ath6kl: Delay initial group key setup in AP mode
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / main.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 struct ath6kl_sta *conn = NULL;
26 u8 i, max_conn;
27
28 max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
29
30 for (i = 0; i < max_conn; i++) {
31 if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
32 conn = &ar->sta_list[i];
33 break;
34 }
35 }
36
37 return conn;
38 }
39
40 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
41 {
42 struct ath6kl_sta *conn = NULL;
43 u8 ctr;
44
45 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
46 if (ar->sta_list[ctr].aid == aid) {
47 conn = &ar->sta_list[ctr];
48 break;
49 }
50 }
51 return conn;
52 }
53
54 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
55 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
56 {
57 struct ath6kl_sta *sta;
58 u8 free_slot;
59
60 free_slot = aid - 1;
61
62 sta = &ar->sta_list[free_slot];
63 memcpy(sta->mac, mac, ETH_ALEN);
64 if (ielen <= ATH6KL_MAX_IE)
65 memcpy(sta->wpa_ie, wpaie, ielen);
66 sta->aid = aid;
67 sta->keymgmt = keymgmt;
68 sta->ucipher = ucipher;
69 sta->auth = auth;
70
71 ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
72 ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
73 }
74
75 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
76 {
77 struct ath6kl_sta *sta = &ar->sta_list[i];
78
79 /* empty the queued pkts in the PS queue if any */
80 spin_lock_bh(&sta->psq_lock);
81 skb_queue_purge(&sta->psq);
82 spin_unlock_bh(&sta->psq_lock);
83
84 memset(&ar->ap_stats.sta[sta->aid - 1], 0,
85 sizeof(struct wmi_per_sta_stat));
86 memset(sta->mac, 0, ETH_ALEN);
87 memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
88 sta->aid = 0;
89 sta->sta_flags = 0;
90
91 ar->sta_list_index = ar->sta_list_index & ~(1 << i);
92
93 }
94
95 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
96 {
97 u8 i, removed = 0;
98
99 if (is_zero_ether_addr(mac))
100 return removed;
101
102 if (is_broadcast_ether_addr(mac)) {
103 ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
104
105 for (i = 0; i < AP_MAX_NUM_STA; i++) {
106 if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
107 ath6kl_sta_cleanup(ar, i);
108 removed = 1;
109 }
110 }
111 } else {
112 for (i = 0; i < AP_MAX_NUM_STA; i++) {
113 if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
114 ath6kl_dbg(ATH6KL_DBG_TRC,
115 "deleting station %pM aid=%d reason=%d\n",
116 mac, ar->sta_list[i].aid, reason);
117 ath6kl_sta_cleanup(ar, i);
118 removed = 1;
119 break;
120 }
121 }
122 }
123
124 return removed;
125 }
126
127 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
128 {
129 struct ath6kl *ar = devt;
130 return ar->ac2ep_map[ac];
131 }
132
133 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
134 {
135 struct ath6kl_cookie *cookie;
136
137 cookie = ar->cookie_list;
138 if (cookie != NULL) {
139 ar->cookie_list = cookie->arc_list_next;
140 ar->cookie_count--;
141 }
142
143 return cookie;
144 }
145
146 void ath6kl_cookie_init(struct ath6kl *ar)
147 {
148 u32 i;
149
150 ar->cookie_list = NULL;
151 ar->cookie_count = 0;
152
153 memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
154
155 for (i = 0; i < MAX_COOKIE_NUM; i++)
156 ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
157 }
158
159 void ath6kl_cookie_cleanup(struct ath6kl *ar)
160 {
161 ar->cookie_list = NULL;
162 ar->cookie_count = 0;
163 }
164
165 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
166 {
167 /* Insert first */
168
169 if (!ar || !cookie)
170 return;
171
172 cookie->arc_list_next = ar->cookie_list;
173 ar->cookie_list = cookie;
174 ar->cookie_count++;
175 }
176
177 /* set the window address register (using 4-byte register access ). */
178 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
179 {
180 int status;
181 u8 addr_val[4];
182 s32 i;
183
184 /*
185 * Write bytes 1,2,3 of the register to set the upper address bytes,
186 * the LSB is written last to initiate the access cycle
187 */
188
189 for (i = 1; i <= 3; i++) {
190 /*
191 * Fill the buffer with the address byte value we want to
192 * hit 4 times.
193 */
194 memset(addr_val, ((u8 *)&addr)[i], 4);
195
196 /*
197 * Hit each byte of the register address with a 4-byte
198 * write operation to the same address, this is a harmless
199 * operation.
200 */
201 status = hif_read_write_sync(ar, reg_addr + i, addr_val,
202 4, HIF_WR_SYNC_BYTE_FIX);
203 if (status)
204 break;
205 }
206
207 if (status) {
208 ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
209 addr, reg_addr);
210 return status;
211 }
212
213 /*
214 * Write the address register again, this time write the whole
215 * 4-byte value. The effect here is that the LSB write causes the
216 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
217 * effect since we are writing the same values again
218 */
219 status = hif_read_write_sync(ar, reg_addr, (u8 *)(&addr),
220 4, HIF_WR_SYNC_BYTE_INC);
221
222 if (status) {
223 ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
224 addr, reg_addr);
225 return status;
226 }
227
228 return 0;
229 }
230
231 /*
232 * Read from the ATH6KL through its diagnostic window. No cooperation from
233 * the Target is required for this.
234 */
235 int ath6kl_read_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
236 {
237 int status;
238
239 /* set window register to start read cycle */
240 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
241 *address);
242
243 if (status)
244 return status;
245
246 /* read the data */
247 status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
248 sizeof(u32), HIF_RD_SYNC_BYTE_INC);
249 if (status) {
250 ath6kl_err("failed to read from window data addr\n");
251 return status;
252 }
253
254 return status;
255 }
256
257
258 /*
259 * Write to the ATH6KL through its diagnostic window. No cooperation from
260 * the Target is required for this.
261 */
262 static int ath6kl_write_reg_diag(struct ath6kl *ar, u32 *address, u32 *data)
263 {
264 int status;
265
266 /* set write data */
267 status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data,
268 sizeof(u32), HIF_WR_SYNC_BYTE_INC);
269 if (status) {
270 ath6kl_err("failed to write 0x%x to window data addr\n", *data);
271 return status;
272 }
273
274 /* set window register, which starts the write cycle */
275 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
276 *address);
277 }
278
279 int ath6kl_access_datadiag(struct ath6kl *ar, u32 address,
280 u8 *data, u32 length, bool read)
281 {
282 u32 count;
283 int status = 0;
284
285 for (count = 0; count < length; count += 4, address += 4) {
286 if (read) {
287 status = ath6kl_read_reg_diag(ar, &address,
288 (u32 *) &data[count]);
289 if (status)
290 break;
291 } else {
292 status = ath6kl_write_reg_diag(ar, &address,
293 (u32 *) &data[count]);
294 if (status)
295 break;
296 }
297 }
298
299 return status;
300 }
301
302 /* FIXME: move to a better place, target.h? */
303 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
304 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
305
306 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
307 bool wait_fot_compltn, bool cold_reset)
308 {
309 int status = 0;
310 u32 address;
311 u32 data;
312
313 if (target_type != TARGET_TYPE_AR6003 &&
314 target_type != TARGET_TYPE_AR6004)
315 return;
316
317 data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST;
318
319 switch (target_type) {
320 case TARGET_TYPE_AR6003:
321 address = AR6003_RESET_CONTROL_ADDRESS;
322 break;
323 case TARGET_TYPE_AR6004:
324 address = AR6004_RESET_CONTROL_ADDRESS;
325 break;
326 default:
327 address = AR6003_RESET_CONTROL_ADDRESS;
328 break;
329 }
330
331 status = ath6kl_write_reg_diag(ar, &address, &data);
332
333 if (status)
334 ath6kl_err("failed to reset target\n");
335 }
336
337 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
338 bool get_dbglogs)
339 {
340 struct ath6kl *ar = ath6kl_priv(dev);
341 static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
342 bool discon_issued;
343
344 netif_stop_queue(dev);
345
346 /* disable the target and the interrupts associated with it */
347 if (test_bit(WMI_READY, &ar->flag)) {
348 discon_issued = (test_bit(CONNECTED, &ar->flag) ||
349 test_bit(CONNECT_PEND, &ar->flag));
350 ath6kl_disconnect(ar);
351 if (!keep_profile)
352 ath6kl_init_profile_info(ar);
353
354 del_timer(&ar->disconnect_timer);
355
356 clear_bit(WMI_READY, &ar->flag);
357 ath6kl_wmi_shutdown(ar->wmi);
358 clear_bit(WMI_ENABLED, &ar->flag);
359 ar->wmi = NULL;
360
361 /*
362 * After wmi_shudown all WMI events will be dropped. We
363 * need to cleanup the buffers allocated in AP mode and
364 * give disconnect notification to stack, which usually
365 * happens in the disconnect_event. Simulate the disconnect
366 * event by calling the function directly. Sometimes
367 * disconnect_event will be received when the debug logs
368 * are collected.
369 */
370 if (discon_issued)
371 ath6kl_disconnect_event(ar, DISCONNECT_CMD,
372 (ar->nw_type & AP_NETWORK) ?
373 bcast_mac : ar->bssid,
374 0, NULL, 0);
375
376 ar->user_key_ctrl = 0;
377
378 } else {
379 ath6kl_dbg(ATH6KL_DBG_TRC,
380 "%s: wmi is not ready 0x%p 0x%p\n",
381 __func__, ar, ar->wmi);
382
383 /* Shut down WMI if we have started it */
384 if (test_bit(WMI_ENABLED, &ar->flag)) {
385 ath6kl_dbg(ATH6KL_DBG_TRC,
386 "%s: shut down wmi\n", __func__);
387 ath6kl_wmi_shutdown(ar->wmi);
388 clear_bit(WMI_ENABLED, &ar->flag);
389 ar->wmi = NULL;
390 }
391 }
392
393 if (ar->htc_target) {
394 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
395 ath6kl_htc_stop(ar->htc_target);
396 }
397
398 /*
399 * Try to reset the device if we can. The driver may have been
400 * configure NOT to reset the target during a debug session.
401 */
402 ath6kl_dbg(ATH6KL_DBG_TRC,
403 "attempting to reset target on instance destroy\n");
404 ath6kl_reset_device(ar, ar->target_type, true, true);
405 }
406
407 static void ath6kl_install_static_wep_keys(struct ath6kl *ar)
408 {
409 u8 index;
410 u8 keyusage;
411
412 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
413 if (ar->wep_key_list[index].key_len) {
414 keyusage = GROUP_USAGE;
415 if (index == ar->def_txkey_index)
416 keyusage |= TX_USAGE;
417
418 ath6kl_wmi_addkey_cmd(ar->wmi,
419 index,
420 WEP_CRYPT,
421 keyusage,
422 ar->wep_key_list[index].key_len,
423 NULL,
424 ar->wep_key_list[index].key,
425 KEY_OP_INIT_VAL, NULL,
426 NO_SYNC_WMIFLAG);
427 }
428 }
429 }
430
431 static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid,
432 u16 listen_int, u16 beacon_int,
433 u8 assoc_req_len, u8 *assoc_info)
434 {
435 struct net_device *dev = ar->net_dev;
436 u8 *ies = NULL, *wpa_ie = NULL, *pos;
437 size_t ies_len = 0;
438 struct station_info sinfo;
439 struct ath6kl_req_key *ik;
440 int res;
441 u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
442
443 if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) {
444 ik = &ar->ap_mode_bkey;
445
446 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n",
447 channel);
448
449 switch (ar->auth_mode) {
450 case NONE_AUTH:
451 if (ar->prwise_crypto == WEP_CRYPT)
452 ath6kl_install_static_wep_keys(ar);
453 break;
454 case WPA_PSK_AUTH:
455 case WPA2_PSK_AUTH:
456 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
457 if (!ik->valid)
458 break;
459
460 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
461 "the initial group key for AP mode\n");
462 memset(key_rsc, 0, sizeof(key_rsc));
463 res = ath6kl_wmi_addkey_cmd(
464 ar->wmi, ik->key_index, ik->key_type,
465 GROUP_USAGE, ik->key_len, key_rsc, ik->key,
466 KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
467 if (res) {
468 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
469 "addkey failed: %d\n", res);
470 }
471 break;
472 }
473
474 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
475 set_bit(CONNECTED, &ar->flag);
476 netif_carrier_on(ar->net_dev);
477 return;
478 }
479
480 ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n",
481 bssid, channel);
482
483 if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
484 struct ieee80211_mgmt *mgmt =
485 (struct ieee80211_mgmt *) assoc_info;
486 if (ieee80211_is_assoc_req(mgmt->frame_control) &&
487 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
488 sizeof(mgmt->u.assoc_req)) {
489 ies = mgmt->u.assoc_req.variable;
490 ies_len = assoc_info + assoc_req_len - ies;
491 } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
492 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
493 + sizeof(mgmt->u.reassoc_req)) {
494 ies = mgmt->u.reassoc_req.variable;
495 ies_len = assoc_info + assoc_req_len - ies;
496 }
497 }
498
499 pos = ies;
500 while (pos && pos + 1 < ies + ies_len) {
501 if (pos + 2 + pos[1] > ies + ies_len)
502 break;
503 if (pos[0] == WLAN_EID_RSN)
504 wpa_ie = pos; /* RSN IE */
505 else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
506 pos[1] >= 4 &&
507 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
508 if (pos[5] == 0x01)
509 wpa_ie = pos; /* WPA IE */
510 else if (pos[5] == 0x04) {
511 wpa_ie = pos; /* WPS IE */
512 break; /* overrides WPA/RSN IE */
513 }
514 }
515 pos += 2 + pos[1];
516 }
517
518 ath6kl_add_new_sta(ar, bssid, channel, wpa_ie,
519 wpa_ie ? 2 + wpa_ie[1] : 0,
520 listen_int & 0xFF, beacon_int,
521 (listen_int >> 8) & 0xFF);
522
523 /* send event to application */
524 memset(&sinfo, 0, sizeof(sinfo));
525
526 /* TODO: sinfo.generation */
527
528 sinfo.assoc_req_ies = ies;
529 sinfo.assoc_req_ies_len = ies_len;
530 sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
531
532 cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL);
533
534 netif_wake_queue(ar->net_dev);
535
536 return;
537 }
538
539 /* Functions for Tx credit handling */
540 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
541 struct list_head *ep_list,
542 int tot_credits)
543 {
544 struct htc_endpoint_credit_dist *cur_ep_dist;
545 int count;
546
547 cred_info->cur_free_credits = tot_credits;
548 cred_info->total_avail_credits = tot_credits;
549
550 list_for_each_entry(cur_ep_dist, ep_list, list) {
551 if (cur_ep_dist->endpoint == ENDPOINT_0)
552 continue;
553
554 cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
555
556 if (tot_credits > 4)
557 if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
558 (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
559 ath6kl_deposit_credit_to_ep(cred_info,
560 cur_ep_dist,
561 cur_ep_dist->cred_min);
562 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
563 }
564
565 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
566 ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
567 cur_ep_dist->cred_min);
568 /*
569 * Control service is always marked active, it
570 * never goes inactive EVER.
571 */
572 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
573 } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
574 /* this is the lowest priority data endpoint */
575 cred_info->lowestpri_ep_dist = cur_ep_dist->list;
576
577 /*
578 * Streams have to be created (explicit | implicit) for all
579 * kinds of traffic. BE endpoints are also inactive in the
580 * beginning. When BE traffic starts it creates implicit
581 * streams that redistributes credits.
582 *
583 * Note: all other endpoints have minimums set but are
584 * initially given NO credits. credits will be distributed
585 * as traffic activity demands
586 */
587 }
588
589 WARN_ON(cred_info->cur_free_credits <= 0);
590
591 list_for_each_entry(cur_ep_dist, ep_list, list) {
592 if (cur_ep_dist->endpoint == ENDPOINT_0)
593 continue;
594
595 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
596 cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
597 else {
598 /*
599 * For the remaining data endpoints, we assume that
600 * each cred_per_msg are the same. We use a simple
601 * calculation here, we take the remaining credits
602 * and determine how many max messages this can
603 * cover and then set each endpoint's normal value
604 * equal to 3/4 this amount.
605 */
606 count = (cred_info->cur_free_credits /
607 cur_ep_dist->cred_per_msg)
608 * cur_ep_dist->cred_per_msg;
609 count = (count * 3) >> 2;
610 count = max(count, cur_ep_dist->cred_per_msg);
611 cur_ep_dist->cred_norm = count;
612
613 }
614 }
615 }
616
617 /* initialize and setup credit distribution */
618 int ath6k_setup_credit_dist(void *htc_handle,
619 struct htc_credit_state_info *cred_info)
620 {
621 u16 servicepriority[5];
622
623 memset(cred_info, 0, sizeof(struct htc_credit_state_info));
624
625 servicepriority[0] = WMI_CONTROL_SVC; /* highest */
626 servicepriority[1] = WMI_DATA_VO_SVC;
627 servicepriority[2] = WMI_DATA_VI_SVC;
628 servicepriority[3] = WMI_DATA_BE_SVC;
629 servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
630
631 /* set priority list */
632 ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
633
634 return 0;
635 }
636
637 /* reduce an ep's credits back to a set limit */
638 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
639 struct htc_endpoint_credit_dist *ep_dist,
640 int limit)
641 {
642 int credits;
643
644 ep_dist->cred_assngd = limit;
645
646 if (ep_dist->credits <= limit)
647 return;
648
649 credits = ep_dist->credits - limit;
650 ep_dist->credits -= credits;
651 cred_info->cur_free_credits += credits;
652 }
653
654 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
655 struct list_head *epdist_list)
656 {
657 struct htc_endpoint_credit_dist *cur_dist_list;
658
659 list_for_each_entry(cur_dist_list, epdist_list, list) {
660 if (cur_dist_list->endpoint == ENDPOINT_0)
661 continue;
662
663 if (cur_dist_list->cred_to_dist > 0) {
664 cur_dist_list->credits +=
665 cur_dist_list->cred_to_dist;
666 cur_dist_list->cred_to_dist = 0;
667 if (cur_dist_list->credits >
668 cur_dist_list->cred_assngd)
669 ath6k_reduce_credits(cred_info,
670 cur_dist_list,
671 cur_dist_list->cred_assngd);
672
673 if (cur_dist_list->credits >
674 cur_dist_list->cred_norm)
675 ath6k_reduce_credits(cred_info, cur_dist_list,
676 cur_dist_list->cred_norm);
677
678 if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
679 if (cur_dist_list->txq_depth == 0)
680 ath6k_reduce_credits(cred_info,
681 cur_dist_list, 0);
682 }
683 }
684 }
685 }
686
687 /*
688 * HTC has an endpoint that needs credits, ep_dist is the endpoint in
689 * question.
690 */
691 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
692 struct htc_endpoint_credit_dist *ep_dist)
693 {
694 struct htc_endpoint_credit_dist *curdist_list;
695 int credits = 0;
696 int need;
697
698 if (ep_dist->svc_id == WMI_CONTROL_SVC)
699 goto out;
700
701 if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
702 (ep_dist->svc_id == WMI_DATA_VO_SVC))
703 if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
704 goto out;
705
706 /*
707 * For all other services, we follow a simple algorithm of:
708 *
709 * 1. checking the free pool for credits
710 * 2. checking lower priority endpoints for credits to take
711 */
712
713 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
714
715 if (credits >= ep_dist->seek_cred)
716 goto out;
717
718 /*
719 * We don't have enough in the free pool, try taking away from
720 * lower priority services The rule for taking away credits:
721 *
722 * 1. Only take from lower priority endpoints
723 * 2. Only take what is allocated above the minimum (never
724 * starve an endpoint completely)
725 * 3. Only take what you need.
726 */
727
728 list_for_each_entry_reverse(curdist_list,
729 &cred_info->lowestpri_ep_dist,
730 list) {
731 if (curdist_list == ep_dist)
732 break;
733
734 need = ep_dist->seek_cred - cred_info->cur_free_credits;
735
736 if ((curdist_list->cred_assngd - need) >=
737 curdist_list->cred_min) {
738 /*
739 * The current one has been allocated more than
740 * it's minimum and it has enough credits assigned
741 * above it's minimum to fulfill our need try to
742 * take away just enough to fulfill our need.
743 */
744 ath6k_reduce_credits(cred_info, curdist_list,
745 curdist_list->cred_assngd - need);
746
747 if (cred_info->cur_free_credits >=
748 ep_dist->seek_cred)
749 break;
750 }
751
752 if (curdist_list->endpoint == ENDPOINT_0)
753 break;
754 }
755
756 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
757
758 out:
759 /* did we find some credits? */
760 if (credits)
761 ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
762
763 ep_dist->seek_cred = 0;
764 }
765
766 /* redistribute credits based on activity change */
767 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
768 struct list_head *ep_dist_list)
769 {
770 struct htc_endpoint_credit_dist *curdist_list;
771
772 list_for_each_entry(curdist_list, ep_dist_list, list) {
773 if (curdist_list->endpoint == ENDPOINT_0)
774 continue;
775
776 if ((curdist_list->svc_id == WMI_DATA_BK_SVC) ||
777 (curdist_list->svc_id == WMI_DATA_BE_SVC))
778 curdist_list->dist_flags |= HTC_EP_ACTIVE;
779
780 if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
781 !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
782 if (curdist_list->txq_depth == 0)
783 ath6k_reduce_credits(info,
784 curdist_list, 0);
785 else
786 ath6k_reduce_credits(info,
787 curdist_list,
788 curdist_list->cred_min);
789 }
790 }
791 }
792
793 /*
794 *
795 * This function is invoked whenever endpoints require credit
796 * distributions. A lock is held while this function is invoked, this
797 * function shall NOT block. The ep_dist_list is a list of distribution
798 * structures in prioritized order as defined by the call to the
799 * htc_set_credit_dist() api.
800 */
801 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
802 struct list_head *ep_dist_list,
803 enum htc_credit_dist_reason reason)
804 {
805 switch (reason) {
806 case HTC_CREDIT_DIST_SEND_COMPLETE:
807 ath6k_credit_update(cred_info, ep_dist_list);
808 break;
809 case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
810 ath6k_redistribute_credits(cred_info, ep_dist_list);
811 break;
812 default:
813 break;
814 }
815
816 WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
817 WARN_ON(cred_info->cur_free_credits < 0);
818 }
819
820 void disconnect_timer_handler(unsigned long ptr)
821 {
822 struct net_device *dev = (struct net_device *)ptr;
823 struct ath6kl *ar = ath6kl_priv(dev);
824
825 ath6kl_init_profile_info(ar);
826 ath6kl_disconnect(ar);
827 }
828
829 void ath6kl_disconnect(struct ath6kl *ar)
830 {
831 if (test_bit(CONNECTED, &ar->flag) ||
832 test_bit(CONNECT_PEND, &ar->flag)) {
833 ath6kl_wmi_disconnect_cmd(ar->wmi);
834 /*
835 * Disconnect command is issued, clear the connect pending
836 * flag. The connected flag will be cleared in
837 * disconnect event notification.
838 */
839 clear_bit(CONNECT_PEND, &ar->flag);
840 }
841 }
842
843 void ath6kl_deep_sleep_enable(struct ath6kl *ar)
844 {
845 switch (ar->sme_state) {
846 case SME_CONNECTING:
847 cfg80211_connect_result(ar->net_dev, ar->bssid, NULL, 0,
848 NULL, 0,
849 WLAN_STATUS_UNSPECIFIED_FAILURE,
850 GFP_KERNEL);
851 break;
852 case SME_CONNECTED:
853 default:
854 /*
855 * FIXME: oddly enough smeState is in DISCONNECTED during
856 * suspend, why? Need to send disconnected event in that
857 * state.
858 */
859 cfg80211_disconnected(ar->net_dev, 0, NULL, 0, GFP_KERNEL);
860 break;
861 }
862
863 if (test_bit(CONNECTED, &ar->flag) ||
864 test_bit(CONNECT_PEND, &ar->flag))
865 ath6kl_wmi_disconnect_cmd(ar->wmi);
866
867 ar->sme_state = SME_DISCONNECTED;
868
869 /* disable scanning */
870 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0,
871 0, 0) != 0)
872 printk(KERN_WARNING "ath6kl: failed to disable scan "
873 "during suspend\n");
874
875 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
876 }
877
878 /* WMI Event handlers */
879
880 static const char *get_hw_id_string(u32 id)
881 {
882 switch (id) {
883 case AR6003_REV1_VERSION:
884 return "1.0";
885 case AR6003_REV2_VERSION:
886 return "2.0";
887 case AR6003_REV3_VERSION:
888 return "2.1.1";
889 default:
890 return "unknown";
891 }
892 }
893
894 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
895 {
896 struct ath6kl *ar = devt;
897 struct net_device *dev = ar->net_dev;
898
899 memcpy(dev->dev_addr, datap, ETH_ALEN);
900 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
901 __func__, dev->dev_addr);
902
903 ar->version.wlan_ver = sw_ver;
904 ar->version.abi_ver = abi_ver;
905
906 snprintf(ar->wdev->wiphy->fw_version,
907 sizeof(ar->wdev->wiphy->fw_version),
908 "%u.%u.%u.%u",
909 (ar->version.wlan_ver & 0xf0000000) >> 28,
910 (ar->version.wlan_ver & 0x0f000000) >> 24,
911 (ar->version.wlan_ver & 0x00ff0000) >> 16,
912 (ar->version.wlan_ver & 0x0000ffff));
913
914 /* indicate to the waiting thread that the ready event was received */
915 set_bit(WMI_READY, &ar->flag);
916 wake_up(&ar->event_wq);
917
918 ath6kl_info("hw %s fw %s\n",
919 get_hw_id_string(ar->wdev->wiphy->hw_version),
920 ar->wdev->wiphy->fw_version);
921 }
922
923 void ath6kl_scan_complete_evt(struct ath6kl *ar, int status)
924 {
925 ath6kl_cfg80211_scan_complete_event(ar, status);
926
927 if (!ar->usr_bss_filter)
928 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
929
930 ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
931 }
932
933 void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid,
934 u16 listen_int, u16 beacon_int,
935 enum network_type net_type, u8 beacon_ie_len,
936 u8 assoc_req_len, u8 assoc_resp_len,
937 u8 *assoc_info)
938 {
939 unsigned long flags;
940
941 if (ar->nw_type == AP_NETWORK) {
942 ath6kl_connect_ap_mode(ar, channel, bssid, listen_int,
943 beacon_int, assoc_req_len,
944 assoc_info + beacon_ie_len);
945 return;
946 }
947
948 ath6kl_cfg80211_connect_event(ar, channel, bssid,
949 listen_int, beacon_int,
950 net_type, beacon_ie_len,
951 assoc_req_len, assoc_resp_len,
952 assoc_info);
953
954 memcpy(ar->bssid, bssid, sizeof(ar->bssid));
955 ar->bss_ch = channel;
956
957 if ((ar->nw_type == INFRA_NETWORK))
958 ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t,
959 ar->listen_intvl_b);
960
961 netif_wake_queue(ar->net_dev);
962
963 /* Update connect & link status atomically */
964 spin_lock_irqsave(&ar->lock, flags);
965 set_bit(CONNECTED, &ar->flag);
966 clear_bit(CONNECT_PEND, &ar->flag);
967 netif_carrier_on(ar->net_dev);
968 spin_unlock_irqrestore(&ar->lock, flags);
969
970 aggr_reset_state(ar->aggr_cntxt);
971 ar->reconnect_flag = 0;
972
973 if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
974 memset(ar->node_map, 0, sizeof(ar->node_map));
975 ar->node_num = 0;
976 ar->next_ep_id = ENDPOINT_2;
977 }
978
979 if (!ar->usr_bss_filter)
980 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
981 }
982
983 void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast)
984 {
985 struct ath6kl_sta *sta;
986 u8 tsc[6];
987 /*
988 * For AP case, keyid will have aid of STA which sent pkt with
989 * MIC error. Use this aid to get MAC & send it to hostapd.
990 */
991 if (ar->nw_type == AP_NETWORK) {
992 sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
993 if (!sta)
994 return;
995
996 ath6kl_dbg(ATH6KL_DBG_TRC,
997 "ap tkip mic error received from aid=%d\n", keyid);
998
999 memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
1000 cfg80211_michael_mic_failure(ar->net_dev, sta->mac,
1001 NL80211_KEYTYPE_PAIRWISE, keyid,
1002 tsc, GFP_KERNEL);
1003 } else
1004 ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
1005
1006 }
1007
1008 static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len)
1009 {
1010 struct wmi_target_stats *tgt_stats =
1011 (struct wmi_target_stats *) ptr;
1012 struct target_stats *stats = &ar->target_stats;
1013 struct tkip_ccmp_stats *ccmp_stats;
1014 struct bss *conn_bss = NULL;
1015 struct cserv_stats *c_stats;
1016 u8 ac;
1017
1018 if (len < sizeof(*tgt_stats))
1019 return;
1020
1021 /* update the RSSI of the connected bss */
1022 if (test_bit(CONNECTED, &ar->flag)) {
1023 conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid);
1024 if (conn_bss) {
1025 c_stats = &tgt_stats->cserv_stats;
1026 conn_bss->ni_rssi =
1027 a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi);
1028 conn_bss->ni_snr =
1029 tgt_stats->cserv_stats.cs_ave_beacon_snr;
1030 ath6kl_wmi_node_return(ar->wmi, conn_bss);
1031 }
1032 }
1033
1034 ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
1035
1036 stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
1037 stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
1038 stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
1039 stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
1040 stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
1041 stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
1042 stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
1043 stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
1044 stats->tx_rts_success_cnt +=
1045 le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
1046
1047 for (ac = 0; ac < WMM_NUM_AC; ac++)
1048 stats->tx_pkt_per_ac[ac] +=
1049 le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
1050
1051 stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
1052 stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
1053 stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
1054 stats->tx_mult_retry_cnt +=
1055 le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
1056 stats->tx_rts_fail_cnt +=
1057 le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
1058 stats->tx_ucast_rate =
1059 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
1060
1061 stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
1062 stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
1063 stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
1064 stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
1065 stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
1066 stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
1067 stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
1068 stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
1069 stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
1070 stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
1071 stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
1072 stats->rx_key_cache_miss +=
1073 le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
1074 stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
1075 stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
1076 stats->rx_ucast_rate =
1077 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
1078
1079 ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1080
1081 stats->tkip_local_mic_fail +=
1082 le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1083 stats->tkip_cnter_measures_invoked +=
1084 le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1085 stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1086
1087 stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1088 stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1089
1090 stats->pwr_save_fail_cnt +=
1091 le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1092 stats->noise_floor_calib =
1093 a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1094
1095 stats->cs_bmiss_cnt +=
1096 le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1097 stats->cs_low_rssi_cnt +=
1098 le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1099 stats->cs_connect_cnt +=
1100 le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1101 stats->cs_discon_cnt +=
1102 le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1103
1104 stats->cs_ave_beacon_rssi =
1105 a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1106
1107 stats->cs_last_roam_msec =
1108 tgt_stats->cserv_stats.cs_last_roam_msec;
1109 stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1110 stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1111
1112 stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1113
1114 stats->wow_pkt_dropped +=
1115 le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1116 stats->wow_host_pkt_wakeups +=
1117 tgt_stats->wow_stats.wow_host_pkt_wakeups;
1118 stats->wow_host_evt_wakeups +=
1119 tgt_stats->wow_stats.wow_host_evt_wakeups;
1120 stats->wow_evt_discarded +=
1121 le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1122
1123 if (test_bit(STATS_UPDATE_PEND, &ar->flag)) {
1124 clear_bit(STATS_UPDATE_PEND, &ar->flag);
1125 wake_up(&ar->event_wq);
1126 }
1127 }
1128
1129 static void ath6kl_add_le32(__le32 *var, __le32 val)
1130 {
1131 *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1132 }
1133
1134 void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len)
1135 {
1136 struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1137 struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1138 struct wmi_per_sta_stat *st_ap, *st_p;
1139 u8 ac;
1140
1141 if (ar->nw_type == AP_NETWORK) {
1142 if (len < sizeof(*p))
1143 return;
1144
1145 for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1146 st_ap = &ap->sta[ac];
1147 st_p = &p->sta[ac];
1148
1149 ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1150 ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1151 ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1152 ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1153 ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1154 ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1155 ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1156 ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1157 }
1158
1159 } else {
1160 ath6kl_update_target_stats(ar, ptr, len);
1161 }
1162 }
1163
1164 void ath6kl_wakeup_event(void *dev)
1165 {
1166 struct ath6kl *ar = (struct ath6kl *) dev;
1167
1168 wake_up(&ar->event_wq);
1169 }
1170
1171 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1172 {
1173 struct ath6kl *ar = (struct ath6kl *) devt;
1174
1175 ar->tx_pwr = tx_pwr;
1176 wake_up(&ar->event_wq);
1177 }
1178
1179 void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid)
1180 {
1181 struct ath6kl_sta *conn;
1182 struct sk_buff *skb;
1183 bool psq_empty = false;
1184
1185 conn = ath6kl_find_sta_by_aid(ar, aid);
1186
1187 if (!conn)
1188 return;
1189 /*
1190 * Send out a packet queued on ps queue. When the ps queue
1191 * becomes empty update the PVB for this station.
1192 */
1193 spin_lock_bh(&conn->psq_lock);
1194 psq_empty = skb_queue_empty(&conn->psq);
1195 spin_unlock_bh(&conn->psq_lock);
1196
1197 if (psq_empty)
1198 /* TODO: Send out a NULL data frame */
1199 return;
1200
1201 spin_lock_bh(&conn->psq_lock);
1202 skb = skb_dequeue(&conn->psq);
1203 spin_unlock_bh(&conn->psq_lock);
1204
1205 conn->sta_flags |= STA_PS_POLLED;
1206 ath6kl_data_tx(skb, ar->net_dev);
1207 conn->sta_flags &= ~STA_PS_POLLED;
1208
1209 spin_lock_bh(&conn->psq_lock);
1210 psq_empty = skb_queue_empty(&conn->psq);
1211 spin_unlock_bh(&conn->psq_lock);
1212
1213 if (psq_empty)
1214 ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
1215 }
1216
1217 void ath6kl_dtimexpiry_event(struct ath6kl *ar)
1218 {
1219 bool mcastq_empty = false;
1220 struct sk_buff *skb;
1221
1222 /*
1223 * If there are no associated STAs, ignore the DTIM expiry event.
1224 * There can be potential race conditions where the last associated
1225 * STA may disconnect & before the host could clear the 'Indicate
1226 * DTIM' request to the firmware, the firmware would have just
1227 * indicated a DTIM expiry event. The race is between 'clear DTIM
1228 * expiry cmd' going from the host to the firmware & the DTIM
1229 * expiry event happening from the firmware to the host.
1230 */
1231 if (!ar->sta_list_index)
1232 return;
1233
1234 spin_lock_bh(&ar->mcastpsq_lock);
1235 mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1236 spin_unlock_bh(&ar->mcastpsq_lock);
1237
1238 if (mcastq_empty)
1239 return;
1240
1241 /* set the STA flag to dtim_expired for the frame to go out */
1242 set_bit(DTIM_EXPIRED, &ar->flag);
1243
1244 spin_lock_bh(&ar->mcastpsq_lock);
1245 while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1246 spin_unlock_bh(&ar->mcastpsq_lock);
1247
1248 ath6kl_data_tx(skb, ar->net_dev);
1249
1250 spin_lock_bh(&ar->mcastpsq_lock);
1251 }
1252 spin_unlock_bh(&ar->mcastpsq_lock);
1253
1254 clear_bit(DTIM_EXPIRED, &ar->flag);
1255
1256 /* clear the LSB of the BitMapCtl field of the TIM IE */
1257 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1258 }
1259
1260 void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid,
1261 u8 assoc_resp_len, u8 *assoc_info,
1262 u16 prot_reason_status)
1263 {
1264 struct bss *wmi_ssid_node = NULL;
1265 unsigned long flags;
1266
1267 if (ar->nw_type == AP_NETWORK) {
1268 if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1269 return;
1270
1271 /* if no more associated STAs, empty the mcast PS q */
1272 if (ar->sta_list_index == 0) {
1273 spin_lock_bh(&ar->mcastpsq_lock);
1274 skb_queue_purge(&ar->mcastpsq);
1275 spin_unlock_bh(&ar->mcastpsq_lock);
1276
1277 /* clear the LSB of the TIM IE's BitMapCtl field */
1278 if (test_bit(WMI_READY, &ar->flag))
1279 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1280 }
1281
1282 if (!is_broadcast_ether_addr(bssid)) {
1283 /* send event to application */
1284 cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL);
1285 }
1286
1287 clear_bit(CONNECTED, &ar->flag);
1288 return;
1289 }
1290
1291 ath6kl_cfg80211_disconnect_event(ar, reason, bssid,
1292 assoc_resp_len, assoc_info,
1293 prot_reason_status);
1294
1295 aggr_reset_state(ar->aggr_cntxt);
1296
1297 del_timer(&ar->disconnect_timer);
1298
1299 ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1300 "disconnect reason is %d\n", reason);
1301
1302 /*
1303 * If the event is due to disconnect cmd from the host, only they
1304 * the target would stop trying to connect. Under any other
1305 * condition, target would keep trying to connect.
1306 */
1307 if (reason == DISCONNECT_CMD) {
1308 if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1309 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1310 } else {
1311 set_bit(CONNECT_PEND, &ar->flag);
1312 if (((reason == ASSOC_FAILED) &&
1313 (prot_reason_status == 0x11)) ||
1314 ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1315 && (ar->reconnect_flag == 1))) {
1316 set_bit(CONNECTED, &ar->flag);
1317 return;
1318 }
1319 }
1320
1321 if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag)) {
1322 ath6kl_wmi_node_free(ar->wmi, bssid);
1323
1324 /*
1325 * In case any other same SSID nodes are present remove it,
1326 * since those nodes also not available now.
1327 */
1328 do {
1329 /*
1330 * Find the nodes based on SSID and remove it
1331 *
1332 * Note: This case will not work out for
1333 * Hidden-SSID
1334 */
1335 wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi,
1336 ar->ssid,
1337 ar->ssid_len,
1338 false,
1339 true);
1340
1341 if (wmi_ssid_node)
1342 ath6kl_wmi_node_free(ar->wmi,
1343 wmi_ssid_node->ni_macaddr);
1344
1345 } while (wmi_ssid_node);
1346 }
1347
1348 /* update connect & link status atomically */
1349 spin_lock_irqsave(&ar->lock, flags);
1350 clear_bit(CONNECTED, &ar->flag);
1351 netif_carrier_off(ar->net_dev);
1352 spin_unlock_irqrestore(&ar->lock, flags);
1353
1354 if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1))
1355 ar->reconnect_flag = 0;
1356
1357 if (reason != CSERV_DISCONNECT)
1358 ar->user_key_ctrl = 0;
1359
1360 netif_stop_queue(ar->net_dev);
1361 memset(ar->bssid, 0, sizeof(ar->bssid));
1362 ar->bss_ch = 0;
1363
1364 ath6kl_tx_data_cleanup(ar);
1365 }
1366
1367 static int ath6kl_open(struct net_device *dev)
1368 {
1369 struct ath6kl *ar = ath6kl_priv(dev);
1370 unsigned long flags;
1371
1372 spin_lock_irqsave(&ar->lock, flags);
1373
1374 set_bit(WLAN_ENABLED, &ar->flag);
1375
1376 if (test_bit(CONNECTED, &ar->flag)) {
1377 netif_carrier_on(dev);
1378 netif_wake_queue(dev);
1379 } else
1380 netif_carrier_off(dev);
1381
1382 spin_unlock_irqrestore(&ar->lock, flags);
1383
1384 return 0;
1385 }
1386
1387 static int ath6kl_close(struct net_device *dev)
1388 {
1389 struct ath6kl *ar = ath6kl_priv(dev);
1390
1391 netif_stop_queue(dev);
1392
1393 ath6kl_disconnect(ar);
1394
1395 if (test_bit(WMI_READY, &ar->flag)) {
1396 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0,
1397 0, 0, 0))
1398 return -EIO;
1399
1400 clear_bit(WLAN_ENABLED, &ar->flag);
1401 }
1402
1403 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
1404
1405 return 0;
1406 }
1407
1408 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1409 {
1410 struct ath6kl *ar = ath6kl_priv(dev);
1411
1412 return &ar->net_stats;
1413 }
1414
1415 static struct net_device_ops ath6kl_netdev_ops = {
1416 .ndo_open = ath6kl_open,
1417 .ndo_stop = ath6kl_close,
1418 .ndo_start_xmit = ath6kl_data_tx,
1419 .ndo_get_stats = ath6kl_get_stats,
1420 };
1421
1422 void init_netdev(struct net_device *dev)
1423 {
1424 dev->netdev_ops = &ath6kl_netdev_ops;
1425 dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1426
1427 dev->needed_headroom = ETH_HLEN;
1428 dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1429 sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1430 + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1431
1432 return;
1433 }
This page took 0.09138 seconds and 6 git commands to generate.