779 ath10k_pci_irq_disable(ar);
1780
1781 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
1782 * were to access copy engine while host performs copy engine reset
1783 * then it is possible for the device to confuse pci-e controller to
1784 * the point of bringing host system to a complete stop (i.e. hang).
1785 */
1786 ath10k_pci_warm_reset_si0(ar);
1787 ath10k_pci_warm_reset_cpu(ar);
1788 ath10k_pci_init_pipes(ar);
1789 ath10k_pci_wait_for_target_init(ar);
1790
1791 ath10k_pci_warm_reset_clear_lf(ar);
1792 ath10k_pci_warm_reset_ce(ar);
1793 ath10k_pci_warm_reset_cpu(ar);
1794 ath10k_pci_init_pipes(ar);
1795
1796 ret = ath10k_pci_wait_for_target_init(ar);
1797 if (ret) {
1798 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
1799 return ret;
1800 }
1801
1802 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
1803
1804 return 0;
1805 }
1806
1807 static int ath10k_pci_chip_reset(struct ath10k *ar)
1808 {
1809 int i, ret;
1810 u32 val;
1811
1812 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset\n");
1813
1814 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
1815 * It is thus preferred to use warm reset which is safer but may not be
1816 * able to recover the device from all possible fail scenarios.
1817 *
1818 * Warm reset doesn't always work on first try so attempt it a few
1819 * times before giving up.
1820 */
1821 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
1822 ret = ath10k_pci_warm_reset(ar);
1823 if (ret) {
1824 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
1825 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
1826 ret);
1827 continue;
1828 }
1829
1830 /* FIXME: Sometimes copy engine doesn't recover after warm
1831 * reset. In most cases this needs cold reset. In some of these
1832 * cases the device is in such a state that a cold reset may
1833 * lock up the host.
1834 *
1835 * Reading any host interest register via copy engine is
1836 * sufficient to verify if device is capable of booting
1837 * firmware blob.
1838 */
1839 ret = ath10k_pci_init_pipes(ar);
1840 if (ret) {
1841 ath10k_warn(ar, "failed to init copy engine: %d\n",
1842 ret);
1843 continue;
1844 }
1845
1846 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
1847 &val);
1848 if (ret) {
1849 ath10k_warn(ar, "failed to poke copy engine: %d\n",
1850 ret);
1851 continue;
1852 }
1853
1854 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
1855 return 0;
1856 }
1857
1858 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
1859 ath10k_warn(ar, "refusing cold reset as requested\n");
1860 return -EPERM;
1861 }
1862
1863 ret = ath10k_pci_cold_reset(ar);
1864 if (ret) {
1865 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1866 return ret;
1867 }
1868
1869 ret = ath10k_pci_wait_for_target_init(ar);
1870 if (ret) {
1871 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1872 ret);
1873 return ret;
1874 }
1875
1876 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (cold)\n");
1877
1878 return 0;
1879 }
1880
1881 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1882 {
1883 int ret;
1884
1885 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
1886
1887 ret = ath10k_pci_wake(ar);
1888 if (ret) {
1889 ath10k_err(ar, "failed to wake up target: %d\n", ret);
1890 return ret;
1891 }
1892
1893 /*
1894 * Bring the target up cleanly.
1895 *
1896 * The target may be in an undefined state with an AUX-powered Target
1897 * and a Host in WoW mode. If the Host crashes, loses power, or is
1898 * restarted (without unloading the driver) then the Target is left
1899 * (aux) powered and running. On a subsequent driver load, the Target
1900 * is in an unexpected state. We try to catch that here in order to
1901 * reset the Target and retry the probe.
1902 */
1903 ret = ath10k_pci_chip_reset(ar);
1904 if (ret) {
1905 ath10k_err(ar, "failed to reset chip: %d\n", ret);
1906 goto err_sleep;
1907 }
1908
1909 ret = ath10k_pci_init_pipes(ar);
1910 if (ret) {
1911 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
1912 goto err_sleep;
1913 }
1914
1915 ret = ath10k_pci_init_config(ar);
1916 if (ret) {
1917 ath10k_err(ar, "failed to setup init config: %d\n", ret);
1918 goto err_ce;
1919 }
1920
1921 ret = ath10k_pci_wake_target_cpu(ar);
1922 if (ret) {
1923 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
1924 goto err_ce;
1925 }
1926
1927 return 0;
1928
1929 err_ce:
1930 ath10k_pci_ce_deinit(ar);
1931
1932 err_sleep:
1933 ath10k_pci_sleep(ar);
1934 return ret;
1935 }
1936
1937 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1938 {
1939 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
1940
1941 /* Currently hif_power_up performs effectively a reset and hif_stop
1942 * resets the chip as well so there's no point in resetting here.
1943 */
1944
1945 ath10k_pci_sleep(ar);
1946 }
1947
1948 #ifdef CONFIG_PM
1949
1950 #define ATH10K_PCI_PM_CONTROL 0x44
1951
1952 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1953 {
1954 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1955 struct pci_dev *pdev = ar_pci->pdev;
1956 u32 val;
1957
1958 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1959
1960 if ((val & 0x000000ff) != 0x3) {
1961 pci_save_state(pdev);
1962 pci_disable_device(pdev);
1963 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1964 (val & 0xffffff00) | 0x03);
1965 }
1966
1967 return 0;
1968 }
1969
1970 static int ath10k_pci_hif_resume(struct ath10k *ar)
1971 {
1972 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1973 struct pci_dev *pdev = ar_pci->pdev;
1974 u32 val;
1975
1976 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1977
1978 if ((val & 0x000000ff) != 0) {
1979 pci_restore_state(pdev);
1980 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1981 val & 0xffffff00);
1982 /*
1983 * Suspend/Resume resets the PCI configuration space,
1984 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1985 * to keep PCI Tx retries from interfering with C3 CPU state
1986 */
1987 pci_read_config_dword(pdev, 0x40, &val);
1988
1989 if ((val & 0x0000ff00) != 0)
1990 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1991 }
1992
1993 return 0;
1994 }
1995 #endif
1996
1997 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1998 .tx_sg = ath10k_pci_hif_tx_sg,
1999 .diag_read = ath10k_pci_hif_diag_read,
2000 .diag_write = ath10k_pci_diag_write_mem,
2001 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2002 .start = ath10k_pci_hif_start,
2003 .stop = ath10k_pci_hif_stop,
2004 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2005 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2006 .send_complete_check = ath10k_pci_hif_send_complete_check,
2007 .set_callbacks = ath10k_pci_hif_set_callbacks,
2008 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2009 .power_up = ath10k_pci_hif_power_up,
2010 .power_down = ath10k_pci_hif_power_down,
2011 .read32 = ath10k_pci_read32,
2012 .write32 = ath10k_pci_write32,
2013 #ifdef CONFIG_PM
2014 .suspend = ath10k_pci_hif_suspend,
2015 .resume = ath10k_pci_hif_resume,
2016 #endif
2017 };
2018
2019 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2020 {
2021 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2022 struct ath10k_pci *ar_pci = pipe->ar_pci;
2023
2024 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2025 }
2026
2027 static void ath10k_msi_err_tasklet(unsigned long data)
2028 {
2029 struct ath10k *ar = (struct ath10k *)data;
2030
2031 if (!ath10k_pci_has_fw_crashed(ar)) {
2032 ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2033 return;
2034 }
2035
2036 ath10k_pci_fw_crashed_clear(ar);
2037 ath10k_pci_fw_crashed_dump(ar);
2038 }
2039
2040 /*
2041 * Handler for a per-engine interrupt on a PARTICULAR CE.
2042 * This is used in cases where each CE has a private MSI interrupt.
2043 */
2044 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2045 {
2046 struct ath10k *ar = arg;
2047 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2048 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2049
2050 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2051 ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2052 ce_id);
2053 return IRQ_HANDLED;
2054 }
2055
2056 /*
2057 * NOTE: We are able to derive ce_id from irq because we
2058 * use a one-to-one mapping for CE's 0..5.
2059 * CE's 6 & 7 do not use interrupts at all.
2060 *
2061 * This mapping must be kept in sync with the mapping
2062 * used by firmware.
2063 */
2064 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2065 return IRQ_HANDLED;
2066 }
2067
2068 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2069 {
2070 struct ath10k *ar = arg;
2071 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2072
2073 tasklet_schedule(&ar_pci->msi_fw_err);
2074 return IRQ_HANDLED;
2075 }
2076
2077 /*
2078 * Top-level interrupt handler for all PCI interrupts from a Target.
2079 * When a block of MSI interrupts is allocated, this top-level handler
2080 * is not used; instead, we directly call the correct sub-handler.
2081 */
2082 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2083 {
2084 struct ath10k *ar = arg;
2085 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2086
2087 if (ar_pci->num_msi_intrs == 0) {
2088 if (!ath10k_pci_irq_pending(ar))
2089 return IRQ_NONE;
2090
2091 ath10k_pci_disable_and_clear_legacy_irq(ar);
2092 }
2093
2094 tasklet_schedule(&ar_pci->intr_tq);
2095
2096 return IRQ_HANDLED;
2097 }
2098
2099 static void ath10k_pci_tasklet(unsigned long data)
2100 {
2101 struct ath10k *ar = (struct ath10k *)data;
2102 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2103
2104 if (ath10k_pci_has_fw_crashed(ar)) {
2105 ath10k_pci_fw_crashed_clear(ar);
2106 ath10k_pci_fw_crashed_dump(ar);
2107 return;
2108 }
2109
2110 ath10k_ce_per_engine_service_any(ar);
2111
2112 /* Re-enable legacy irq that was disabled in the irq handler */
2113 if (ar_pci->num_msi_intrs == 0)
2114 ath10k_pci_enable_legacy_irq(ar);
2115 }
2116
2117 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2118 {
2119 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2120 int ret, i;
2121
2122 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2123 ath10k_pci_msi_fw_handler,
2124 IRQF_SHARED, "ath10k_pci", ar);
2125 if (ret) {
2126 ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2127 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2128 return ret;
2129 }
2130
2131 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2132 ret = request_irq(ar_pci->pdev->irq + i,
2133 ath10k_pci_per_engine_handler,
2134 IRQF_SHARED, "ath10k_pci", ar);
2135 if (ret) {
2136 ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2137 ar_pci->pdev->irq + i, ret);
2138
2139 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2140 free_irq(ar_pci->pdev->irq + i, ar);
2141
2142 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2143 return ret;
2144 }
2145 }
2146
2147 return 0;
2148 }
2149
2150 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2151 {
2152 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2153 int ret;
2154
2155 ret = request_irq(ar_pci->pdev->irq,
2156 ath10k_pci_interrupt_handler,
2157 IRQF_SHARED, "ath10k_pci", ar);
2158 if (ret) {
2159 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2160 ar_pci->pdev->irq, ret);
2161 return ret;
2162 }
2163
2164 return 0;
2165 }
2166
2167 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2168 {
2169 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2170 int ret;
2171
2172 ret = request_irq(ar_pci->pdev->irq,
2173 ath10k_pci_interrupt_handler,
2174 IRQF_SHARED, "ath10k_pci", ar);
2175 if (ret) {
2176 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2177 ar_pci->pdev->irq, ret);
2178 return ret;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static int ath10k_pci_request_irq(struct ath10k *ar)
2185 {
2186 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2187
2188 switch (ar_pci->num_msi_intrs) {
2189 case 0:
2190 return ath10k_pci_request_irq_legacy(ar);
2191 case 1:
2192 return ath10k_pci_request_irq_msi(ar);
2193 case MSI_NUM_REQUEST:
2194 return ath10k_pci_request_irq_msix(ar);
2195 }
2196
2197 ath10k_warn(ar, "unknown irq configuration upon request\n");
2198 return -EINVAL;
2199 }
2200
2201 static void ath10k_pci_free_irq(struct ath10k *ar)
2202 {
2203 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2204 int i;
2205
2206 /* There's at least one interrupt irregardless whether its legacy INTR
2207 * or MSI or MSI-X */
2208 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2209 free_irq(ar_pci->pdev->irq + i, ar);
2210 }
2211
2212 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2213 {
2214 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2215 int i;
2216
2217 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2218 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2219 (unsigned long)ar);
2220
2221 for (i = 0; i < CE_COUNT; i++) {
2222 ar_pci->pipe_info[i].ar_pci = ar_pci;
2223 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2224 (unsigned long)&ar_pci->pipe_info[i]);
2225 }
2226 }
2227
2228 static int ath10k_pci_init_irq(struct ath10k *ar)
2229 {
2230 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2231 int ret;
2232
2233 ath10k_pci_init_irq_tasklets(ar);
2234
2235 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2236 ath10k_info(ar, "limiting irq mode to: %d\n",
2237 ath10k_pci_irq_mode);
2238
2239 /* Try MSI-X */
2240 if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2241 ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2242 ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2243 ar_pci->num_msi_intrs);
2244 if (ret > 0)
2245 return 0;
2246
2247 /* fall-through */
2248 }
2249
2250 /* Try MSI */
2251 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2252 ar_pci->num_msi_intrs = 1;
2253 ret = pci_enable_msi(ar_pci->pdev);
2254 if (ret == 0)
2255 return 0;
2256
2257 /* fall-through */
2258 }
2259
2260 /* Try legacy irq
2261 *
2262 * A potential race occurs here: The CORE_BASE write
2263 * depends on target correctly decoding AXI address but
2264 * host won't know when target writes BAR to CORE_CTRL.
2265 * This write might get lost if target has NOT written BAR.
2266 * For now, fix the race by repeating the write in below
2267 * synchronization checking. */
2268 ar_pci->num_msi_intrs = 0;
2269
2270 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2271 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2272
2273 return 0;
2274 }
2275
2276 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2277 {
2278 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2279 0);
2280 }
2281
2282 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2283 {
2284 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2285
2286 switch (ar_pci->num_msi_intrs) {
2287 case 0:
2288 ath10k_pci_deinit_irq_legacy(ar);
2289 return 0;
2290 case 1:
2291 /* fall-through */
2292 case MSI_NUM_REQUEST:
2293 pci_disable_msi(ar_pci->pdev);
2294 return 0;
2295 default:
2296 pci_disable_msi(ar_pci->pdev);
2297 }
2298
2299 ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2300 return -EINVAL;
2301 }
2302
2303 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2304 {
2305 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2306 unsigned long timeout;
2307 u32 val;
2308
2309 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2310
2311 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2312
2313 do {
2314 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2315
2316 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2317 val);
2318
2319 /* target should never return this */
2320 if (val == 0xffffffff)
2321 continue;
2322
2323 /* the device has crashed so don't bother trying anymore */
2324 if (val & FW_IND_EVENT_PENDING)
2325 break;
2326
2327 if (val & FW_IND_INITIALIZED)
2328 break;
2329
2330 if (ar_pci->num_msi_intrs == 0)
2331 /* Fix potential race by repeating CORE_BASE writes */
2332 ath10k_pci_enable_legacy_irq(ar);
2333
2334 mdelay(10);
2335 } while (time_before(jiffies, timeout));
2336
2337 ath10k_pci_disable_and_clear_legacy_irq(ar);
2338 ath10k_pci_irq_msi_fw_mask(ar);
2339
2340 if (val == 0xffffffff) {
2341 ath10k_err(ar, "failed to read device register, device is gone\n");
2342 return -EIO;
2343 }
2344
2345 if (val & FW_IND_EVENT_PENDING) {
2346 ath10k_warn(ar, "device has crashed during init\n");
2347 ath10k_pci_fw_crashed_clear(ar);
2348 ath10k_pci_fw_crashed_dump(ar);
2349 return -ECOMM;
2350 }
2351
2352 if (!(val & FW_IND_INITIALIZED)) {
2353 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2354 val);
2355 return -ETIMEDOUT;
2356 }
2357
2358 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2359 return 0;
2360 }
2361
2362 static int ath10k_pci_cold_reset(struct ath10k *ar)
2363 {
2364 int i;
2365 u32 val;
2366
2367 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2368
2369 spin_lock_bh(&ar->data_lock);
2370
2371 ar->stats.fw_cold_reset_counter++;
2372
2373 spin_unlock_bh(&ar->data_lock);
2374
2375 /* Put Target, including PCIe, into RESET. */
2376 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2377 val |= 1;
2378 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2379
2380 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2381 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2382 RTC_STATE_COLD_RESET_MASK)
2383 break;
2384 msleep(1);
2385 }
2386
2387 /* Pull Target, including PCIe, out of RESET. */
2388 val &= ~1;
2389 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2390
2391 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2392 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2393 RTC_STATE_COLD_RESET_MASK))
2394 break;
2395 msleep(1);
2396 }
2397
2398 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2399
2400 return 0;
2401 }
2402
2403 static int ath10k_pci_claim(struct ath10k *ar)
2404 {
2405 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2406 struct pci_dev *pdev = ar_pci->pdev;
2407 u32 lcr_val;
2408 int ret;
2409
2410 pci_set_drvdata(pdev, ar);
2411
2412 ret = pci_enable_device(pdev);
2413 if (ret) {
2414 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2415 return ret;
2416 }
2417
2418 ret = pci_request_region(pdev, BAR_NUM, "ath");
2419 if (ret) {
2420 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2421 ret);
2422 goto err_device;
2423 }
2424
2425 /* Target expects 32 bit DMA. Enforce it. */
2426 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2427 if (ret) {
2428 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2429 goto err_region;
2430 }
2431
2432 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2433 if (ret) {
2434 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2435 ret);
2436 goto err_region;
2437 }
2438
2439 pci_set_master(pdev);
2440
2441 /* Workaround: Disable ASPM */
2442 pci_read_config_dword(pdev, 0x80, &lcr_val);
2443 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2444
2445 /* Arrange for access to Target SoC registers. */
2446 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2447 if (!ar_pci->mem) {
2448 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2449 ret = -EIO;
2450 goto err_master;
2451 }
2452
2453 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2454 return 0;
2455
2456 err_master:
2457 pci_clear_master(pdev);
2458
2459 err_region:
2460 pci_release_region(pdev, BAR_NUM);
2461
2462 err_device:
2463 pci_disable_device(pdev);
2464
2465 return ret;
2466 }
2467
2468 static void ath10k_pci_release(struct ath10k *ar)
2469 {
2470 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2471 struct pci_dev *pdev = ar_pci->pdev;
2472
2473 pci_iounmap(pdev, ar_pci->mem);
2474 pci_release_region(pdev, BAR_NUM);
2475 pci_clear_master(pdev);
2476 pci_disable_device(pdev);
2477 }
2478
2479 static int ath10k_pci_probe(struct pci_dev *pdev,
2480 const struct pci_device_id *pci_dev)
2481 {
2482 int ret = 0;
2483 struct ath10k *ar;
2484 struct ath10k_pci *ar_pci;
2485 u32 chip_id;
2486
2487 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev,
2488 ATH10K_BUS_PCI,
2489 &ath10k_pci_hif_ops);
2490 if (!ar) {
2491 dev_err(&pdev->dev, "failed to allocate core\n");
2492 return -ENOMEM;
2493 }
2494
2495 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2496
2497 ar_pci = ath10k_pci_priv(ar);
2498 ar_pci->pdev = pdev;
2499 ar_pci->dev = &pdev->dev;
2500 ar_pci->ar = ar;
2501
2502 spin_lock_init(&ar_pci->ce_lock);
2503 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2504 (unsigned long)ar);
2505
2506 ret = ath10k_pci_claim(ar);
2507 if (ret) {
2508 ath10k_err(ar, "failed to claim device: %d\n", ret);
2509 goto err_core_destroy;
2510 }
2511
2512 ret = ath10k_pci_wake(ar);
2513 if (ret) {
2514 ath10k_err(ar, "failed to wake up: %d\n", ret);
2515 goto err_release;
2516 }
2517
2518 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2519 if (chip_id == 0xffffffff) {
2520 ath10k_err(ar, "failed to get chip id\n");
2521 goto err_sleep;
2522 }
2523
2524 ret = ath10k_pci_alloc_pipes(ar);
2525 if (ret) {
2526 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2527 ret);
2528 goto err_sleep;
2529 }
2530
2531 ath10k_pci_ce_deinit(ar);
2532 ath10k_pci_irq_disable(ar);
2533
2534 ret = ath10k_pci_init_irq(ar);
2535 if (ret) {
2536 ath10k_err(ar, "failed to init irqs: %d\n", ret);
2537 goto err_free_pipes;
2538 }
2539
2540 ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2541 ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2542 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2543
2544 ret = ath10k_pci_request_irq(ar);
2545 if (ret) {
2546 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2547 goto err_deinit_irq;
2548 }
2549
2550 ath10k_pci_sleep(ar);
2551
2552 ret = ath10k_core_register(ar, chip_id);
2553 if (ret) {
2554 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2555 goto err_free_irq;
2556 }
2557
2558 return 0;
2559
2560 err_free_irq:
2561 ath10k_pci_free_irq(ar);
2562 ath10k_pci_kill_tasklet(ar);
2563
2564 err_deinit_irq:
2565 ath10k_pci_deinit_irq(ar);
2566
2567 err_free_pipes:
2568 ath10k_pci_free_pipes(ar);
2569
2570 err_sleep:
2571 ath10k_pci_sleep(ar);
2572
2573 err_release:
2574 ath10k_pci_release(ar);
2575
2576 err_core_destroy:
2577 ath10k_core_destroy(ar);
2578
2579 return ret;
2580 }
2581
2582 static void ath10k_pci_remove(struct pci_dev *pdev)
2583 {
2584 struct ath10k *ar = pci_get_drvdata(pdev);
2585 struct ath10k_pci *ar_pci;
2586
2587 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2588
2589 if (!ar)
2590 return;
2591
2592 ar_pci = ath10k_pci_priv(ar);
2593
2594 if (!ar_pci)
2595 return;
2596
2597 ath10k_core_unregister(ar);
2598 ath10k_pci_free_irq(ar);
2599 ath10k_pci_kill_tasklet(ar);
2600 ath10k_pci_deinit_irq(ar);
2601 ath10k_pci_ce_deinit(ar);
2602 ath10k_pci_free_pipes(ar);
2603 ath10k_pci_release(ar);
2604 ath10k_core_destroy(ar);
2605 }
2606
2607 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2608
2609 static struct pci_driver ath10k_pci_driver = {
2610 .name = "ath10k_pci",
2611 .id_table = ath10k_pci_id_table,
2612 .probe = ath10k_pci_probe,
2613 .remove = ath10k_pci_remove,
2614 };
2615
2616 static int __init ath10k_pci_init(void)
2617 {
2618 int ret;
2619
2620 ret = pci_register_driver(&ath10k_pci_driver);
2621 if (ret)
2622 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2623 ret);
2624
2625 return ret;
2626 }
2627 module_init(ath10k_pci_init);
2628
2629 static void __exit ath10k_pci_exit(void)
2630 {
2631 pci_unregister_driver(&ath10k_pci_driver);
2632 }
2633
2634 module_exit(ath10k_pci_exit);
2635
2636 MODULE_AUTHOR("Qualcomm Atheros");
2637 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2638 MODULE_LICENSE("Dual BSD/GPL");
2639 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2640 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
2641 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
2642 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
This page took 0.086197 seconds and 6 git commands to generate.