ath6kl: Update license header
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / hif.c
1 /*
2 * Copyright (c) 2007-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #include "hif.h"
18
19 #include <linux/export.h>
20
21 #include "core.h"
22 #include "target.h"
23 #include "hif-ops.h"
24 #include "debug.h"
25
26 #define MAILBOX_FOR_BLOCK_SIZE 1
27
28 #define ATH6KL_TIME_QUANTUM 10 /* in ms */
29
30 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req,
31 bool from_dma)
32 {
33 u8 *buf;
34 int i;
35
36 buf = req->virt_dma_buf;
37
38 for (i = 0; i < req->scat_entries; i++) {
39
40 if (from_dma)
41 memcpy(req->scat_list[i].buf, buf,
42 req->scat_list[i].len);
43 else
44 memcpy(buf, req->scat_list[i].buf,
45 req->scat_list[i].len);
46
47 buf += req->scat_list[i].len;
48 }
49
50 return 0;
51 }
52
53 int ath6kl_hif_rw_comp_handler(void *context, int status)
54 {
55 struct htc_packet *packet = context;
56
57 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n",
58 packet, status);
59
60 packet->status = status;
61 packet->completion(packet->context, packet);
62
63 return 0;
64 }
65 EXPORT_SYMBOL(ath6kl_hif_rw_comp_handler);
66
67 #define REG_DUMP_COUNT_AR6003 60
68 #define REGISTER_DUMP_LEN_MAX 60
69
70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar)
71 {
72 __le32 regdump_val[REGISTER_DUMP_LEN_MAX];
73 u32 i, address, regdump_addr = 0;
74 int ret;
75
76 if (ar->target_type != TARGET_TYPE_AR6003)
77 return;
78
79 /* the reg dump pointer is copied to the host interest area */
80 address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
81 address = TARG_VTOP(ar->target_type, address);
82
83 /* read RAM location through diagnostic window */
84 ret = ath6kl_diag_read32(ar, address, &regdump_addr);
85
86 if (ret || !regdump_addr) {
87 ath6kl_warn("failed to get ptr to register dump area: %d\n",
88 ret);
89 return;
90 }
91
92 ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n",
93 regdump_addr);
94 regdump_addr = TARG_VTOP(ar->target_type, regdump_addr);
95
96 /* fetch register dump data */
97 ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)&regdump_val[0],
98 REG_DUMP_COUNT_AR6003 * (sizeof(u32)));
99 if (ret) {
100 ath6kl_warn("failed to get register dump: %d\n", ret);
101 return;
102 }
103
104 ath6kl_info("crash dump:\n");
105 ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version,
106 ar->wiphy->fw_version);
107
108 BUILD_BUG_ON(REG_DUMP_COUNT_AR6003 % 4);
109
110 for (i = 0; i < REG_DUMP_COUNT_AR6003 / 4; i++) {
111 ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
112 4 * i,
113 le32_to_cpu(regdump_val[i]),
114 le32_to_cpu(regdump_val[i + 1]),
115 le32_to_cpu(regdump_val[i + 2]),
116 le32_to_cpu(regdump_val[i + 3]));
117 }
118
119 }
120
121 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
122 {
123 u32 dummy;
124 int ret;
125
126 ath6kl_warn("firmware crashed\n");
127
128 /*
129 * read counter to clear the interrupt, the debug error interrupt is
130 * counter 0.
131 */
132 ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
133 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
134 if (ret)
135 ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);
136
137 ath6kl_hif_dump_fw_crash(dev->ar);
138
139 return ret;
140 }
141
142 /* mailbox recv message polling */
143 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
144 int timeout)
145 {
146 struct ath6kl_irq_proc_registers *rg;
147 int status = 0, i;
148 u8 htc_mbox = 1 << HTC_MAILBOX;
149
150 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
151 /* this is the standard HIF way, load the reg table */
152 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
153 (u8 *) &dev->irq_proc_reg,
154 sizeof(dev->irq_proc_reg),
155 HIF_RD_SYNC_BYTE_INC);
156
157 if (status) {
158 ath6kl_err("failed to read reg table\n");
159 return status;
160 }
161
162 /* check for MBOX data and valid lookahead */
163 if (dev->irq_proc_reg.host_int_status & htc_mbox) {
164 if (dev->irq_proc_reg.rx_lkahd_valid &
165 htc_mbox) {
166 /*
167 * Mailbox has a message and the look ahead
168 * is valid.
169 */
170 rg = &dev->irq_proc_reg;
171 *lk_ahd =
172 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
173 break;
174 }
175 }
176
177 /* delay a little */
178 mdelay(ATH6KL_TIME_QUANTUM);
179 ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i);
180 }
181
182 if (i == 0) {
183 ath6kl_err("timeout waiting for recv message\n");
184 status = -ETIME;
185 /* check if the target asserted */
186 if (dev->irq_proc_reg.counter_int_status &
187 ATH6KL_TARGET_DEBUG_INTR_MASK)
188 /*
189 * Target failure handler will be called in case of
190 * an assert.
191 */
192 ath6kl_hif_proc_dbg_intr(dev);
193 }
194
195 return status;
196 }
197
198 /*
199 * Disable packet reception (used in case the host runs out of buffers)
200 * using the interrupt enable registers through the host I/F
201 */
202 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx)
203 {
204 struct ath6kl_irq_enable_reg regs;
205 int status = 0;
206
207 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n",
208 enable_rx ? "enable" : "disable");
209
210 /* take the lock to protect interrupt enable shadows */
211 spin_lock_bh(&dev->lock);
212
213 if (enable_rx)
214 dev->irq_en_reg.int_status_en |=
215 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
216 else
217 dev->irq_en_reg.int_status_en &=
218 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
219
220 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
221
222 spin_unlock_bh(&dev->lock);
223
224 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
225 &regs.int_status_en,
226 sizeof(struct ath6kl_irq_enable_reg),
227 HIF_WR_SYNC_BYTE_INC);
228
229 return status;
230 }
231
232 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev,
233 struct hif_scatter_req *scat_req, bool read)
234 {
235 int status = 0;
236
237 if (read) {
238 scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
239 scat_req->addr = dev->ar->mbox_info.htc_addr;
240 } else {
241 scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
242
243 scat_req->addr =
244 (scat_req->len > HIF_MBOX_WIDTH) ?
245 dev->ar->mbox_info.htc_ext_addr :
246 dev->ar->mbox_info.htc_addr;
247 }
248
249 ath6kl_dbg(ATH6KL_DBG_HIF,
250 "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n",
251 scat_req->scat_entries, scat_req->len,
252 scat_req->addr, !read ? "async" : "sync",
253 (read) ? "rd" : "wr");
254
255 if (!read && scat_req->virt_scat) {
256 status = ath6kl_hif_cp_scat_dma_buf(scat_req, false);
257 if (status) {
258 scat_req->status = status;
259 scat_req->complete(dev->ar->htc_target, scat_req);
260 return 0;
261 }
262 }
263
264 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
265
266 if (read) {
267 /* in sync mode, we can touch the scatter request */
268 scat_req->status = status;
269 if (!status && scat_req->virt_scat)
270 scat_req->status =
271 ath6kl_hif_cp_scat_dma_buf(scat_req, true);
272 }
273
274 return status;
275 }
276
277 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev)
278 {
279 u8 counter_int_status;
280
281 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
282
283 counter_int_status = dev->irq_proc_reg.counter_int_status &
284 dev->irq_en_reg.cntr_int_status_en;
285
286 ath6kl_dbg(ATH6KL_DBG_IRQ,
287 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
288 counter_int_status);
289
290 /*
291 * NOTE: other modules like GMBOX may use the counter interrupt for
292 * credit flow control on other counters, we only need to check for
293 * the debug assertion counter interrupt.
294 */
295 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
296 return ath6kl_hif_proc_dbg_intr(dev);
297
298 return 0;
299 }
300
301 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
302 {
303 int status;
304 u8 error_int_status;
305 u8 reg_buf[4];
306
307 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
308
309 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
310 if (!error_int_status) {
311 WARN_ON(1);
312 return -EIO;
313 }
314
315 ath6kl_dbg(ATH6KL_DBG_IRQ,
316 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
317 error_int_status);
318
319 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
320 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
321
322 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
323 ath6kl_err("rx underflow\n");
324
325 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
326 ath6kl_err("tx overflow\n");
327
328 /* Clear the interrupt */
329 dev->irq_proc_reg.error_int_status &= ~error_int_status;
330
331 /* set W1C value to clear the interrupt, this hits the register first */
332 reg_buf[0] = error_int_status;
333 reg_buf[1] = 0;
334 reg_buf[2] = 0;
335 reg_buf[3] = 0;
336
337 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
338 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
339
340 if (status)
341 WARN_ON(1);
342
343 return status;
344 }
345
346 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
347 {
348 int status;
349 u8 cpu_int_status;
350 u8 reg_buf[4];
351
352 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
353
354 cpu_int_status = dev->irq_proc_reg.cpu_int_status &
355 dev->irq_en_reg.cpu_int_status_en;
356 if (!cpu_int_status) {
357 WARN_ON(1);
358 return -EIO;
359 }
360
361 ath6kl_dbg(ATH6KL_DBG_IRQ,
362 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
363 cpu_int_status);
364
365 /* Clear the interrupt */
366 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
367
368 /*
369 * Set up the register transfer buffer to hit the register 4 times ,
370 * this is done to make the access 4-byte aligned to mitigate issues
371 * with host bus interconnects that restrict bus transfer lengths to
372 * be a multiple of 4-bytes.
373 */
374
375 /* set W1C value to clear the interrupt, this hits the register first */
376 reg_buf[0] = cpu_int_status;
377 /* the remaining are set to zero which have no-effect */
378 reg_buf[1] = 0;
379 reg_buf[2] = 0;
380 reg_buf[3] = 0;
381
382 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
383 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
384
385 if (status)
386 WARN_ON(1);
387
388 return status;
389 }
390
391 /* process pending interrupts synchronously */
392 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
393 {
394 struct ath6kl_irq_proc_registers *rg;
395 int status = 0;
396 u8 host_int_status = 0;
397 u32 lk_ahd = 0;
398 u8 htc_mbox = 1 << HTC_MAILBOX;
399
400 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
401
402 /*
403 * NOTE: HIF implementation guarantees that the context of this
404 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
405 * sleep or call any API that can block or switch thread/task
406 * contexts. This is a fully schedulable context.
407 */
408
409 /*
410 * Process pending intr only when int_status_en is clear, it may
411 * result in unnecessary bus transaction otherwise. Target may be
412 * unresponsive at the time.
413 */
414 if (dev->irq_en_reg.int_status_en) {
415 /*
416 * Read the first 28 bytes of the HTC register table. This
417 * will yield us the value of different int status
418 * registers and the lookahead registers.
419 *
420 * length = sizeof(int_status) + sizeof(cpu_int_status)
421 * + sizeof(error_int_status) +
422 * sizeof(counter_int_status) +
423 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
424 * + sizeof(hole) + sizeof(rx_lkahd) +
425 * sizeof(int_status_en) +
426 * sizeof(cpu_int_status_en) +
427 * sizeof(err_int_status_en) +
428 * sizeof(cntr_int_status_en);
429 */
430 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
431 (u8 *) &dev->irq_proc_reg,
432 sizeof(dev->irq_proc_reg),
433 HIF_RD_SYNC_BYTE_INC);
434 if (status)
435 goto out;
436
437 ath6kl_dump_registers(dev, &dev->irq_proc_reg,
438 &dev->irq_en_reg);
439
440 /* Update only those registers that are enabled */
441 host_int_status = dev->irq_proc_reg.host_int_status &
442 dev->irq_en_reg.int_status_en;
443
444 /* Look at mbox status */
445 if (host_int_status & htc_mbox) {
446 /*
447 * Mask out pending mbox value, we use "lookAhead as
448 * the real flag for mbox processing.
449 */
450 host_int_status &= ~htc_mbox;
451 if (dev->irq_proc_reg.rx_lkahd_valid &
452 htc_mbox) {
453 rg = &dev->irq_proc_reg;
454 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
455 if (!lk_ahd)
456 ath6kl_err("lookAhead is zero!\n");
457 }
458 }
459 }
460
461 if (!host_int_status && !lk_ahd) {
462 *done = true;
463 goto out;
464 }
465
466 if (lk_ahd) {
467 int fetched = 0;
468
469 ath6kl_dbg(ATH6KL_DBG_IRQ,
470 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
471 /*
472 * Mailbox Interrupt, the HTC layer may issue async
473 * requests to empty the mailbox. When emptying the recv
474 * mailbox we use the async handler above called from the
475 * completion routine of the callers read request. This can
476 * improve performance by reducing context switching when
477 * we rapidly pull packets.
478 */
479 status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
480 lk_ahd, &fetched);
481 if (status)
482 goto out;
483
484 if (!fetched)
485 /*
486 * HTC could not pull any messages out due to lack
487 * of resources.
488 */
489 dev->htc_cnxt->chk_irq_status_cnt = 0;
490 }
491
492 /* now handle the rest of them */
493 ath6kl_dbg(ATH6KL_DBG_IRQ,
494 "valid interrupt source(s) for other interrupts: 0x%x\n",
495 host_int_status);
496
497 if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
498 /* CPU Interrupt */
499 status = ath6kl_hif_proc_cpu_intr(dev);
500 if (status)
501 goto out;
502 }
503
504 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
505 /* Error Interrupt */
506 status = ath6kl_hif_proc_err_intr(dev);
507 if (status)
508 goto out;
509 }
510
511 if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
512 /* Counter Interrupt */
513 status = ath6kl_hif_proc_counter_intr(dev);
514
515 out:
516 /*
517 * An optimization to bypass reading the IRQ status registers
518 * unecessarily which can re-wake the target, if upper layers
519 * determine that we are in a low-throughput mode, we can rely on
520 * taking another interrupt rather than re-checking the status
521 * registers which can re-wake the target.
522 *
523 * NOTE : for host interfaces that makes use of detecting pending
524 * mbox messages at hif can not use this optimization due to
525 * possible side effects, SPI requires the host to drain all
526 * messages from the mailbox before exiting the ISR routine.
527 */
528
529 ath6kl_dbg(ATH6KL_DBG_IRQ,
530 "bypassing irq status re-check, forcing done\n");
531
532 if (!dev->htc_cnxt->chk_irq_status_cnt)
533 *done = true;
534
535 ath6kl_dbg(ATH6KL_DBG_IRQ,
536 "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
537
538 return status;
539 }
540
541 /* interrupt handler, kicks off all interrupt processing */
542 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar)
543 {
544 struct ath6kl_device *dev = ar->htc_target->dev;
545 unsigned long timeout;
546 int status = 0;
547 bool done = false;
548
549 /*
550 * Reset counter used to flag a re-scan of IRQ status registers on
551 * the target.
552 */
553 dev->htc_cnxt->chk_irq_status_cnt = 0;
554
555 /*
556 * IRQ processing is synchronous, interrupt status registers can be
557 * re-read.
558 */
559 timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT);
560 while (time_before(jiffies, timeout) && !done) {
561 status = proc_pending_irqs(dev, &done);
562 if (status)
563 break;
564 }
565
566 return status;
567 }
568 EXPORT_SYMBOL(ath6kl_hif_intr_bh_handler);
569
570 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
571 {
572 struct ath6kl_irq_enable_reg regs;
573 int status;
574
575 spin_lock_bh(&dev->lock);
576
577 /* Enable all but ATH6KL CPU interrupts */
578 dev->irq_en_reg.int_status_en =
579 SM(INT_STATUS_ENABLE_ERROR, 0x01) |
580 SM(INT_STATUS_ENABLE_CPU, 0x01) |
581 SM(INT_STATUS_ENABLE_COUNTER, 0x01);
582
583 /*
584 * NOTE: There are some cases where HIF can do detection of
585 * pending mbox messages which is disabled now.
586 */
587 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
588
589 /* Set up the CPU Interrupt status Register */
590 dev->irq_en_reg.cpu_int_status_en = 0;
591
592 /* Set up the Error Interrupt status Register */
593 dev->irq_en_reg.err_int_status_en =
594 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
595 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
596
597 /*
598 * Enable Counter interrupt status register to get fatal errors for
599 * debugging.
600 */
601 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
602 ATH6KL_TARGET_DEBUG_INTR_MASK);
603 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
604
605 spin_unlock_bh(&dev->lock);
606
607 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
608 &regs.int_status_en, sizeof(regs),
609 HIF_WR_SYNC_BYTE_INC);
610
611 if (status)
612 ath6kl_err("failed to update interrupt ctl reg err: %d\n",
613 status);
614
615 return status;
616 }
617
618 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev)
619 {
620 struct ath6kl_irq_enable_reg regs;
621
622 spin_lock_bh(&dev->lock);
623 /* Disable all interrupts */
624 dev->irq_en_reg.int_status_en = 0;
625 dev->irq_en_reg.cpu_int_status_en = 0;
626 dev->irq_en_reg.err_int_status_en = 0;
627 dev->irq_en_reg.cntr_int_status_en = 0;
628 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
629 spin_unlock_bh(&dev->lock);
630
631 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
632 &regs.int_status_en, sizeof(regs),
633 HIF_WR_SYNC_BYTE_INC);
634 }
635
636 /* enable device interrupts */
637 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev)
638 {
639 int status = 0;
640
641 /*
642 * Make sure interrupt are disabled before unmasking at the HIF
643 * layer. The rationale here is that between device insertion
644 * (where we clear the interrupts the first time) and when HTC
645 * is finally ready to handle interrupts, other software can perform
646 * target "soft" resets. The ATH6KL interrupt enables reset back to an
647 * "enabled" state when this happens.
648 */
649 ath6kl_hif_disable_intrs(dev);
650
651 /* unmask the host controller interrupts */
652 ath6kl_hif_irq_enable(dev->ar);
653 status = ath6kl_hif_enable_intrs(dev);
654
655 return status;
656 }
657
658 /* disable all device interrupts */
659 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev)
660 {
661 /*
662 * Mask the interrupt at the HIF layer to avoid any stray interrupt
663 * taken while we zero out our shadow registers in
664 * ath6kl_hif_disable_intrs().
665 */
666 ath6kl_hif_irq_disable(dev->ar);
667
668 return ath6kl_hif_disable_intrs(dev);
669 }
670
671 int ath6kl_hif_setup(struct ath6kl_device *dev)
672 {
673 int status = 0;
674
675 spin_lock_init(&dev->lock);
676
677 /*
678 * NOTE: we actually get the block size of a mailbox other than 0,
679 * for SDIO the block size on mailbox 0 is artificially set to 1.
680 * So we use the block size that is set for the other 3 mailboxes.
681 */
682 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
683
684 /* must be a power of 2 */
685 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
686 WARN_ON(1);
687 status = -EINVAL;
688 goto fail_setup;
689 }
690
691 /* assemble mask, used for padding to a block */
692 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
693
694 ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n",
695 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
696
697 /* usb doesn't support enabling interrupts */
698 /* FIXME: remove check once USB support is implemented */
699 if (dev->ar->hif_type == ATH6KL_HIF_TYPE_USB)
700 return 0;
701
702 status = ath6kl_hif_disable_intrs(dev);
703
704 fail_setup:
705 return status;
706
707 }
This page took 0.045846 seconds and 5 git commands to generate.