ath6kl: Fix endianness in requesting chip register read
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / main.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 struct ath6kl_sta *conn = NULL;
26 u8 i, max_conn;
27
28 max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
29
30 for (i = 0; i < max_conn; i++) {
31 if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
32 conn = &ar->sta_list[i];
33 break;
34 }
35 }
36
37 return conn;
38 }
39
40 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
41 {
42 struct ath6kl_sta *conn = NULL;
43 u8 ctr;
44
45 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
46 if (ar->sta_list[ctr].aid == aid) {
47 conn = &ar->sta_list[ctr];
48 break;
49 }
50 }
51 return conn;
52 }
53
54 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
55 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
56 {
57 struct ath6kl_sta *sta;
58 u8 free_slot;
59
60 free_slot = aid - 1;
61
62 sta = &ar->sta_list[free_slot];
63 memcpy(sta->mac, mac, ETH_ALEN);
64 if (ielen <= ATH6KL_MAX_IE)
65 memcpy(sta->wpa_ie, wpaie, ielen);
66 sta->aid = aid;
67 sta->keymgmt = keymgmt;
68 sta->ucipher = ucipher;
69 sta->auth = auth;
70
71 ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
72 ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
73 }
74
75 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
76 {
77 struct ath6kl_sta *sta = &ar->sta_list[i];
78
79 /* empty the queued pkts in the PS queue if any */
80 spin_lock_bh(&sta->psq_lock);
81 skb_queue_purge(&sta->psq);
82 spin_unlock_bh(&sta->psq_lock);
83
84 memset(&ar->ap_stats.sta[sta->aid - 1], 0,
85 sizeof(struct wmi_per_sta_stat));
86 memset(sta->mac, 0, ETH_ALEN);
87 memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
88 sta->aid = 0;
89 sta->sta_flags = 0;
90
91 ar->sta_list_index = ar->sta_list_index & ~(1 << i);
92
93 }
94
95 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
96 {
97 u8 i, removed = 0;
98
99 if (is_zero_ether_addr(mac))
100 return removed;
101
102 if (is_broadcast_ether_addr(mac)) {
103 ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
104
105 for (i = 0; i < AP_MAX_NUM_STA; i++) {
106 if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
107 ath6kl_sta_cleanup(ar, i);
108 removed = 1;
109 }
110 }
111 } else {
112 for (i = 0; i < AP_MAX_NUM_STA; i++) {
113 if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
114 ath6kl_dbg(ATH6KL_DBG_TRC,
115 "deleting station %pM aid=%d reason=%d\n",
116 mac, ar->sta_list[i].aid, reason);
117 ath6kl_sta_cleanup(ar, i);
118 removed = 1;
119 break;
120 }
121 }
122 }
123
124 return removed;
125 }
126
127 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
128 {
129 struct ath6kl *ar = devt;
130 return ar->ac2ep_map[ac];
131 }
132
133 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
134 {
135 struct ath6kl_cookie *cookie;
136
137 cookie = ar->cookie_list;
138 if (cookie != NULL) {
139 ar->cookie_list = cookie->arc_list_next;
140 ar->cookie_count--;
141 }
142
143 return cookie;
144 }
145
146 void ath6kl_cookie_init(struct ath6kl *ar)
147 {
148 u32 i;
149
150 ar->cookie_list = NULL;
151 ar->cookie_count = 0;
152
153 memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
154
155 for (i = 0; i < MAX_COOKIE_NUM; i++)
156 ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
157 }
158
159 void ath6kl_cookie_cleanup(struct ath6kl *ar)
160 {
161 ar->cookie_list = NULL;
162 ar->cookie_count = 0;
163 }
164
165 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
166 {
167 /* Insert first */
168
169 if (!ar || !cookie)
170 return;
171
172 cookie->arc_list_next = ar->cookie_list;
173 ar->cookie_list = cookie;
174 ar->cookie_count++;
175 }
176
177 /* set the window address register (using 4-byte register access ). */
178 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
179 {
180 int status;
181 s32 i;
182 __le32 addr_val;
183
184 /*
185 * Write bytes 1,2,3 of the register to set the upper address bytes,
186 * the LSB is written last to initiate the access cycle
187 */
188
189 for (i = 1; i <= 3; i++) {
190 /*
191 * Fill the buffer with the address byte value we want to
192 * hit 4 times. No need to worry about endianness as the
193 * same byte is copied to all four bytes of addr_val at
194 * any time.
195 */
196 memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4);
197
198 /*
199 * Hit each byte of the register address with a 4-byte
200 * write operation to the same address, this is a harmless
201 * operation.
202 */
203 status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val,
204 4, HIF_WR_SYNC_BYTE_FIX);
205 if (status)
206 break;
207 }
208
209 if (status) {
210 ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
211 addr, reg_addr);
212 return status;
213 }
214
215 /*
216 * Write the address register again, this time write the whole
217 * 4-byte value. The effect here is that the LSB write causes the
218 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
219 * effect since we are writing the same values again
220 */
221 addr_val = cpu_to_le32(addr);
222 status = hif_read_write_sync(ar, reg_addr,
223 (u8 *)&(addr_val),
224 4, HIF_WR_SYNC_BYTE_INC);
225
226 if (status) {
227 ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
228 addr, reg_addr);
229 return status;
230 }
231
232 return 0;
233 }
234
235 /*
236 * Read from the hardware through its diagnostic window. No cooperation
237 * from the firmware is required for this.
238 */
239 int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
240 {
241 int ret;
242
243 /* set window register to start read cycle */
244 ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address);
245 if (ret)
246 return ret;
247
248 /* read the data */
249 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value,
250 sizeof(*value), HIF_RD_SYNC_BYTE_INC);
251 if (ret) {
252 ath6kl_warn("failed to read32 through diagnose window: %d\n",
253 ret);
254 return ret;
255 }
256
257 return 0;
258 }
259
260 /*
261 * Write to the ATH6KL through its diagnostic window. No cooperation from
262 * the Target is required for this.
263 */
264 static int ath6kl_diag_write32(struct ath6kl *ar, u32 address, u32 value)
265 {
266 int ret;
267
268 /* set write data */
269 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value,
270 sizeof(value), HIF_WR_SYNC_BYTE_INC);
271 if (ret) {
272 ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
273 address, value);
274 return ret;
275 }
276
277 /* set window register, which starts the write cycle */
278 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
279 address);
280 }
281
282 int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
283 {
284 u32 count, *buf = data;
285 int ret;
286
287 if (WARN_ON(length % 4))
288 return -EINVAL;
289
290 for (count = 0; count < length / 4; count++, address += 4) {
291 ret = ath6kl_diag_read32(ar, address, &buf[count]);
292 if (ret)
293 return ret;
294 }
295
296 return 0;
297 }
298
299 int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
300 {
301 u32 count, *buf = data;
302 int ret;
303
304 if (WARN_ON(length % 4))
305 return -EINVAL;
306
307 for (count = 0; count < length / 4; count++, address += 4) {
308 ret = ath6kl_diag_write32(ar, address, buf[count]);
309 if (ret)
310 return ret;
311 }
312
313 return 0;
314 }
315
316 int ath6kl_read_fwlogs(struct ath6kl *ar)
317 {
318 struct ath6kl_dbglog_hdr debug_hdr;
319 struct ath6kl_dbglog_buf debug_buf;
320 u32 address, length, dropped, firstbuf, debug_hdr_addr;
321 int ret = 0, loop;
322 u8 *buf;
323
324 buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
325 if (!buf)
326 return -ENOMEM;
327
328 address = TARG_VTOP(ar->target_type,
329 ath6kl_get_hi_item_addr(ar,
330 HI_ITEM(hi_dbglog_hdr)));
331
332 ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
333 if (ret)
334 goto out;
335
336 /* Get the contents of the ring buffer */
337 if (debug_hdr_addr == 0) {
338 ath6kl_warn("Invalid address for debug_hdr_addr\n");
339 ret = -EINVAL;
340 goto out;
341 }
342
343 address = TARG_VTOP(ar->target_type, debug_hdr_addr);
344 ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
345
346 address = TARG_VTOP(ar->target_type,
347 le32_to_cpu(debug_hdr.dbuf_addr));
348 firstbuf = address;
349 dropped = le32_to_cpu(debug_hdr.dropped);
350 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
351
352 loop = 100;
353
354 do {
355 address = TARG_VTOP(ar->target_type,
356 le32_to_cpu(debug_buf.buffer_addr));
357 length = le32_to_cpu(debug_buf.length);
358
359 if (length != 0 && (le32_to_cpu(debug_buf.length) <=
360 le32_to_cpu(debug_buf.bufsize))) {
361 length = ALIGN(length, 4);
362
363 ret = ath6kl_diag_read(ar, address,
364 buf, length);
365 if (ret)
366 goto out;
367
368 ath6kl_debug_fwlog_event(ar, buf, length);
369 }
370
371 address = TARG_VTOP(ar->target_type,
372 le32_to_cpu(debug_buf.next));
373 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
374 if (ret)
375 goto out;
376
377 loop--;
378
379 if (WARN_ON(loop == 0)) {
380 ret = -ETIMEDOUT;
381 goto out;
382 }
383 } while (address != firstbuf);
384
385 out:
386 kfree(buf);
387
388 return ret;
389 }
390
391 /* FIXME: move to a better place, target.h? */
392 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
393 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
394
395 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
396 bool wait_fot_compltn, bool cold_reset)
397 {
398 int status = 0;
399 u32 address;
400 u32 data;
401
402 if (target_type != TARGET_TYPE_AR6003 &&
403 target_type != TARGET_TYPE_AR6004)
404 return;
405
406 data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST;
407
408 switch (target_type) {
409 case TARGET_TYPE_AR6003:
410 address = AR6003_RESET_CONTROL_ADDRESS;
411 break;
412 case TARGET_TYPE_AR6004:
413 address = AR6004_RESET_CONTROL_ADDRESS;
414 break;
415 default:
416 address = AR6003_RESET_CONTROL_ADDRESS;
417 break;
418 }
419
420 status = ath6kl_diag_write32(ar, address, data);
421
422 if (status)
423 ath6kl_err("failed to reset target\n");
424 }
425
426 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
427 bool get_dbglogs)
428 {
429 struct ath6kl *ar = ath6kl_priv(dev);
430 static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
431 bool discon_issued;
432
433 netif_stop_queue(dev);
434
435 /* disable the target and the interrupts associated with it */
436 if (test_bit(WMI_READY, &ar->flag)) {
437 discon_issued = (test_bit(CONNECTED, &ar->flag) ||
438 test_bit(CONNECT_PEND, &ar->flag));
439 ath6kl_disconnect(ar);
440 if (!keep_profile)
441 ath6kl_init_profile_info(ar);
442
443 del_timer(&ar->disconnect_timer);
444
445 clear_bit(WMI_READY, &ar->flag);
446 ath6kl_wmi_shutdown(ar->wmi);
447 clear_bit(WMI_ENABLED, &ar->flag);
448 ar->wmi = NULL;
449
450 /*
451 * After wmi_shudown all WMI events will be dropped. We
452 * need to cleanup the buffers allocated in AP mode and
453 * give disconnect notification to stack, which usually
454 * happens in the disconnect_event. Simulate the disconnect
455 * event by calling the function directly. Sometimes
456 * disconnect_event will be received when the debug logs
457 * are collected.
458 */
459 if (discon_issued)
460 ath6kl_disconnect_event(ar, DISCONNECT_CMD,
461 (ar->nw_type & AP_NETWORK) ?
462 bcast_mac : ar->bssid,
463 0, NULL, 0);
464
465 ar->user_key_ctrl = 0;
466
467 } else {
468 ath6kl_dbg(ATH6KL_DBG_TRC,
469 "%s: wmi is not ready 0x%p 0x%p\n",
470 __func__, ar, ar->wmi);
471
472 /* Shut down WMI if we have started it */
473 if (test_bit(WMI_ENABLED, &ar->flag)) {
474 ath6kl_dbg(ATH6KL_DBG_TRC,
475 "%s: shut down wmi\n", __func__);
476 ath6kl_wmi_shutdown(ar->wmi);
477 clear_bit(WMI_ENABLED, &ar->flag);
478 ar->wmi = NULL;
479 }
480 }
481
482 if (ar->htc_target) {
483 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
484 ath6kl_htc_stop(ar->htc_target);
485 }
486
487 /*
488 * Try to reset the device if we can. The driver may have been
489 * configure NOT to reset the target during a debug session.
490 */
491 ath6kl_dbg(ATH6KL_DBG_TRC,
492 "attempting to reset target on instance destroy\n");
493 ath6kl_reset_device(ar, ar->target_type, true, true);
494 }
495
496 static void ath6kl_install_static_wep_keys(struct ath6kl *ar)
497 {
498 u8 index;
499 u8 keyusage;
500
501 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
502 if (ar->wep_key_list[index].key_len) {
503 keyusage = GROUP_USAGE;
504 if (index == ar->def_txkey_index)
505 keyusage |= TX_USAGE;
506
507 ath6kl_wmi_addkey_cmd(ar->wmi,
508 index,
509 WEP_CRYPT,
510 keyusage,
511 ar->wep_key_list[index].key_len,
512 NULL,
513 ar->wep_key_list[index].key,
514 KEY_OP_INIT_VAL, NULL,
515 NO_SYNC_WMIFLAG);
516 }
517 }
518 }
519
520 static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid,
521 u16 listen_int, u16 beacon_int,
522 u8 assoc_req_len, u8 *assoc_info)
523 {
524 struct net_device *dev = ar->net_dev;
525 u8 *ies = NULL, *wpa_ie = NULL, *pos;
526 size_t ies_len = 0;
527 struct station_info sinfo;
528 struct ath6kl_req_key *ik;
529 int res;
530 u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
531
532 if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) {
533 ik = &ar->ap_mode_bkey;
534
535 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n",
536 channel);
537
538 switch (ar->auth_mode) {
539 case NONE_AUTH:
540 if (ar->prwise_crypto == WEP_CRYPT)
541 ath6kl_install_static_wep_keys(ar);
542 break;
543 case WPA_PSK_AUTH:
544 case WPA2_PSK_AUTH:
545 case (WPA_PSK_AUTH|WPA2_PSK_AUTH):
546 if (!ik->valid)
547 break;
548
549 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
550 "the initial group key for AP mode\n");
551 memset(key_rsc, 0, sizeof(key_rsc));
552 res = ath6kl_wmi_addkey_cmd(
553 ar->wmi, ik->key_index, ik->key_type,
554 GROUP_USAGE, ik->key_len, key_rsc, ik->key,
555 KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
556 if (res) {
557 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
558 "addkey failed: %d\n", res);
559 }
560 break;
561 }
562
563 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
564 set_bit(CONNECTED, &ar->flag);
565 netif_carrier_on(ar->net_dev);
566 return;
567 }
568
569 ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n",
570 bssid, channel);
571
572 if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
573 struct ieee80211_mgmt *mgmt =
574 (struct ieee80211_mgmt *) assoc_info;
575 if (ieee80211_is_assoc_req(mgmt->frame_control) &&
576 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
577 sizeof(mgmt->u.assoc_req)) {
578 ies = mgmt->u.assoc_req.variable;
579 ies_len = assoc_info + assoc_req_len - ies;
580 } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
581 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
582 + sizeof(mgmt->u.reassoc_req)) {
583 ies = mgmt->u.reassoc_req.variable;
584 ies_len = assoc_info + assoc_req_len - ies;
585 }
586 }
587
588 pos = ies;
589 while (pos && pos + 1 < ies + ies_len) {
590 if (pos + 2 + pos[1] > ies + ies_len)
591 break;
592 if (pos[0] == WLAN_EID_RSN)
593 wpa_ie = pos; /* RSN IE */
594 else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
595 pos[1] >= 4 &&
596 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
597 if (pos[5] == 0x01)
598 wpa_ie = pos; /* WPA IE */
599 else if (pos[5] == 0x04) {
600 wpa_ie = pos; /* WPS IE */
601 break; /* overrides WPA/RSN IE */
602 }
603 }
604 pos += 2 + pos[1];
605 }
606
607 ath6kl_add_new_sta(ar, bssid, channel, wpa_ie,
608 wpa_ie ? 2 + wpa_ie[1] : 0,
609 listen_int & 0xFF, beacon_int,
610 (listen_int >> 8) & 0xFF);
611
612 /* send event to application */
613 memset(&sinfo, 0, sizeof(sinfo));
614
615 /* TODO: sinfo.generation */
616
617 sinfo.assoc_req_ies = ies;
618 sinfo.assoc_req_ies_len = ies_len;
619 sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
620
621 cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL);
622
623 netif_wake_queue(ar->net_dev);
624
625 return;
626 }
627
628 /* Functions for Tx credit handling */
629 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
630 struct list_head *ep_list,
631 int tot_credits)
632 {
633 struct htc_endpoint_credit_dist *cur_ep_dist;
634 int count;
635
636 cred_info->cur_free_credits = tot_credits;
637 cred_info->total_avail_credits = tot_credits;
638
639 list_for_each_entry(cur_ep_dist, ep_list, list) {
640 if (cur_ep_dist->endpoint == ENDPOINT_0)
641 continue;
642
643 cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
644
645 if (tot_credits > 4)
646 if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
647 (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
648 ath6kl_deposit_credit_to_ep(cred_info,
649 cur_ep_dist,
650 cur_ep_dist->cred_min);
651 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
652 }
653
654 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
655 ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
656 cur_ep_dist->cred_min);
657 /*
658 * Control service is always marked active, it
659 * never goes inactive EVER.
660 */
661 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
662 } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
663 /* this is the lowest priority data endpoint */
664 cred_info->lowestpri_ep_dist = cur_ep_dist->list;
665
666 /*
667 * Streams have to be created (explicit | implicit) for all
668 * kinds of traffic. BE endpoints are also inactive in the
669 * beginning. When BE traffic starts it creates implicit
670 * streams that redistributes credits.
671 *
672 * Note: all other endpoints have minimums set but are
673 * initially given NO credits. credits will be distributed
674 * as traffic activity demands
675 */
676 }
677
678 WARN_ON(cred_info->cur_free_credits <= 0);
679
680 list_for_each_entry(cur_ep_dist, ep_list, list) {
681 if (cur_ep_dist->endpoint == ENDPOINT_0)
682 continue;
683
684 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
685 cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
686 else {
687 /*
688 * For the remaining data endpoints, we assume that
689 * each cred_per_msg are the same. We use a simple
690 * calculation here, we take the remaining credits
691 * and determine how many max messages this can
692 * cover and then set each endpoint's normal value
693 * equal to 3/4 this amount.
694 */
695 count = (cred_info->cur_free_credits /
696 cur_ep_dist->cred_per_msg)
697 * cur_ep_dist->cred_per_msg;
698 count = (count * 3) >> 2;
699 count = max(count, cur_ep_dist->cred_per_msg);
700 cur_ep_dist->cred_norm = count;
701
702 }
703 }
704 }
705
706 /* initialize and setup credit distribution */
707 int ath6k_setup_credit_dist(void *htc_handle,
708 struct htc_credit_state_info *cred_info)
709 {
710 u16 servicepriority[5];
711
712 memset(cred_info, 0, sizeof(struct htc_credit_state_info));
713
714 servicepriority[0] = WMI_CONTROL_SVC; /* highest */
715 servicepriority[1] = WMI_DATA_VO_SVC;
716 servicepriority[2] = WMI_DATA_VI_SVC;
717 servicepriority[3] = WMI_DATA_BE_SVC;
718 servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
719
720 /* set priority list */
721 ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
722
723 return 0;
724 }
725
726 /* reduce an ep's credits back to a set limit */
727 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
728 struct htc_endpoint_credit_dist *ep_dist,
729 int limit)
730 {
731 int credits;
732
733 ep_dist->cred_assngd = limit;
734
735 if (ep_dist->credits <= limit)
736 return;
737
738 credits = ep_dist->credits - limit;
739 ep_dist->credits -= credits;
740 cred_info->cur_free_credits += credits;
741 }
742
743 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
744 struct list_head *epdist_list)
745 {
746 struct htc_endpoint_credit_dist *cur_dist_list;
747
748 list_for_each_entry(cur_dist_list, epdist_list, list) {
749 if (cur_dist_list->endpoint == ENDPOINT_0)
750 continue;
751
752 if (cur_dist_list->cred_to_dist > 0) {
753 cur_dist_list->credits +=
754 cur_dist_list->cred_to_dist;
755 cur_dist_list->cred_to_dist = 0;
756 if (cur_dist_list->credits >
757 cur_dist_list->cred_assngd)
758 ath6k_reduce_credits(cred_info,
759 cur_dist_list,
760 cur_dist_list->cred_assngd);
761
762 if (cur_dist_list->credits >
763 cur_dist_list->cred_norm)
764 ath6k_reduce_credits(cred_info, cur_dist_list,
765 cur_dist_list->cred_norm);
766
767 if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
768 if (cur_dist_list->txq_depth == 0)
769 ath6k_reduce_credits(cred_info,
770 cur_dist_list, 0);
771 }
772 }
773 }
774 }
775
776 /*
777 * HTC has an endpoint that needs credits, ep_dist is the endpoint in
778 * question.
779 */
780 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
781 struct htc_endpoint_credit_dist *ep_dist)
782 {
783 struct htc_endpoint_credit_dist *curdist_list;
784 int credits = 0;
785 int need;
786
787 if (ep_dist->svc_id == WMI_CONTROL_SVC)
788 goto out;
789
790 if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
791 (ep_dist->svc_id == WMI_DATA_VO_SVC))
792 if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
793 goto out;
794
795 /*
796 * For all other services, we follow a simple algorithm of:
797 *
798 * 1. checking the free pool for credits
799 * 2. checking lower priority endpoints for credits to take
800 */
801
802 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
803
804 if (credits >= ep_dist->seek_cred)
805 goto out;
806
807 /*
808 * We don't have enough in the free pool, try taking away from
809 * lower priority services The rule for taking away credits:
810 *
811 * 1. Only take from lower priority endpoints
812 * 2. Only take what is allocated above the minimum (never
813 * starve an endpoint completely)
814 * 3. Only take what you need.
815 */
816
817 list_for_each_entry_reverse(curdist_list,
818 &cred_info->lowestpri_ep_dist,
819 list) {
820 if (curdist_list == ep_dist)
821 break;
822
823 need = ep_dist->seek_cred - cred_info->cur_free_credits;
824
825 if ((curdist_list->cred_assngd - need) >=
826 curdist_list->cred_min) {
827 /*
828 * The current one has been allocated more than
829 * it's minimum and it has enough credits assigned
830 * above it's minimum to fulfill our need try to
831 * take away just enough to fulfill our need.
832 */
833 ath6k_reduce_credits(cred_info, curdist_list,
834 curdist_list->cred_assngd - need);
835
836 if (cred_info->cur_free_credits >=
837 ep_dist->seek_cred)
838 break;
839 }
840
841 if (curdist_list->endpoint == ENDPOINT_0)
842 break;
843 }
844
845 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
846
847 out:
848 /* did we find some credits? */
849 if (credits)
850 ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
851
852 ep_dist->seek_cred = 0;
853 }
854
855 /* redistribute credits based on activity change */
856 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
857 struct list_head *ep_dist_list)
858 {
859 struct htc_endpoint_credit_dist *curdist_list;
860
861 list_for_each_entry(curdist_list, ep_dist_list, list) {
862 if (curdist_list->endpoint == ENDPOINT_0)
863 continue;
864
865 if ((curdist_list->svc_id == WMI_DATA_BK_SVC) ||
866 (curdist_list->svc_id == WMI_DATA_BE_SVC))
867 curdist_list->dist_flags |= HTC_EP_ACTIVE;
868
869 if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
870 !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
871 if (curdist_list->txq_depth == 0)
872 ath6k_reduce_credits(info,
873 curdist_list, 0);
874 else
875 ath6k_reduce_credits(info,
876 curdist_list,
877 curdist_list->cred_min);
878 }
879 }
880 }
881
882 /*
883 *
884 * This function is invoked whenever endpoints require credit
885 * distributions. A lock is held while this function is invoked, this
886 * function shall NOT block. The ep_dist_list is a list of distribution
887 * structures in prioritized order as defined by the call to the
888 * htc_set_credit_dist() api.
889 */
890 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
891 struct list_head *ep_dist_list,
892 enum htc_credit_dist_reason reason)
893 {
894 switch (reason) {
895 case HTC_CREDIT_DIST_SEND_COMPLETE:
896 ath6k_credit_update(cred_info, ep_dist_list);
897 break;
898 case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
899 ath6k_redistribute_credits(cred_info, ep_dist_list);
900 break;
901 default:
902 break;
903 }
904
905 WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
906 WARN_ON(cred_info->cur_free_credits < 0);
907 }
908
909 void disconnect_timer_handler(unsigned long ptr)
910 {
911 struct net_device *dev = (struct net_device *)ptr;
912 struct ath6kl *ar = ath6kl_priv(dev);
913
914 ath6kl_init_profile_info(ar);
915 ath6kl_disconnect(ar);
916 }
917
918 void ath6kl_disconnect(struct ath6kl *ar)
919 {
920 if (test_bit(CONNECTED, &ar->flag) ||
921 test_bit(CONNECT_PEND, &ar->flag)) {
922 ath6kl_wmi_disconnect_cmd(ar->wmi);
923 /*
924 * Disconnect command is issued, clear the connect pending
925 * flag. The connected flag will be cleared in
926 * disconnect event notification.
927 */
928 clear_bit(CONNECT_PEND, &ar->flag);
929 }
930 }
931
932 void ath6kl_deep_sleep_enable(struct ath6kl *ar)
933 {
934 switch (ar->sme_state) {
935 case SME_CONNECTING:
936 cfg80211_connect_result(ar->net_dev, ar->bssid, NULL, 0,
937 NULL, 0,
938 WLAN_STATUS_UNSPECIFIED_FAILURE,
939 GFP_KERNEL);
940 break;
941 case SME_CONNECTED:
942 default:
943 /*
944 * FIXME: oddly enough smeState is in DISCONNECTED during
945 * suspend, why? Need to send disconnected event in that
946 * state.
947 */
948 cfg80211_disconnected(ar->net_dev, 0, NULL, 0, GFP_KERNEL);
949 break;
950 }
951
952 if (test_bit(CONNECTED, &ar->flag) ||
953 test_bit(CONNECT_PEND, &ar->flag))
954 ath6kl_wmi_disconnect_cmd(ar->wmi);
955
956 ar->sme_state = SME_DISCONNECTED;
957
958 /* disable scanning */
959 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0,
960 0, 0) != 0)
961 printk(KERN_WARNING "ath6kl: failed to disable scan "
962 "during suspend\n");
963
964 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
965 }
966
967 /* WMI Event handlers */
968
969 static const char *get_hw_id_string(u32 id)
970 {
971 switch (id) {
972 case AR6003_REV1_VERSION:
973 return "1.0";
974 case AR6003_REV2_VERSION:
975 return "2.0";
976 case AR6003_REV3_VERSION:
977 return "2.1.1";
978 default:
979 return "unknown";
980 }
981 }
982
983 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
984 {
985 struct ath6kl *ar = devt;
986 struct net_device *dev = ar->net_dev;
987
988 memcpy(dev->dev_addr, datap, ETH_ALEN);
989 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
990 __func__, dev->dev_addr);
991
992 ar->version.wlan_ver = sw_ver;
993 ar->version.abi_ver = abi_ver;
994
995 snprintf(ar->wdev->wiphy->fw_version,
996 sizeof(ar->wdev->wiphy->fw_version),
997 "%u.%u.%u.%u",
998 (ar->version.wlan_ver & 0xf0000000) >> 28,
999 (ar->version.wlan_ver & 0x0f000000) >> 24,
1000 (ar->version.wlan_ver & 0x00ff0000) >> 16,
1001 (ar->version.wlan_ver & 0x0000ffff));
1002
1003 /* indicate to the waiting thread that the ready event was received */
1004 set_bit(WMI_READY, &ar->flag);
1005 wake_up(&ar->event_wq);
1006
1007 ath6kl_info("hw %s fw %s%s\n",
1008 get_hw_id_string(ar->wdev->wiphy->hw_version),
1009 ar->wdev->wiphy->fw_version,
1010 test_bit(TESTMODE, &ar->flag) ? " testmode" : "");
1011 }
1012
1013 void ath6kl_scan_complete_evt(struct ath6kl *ar, int status)
1014 {
1015 ath6kl_cfg80211_scan_complete_event(ar, status);
1016
1017 if (!ar->usr_bss_filter)
1018 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1019
1020 ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
1021 }
1022
1023 void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid,
1024 u16 listen_int, u16 beacon_int,
1025 enum network_type net_type, u8 beacon_ie_len,
1026 u8 assoc_req_len, u8 assoc_resp_len,
1027 u8 *assoc_info)
1028 {
1029 unsigned long flags;
1030
1031 if (ar->nw_type == AP_NETWORK) {
1032 ath6kl_connect_ap_mode(ar, channel, bssid, listen_int,
1033 beacon_int, assoc_req_len,
1034 assoc_info + beacon_ie_len);
1035 return;
1036 }
1037
1038 ath6kl_cfg80211_connect_event(ar, channel, bssid,
1039 listen_int, beacon_int,
1040 net_type, beacon_ie_len,
1041 assoc_req_len, assoc_resp_len,
1042 assoc_info);
1043
1044 memcpy(ar->bssid, bssid, sizeof(ar->bssid));
1045 ar->bss_ch = channel;
1046
1047 if ((ar->nw_type == INFRA_NETWORK))
1048 ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t,
1049 ar->listen_intvl_b);
1050
1051 netif_wake_queue(ar->net_dev);
1052
1053 /* Update connect & link status atomically */
1054 spin_lock_irqsave(&ar->lock, flags);
1055 set_bit(CONNECTED, &ar->flag);
1056 clear_bit(CONNECT_PEND, &ar->flag);
1057 netif_carrier_on(ar->net_dev);
1058 spin_unlock_irqrestore(&ar->lock, flags);
1059
1060 aggr_reset_state(ar->aggr_cntxt);
1061 ar->reconnect_flag = 0;
1062
1063 if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
1064 memset(ar->node_map, 0, sizeof(ar->node_map));
1065 ar->node_num = 0;
1066 ar->next_ep_id = ENDPOINT_2;
1067 }
1068
1069 if (!ar->usr_bss_filter)
1070 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1071 }
1072
1073 void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast)
1074 {
1075 struct ath6kl_sta *sta;
1076 u8 tsc[6];
1077 /*
1078 * For AP case, keyid will have aid of STA which sent pkt with
1079 * MIC error. Use this aid to get MAC & send it to hostapd.
1080 */
1081 if (ar->nw_type == AP_NETWORK) {
1082 sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
1083 if (!sta)
1084 return;
1085
1086 ath6kl_dbg(ATH6KL_DBG_TRC,
1087 "ap tkip mic error received from aid=%d\n", keyid);
1088
1089 memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
1090 cfg80211_michael_mic_failure(ar->net_dev, sta->mac,
1091 NL80211_KEYTYPE_PAIRWISE, keyid,
1092 tsc, GFP_KERNEL);
1093 } else
1094 ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
1095
1096 }
1097
1098 static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len)
1099 {
1100 struct wmi_target_stats *tgt_stats =
1101 (struct wmi_target_stats *) ptr;
1102 struct target_stats *stats = &ar->target_stats;
1103 struct tkip_ccmp_stats *ccmp_stats;
1104 struct bss *conn_bss = NULL;
1105 struct cserv_stats *c_stats;
1106 u8 ac;
1107
1108 if (len < sizeof(*tgt_stats))
1109 return;
1110
1111 /* update the RSSI of the connected bss */
1112 if (test_bit(CONNECTED, &ar->flag)) {
1113 conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid);
1114 if (conn_bss) {
1115 c_stats = &tgt_stats->cserv_stats;
1116 conn_bss->ni_rssi =
1117 a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi);
1118 conn_bss->ni_snr =
1119 tgt_stats->cserv_stats.cs_ave_beacon_snr;
1120 ath6kl_wmi_node_return(ar->wmi, conn_bss);
1121 }
1122 }
1123
1124 ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
1125
1126 stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
1127 stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
1128 stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
1129 stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
1130 stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
1131 stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
1132 stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
1133 stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
1134 stats->tx_rts_success_cnt +=
1135 le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
1136
1137 for (ac = 0; ac < WMM_NUM_AC; ac++)
1138 stats->tx_pkt_per_ac[ac] +=
1139 le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
1140
1141 stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
1142 stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
1143 stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
1144 stats->tx_mult_retry_cnt +=
1145 le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
1146 stats->tx_rts_fail_cnt +=
1147 le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
1148 stats->tx_ucast_rate =
1149 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
1150
1151 stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
1152 stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
1153 stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
1154 stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
1155 stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
1156 stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
1157 stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
1158 stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
1159 stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
1160 stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
1161 stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
1162 stats->rx_key_cache_miss +=
1163 le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
1164 stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
1165 stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
1166 stats->rx_ucast_rate =
1167 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
1168
1169 ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1170
1171 stats->tkip_local_mic_fail +=
1172 le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1173 stats->tkip_cnter_measures_invoked +=
1174 le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1175 stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1176
1177 stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1178 stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1179
1180 stats->pwr_save_fail_cnt +=
1181 le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1182 stats->noise_floor_calib =
1183 a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1184
1185 stats->cs_bmiss_cnt +=
1186 le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1187 stats->cs_low_rssi_cnt +=
1188 le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1189 stats->cs_connect_cnt +=
1190 le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1191 stats->cs_discon_cnt +=
1192 le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1193
1194 stats->cs_ave_beacon_rssi =
1195 a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1196
1197 stats->cs_last_roam_msec =
1198 tgt_stats->cserv_stats.cs_last_roam_msec;
1199 stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1200 stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1201
1202 stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1203
1204 stats->wow_pkt_dropped +=
1205 le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1206 stats->wow_host_pkt_wakeups +=
1207 tgt_stats->wow_stats.wow_host_pkt_wakeups;
1208 stats->wow_host_evt_wakeups +=
1209 tgt_stats->wow_stats.wow_host_evt_wakeups;
1210 stats->wow_evt_discarded +=
1211 le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1212
1213 if (test_bit(STATS_UPDATE_PEND, &ar->flag)) {
1214 clear_bit(STATS_UPDATE_PEND, &ar->flag);
1215 wake_up(&ar->event_wq);
1216 }
1217 }
1218
1219 static void ath6kl_add_le32(__le32 *var, __le32 val)
1220 {
1221 *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1222 }
1223
1224 void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len)
1225 {
1226 struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1227 struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1228 struct wmi_per_sta_stat *st_ap, *st_p;
1229 u8 ac;
1230
1231 if (ar->nw_type == AP_NETWORK) {
1232 if (len < sizeof(*p))
1233 return;
1234
1235 for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1236 st_ap = &ap->sta[ac];
1237 st_p = &p->sta[ac];
1238
1239 ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1240 ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1241 ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1242 ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1243 ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1244 ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1245 ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1246 ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1247 }
1248
1249 } else {
1250 ath6kl_update_target_stats(ar, ptr, len);
1251 }
1252 }
1253
1254 void ath6kl_wakeup_event(void *dev)
1255 {
1256 struct ath6kl *ar = (struct ath6kl *) dev;
1257
1258 wake_up(&ar->event_wq);
1259 }
1260
1261 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1262 {
1263 struct ath6kl *ar = (struct ath6kl *) devt;
1264
1265 ar->tx_pwr = tx_pwr;
1266 wake_up(&ar->event_wq);
1267 }
1268
1269 void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid)
1270 {
1271 struct ath6kl_sta *conn;
1272 struct sk_buff *skb;
1273 bool psq_empty = false;
1274
1275 conn = ath6kl_find_sta_by_aid(ar, aid);
1276
1277 if (!conn)
1278 return;
1279 /*
1280 * Send out a packet queued on ps queue. When the ps queue
1281 * becomes empty update the PVB for this station.
1282 */
1283 spin_lock_bh(&conn->psq_lock);
1284 psq_empty = skb_queue_empty(&conn->psq);
1285 spin_unlock_bh(&conn->psq_lock);
1286
1287 if (psq_empty)
1288 /* TODO: Send out a NULL data frame */
1289 return;
1290
1291 spin_lock_bh(&conn->psq_lock);
1292 skb = skb_dequeue(&conn->psq);
1293 spin_unlock_bh(&conn->psq_lock);
1294
1295 conn->sta_flags |= STA_PS_POLLED;
1296 ath6kl_data_tx(skb, ar->net_dev);
1297 conn->sta_flags &= ~STA_PS_POLLED;
1298
1299 spin_lock_bh(&conn->psq_lock);
1300 psq_empty = skb_queue_empty(&conn->psq);
1301 spin_unlock_bh(&conn->psq_lock);
1302
1303 if (psq_empty)
1304 ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
1305 }
1306
1307 void ath6kl_dtimexpiry_event(struct ath6kl *ar)
1308 {
1309 bool mcastq_empty = false;
1310 struct sk_buff *skb;
1311
1312 /*
1313 * If there are no associated STAs, ignore the DTIM expiry event.
1314 * There can be potential race conditions where the last associated
1315 * STA may disconnect & before the host could clear the 'Indicate
1316 * DTIM' request to the firmware, the firmware would have just
1317 * indicated a DTIM expiry event. The race is between 'clear DTIM
1318 * expiry cmd' going from the host to the firmware & the DTIM
1319 * expiry event happening from the firmware to the host.
1320 */
1321 if (!ar->sta_list_index)
1322 return;
1323
1324 spin_lock_bh(&ar->mcastpsq_lock);
1325 mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1326 spin_unlock_bh(&ar->mcastpsq_lock);
1327
1328 if (mcastq_empty)
1329 return;
1330
1331 /* set the STA flag to dtim_expired for the frame to go out */
1332 set_bit(DTIM_EXPIRED, &ar->flag);
1333
1334 spin_lock_bh(&ar->mcastpsq_lock);
1335 while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1336 spin_unlock_bh(&ar->mcastpsq_lock);
1337
1338 ath6kl_data_tx(skb, ar->net_dev);
1339
1340 spin_lock_bh(&ar->mcastpsq_lock);
1341 }
1342 spin_unlock_bh(&ar->mcastpsq_lock);
1343
1344 clear_bit(DTIM_EXPIRED, &ar->flag);
1345
1346 /* clear the LSB of the BitMapCtl field of the TIM IE */
1347 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1348 }
1349
1350 void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid,
1351 u8 assoc_resp_len, u8 *assoc_info,
1352 u16 prot_reason_status)
1353 {
1354 struct bss *wmi_ssid_node = NULL;
1355 unsigned long flags;
1356
1357 if (ar->nw_type == AP_NETWORK) {
1358 if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1359 return;
1360
1361 /* if no more associated STAs, empty the mcast PS q */
1362 if (ar->sta_list_index == 0) {
1363 spin_lock_bh(&ar->mcastpsq_lock);
1364 skb_queue_purge(&ar->mcastpsq);
1365 spin_unlock_bh(&ar->mcastpsq_lock);
1366
1367 /* clear the LSB of the TIM IE's BitMapCtl field */
1368 if (test_bit(WMI_READY, &ar->flag))
1369 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1370 }
1371
1372 if (!is_broadcast_ether_addr(bssid)) {
1373 /* send event to application */
1374 cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL);
1375 }
1376
1377 if (memcmp(ar->net_dev->dev_addr, bssid, ETH_ALEN) == 0)
1378 clear_bit(CONNECTED, &ar->flag);
1379 return;
1380 }
1381
1382 ath6kl_cfg80211_disconnect_event(ar, reason, bssid,
1383 assoc_resp_len, assoc_info,
1384 prot_reason_status);
1385
1386 aggr_reset_state(ar->aggr_cntxt);
1387
1388 del_timer(&ar->disconnect_timer);
1389
1390 ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1391 "disconnect reason is %d\n", reason);
1392
1393 /*
1394 * If the event is due to disconnect cmd from the host, only they
1395 * the target would stop trying to connect. Under any other
1396 * condition, target would keep trying to connect.
1397 */
1398 if (reason == DISCONNECT_CMD) {
1399 if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1400 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1401 } else {
1402 set_bit(CONNECT_PEND, &ar->flag);
1403 if (((reason == ASSOC_FAILED) &&
1404 (prot_reason_status == 0x11)) ||
1405 ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1406 && (ar->reconnect_flag == 1))) {
1407 set_bit(CONNECTED, &ar->flag);
1408 return;
1409 }
1410 }
1411
1412 if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag)) {
1413 ath6kl_wmi_node_free(ar->wmi, bssid);
1414
1415 /*
1416 * In case any other same SSID nodes are present remove it,
1417 * since those nodes also not available now.
1418 */
1419 do {
1420 /*
1421 * Find the nodes based on SSID and remove it
1422 *
1423 * Note: This case will not work out for
1424 * Hidden-SSID
1425 */
1426 wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi,
1427 ar->ssid,
1428 ar->ssid_len,
1429 false,
1430 true);
1431
1432 if (wmi_ssid_node)
1433 ath6kl_wmi_node_free(ar->wmi,
1434 wmi_ssid_node->ni_macaddr);
1435
1436 } while (wmi_ssid_node);
1437 }
1438
1439 /* update connect & link status atomically */
1440 spin_lock_irqsave(&ar->lock, flags);
1441 clear_bit(CONNECTED, &ar->flag);
1442 netif_carrier_off(ar->net_dev);
1443 spin_unlock_irqrestore(&ar->lock, flags);
1444
1445 if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1))
1446 ar->reconnect_flag = 0;
1447
1448 if (reason != CSERV_DISCONNECT)
1449 ar->user_key_ctrl = 0;
1450
1451 netif_stop_queue(ar->net_dev);
1452 memset(ar->bssid, 0, sizeof(ar->bssid));
1453 ar->bss_ch = 0;
1454
1455 ath6kl_tx_data_cleanup(ar);
1456 }
1457
1458 static int ath6kl_open(struct net_device *dev)
1459 {
1460 struct ath6kl *ar = ath6kl_priv(dev);
1461 unsigned long flags;
1462
1463 spin_lock_irqsave(&ar->lock, flags);
1464
1465 set_bit(WLAN_ENABLED, &ar->flag);
1466
1467 if (test_bit(CONNECTED, &ar->flag)) {
1468 netif_carrier_on(dev);
1469 netif_wake_queue(dev);
1470 } else
1471 netif_carrier_off(dev);
1472
1473 spin_unlock_irqrestore(&ar->lock, flags);
1474
1475 return 0;
1476 }
1477
1478 static int ath6kl_close(struct net_device *dev)
1479 {
1480 struct ath6kl *ar = ath6kl_priv(dev);
1481
1482 netif_stop_queue(dev);
1483
1484 ath6kl_disconnect(ar);
1485
1486 if (test_bit(WMI_READY, &ar->flag)) {
1487 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0,
1488 0, 0, 0))
1489 return -EIO;
1490
1491 clear_bit(WLAN_ENABLED, &ar->flag);
1492 }
1493
1494 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
1495
1496 return 0;
1497 }
1498
1499 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1500 {
1501 struct ath6kl *ar = ath6kl_priv(dev);
1502
1503 return &ar->net_stats;
1504 }
1505
1506 static struct net_device_ops ath6kl_netdev_ops = {
1507 .ndo_open = ath6kl_open,
1508 .ndo_stop = ath6kl_close,
1509 .ndo_start_xmit = ath6kl_data_tx,
1510 .ndo_get_stats = ath6kl_get_stats,
1511 };
1512
1513 void init_netdev(struct net_device *dev)
1514 {
1515 dev->netdev_ops = &ath6kl_netdev_ops;
1516 dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1517
1518 dev->needed_headroom = ETH_HLEN;
1519 dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1520 sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1521 + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1522
1523 return;
1524 }
This page took 0.087576 seconds and 6 git commands to generate.