mac80211: fix paged RX crypto
[deliverable/linux.git] / drivers / net / wireless / ath / ath5k / reset.c
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22 /*****************************\
23 Reset functions and helpers
24 \*****************************/
25
26 #include <asm/unaligned.h>
27
28 #include <linux/pci.h> /* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include "ath5k.h"
31 #include "reg.h"
32 #include "base.h"
33 #include "debug.h"
34
35 /*
36 * Check if a register write has been completed
37 */
38 int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
39 bool is_set)
40 {
41 int i;
42 u32 data;
43
44 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
45 data = ath5k_hw_reg_read(ah, reg);
46 if (is_set && (data & flag))
47 break;
48 else if ((data & flag) == val)
49 break;
50 udelay(15);
51 }
52
53 return (i <= 0) ? -EAGAIN : 0;
54 }
55
56 /**
57 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
58 *
59 * @ah: the &struct ath5k_hw
60 * @channel: the currently set channel upon reset
61 *
62 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
63 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
64 *
65 * Since delta slope is floating point we split it on its exponent and
66 * mantissa and provide these values on hw.
67 *
68 * For more infos i think this patent is related
69 * http://www.freepatentsonline.com/7184495.html
70 */
71 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
72 struct ieee80211_channel *channel)
73 {
74 /* Get exponent and mantissa and set it */
75 u32 coef_scaled, coef_exp, coef_man,
76 ds_coef_exp, ds_coef_man, clock;
77
78 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
79 !(channel->hw_value & CHANNEL_OFDM));
80
81 /* Get coefficient
82 * ALGO: coef = (5 * clock / carrier_freq) / 2
83 * we scale coef by shifting clock value by 24 for
84 * better precision since we use integers */
85 /* TODO: Half/quarter rate */
86 clock = (channel->hw_value & CHANNEL_TURBO) ? 80 : 40;
87 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
88
89 /* Get exponent
90 * ALGO: coef_exp = 14 - highest set bit position */
91 coef_exp = ilog2(coef_scaled);
92
93 /* Doesn't make sense if it's zero*/
94 if (!coef_scaled || !coef_exp)
95 return -EINVAL;
96
97 /* Note: we've shifted coef_scaled by 24 */
98 coef_exp = 14 - (coef_exp - 24);
99
100
101 /* Get mantissa (significant digits)
102 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
103 coef_man = coef_scaled +
104 (1 << (24 - coef_exp - 1));
105
106 /* Calculate delta slope coefficient exponent
107 * and mantissa (remove scaling) and set them on hw */
108 ds_coef_man = coef_man >> (24 - coef_exp);
109 ds_coef_exp = coef_exp - 16;
110
111 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
112 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
113 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
114 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
115
116 return 0;
117 }
118
119
120 /*
121 * index into rates for control rates, we can set it up like this because
122 * this is only used for AR5212 and we know it supports G mode
123 */
124 static const unsigned int control_rates[] =
125 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
126
127 /**
128 * ath5k_hw_write_rate_duration - fill rate code to duration table
129 *
130 * @ah: the &struct ath5k_hw
131 * @mode: one of enum ath5k_driver_mode
132 *
133 * Write the rate code to duration table upon hw reset. This is a helper for
134 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
135 * the hardware, based on current mode, for each rate. The rates which are
136 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
137 * different rate code so we write their value twice (one for long preample
138 * and one for short).
139 *
140 * Note: Band doesn't matter here, if we set the values for OFDM it works
141 * on both a and g modes. So all we have to do is set values for all g rates
142 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
143 * quarter rate mode, we need to use another set of bitrates (that's why we
144 * need the mode parameter) but we don't handle these proprietary modes yet.
145 */
146 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
147 unsigned int mode)
148 {
149 struct ath5k_softc *sc = ah->ah_sc;
150 struct ieee80211_rate *rate;
151 unsigned int i;
152
153 /* Write rate duration table */
154 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
155 u32 reg;
156 u16 tx_time;
157
158 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
159
160 /* Set ACK timeout */
161 reg = AR5K_RATE_DUR(rate->hw_value);
162
163 /* An ACK frame consists of 10 bytes. If you add the FCS,
164 * which ieee80211_generic_frame_duration() adds,
165 * its 14 bytes. Note we use the control rate and not the
166 * actual rate for this rate. See mac80211 tx.c
167 * ieee80211_duration() for a brief description of
168 * what rate we should choose to TX ACKs. */
169 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
170 sc->vif, 10, rate));
171
172 ath5k_hw_reg_write(ah, tx_time, reg);
173
174 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
175 continue;
176
177 /*
178 * We're not distinguishing short preamble here,
179 * This is true, all we'll get is a longer value here
180 * which is not necessarilly bad. We could use
181 * export ieee80211_frame_duration() but that needs to be
182 * fixed first to be properly used by mac802111 drivers:
183 *
184 * - remove erp stuff and let the routine figure ofdm
185 * erp rates
186 * - remove passing argument ieee80211_local as
187 * drivers don't have access to it
188 * - move drivers using ieee80211_generic_frame_duration()
189 * to this
190 */
191 ath5k_hw_reg_write(ah, tx_time,
192 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
193 }
194 }
195
196 /*
197 * Reset chipset
198 */
199 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
200 {
201 int ret;
202 u32 mask = val ? val : ~0U;
203
204 ATH5K_TRACE(ah->ah_sc);
205
206 /* Read-and-clear RX Descriptor Pointer*/
207 ath5k_hw_reg_read(ah, AR5K_RXDP);
208
209 /*
210 * Reset the device and wait until success
211 */
212 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
213
214 /* Wait at least 128 PCI clocks */
215 udelay(15);
216
217 if (ah->ah_version == AR5K_AR5210) {
218 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
219 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
220 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
221 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
222 } else {
223 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
224 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
225 }
226
227 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
228
229 /*
230 * Reset configuration register (for hw byte-swap). Note that this
231 * is only set for big endian. We do the necessary magic in
232 * AR5K_INIT_CFG.
233 */
234 if ((val & AR5K_RESET_CTL_PCU) == 0)
235 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
236
237 return ret;
238 }
239
240 /*
241 * Sleep control
242 */
243 static int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
244 bool set_chip, u16 sleep_duration)
245 {
246 unsigned int i;
247 u32 staid, data;
248
249 ATH5K_TRACE(ah->ah_sc);
250 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
251
252 switch (mode) {
253 case AR5K_PM_AUTO:
254 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
255 /* fallthrough */
256 case AR5K_PM_NETWORK_SLEEP:
257 if (set_chip)
258 ath5k_hw_reg_write(ah,
259 AR5K_SLEEP_CTL_SLE_ALLOW |
260 sleep_duration,
261 AR5K_SLEEP_CTL);
262
263 staid |= AR5K_STA_ID1_PWR_SV;
264 break;
265
266 case AR5K_PM_FULL_SLEEP:
267 if (set_chip)
268 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
269 AR5K_SLEEP_CTL);
270
271 staid |= AR5K_STA_ID1_PWR_SV;
272 break;
273
274 case AR5K_PM_AWAKE:
275
276 staid &= ~AR5K_STA_ID1_PWR_SV;
277
278 if (!set_chip)
279 goto commit;
280
281 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
282
283 /* If card is down we 'll get 0xffff... so we
284 * need to clean this up before we write the register
285 */
286 if (data & 0xffc00000)
287 data = 0;
288 else
289 /* Preserve sleep duration etc */
290 data = data & ~AR5K_SLEEP_CTL_SLE;
291
292 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
293 AR5K_SLEEP_CTL);
294 udelay(15);
295
296 for (i = 200; i > 0; i--) {
297 /* Check if the chip did wake up */
298 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
299 AR5K_PCICFG_SPWR_DN) == 0)
300 break;
301
302 /* Wait a bit and retry */
303 udelay(50);
304 ath5k_hw_reg_write(ah, data | AR5K_SLEEP_CTL_SLE_WAKE,
305 AR5K_SLEEP_CTL);
306 }
307
308 /* Fail if the chip didn't wake up */
309 if (i == 0)
310 return -EIO;
311
312 break;
313
314 default:
315 return -EINVAL;
316 }
317
318 commit:
319 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
320
321 return 0;
322 }
323
324 /*
325 * Put device on hold
326 *
327 * Put MAC and Baseband on warm reset and
328 * keep that state (don't clean sleep control
329 * register). After this MAC and Baseband are
330 * disabled and a full reset is needed to come
331 * back. This way we save as much power as possible
332 * without puting the card on full sleep.
333 */
334 int ath5k_hw_on_hold(struct ath5k_hw *ah)
335 {
336 struct pci_dev *pdev = ah->ah_sc->pdev;
337 u32 bus_flags;
338 int ret;
339
340 /* Make sure device is awake */
341 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
342 if (ret) {
343 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
344 return ret;
345 }
346
347 /*
348 * Put chipset on warm reset...
349 *
350 * Note: puting PCI core on warm reset on PCI-E cards
351 * results card to hang and always return 0xffff... so
352 * we ingore that flag for PCI-E cards. On PCI cards
353 * this flag gets cleared after 64 PCI clocks.
354 */
355 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
356
357 if (ah->ah_version == AR5K_AR5210) {
358 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
359 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
360 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
361 mdelay(2);
362 } else {
363 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
364 AR5K_RESET_CTL_BASEBAND | bus_flags);
365 }
366
367 if (ret) {
368 ATH5K_ERR(ah->ah_sc, "failed to put device on warm reset\n");
369 return -EIO;
370 }
371
372 /* ...wakeup again!*/
373 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
374 if (ret) {
375 ATH5K_ERR(ah->ah_sc, "failed to put device on hold\n");
376 return ret;
377 }
378
379 return ret;
380 }
381
382 /*
383 * Bring up MAC + PHY Chips and program PLL
384 * TODO: Half/Quarter rate support
385 */
386 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
387 {
388 struct pci_dev *pdev = ah->ah_sc->pdev;
389 u32 turbo, mode, clock, bus_flags;
390 int ret;
391
392 turbo = 0;
393 mode = 0;
394 clock = 0;
395
396 ATH5K_TRACE(ah->ah_sc);
397
398 /* Wakeup the device */
399 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
400 if (ret) {
401 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
402 return ret;
403 }
404
405 /*
406 * Put chipset on warm reset...
407 *
408 * Note: puting PCI core on warm reset on PCI-E cards
409 * results card to hang and always return 0xffff... so
410 * we ingore that flag for PCI-E cards. On PCI cards
411 * this flag gets cleared after 64 PCI clocks.
412 */
413 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
414
415 if (ah->ah_version == AR5K_AR5210) {
416 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
417 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
418 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
419 mdelay(2);
420 } else {
421 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
422 AR5K_RESET_CTL_BASEBAND | bus_flags);
423 }
424
425 if (ret) {
426 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
427 return -EIO;
428 }
429
430 /* ...wakeup again!...*/
431 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
432 if (ret) {
433 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
434 return ret;
435 }
436
437 /* ...clear reset control register and pull device out of
438 * warm reset */
439 if (ath5k_hw_nic_reset(ah, 0)) {
440 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
441 return -EIO;
442 }
443
444 /* On initialization skip PLL programming since we don't have
445 * a channel / mode set yet */
446 if (initial)
447 return 0;
448
449 if (ah->ah_version != AR5K_AR5210) {
450 /*
451 * Get channel mode flags
452 */
453
454 if (ah->ah_radio >= AR5K_RF5112) {
455 mode = AR5K_PHY_MODE_RAD_RF5112;
456 clock = AR5K_PHY_PLL_RF5112;
457 } else {
458 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
459 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
460 }
461
462 if (flags & CHANNEL_2GHZ) {
463 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
464 clock |= AR5K_PHY_PLL_44MHZ;
465
466 if (flags & CHANNEL_CCK) {
467 mode |= AR5K_PHY_MODE_MOD_CCK;
468 } else if (flags & CHANNEL_OFDM) {
469 /* XXX Dynamic OFDM/CCK is not supported by the
470 * AR5211 so we set MOD_OFDM for plain g (no
471 * CCK headers) operation. We need to test
472 * this, 5211 might support ofdm-only g after
473 * all, there are also initial register values
474 * in the code for g mode (see initvals.c). */
475 if (ah->ah_version == AR5K_AR5211)
476 mode |= AR5K_PHY_MODE_MOD_OFDM;
477 else
478 mode |= AR5K_PHY_MODE_MOD_DYN;
479 } else {
480 ATH5K_ERR(ah->ah_sc,
481 "invalid radio modulation mode\n");
482 return -EINVAL;
483 }
484 } else if (flags & CHANNEL_5GHZ) {
485 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
486
487 if (ah->ah_radio == AR5K_RF5413)
488 clock = AR5K_PHY_PLL_40MHZ_5413;
489 else
490 clock |= AR5K_PHY_PLL_40MHZ;
491
492 if (flags & CHANNEL_OFDM)
493 mode |= AR5K_PHY_MODE_MOD_OFDM;
494 else {
495 ATH5K_ERR(ah->ah_sc,
496 "invalid radio modulation mode\n");
497 return -EINVAL;
498 }
499 } else {
500 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
501 return -EINVAL;
502 }
503
504 if (flags & CHANNEL_TURBO)
505 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
506 } else { /* Reset the device */
507
508 /* ...enable Atheros turbo mode if requested */
509 if (flags & CHANNEL_TURBO)
510 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
511 AR5K_PHY_TURBO);
512 }
513
514 if (ah->ah_version != AR5K_AR5210) {
515
516 /* ...update PLL if needed */
517 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
518 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
519 udelay(300);
520 }
521
522 /* ...set the PHY operating mode */
523 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
524 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
525 }
526
527 return 0;
528 }
529
530 /*
531 * If there is an external 32KHz crystal available, use it
532 * as ref. clock instead of 32/40MHz clock and baseband clocks
533 * to save power during sleep or restore normal 32/40MHz
534 * operation.
535 *
536 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
537 * 123 - 127) require delay on access.
538 */
539 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
540 {
541 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
542 u32 scal, spending, usec32;
543
544 /* Only set 32KHz settings if we have an external
545 * 32KHz crystal present */
546 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
547 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
548 enable) {
549
550 /* 1 usec/cycle */
551 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
552 /* Set up tsf increment on each cycle */
553 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
554
555 /* Set baseband sleep control registers
556 * and sleep control rate */
557 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
558
559 if ((ah->ah_radio == AR5K_RF5112) ||
560 (ah->ah_radio == AR5K_RF5413) ||
561 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
562 spending = 0x14;
563 else
564 spending = 0x18;
565 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
566
567 if ((ah->ah_radio == AR5K_RF5112) ||
568 (ah->ah_radio == AR5K_RF5413) ||
569 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
570 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
571 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
572 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
573 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
574 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
575 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
576 } else {
577 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
578 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
579 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
580 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
581 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
582 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
583 }
584
585 /* Enable sleep clock operation */
586 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
587 AR5K_PCICFG_SLEEP_CLOCK_EN);
588
589 } else {
590
591 /* Disable sleep clock operation and
592 * restore default parameters */
593 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
594 AR5K_PCICFG_SLEEP_CLOCK_EN);
595
596 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
597 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
598
599 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
600 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
601
602 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
603 scal = AR5K_PHY_SCAL_32MHZ_2417;
604 else if (ee->ee_is_hb63)
605 scal = AR5K_PHY_SCAL_32MHZ_HB63;
606 else
607 scal = AR5K_PHY_SCAL_32MHZ;
608 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
609
610 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
611 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
612
613 if ((ah->ah_radio == AR5K_RF5112) ||
614 (ah->ah_radio == AR5K_RF5413) ||
615 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
616 spending = 0x14;
617 else
618 spending = 0x18;
619 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
620
621 if ((ah->ah_radio == AR5K_RF5112) ||
622 (ah->ah_radio == AR5K_RF5413))
623 usec32 = 39;
624 else
625 usec32 = 31;
626 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
627
628 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
629 }
630 return;
631 }
632
633 /* TODO: Half/Quarter rate */
634 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
635 struct ieee80211_channel *channel)
636 {
637 if (ah->ah_version == AR5K_AR5212 &&
638 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
639
640 /* Setup ADC control */
641 ath5k_hw_reg_write(ah,
642 (AR5K_REG_SM(2,
643 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
644 AR5K_REG_SM(2,
645 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
646 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
647 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
648 AR5K_PHY_ADC_CTL);
649
650
651
652 /* Disable barker RSSI threshold */
653 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
654 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
655
656 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
657 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
658
659 /* Set the mute mask */
660 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
661 }
662
663 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
664 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
665 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
666
667 /* Enable DCU double buffering */
668 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
669 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
670 AR5K_TXCFG_DCU_DBL_BUF_DIS);
671
672 /* Set DAC/ADC delays */
673 if (ah->ah_version == AR5K_AR5212) {
674 u32 scal;
675 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
676 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
677 scal = AR5K_PHY_SCAL_32MHZ_2417;
678 else if (ee->ee_is_hb63)
679 scal = AR5K_PHY_SCAL_32MHZ_HB63;
680 else
681 scal = AR5K_PHY_SCAL_32MHZ;
682 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
683 }
684
685 /* Set fast ADC */
686 if ((ah->ah_radio == AR5K_RF5413) ||
687 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
688 u32 fast_adc = true;
689
690 if (channel->center_freq == 2462 ||
691 channel->center_freq == 2467)
692 fast_adc = 0;
693
694 /* Only update if needed */
695 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
696 ath5k_hw_reg_write(ah, fast_adc,
697 AR5K_PHY_FAST_ADC);
698 }
699
700 /* Fix for first revision of the RF5112 RF chipset */
701 if (ah->ah_radio == AR5K_RF5112 &&
702 ah->ah_radio_5ghz_revision <
703 AR5K_SREV_RAD_5112A) {
704 u32 data;
705 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
706 AR5K_PHY_CCKTXCTL);
707 if (channel->hw_value & CHANNEL_5GHZ)
708 data = 0xffb81020;
709 else
710 data = 0xffb80d20;
711 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
712 }
713
714 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
715 u32 usec_reg;
716 /* 5311 has different tx/rx latency masks
717 * from 5211, since we deal 5311 the same
718 * as 5211 when setting initvals, shift
719 * values here to their proper locations */
720 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
721 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
722 AR5K_USEC_32 |
723 AR5K_USEC_TX_LATENCY_5211 |
724 AR5K_REG_SM(29,
725 AR5K_USEC_RX_LATENCY_5210)),
726 AR5K_USEC_5211);
727 /* Clear QCU/DCU clock gating register */
728 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
729 /* Set DAC/ADC delays */
730 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
731 /* Enable PCU FIFO corruption ECO */
732 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
733 AR5K_DIAG_SW_ECO_ENABLE);
734 }
735 }
736
737 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
738 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
739 {
740 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
741 s16 cck_ofdm_pwr_delta;
742
743 /* Adjust power delta for channel 14 */
744 if (channel->center_freq == 2484)
745 cck_ofdm_pwr_delta =
746 ((ee->ee_cck_ofdm_power_delta -
747 ee->ee_scaled_cck_delta) * 2) / 10;
748 else
749 cck_ofdm_pwr_delta =
750 (ee->ee_cck_ofdm_power_delta * 2) / 10;
751
752 /* Set CCK to OFDM power delta on tx power
753 * adjustment register */
754 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
755 if (channel->hw_value == CHANNEL_G)
756 ath5k_hw_reg_write(ah,
757 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
758 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
759 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
760 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
761 AR5K_PHY_TX_PWR_ADJ);
762 else
763 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
764 } else {
765 /* For older revs we scale power on sw during tx power
766 * setup */
767 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
768 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
769 ee->ee_cck_ofdm_gain_delta;
770 }
771
772 /* Set antenna idle switch table */
773 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
774 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
775 (ah->ah_ant_ctl[ee_mode][0] |
776 AR5K_PHY_ANT_CTL_TXRX_EN));
777
778 /* Set antenna switch tables */
779 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
780 AR5K_PHY_ANT_SWITCH_TABLE_0);
781 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
782 AR5K_PHY_ANT_SWITCH_TABLE_1);
783
784 /* Noise floor threshold */
785 ath5k_hw_reg_write(ah,
786 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
787 AR5K_PHY_NFTHRES);
788
789 if ((channel->hw_value & CHANNEL_TURBO) &&
790 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
791 /* Switch settling time (Turbo) */
792 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
793 AR5K_PHY_SETTLING_SWITCH,
794 ee->ee_switch_settling_turbo[ee_mode]);
795
796 /* Tx/Rx attenuation (Turbo) */
797 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
798 AR5K_PHY_GAIN_TXRX_ATTEN,
799 ee->ee_atn_tx_rx_turbo[ee_mode]);
800
801 /* ADC/PGA desired size (Turbo) */
802 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
803 AR5K_PHY_DESIRED_SIZE_ADC,
804 ee->ee_adc_desired_size_turbo[ee_mode]);
805
806 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
807 AR5K_PHY_DESIRED_SIZE_PGA,
808 ee->ee_pga_desired_size_turbo[ee_mode]);
809
810 /* Tx/Rx margin (Turbo) */
811 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
812 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
813 ee->ee_margin_tx_rx_turbo[ee_mode]);
814
815 } else {
816 /* Switch settling time */
817 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
818 AR5K_PHY_SETTLING_SWITCH,
819 ee->ee_switch_settling[ee_mode]);
820
821 /* Tx/Rx attenuation */
822 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
823 AR5K_PHY_GAIN_TXRX_ATTEN,
824 ee->ee_atn_tx_rx[ee_mode]);
825
826 /* ADC/PGA desired size */
827 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
828 AR5K_PHY_DESIRED_SIZE_ADC,
829 ee->ee_adc_desired_size[ee_mode]);
830
831 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
832 AR5K_PHY_DESIRED_SIZE_PGA,
833 ee->ee_pga_desired_size[ee_mode]);
834
835 /* Tx/Rx margin */
836 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
837 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
838 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
839 ee->ee_margin_tx_rx[ee_mode]);
840 }
841
842 /* XPA delays */
843 ath5k_hw_reg_write(ah,
844 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
845 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
846 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
847 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
848
849 /* XLNA delay */
850 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
851 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
852 ee->ee_tx_end2xlna_enable[ee_mode]);
853
854 /* Thresh64 (ANI) */
855 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
856 AR5K_PHY_NF_THRESH62,
857 ee->ee_thr_62[ee_mode]);
858
859
860 /* False detect backoff for channels
861 * that have spur noise. Write the new
862 * cyclic power RSSI threshold. */
863 if (ath5k_hw_chan_has_spur_noise(ah, channel))
864 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
865 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
866 AR5K_INIT_CYCRSSI_THR1 +
867 ee->ee_false_detect[ee_mode]);
868 else
869 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
870 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
871 AR5K_INIT_CYCRSSI_THR1);
872
873 /* I/Q correction
874 * TODO: Per channel i/q infos ? */
875 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
876 AR5K_PHY_IQ_CORR_ENABLE |
877 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
878 ee->ee_q_cal[ee_mode]);
879
880 /* Heavy clipping -disable for now */
881 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
882 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
883
884 return;
885 }
886
887 /*
888 * Main reset function
889 */
890 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
891 struct ieee80211_channel *channel, bool change_channel)
892 {
893 struct ath_common *common = ath5k_hw_common(ah);
894 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
895 u32 phy_tst1;
896 u8 mode, freq, ee_mode, ant[2];
897 int i, ret;
898
899 ATH5K_TRACE(ah->ah_sc);
900
901 s_ant = 0;
902 ee_mode = 0;
903 staid1_flags = 0;
904 tsf_up = 0;
905 tsf_lo = 0;
906 freq = 0;
907 mode = 0;
908
909 /*
910 * Save some registers before a reset
911 */
912 /*DCU/Antenna selection not available on 5210*/
913 if (ah->ah_version != AR5K_AR5210) {
914
915 switch (channel->hw_value & CHANNEL_MODES) {
916 case CHANNEL_A:
917 mode = AR5K_MODE_11A;
918 freq = AR5K_INI_RFGAIN_5GHZ;
919 ee_mode = AR5K_EEPROM_MODE_11A;
920 break;
921 case CHANNEL_G:
922 mode = AR5K_MODE_11G;
923 freq = AR5K_INI_RFGAIN_2GHZ;
924 ee_mode = AR5K_EEPROM_MODE_11G;
925 break;
926 case CHANNEL_B:
927 mode = AR5K_MODE_11B;
928 freq = AR5K_INI_RFGAIN_2GHZ;
929 ee_mode = AR5K_EEPROM_MODE_11B;
930 break;
931 case CHANNEL_T:
932 mode = AR5K_MODE_11A_TURBO;
933 freq = AR5K_INI_RFGAIN_5GHZ;
934 ee_mode = AR5K_EEPROM_MODE_11A;
935 break;
936 case CHANNEL_TG:
937 if (ah->ah_version == AR5K_AR5211) {
938 ATH5K_ERR(ah->ah_sc,
939 "TurboG mode not available on 5211");
940 return -EINVAL;
941 }
942 mode = AR5K_MODE_11G_TURBO;
943 freq = AR5K_INI_RFGAIN_2GHZ;
944 ee_mode = AR5K_EEPROM_MODE_11G;
945 break;
946 case CHANNEL_XR:
947 if (ah->ah_version == AR5K_AR5211) {
948 ATH5K_ERR(ah->ah_sc,
949 "XR mode not available on 5211");
950 return -EINVAL;
951 }
952 mode = AR5K_MODE_XR;
953 freq = AR5K_INI_RFGAIN_5GHZ;
954 ee_mode = AR5K_EEPROM_MODE_11A;
955 break;
956 default:
957 ATH5K_ERR(ah->ah_sc,
958 "invalid channel: %d\n", channel->center_freq);
959 return -EINVAL;
960 }
961
962 if (change_channel) {
963 /*
964 * Save frame sequence count
965 * For revs. after Oahu, only save
966 * seq num for DCU 0 (Global seq num)
967 */
968 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
969
970 for (i = 0; i < 10; i++)
971 s_seq[i] = ath5k_hw_reg_read(ah,
972 AR5K_QUEUE_DCU_SEQNUM(i));
973
974 } else {
975 s_seq[0] = ath5k_hw_reg_read(ah,
976 AR5K_QUEUE_DCU_SEQNUM(0));
977 }
978
979 /* TSF accelerates on AR5211 durring reset
980 * As a workaround save it here and restore
981 * it later so that it's back in time after
982 * reset. This way it'll get re-synced on the
983 * next beacon without breaking ad-hoc.
984 *
985 * On AR5212 TSF is almost preserved across a
986 * reset so it stays back in time anyway and
987 * we don't have to save/restore it.
988 *
989 * XXX: Since this breaks power saving we have
990 * to disable power saving until we receive the
991 * next beacon, so we can resync beacon timers */
992 if (ah->ah_version == AR5K_AR5211) {
993 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
994 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
995 }
996 }
997
998 /* Save default antenna */
999 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1000
1001 if (ah->ah_version == AR5K_AR5212) {
1002 /* Restore normal 32/40MHz clock operation
1003 * to avoid register access delay on certain
1004 * PHY registers */
1005 ath5k_hw_set_sleep_clock(ah, false);
1006
1007 /* Since we are going to write rf buffer
1008 * check if we have any pending gain_F
1009 * optimization settings */
1010 if (change_channel && ah->ah_rf_banks != NULL)
1011 ath5k_hw_gainf_calibrate(ah);
1012 }
1013 }
1014
1015 /*GPIOs*/
1016 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1017 AR5K_PCICFG_LEDSTATE;
1018 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
1019 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
1020
1021 /* AR5K_STA_ID1 flags, only preserve antenna
1022 * settings and ack/cts rate mode */
1023 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
1024 (AR5K_STA_ID1_DEFAULT_ANTENNA |
1025 AR5K_STA_ID1_DESC_ANTENNA |
1026 AR5K_STA_ID1_RTS_DEF_ANTENNA |
1027 AR5K_STA_ID1_ACKCTS_6MB |
1028 AR5K_STA_ID1_BASE_RATE_11B |
1029 AR5K_STA_ID1_SELFGEN_DEF_ANT);
1030
1031 /* Wakeup the device */
1032 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
1033 if (ret)
1034 return ret;
1035
1036 /* PHY access enable */
1037 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
1038 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1039 else
1040 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
1041 AR5K_PHY(0));
1042
1043 /* Write initial settings */
1044 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
1045 if (ret)
1046 return ret;
1047
1048 /*
1049 * 5211/5212 Specific
1050 */
1051 if (ah->ah_version != AR5K_AR5210) {
1052
1053 /*
1054 * Write initial RF gain settings
1055 * This should work for both 5111/5112
1056 */
1057 ret = ath5k_hw_rfgain_init(ah, freq);
1058 if (ret)
1059 return ret;
1060
1061 mdelay(1);
1062
1063 /*
1064 * Tweak initval settings for revised
1065 * chipsets and add some more config
1066 * bits
1067 */
1068 ath5k_hw_tweak_initval_settings(ah, channel);
1069
1070 /*
1071 * Set TX power
1072 */
1073 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1074 ah->ah_txpower.txp_max_pwr / 2);
1075 if (ret)
1076 return ret;
1077
1078 /* Write rate duration table only on AR5212 and if
1079 * virtual interface has already been brought up
1080 * XXX: rethink this after new mode changes to
1081 * mac80211 are integrated */
1082 if (ah->ah_version == AR5K_AR5212 &&
1083 ah->ah_sc->vif != NULL)
1084 ath5k_hw_write_rate_duration(ah, mode);
1085
1086 /*
1087 * Write RF buffer
1088 */
1089 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1090 if (ret)
1091 return ret;
1092
1093
1094 /* Write OFDM timings on 5212*/
1095 if (ah->ah_version == AR5K_AR5212 &&
1096 channel->hw_value & CHANNEL_OFDM) {
1097 struct ath5k_eeprom_info *ee =
1098 &ah->ah_capabilities.cap_eeprom;
1099
1100 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1101 if (ret)
1102 return ret;
1103
1104 /* Note: According to docs we can have a newer
1105 * EEPROM on old hardware, so we need to verify
1106 * that our hardware is new enough to have spur
1107 * mitigation registers (delta phase etc) */
1108 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
1109 (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1110 ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
1111 ath5k_hw_set_spur_mitigation_filter(ah,
1112 channel);
1113 }
1114
1115 /*Enable/disable 802.11b mode on 5111
1116 (enable 2111 frequency converter + CCK)*/
1117 if (ah->ah_radio == AR5K_RF5111) {
1118 if (mode == AR5K_MODE_11B)
1119 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1120 AR5K_TXCFG_B_MODE);
1121 else
1122 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1123 AR5K_TXCFG_B_MODE);
1124 }
1125
1126 /*
1127 * In case a fixed antenna was set as default
1128 * use the same switch table twice.
1129 */
1130 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1131 ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
1132 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1133 ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
1134 else {
1135 ant[0] = AR5K_ANT_SWTABLE_A;
1136 ant[1] = AR5K_ANT_SWTABLE_B;
1137 }
1138
1139 /* Commit values from EEPROM */
1140 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1141
1142 } else {
1143 /*
1144 * For 5210 we do all initialization using
1145 * initvals, so we don't have to modify
1146 * any settings (5210 also only supports
1147 * a/aturbo modes)
1148 */
1149 mdelay(1);
1150 /* Disable phy and wait */
1151 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1152 mdelay(1);
1153 }
1154
1155 /*
1156 * Restore saved values
1157 */
1158
1159 /*DCU/Antenna selection not available on 5210*/
1160 if (ah->ah_version != AR5K_AR5210) {
1161
1162 if (change_channel) {
1163 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1164 for (i = 0; i < 10; i++)
1165 ath5k_hw_reg_write(ah, s_seq[i],
1166 AR5K_QUEUE_DCU_SEQNUM(i));
1167 } else {
1168 ath5k_hw_reg_write(ah, s_seq[0],
1169 AR5K_QUEUE_DCU_SEQNUM(0));
1170 }
1171
1172
1173 if (ah->ah_version == AR5K_AR5211) {
1174 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1175 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1176 }
1177 }
1178
1179 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1180 }
1181
1182 /* Ledstate */
1183 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1184
1185 /* Gpio settings */
1186 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1187 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1188
1189 /* Restore sta_id flags and preserve our mac address*/
1190 ath5k_hw_reg_write(ah,
1191 get_unaligned_le32(common->macaddr),
1192 AR5K_STA_ID0);
1193 ath5k_hw_reg_write(ah,
1194 staid1_flags | get_unaligned_le16(common->macaddr + 4),
1195 AR5K_STA_ID1);
1196
1197
1198 /*
1199 * Configure PCU
1200 */
1201
1202 /* Restore bssid and bssid mask */
1203 ath5k_hw_set_associd(ah);
1204
1205 /* Set PCU config */
1206 ath5k_hw_set_opmode(ah, op_mode);
1207
1208 /* Clear any pending interrupts
1209 * PISR/SISR Not available on 5210 */
1210 if (ah->ah_version != AR5K_AR5210)
1211 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1212
1213 /* Set RSSI/BRSSI thresholds
1214 *
1215 * Note: If we decide to set this value
1216 * dynamicaly, have in mind that when AR5K_RSSI_THR
1217 * register is read it might return 0x40 if we haven't
1218 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1219 * So doing a save/restore procedure here isn't the right
1220 * choice. Instead store it on ath5k_hw */
1221 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1222 AR5K_TUNE_BMISS_THRES <<
1223 AR5K_RSSI_THR_BMISS_S),
1224 AR5K_RSSI_THR);
1225
1226 /* MIC QoS support */
1227 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1228 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1229 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1230 }
1231
1232 /* QoS NOACK Policy */
1233 if (ah->ah_version == AR5K_AR5212) {
1234 ath5k_hw_reg_write(ah,
1235 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1236 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1237 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1238 AR5K_QOS_NOACK);
1239 }
1240
1241
1242 /*
1243 * Configure PHY
1244 */
1245
1246 /* Set channel on PHY */
1247 ret = ath5k_hw_channel(ah, channel);
1248 if (ret)
1249 return ret;
1250
1251 /*
1252 * Enable the PHY and wait until completion
1253 * This includes BaseBand and Synthesizer
1254 * activation.
1255 */
1256 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1257
1258 /*
1259 * On 5211+ read activation -> rx delay
1260 * and use it.
1261 *
1262 * TODO: Half/quarter rate support
1263 */
1264 if (ah->ah_version != AR5K_AR5210) {
1265 u32 delay;
1266 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1267 AR5K_PHY_RX_DELAY_M;
1268 delay = (channel->hw_value & CHANNEL_CCK) ?
1269 ((delay << 2) / 22) : (delay / 10);
1270
1271 udelay(100 + (2 * delay));
1272 } else {
1273 mdelay(1);
1274 }
1275
1276 /*
1277 * Perform ADC test to see if baseband is ready
1278 * Set tx hold and check adc test register
1279 */
1280 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1281 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1282 for (i = 0; i <= 20; i++) {
1283 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1284 break;
1285 udelay(200);
1286 }
1287 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1288
1289 /*
1290 * Start automatic gain control calibration
1291 *
1292 * During AGC calibration RX path is re-routed to
1293 * a power detector so we don't receive anything.
1294 *
1295 * This method is used to calibrate some static offsets
1296 * used together with on-the fly I/Q calibration (the
1297 * one performed via ath5k_hw_phy_calibrate), that doesn't
1298 * interrupt rx path.
1299 *
1300 * While rx path is re-routed to the power detector we also
1301 * start a noise floor calibration, to measure the
1302 * card's noise floor (the noise we measure when we are not
1303 * transmiting or receiving anything).
1304 *
1305 * If we are in a noisy environment AGC calibration may time
1306 * out and/or noise floor calibration might timeout.
1307 */
1308 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1309 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
1310
1311 /* At the same time start I/Q calibration for QAM constellation
1312 * -no need for CCK- */
1313 ah->ah_calibration = false;
1314 if (!(mode == AR5K_MODE_11B)) {
1315 ah->ah_calibration = true;
1316 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1317 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1318 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1319 AR5K_PHY_IQ_RUN);
1320 }
1321
1322 /* Wait for gain calibration to finish (we check for I/Q calibration
1323 * during ath5k_phy_calibrate) */
1324 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1325 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1326 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1327 channel->center_freq);
1328 }
1329
1330 /* Restore antenna mode */
1331 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1332
1333 /* Restore slot time and ACK timeouts */
1334 if (ah->ah_coverage_class > 0)
1335 ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
1336
1337 /*
1338 * Configure QCUs/DCUs
1339 */
1340
1341 /* TODO: HW Compression support for data queues */
1342 /* TODO: Burst prefetch for data queues */
1343
1344 /*
1345 * Reset queues and start beacon timers at the end of the reset routine
1346 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1347 * Note: If we want we can assign multiple qcus on one dcu.
1348 */
1349 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1350 ret = ath5k_hw_reset_tx_queue(ah, i);
1351 if (ret) {
1352 ATH5K_ERR(ah->ah_sc,
1353 "failed to reset TX queue #%d\n", i);
1354 return ret;
1355 }
1356 }
1357
1358
1359 /*
1360 * Configure DMA/Interrupts
1361 */
1362
1363 /*
1364 * Set Rx/Tx DMA Configuration
1365 *
1366 * Set standard DMA size (128). Note that
1367 * a DMA size of 512 causes rx overruns and tx errors
1368 * on pci-e cards (tested on 5424 but since rx overruns
1369 * also occur on 5416/5418 with madwifi we set 128
1370 * for all PCI-E cards to be safe).
1371 *
1372 * XXX: need to check 5210 for this
1373 * TODO: Check out tx triger level, it's always 64 on dumps but I
1374 * guess we can tweak it and see how it goes ;-)
1375 */
1376 if (ah->ah_version != AR5K_AR5210) {
1377 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1378 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1379 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1380 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1381 }
1382
1383 /* Pre-enable interrupts on 5211/5212*/
1384 if (ah->ah_version != AR5K_AR5210)
1385 ath5k_hw_set_imr(ah, ah->ah_imr);
1386
1387 /* Enable 32KHz clock function for AR5212+ chips
1388 * Set clocks to 32KHz operation and use an
1389 * external 32KHz crystal when sleeping if one
1390 * exists */
1391 if (ah->ah_version == AR5K_AR5212 &&
1392 op_mode != NL80211_IFTYPE_AP)
1393 ath5k_hw_set_sleep_clock(ah, true);
1394
1395 /*
1396 * Disable beacons and reset the register
1397 */
1398 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1399 AR5K_BEACON_RESET_TSF);
1400
1401 return 0;
1402 }
This page took 0.077316 seconds and 5 git commands to generate.