ath6kl: Bypass reading irq status based on chk_irq_status_cnt
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / htc_hif.c
1 /*
2 * Copyright (c) 2007-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18 #include "target.h"
19 #include "hif-ops.h"
20 #include "htc_hif.h"
21 #include "debug.h"
22
23 #define MAILBOX_FOR_BLOCK_SIZE 1
24
25 #define ATH6KL_TIME_QUANTUM 10 /* in ms */
26
27 static int ath6kldev_cp_scat_dma_buf(struct hif_scatter_req *req, bool from_dma)
28 {
29 u8 *buf;
30 int i;
31
32 buf = req->virt_dma_buf;
33
34 for (i = 0; i < req->scat_entries; i++) {
35
36 if (from_dma)
37 memcpy(req->scat_list[i].buf, buf,
38 req->scat_list[i].len);
39 else
40 memcpy(buf, req->scat_list[i].buf,
41 req->scat_list[i].len);
42
43 buf += req->scat_list[i].len;
44 }
45
46 return 0;
47 }
48
49 int ath6kldev_rw_comp_handler(void *context, int status)
50 {
51 struct htc_packet *packet = context;
52
53 ath6kl_dbg(ATH6KL_DBG_HTC_RECV,
54 "ath6kldev_rw_comp_handler (pkt:0x%p , status: %d\n",
55 packet, status);
56
57 packet->status = status;
58 packet->completion(packet->context, packet);
59
60 return 0;
61 }
62
63 static int ath6kldev_proc_dbg_intr(struct ath6kl_device *dev)
64 {
65 u32 dummy;
66 int status;
67
68 ath6kl_err("target debug interrupt\n");
69
70 ath6kl_target_failure(dev->ar);
71
72 /*
73 * read counter to clear the interrupt, the debug error interrupt is
74 * counter 0.
75 */
76 status = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
77 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
78 if (status)
79 WARN_ON(1);
80
81 return status;
82 }
83
84 /* mailbox recv message polling */
85 int ath6kldev_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
86 int timeout)
87 {
88 struct ath6kl_irq_proc_registers *rg;
89 int status = 0, i;
90 u8 htc_mbox = 1 << HTC_MAILBOX;
91
92 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
93 /* this is the standard HIF way, load the reg table */
94 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
95 (u8 *) &dev->irq_proc_reg,
96 sizeof(dev->irq_proc_reg),
97 HIF_RD_SYNC_BYTE_INC);
98
99 if (status) {
100 ath6kl_err("failed to read reg table\n");
101 return status;
102 }
103
104 /* check for MBOX data and valid lookahead */
105 if (dev->irq_proc_reg.host_int_status & htc_mbox) {
106 if (dev->irq_proc_reg.rx_lkahd_valid &
107 htc_mbox) {
108 /*
109 * Mailbox has a message and the look ahead
110 * is valid.
111 */
112 rg = &dev->irq_proc_reg;
113 *lk_ahd =
114 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
115 break;
116 }
117 }
118
119 /* delay a little */
120 mdelay(ATH6KL_TIME_QUANTUM);
121 ath6kl_dbg(ATH6KL_DBG_HTC_RECV, "retry mbox poll : %d\n", i);
122 }
123
124 if (i == 0) {
125 ath6kl_err("timeout waiting for recv message\n");
126 status = -ETIME;
127 /* check if the target asserted */
128 if (dev->irq_proc_reg.counter_int_status &
129 ATH6KL_TARGET_DEBUG_INTR_MASK)
130 /*
131 * Target failure handler will be called in case of
132 * an assert.
133 */
134 ath6kldev_proc_dbg_intr(dev);
135 }
136
137 return status;
138 }
139
140 /*
141 * Disable packet reception (used in case the host runs out of buffers)
142 * using the interrupt enable registers through the host I/F
143 */
144 int ath6kldev_rx_control(struct ath6kl_device *dev, bool enable_rx)
145 {
146 struct ath6kl_irq_enable_reg regs;
147 int status = 0;
148
149 /* take the lock to protect interrupt enable shadows */
150 spin_lock_bh(&dev->lock);
151
152 if (enable_rx)
153 dev->irq_en_reg.int_status_en |=
154 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
155 else
156 dev->irq_en_reg.int_status_en &=
157 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
158
159 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
160
161 spin_unlock_bh(&dev->lock);
162
163 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
164 &regs.int_status_en,
165 sizeof(struct ath6kl_irq_enable_reg),
166 HIF_WR_SYNC_BYTE_INC);
167
168 return status;
169 }
170
171 int ath6kldev_submit_scat_req(struct ath6kl_device *dev,
172 struct hif_scatter_req *scat_req, bool read)
173 {
174 int status = 0;
175
176 if (read) {
177 scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
178 scat_req->addr = dev->ar->mbox_info.htc_addr;
179 } else {
180 scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
181
182 scat_req->addr =
183 (scat_req->len > HIF_MBOX_WIDTH) ?
184 dev->ar->mbox_info.htc_ext_addr :
185 dev->ar->mbox_info.htc_addr;
186 }
187
188 ath6kl_dbg((ATH6KL_DBG_HTC_RECV | ATH6KL_DBG_HTC_SEND),
189 "ath6kldev_submit_scat_req, entries: %d, total len: %d mbox:0x%X (mode: %s : %s)\n",
190 scat_req->scat_entries, scat_req->len,
191 scat_req->addr, !read ? "async" : "sync",
192 (read) ? "rd" : "wr");
193
194 if (!read && scat_req->virt_scat) {
195 status = ath6kldev_cp_scat_dma_buf(scat_req, false);
196 if (status) {
197 scat_req->status = status;
198 scat_req->complete(dev->ar->htc_target, scat_req);
199 return 0;
200 }
201 }
202
203 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
204
205 if (read) {
206 /* in sync mode, we can touch the scatter request */
207 scat_req->status = status;
208 if (!status && scat_req->virt_scat)
209 scat_req->status =
210 ath6kldev_cp_scat_dma_buf(scat_req, true);
211 }
212
213 return status;
214 }
215
216 static int ath6kldev_proc_counter_intr(struct ath6kl_device *dev)
217 {
218 u8 counter_int_status;
219
220 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
221
222 counter_int_status = dev->irq_proc_reg.counter_int_status &
223 dev->irq_en_reg.cntr_int_status_en;
224
225 ath6kl_dbg(ATH6KL_DBG_IRQ,
226 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
227 counter_int_status);
228
229 /*
230 * NOTE: other modules like GMBOX may use the counter interrupt for
231 * credit flow control on other counters, we only need to check for
232 * the debug assertion counter interrupt.
233 */
234 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
235 return ath6kldev_proc_dbg_intr(dev);
236
237 return 0;
238 }
239
240 static int ath6kldev_proc_err_intr(struct ath6kl_device *dev)
241 {
242 int status;
243 u8 error_int_status;
244 u8 reg_buf[4];
245
246 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
247
248 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
249 if (!error_int_status) {
250 WARN_ON(1);
251 return -EIO;
252 }
253
254 ath6kl_dbg(ATH6KL_DBG_IRQ,
255 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
256 error_int_status);
257
258 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
259 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
260
261 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
262 ath6kl_err("rx underflow\n");
263
264 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
265 ath6kl_err("tx overflow\n");
266
267 /* Clear the interrupt */
268 dev->irq_proc_reg.error_int_status &= ~error_int_status;
269
270 /* set W1C value to clear the interrupt, this hits the register first */
271 reg_buf[0] = error_int_status;
272 reg_buf[1] = 0;
273 reg_buf[2] = 0;
274 reg_buf[3] = 0;
275
276 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
277 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
278
279 if (status)
280 WARN_ON(1);
281
282 return status;
283 }
284
285 static int ath6kldev_proc_cpu_intr(struct ath6kl_device *dev)
286 {
287 int status;
288 u8 cpu_int_status;
289 u8 reg_buf[4];
290
291 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
292
293 cpu_int_status = dev->irq_proc_reg.cpu_int_status &
294 dev->irq_en_reg.cpu_int_status_en;
295 if (!cpu_int_status) {
296 WARN_ON(1);
297 return -EIO;
298 }
299
300 ath6kl_dbg(ATH6KL_DBG_IRQ,
301 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
302 cpu_int_status);
303
304 /* Clear the interrupt */
305 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
306
307 /*
308 * Set up the register transfer buffer to hit the register 4 times ,
309 * this is done to make the access 4-byte aligned to mitigate issues
310 * with host bus interconnects that restrict bus transfer lengths to
311 * be a multiple of 4-bytes.
312 */
313
314 /* set W1C value to clear the interrupt, this hits the register first */
315 reg_buf[0] = cpu_int_status;
316 /* the remaining are set to zero which have no-effect */
317 reg_buf[1] = 0;
318 reg_buf[2] = 0;
319 reg_buf[3] = 0;
320
321 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
322 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
323
324 if (status)
325 WARN_ON(1);
326
327 return status;
328 }
329
330 /* process pending interrupts synchronously */
331 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
332 {
333 struct ath6kl_irq_proc_registers *rg;
334 int status = 0;
335 u8 host_int_status = 0;
336 u32 lk_ahd = 0;
337 u8 htc_mbox = 1 << HTC_MAILBOX;
338
339 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
340
341 /*
342 * NOTE: HIF implementation guarantees that the context of this
343 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
344 * sleep or call any API that can block or switch thread/task
345 * contexts. This is a fully schedulable context.
346 */
347
348 /*
349 * Process pending intr only when int_status_en is clear, it may
350 * result in unnecessary bus transaction otherwise. Target may be
351 * unresponsive at the time.
352 */
353 if (dev->irq_en_reg.int_status_en) {
354 /*
355 * Read the first 28 bytes of the HTC register table. This
356 * will yield us the value of different int status
357 * registers and the lookahead registers.
358 *
359 * length = sizeof(int_status) + sizeof(cpu_int_status)
360 * + sizeof(error_int_status) +
361 * sizeof(counter_int_status) +
362 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
363 * + sizeof(hole) + sizeof(rx_lkahd) +
364 * sizeof(int_status_en) +
365 * sizeof(cpu_int_status_en) +
366 * sizeof(err_int_status_en) +
367 * sizeof(cntr_int_status_en);
368 */
369 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
370 (u8 *) &dev->irq_proc_reg,
371 sizeof(dev->irq_proc_reg),
372 HIF_RD_SYNC_BYTE_INC);
373 if (status)
374 goto out;
375
376 if (AR_DBG_LVL_CHECK(ATH6KL_DBG_IRQ))
377 ath6kl_dump_registers(dev, &dev->irq_proc_reg,
378 &dev->irq_en_reg);
379
380 /* Update only those registers that are enabled */
381 host_int_status = dev->irq_proc_reg.host_int_status &
382 dev->irq_en_reg.int_status_en;
383
384 /* Look at mbox status */
385 if (host_int_status & htc_mbox) {
386 /*
387 * Mask out pending mbox value, we use "lookAhead as
388 * the real flag for mbox processing.
389 */
390 host_int_status &= ~htc_mbox;
391 if (dev->irq_proc_reg.rx_lkahd_valid &
392 htc_mbox) {
393 rg = &dev->irq_proc_reg;
394 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
395 if (!lk_ahd)
396 ath6kl_err("lookAhead is zero!\n");
397 }
398 }
399 }
400
401 if (!host_int_status && !lk_ahd) {
402 *done = true;
403 goto out;
404 }
405
406 if (lk_ahd) {
407 int fetched = 0;
408
409 ath6kl_dbg(ATH6KL_DBG_IRQ,
410 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
411 /*
412 * Mailbox Interrupt, the HTC layer may issue async
413 * requests to empty the mailbox. When emptying the recv
414 * mailbox we use the async handler above called from the
415 * completion routine of the callers read request. This can
416 * improve performance by reducing context switching when
417 * we rapidly pull packets.
418 */
419 status = htc_rxmsg_pending_handler(dev->htc_cnxt,
420 &lk_ahd, &fetched);
421 if (status)
422 goto out;
423
424 if (!fetched)
425 /*
426 * HTC could not pull any messages out due to lack
427 * of resources.
428 */
429 dev->chk_irq_status_cnt = 0;
430 }
431
432 /* now handle the rest of them */
433 ath6kl_dbg(ATH6KL_DBG_IRQ,
434 "valid interrupt source(s) for other interrupts: 0x%x\n",
435 host_int_status);
436
437 if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
438 /* CPU Interrupt */
439 status = ath6kldev_proc_cpu_intr(dev);
440 if (status)
441 goto out;
442 }
443
444 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
445 /* Error Interrupt */
446 status = ath6kldev_proc_err_intr(dev);
447 if (status)
448 goto out;
449 }
450
451 if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
452 /* Counter Interrupt */
453 status = ath6kldev_proc_counter_intr(dev);
454
455 out:
456 /*
457 * An optimization to bypass reading the IRQ status registers
458 * unecessarily which can re-wake the target, if upper layers
459 * determine that we are in a low-throughput mode, we can rely on
460 * taking another interrupt rather than re-checking the status
461 * registers which can re-wake the target.
462 *
463 * NOTE : for host interfaces that makes use of detecting pending
464 * mbox messages at hif can not use this optimization due to
465 * possible side effects, SPI requires the host to drain all
466 * messages from the mailbox before exiting the ISR routine.
467 */
468
469 ath6kl_dbg(ATH6KL_DBG_IRQ,
470 "bypassing irq status re-check, forcing done\n");
471
472 if (!dev->chk_irq_status_cnt)
473 *done = true;
474
475 ath6kl_dbg(ATH6KL_DBG_IRQ,
476 "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
477
478 return status;
479 }
480
481 /* interrupt handler, kicks off all interrupt processing */
482 int ath6kldev_intr_bh_handler(struct ath6kl *ar)
483 {
484 struct ath6kl_device *dev = ar->htc_target->dev;
485 int status = 0;
486 bool done = false;
487
488 /*
489 * Reset counter used to flag a re-scan of IRQ status registers on
490 * the target.
491 */
492 dev->chk_irq_status_cnt = 0;
493
494 /*
495 * IRQ processing is synchronous, interrupt status registers can be
496 * re-read.
497 */
498 while (!done) {
499 status = proc_pending_irqs(dev, &done);
500 if (status)
501 break;
502 }
503
504 return status;
505 }
506
507 static int ath6kldev_enable_intrs(struct ath6kl_device *dev)
508 {
509 struct ath6kl_irq_enable_reg regs;
510 int status;
511
512 spin_lock_bh(&dev->lock);
513
514 /* Enable all but ATH6KL CPU interrupts */
515 dev->irq_en_reg.int_status_en =
516 SM(INT_STATUS_ENABLE_ERROR, 0x01) |
517 SM(INT_STATUS_ENABLE_CPU, 0x01) |
518 SM(INT_STATUS_ENABLE_COUNTER, 0x01);
519
520 /*
521 * NOTE: There are some cases where HIF can do detection of
522 * pending mbox messages which is disabled now.
523 */
524 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
525
526 /* Set up the CPU Interrupt status Register */
527 dev->irq_en_reg.cpu_int_status_en = 0;
528
529 /* Set up the Error Interrupt status Register */
530 dev->irq_en_reg.err_int_status_en =
531 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
532 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
533
534 /*
535 * Enable Counter interrupt status register to get fatal errors for
536 * debugging.
537 */
538 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
539 ATH6KL_TARGET_DEBUG_INTR_MASK);
540 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
541
542 spin_unlock_bh(&dev->lock);
543
544 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
545 &regs.int_status_en, sizeof(regs),
546 HIF_WR_SYNC_BYTE_INC);
547
548 if (status)
549 ath6kl_err("failed to update interrupt ctl reg err: %d\n",
550 status);
551
552 return status;
553 }
554
555 int ath6kldev_disable_intrs(struct ath6kl_device *dev)
556 {
557 struct ath6kl_irq_enable_reg regs;
558
559 spin_lock_bh(&dev->lock);
560 /* Disable all interrupts */
561 dev->irq_en_reg.int_status_en = 0;
562 dev->irq_en_reg.cpu_int_status_en = 0;
563 dev->irq_en_reg.err_int_status_en = 0;
564 dev->irq_en_reg.cntr_int_status_en = 0;
565 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
566 spin_unlock_bh(&dev->lock);
567
568 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
569 &regs.int_status_en, sizeof(regs),
570 HIF_WR_SYNC_BYTE_INC);
571 }
572
573 /* enable device interrupts */
574 int ath6kldev_unmask_intrs(struct ath6kl_device *dev)
575 {
576 int status = 0;
577
578 /*
579 * Make sure interrupt are disabled before unmasking at the HIF
580 * layer. The rationale here is that between device insertion
581 * (where we clear the interrupts the first time) and when HTC
582 * is finally ready to handle interrupts, other software can perform
583 * target "soft" resets. The ATH6KL interrupt enables reset back to an
584 * "enabled" state when this happens.
585 */
586 ath6kldev_disable_intrs(dev);
587
588 /* unmask the host controller interrupts */
589 ath6kl_hif_irq_enable(dev->ar);
590 status = ath6kldev_enable_intrs(dev);
591
592 return status;
593 }
594
595 /* disable all device interrupts */
596 int ath6kldev_mask_intrs(struct ath6kl_device *dev)
597 {
598 /*
599 * Mask the interrupt at the HIF layer to avoid any stray interrupt
600 * taken while we zero out our shadow registers in
601 * ath6kldev_disable_intrs().
602 */
603 ath6kl_hif_irq_disable(dev->ar);
604
605 return ath6kldev_disable_intrs(dev);
606 }
607
608 int ath6kldev_setup(struct ath6kl_device *dev)
609 {
610 int status = 0;
611
612 spin_lock_init(&dev->lock);
613
614 /*
615 * NOTE: we actually get the block size of a mailbox other than 0,
616 * for SDIO the block size on mailbox 0 is artificially set to 1.
617 * So we use the block size that is set for the other 3 mailboxes.
618 */
619 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
620
621 /* must be a power of 2 */
622 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
623 WARN_ON(1);
624 goto fail_setup;
625 }
626
627 /* assemble mask, used for padding to a block */
628 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
629
630 ath6kl_dbg(ATH6KL_DBG_TRC, "block size: %d, mbox addr:0x%X\n",
631 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
632
633 ath6kl_dbg(ATH6KL_DBG_TRC,
634 "hif interrupt processing is sync only\n");
635
636 status = ath6kldev_disable_intrs(dev);
637
638 fail_setup:
639 return status;
640
641 }
This page took 0.050226 seconds and 5 git commands to generate.