Merge branch 'misc-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / main.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 struct ath6kl_sta *conn = NULL;
26 u8 i, max_conn;
27
28 max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
29
30 for (i = 0; i < max_conn; i++) {
31 if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
32 conn = &ar->sta_list[i];
33 break;
34 }
35 }
36
37 return conn;
38 }
39
40 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
41 {
42 struct ath6kl_sta *conn = NULL;
43 u8 ctr;
44
45 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
46 if (ar->sta_list[ctr].aid == aid) {
47 conn = &ar->sta_list[ctr];
48 break;
49 }
50 }
51 return conn;
52 }
53
54 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
55 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
56 {
57 struct ath6kl_sta *sta;
58 u8 free_slot;
59
60 free_slot = aid - 1;
61
62 sta = &ar->sta_list[free_slot];
63 memcpy(sta->mac, mac, ETH_ALEN);
64 if (ielen <= ATH6KL_MAX_IE)
65 memcpy(sta->wpa_ie, wpaie, ielen);
66 sta->aid = aid;
67 sta->keymgmt = keymgmt;
68 sta->ucipher = ucipher;
69 sta->auth = auth;
70
71 ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
72 ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
73 }
74
75 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
76 {
77 struct ath6kl_sta *sta = &ar->sta_list[i];
78
79 /* empty the queued pkts in the PS queue if any */
80 spin_lock_bh(&sta->psq_lock);
81 skb_queue_purge(&sta->psq);
82 spin_unlock_bh(&sta->psq_lock);
83
84 memset(&ar->ap_stats.sta[sta->aid - 1], 0,
85 sizeof(struct wmi_per_sta_stat));
86 memset(sta->mac, 0, ETH_ALEN);
87 memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
88 sta->aid = 0;
89 sta->sta_flags = 0;
90
91 ar->sta_list_index = ar->sta_list_index & ~(1 << i);
92
93 }
94
95 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
96 {
97 u8 i, removed = 0;
98
99 if (is_zero_ether_addr(mac))
100 return removed;
101
102 if (is_broadcast_ether_addr(mac)) {
103 ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
104
105 for (i = 0; i < AP_MAX_NUM_STA; i++) {
106 if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
107 ath6kl_sta_cleanup(ar, i);
108 removed = 1;
109 }
110 }
111 } else {
112 for (i = 0; i < AP_MAX_NUM_STA; i++) {
113 if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
114 ath6kl_dbg(ATH6KL_DBG_TRC,
115 "deleting station %pM aid=%d reason=%d\n",
116 mac, ar->sta_list[i].aid, reason);
117 ath6kl_sta_cleanup(ar, i);
118 removed = 1;
119 break;
120 }
121 }
122 }
123
124 return removed;
125 }
126
127 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
128 {
129 struct ath6kl *ar = devt;
130 return ar->ac2ep_map[ac];
131 }
132
133 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
134 {
135 struct ath6kl_cookie *cookie;
136
137 cookie = ar->cookie_list;
138 if (cookie != NULL) {
139 ar->cookie_list = cookie->arc_list_next;
140 ar->cookie_count--;
141 }
142
143 return cookie;
144 }
145
146 void ath6kl_cookie_init(struct ath6kl *ar)
147 {
148 u32 i;
149
150 ar->cookie_list = NULL;
151 ar->cookie_count = 0;
152
153 memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
154
155 for (i = 0; i < MAX_COOKIE_NUM; i++)
156 ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
157 }
158
159 void ath6kl_cookie_cleanup(struct ath6kl *ar)
160 {
161 ar->cookie_list = NULL;
162 ar->cookie_count = 0;
163 }
164
165 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
166 {
167 /* Insert first */
168
169 if (!ar || !cookie)
170 return;
171
172 cookie->arc_list_next = ar->cookie_list;
173 ar->cookie_list = cookie;
174 ar->cookie_count++;
175 }
176
177 /* set the window address register (using 4-byte register access ). */
178 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
179 {
180 int status;
181 s32 i;
182 __le32 addr_val;
183
184 /*
185 * Write bytes 1,2,3 of the register to set the upper address bytes,
186 * the LSB is written last to initiate the access cycle
187 */
188
189 for (i = 1; i <= 3; i++) {
190 /*
191 * Fill the buffer with the address byte value we want to
192 * hit 4 times. No need to worry about endianness as the
193 * same byte is copied to all four bytes of addr_val at
194 * any time.
195 */
196 memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4);
197
198 /*
199 * Hit each byte of the register address with a 4-byte
200 * write operation to the same address, this is a harmless
201 * operation.
202 */
203 status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val,
204 4, HIF_WR_SYNC_BYTE_FIX);
205 if (status)
206 break;
207 }
208
209 if (status) {
210 ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
211 addr, reg_addr);
212 return status;
213 }
214
215 /*
216 * Write the address register again, this time write the whole
217 * 4-byte value. The effect here is that the LSB write causes the
218 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
219 * effect since we are writing the same values again
220 */
221 addr_val = cpu_to_le32(addr);
222 status = hif_read_write_sync(ar, reg_addr,
223 (u8 *)&(addr_val),
224 4, HIF_WR_SYNC_BYTE_INC);
225
226 if (status) {
227 ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
228 addr, reg_addr);
229 return status;
230 }
231
232 return 0;
233 }
234
235 /*
236 * Read from the hardware through its diagnostic window. No cooperation
237 * from the firmware is required for this.
238 */
239 int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
240 {
241 int ret;
242
243 /* set window register to start read cycle */
244 ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address);
245 if (ret)
246 return ret;
247
248 /* read the data */
249 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value,
250 sizeof(*value), HIF_RD_SYNC_BYTE_INC);
251 if (ret) {
252 ath6kl_warn("failed to read32 through diagnose window: %d\n",
253 ret);
254 return ret;
255 }
256
257 return 0;
258 }
259
260 /*
261 * Write to the ATH6KL through its diagnostic window. No cooperation from
262 * the Target is required for this.
263 */
264 int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
265 {
266 int ret;
267
268 /* set write data */
269 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value,
270 sizeof(value), HIF_WR_SYNC_BYTE_INC);
271 if (ret) {
272 ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
273 address, value);
274 return ret;
275 }
276
277 /* set window register, which starts the write cycle */
278 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
279 address);
280 }
281
282 int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
283 {
284 u32 count, *buf = data;
285 int ret;
286
287 if (WARN_ON(length % 4))
288 return -EINVAL;
289
290 for (count = 0; count < length / 4; count++, address += 4) {
291 ret = ath6kl_diag_read32(ar, address, &buf[count]);
292 if (ret)
293 return ret;
294 }
295
296 return 0;
297 }
298
299 int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
300 {
301 u32 count;
302 __le32 *buf = data;
303 int ret;
304
305 if (WARN_ON(length % 4))
306 return -EINVAL;
307
308 for (count = 0; count < length / 4; count++, address += 4) {
309 ret = ath6kl_diag_write32(ar, address, buf[count]);
310 if (ret)
311 return ret;
312 }
313
314 return 0;
315 }
316
317 int ath6kl_read_fwlogs(struct ath6kl *ar)
318 {
319 struct ath6kl_dbglog_hdr debug_hdr;
320 struct ath6kl_dbglog_buf debug_buf;
321 u32 address, length, dropped, firstbuf, debug_hdr_addr;
322 int ret = 0, loop;
323 u8 *buf;
324
325 buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
326 if (!buf)
327 return -ENOMEM;
328
329 address = TARG_VTOP(ar->target_type,
330 ath6kl_get_hi_item_addr(ar,
331 HI_ITEM(hi_dbglog_hdr)));
332
333 ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
334 if (ret)
335 goto out;
336
337 /* Get the contents of the ring buffer */
338 if (debug_hdr_addr == 0) {
339 ath6kl_warn("Invalid address for debug_hdr_addr\n");
340 ret = -EINVAL;
341 goto out;
342 }
343
344 address = TARG_VTOP(ar->target_type, debug_hdr_addr);
345 ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
346
347 address = TARG_VTOP(ar->target_type,
348 le32_to_cpu(debug_hdr.dbuf_addr));
349 firstbuf = address;
350 dropped = le32_to_cpu(debug_hdr.dropped);
351 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
352
353 loop = 100;
354
355 do {
356 address = TARG_VTOP(ar->target_type,
357 le32_to_cpu(debug_buf.buffer_addr));
358 length = le32_to_cpu(debug_buf.length);
359
360 if (length != 0 && (le32_to_cpu(debug_buf.length) <=
361 le32_to_cpu(debug_buf.bufsize))) {
362 length = ALIGN(length, 4);
363
364 ret = ath6kl_diag_read(ar, address,
365 buf, length);
366 if (ret)
367 goto out;
368
369 ath6kl_debug_fwlog_event(ar, buf, length);
370 }
371
372 address = TARG_VTOP(ar->target_type,
373 le32_to_cpu(debug_buf.next));
374 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
375 if (ret)
376 goto out;
377
378 loop--;
379
380 if (WARN_ON(loop == 0)) {
381 ret = -ETIMEDOUT;
382 goto out;
383 }
384 } while (address != firstbuf);
385
386 out:
387 kfree(buf);
388
389 return ret;
390 }
391
392 /* FIXME: move to a better place, target.h? */
393 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
394 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
395
396 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
397 bool wait_fot_compltn, bool cold_reset)
398 {
399 int status = 0;
400 u32 address;
401 __le32 data;
402
403 if (target_type != TARGET_TYPE_AR6003 &&
404 target_type != TARGET_TYPE_AR6004)
405 return;
406
407 data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) :
408 cpu_to_le32(RESET_CONTROL_MBOX_RST);
409
410 switch (target_type) {
411 case TARGET_TYPE_AR6003:
412 address = AR6003_RESET_CONTROL_ADDRESS;
413 break;
414 case TARGET_TYPE_AR6004:
415 address = AR6004_RESET_CONTROL_ADDRESS;
416 break;
417 default:
418 address = AR6003_RESET_CONTROL_ADDRESS;
419 break;
420 }
421
422 status = ath6kl_diag_write32(ar, address, data);
423
424 if (status)
425 ath6kl_err("failed to reset target\n");
426 }
427
428 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
429 bool get_dbglogs)
430 {
431 struct ath6kl *ar = ath6kl_priv(dev);
432 static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
433 bool discon_issued;
434
435 netif_stop_queue(dev);
436
437 /* disable the target and the interrupts associated with it */
438 if (test_bit(WMI_READY, &ar->flag)) {
439 discon_issued = (test_bit(CONNECTED, &ar->flag) ||
440 test_bit(CONNECT_PEND, &ar->flag));
441 ath6kl_disconnect(ar);
442 if (!keep_profile)
443 ath6kl_init_profile_info(ar);
444
445 del_timer(&ar->disconnect_timer);
446
447 clear_bit(WMI_READY, &ar->flag);
448 ath6kl_wmi_shutdown(ar->wmi);
449 clear_bit(WMI_ENABLED, &ar->flag);
450 ar->wmi = NULL;
451
452 /*
453 * After wmi_shudown all WMI events will be dropped. We
454 * need to cleanup the buffers allocated in AP mode and
455 * give disconnect notification to stack, which usually
456 * happens in the disconnect_event. Simulate the disconnect
457 * event by calling the function directly. Sometimes
458 * disconnect_event will be received when the debug logs
459 * are collected.
460 */
461 if (discon_issued)
462 ath6kl_disconnect_event(ar, DISCONNECT_CMD,
463 (ar->nw_type & AP_NETWORK) ?
464 bcast_mac : ar->bssid,
465 0, NULL, 0);
466
467 ar->user_key_ctrl = 0;
468
469 } else {
470 ath6kl_dbg(ATH6KL_DBG_TRC,
471 "%s: wmi is not ready 0x%p 0x%p\n",
472 __func__, ar, ar->wmi);
473
474 /* Shut down WMI if we have started it */
475 if (test_bit(WMI_ENABLED, &ar->flag)) {
476 ath6kl_dbg(ATH6KL_DBG_TRC,
477 "%s: shut down wmi\n", __func__);
478 ath6kl_wmi_shutdown(ar->wmi);
479 clear_bit(WMI_ENABLED, &ar->flag);
480 ar->wmi = NULL;
481 }
482 }
483
484 if (ar->htc_target) {
485 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
486 ath6kl_htc_stop(ar->htc_target);
487 }
488
489 /*
490 * Try to reset the device if we can. The driver may have been
491 * configure NOT to reset the target during a debug session.
492 */
493 ath6kl_dbg(ATH6KL_DBG_TRC,
494 "attempting to reset target on instance destroy\n");
495 ath6kl_reset_device(ar, ar->target_type, true, true);
496 }
497
498 static void ath6kl_install_static_wep_keys(struct ath6kl *ar)
499 {
500 u8 index;
501 u8 keyusage;
502
503 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
504 if (ar->wep_key_list[index].key_len) {
505 keyusage = GROUP_USAGE;
506 if (index == ar->def_txkey_index)
507 keyusage |= TX_USAGE;
508
509 ath6kl_wmi_addkey_cmd(ar->wmi,
510 index,
511 WEP_CRYPT,
512 keyusage,
513 ar->wep_key_list[index].key_len,
514 NULL,
515 ar->wep_key_list[index].key,
516 KEY_OP_INIT_VAL, NULL,
517 NO_SYNC_WMIFLAG);
518 }
519 }
520 }
521
522 void ath6kl_connect_ap_mode_bss(struct ath6kl *ar, u16 channel)
523 {
524 struct ath6kl_req_key *ik;
525 int res;
526 u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
527
528 ik = &ar->ap_mode_bkey;
529
530 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
531
532 switch (ar->auth_mode) {
533 case NONE_AUTH:
534 if (ar->prwise_crypto == WEP_CRYPT)
535 ath6kl_install_static_wep_keys(ar);
536 break;
537 case WPA_PSK_AUTH:
538 case WPA2_PSK_AUTH:
539 case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
540 if (!ik->valid)
541 break;
542
543 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
544 "the initial group key for AP mode\n");
545 memset(key_rsc, 0, sizeof(key_rsc));
546 res = ath6kl_wmi_addkey_cmd(
547 ar->wmi, ik->key_index, ik->key_type,
548 GROUP_USAGE, ik->key_len, key_rsc, ik->key,
549 KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
550 if (res) {
551 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
552 "addkey failed: %d\n", res);
553 }
554 break;
555 }
556
557 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
558 set_bit(CONNECTED, &ar->flag);
559 netif_carrier_on(ar->net_dev);
560 }
561
562 void ath6kl_connect_ap_mode_sta(struct ath6kl *ar, u16 aid, u8 *mac_addr,
563 u8 keymgmt, u8 ucipher, u8 auth,
564 u8 assoc_req_len, u8 *assoc_info)
565 {
566 u8 *ies = NULL, *wpa_ie = NULL, *pos;
567 size_t ies_len = 0;
568 struct station_info sinfo;
569
570 ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
571
572 if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
573 struct ieee80211_mgmt *mgmt =
574 (struct ieee80211_mgmt *) assoc_info;
575 if (ieee80211_is_assoc_req(mgmt->frame_control) &&
576 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
577 sizeof(mgmt->u.assoc_req)) {
578 ies = mgmt->u.assoc_req.variable;
579 ies_len = assoc_info + assoc_req_len - ies;
580 } else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
581 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
582 + sizeof(mgmt->u.reassoc_req)) {
583 ies = mgmt->u.reassoc_req.variable;
584 ies_len = assoc_info + assoc_req_len - ies;
585 }
586 }
587
588 pos = ies;
589 while (pos && pos + 1 < ies + ies_len) {
590 if (pos + 2 + pos[1] > ies + ies_len)
591 break;
592 if (pos[0] == WLAN_EID_RSN)
593 wpa_ie = pos; /* RSN IE */
594 else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
595 pos[1] >= 4 &&
596 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
597 if (pos[5] == 0x01)
598 wpa_ie = pos; /* WPA IE */
599 else if (pos[5] == 0x04) {
600 wpa_ie = pos; /* WPS IE */
601 break; /* overrides WPA/RSN IE */
602 }
603 }
604 pos += 2 + pos[1];
605 }
606
607 ath6kl_add_new_sta(ar, mac_addr, aid, wpa_ie,
608 wpa_ie ? 2 + wpa_ie[1] : 0,
609 keymgmt, ucipher, auth);
610
611 /* send event to application */
612 memset(&sinfo, 0, sizeof(sinfo));
613
614 /* TODO: sinfo.generation */
615
616 sinfo.assoc_req_ies = ies;
617 sinfo.assoc_req_ies_len = ies_len;
618 sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
619
620 cfg80211_new_sta(ar->net_dev, mac_addr, &sinfo, GFP_KERNEL);
621
622 netif_wake_queue(ar->net_dev);
623 }
624
625 /* Functions for Tx credit handling */
626 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
627 struct list_head *ep_list,
628 int tot_credits)
629 {
630 struct htc_endpoint_credit_dist *cur_ep_dist;
631 int count;
632
633 cred_info->cur_free_credits = tot_credits;
634 cred_info->total_avail_credits = tot_credits;
635
636 list_for_each_entry(cur_ep_dist, ep_list, list) {
637 if (cur_ep_dist->endpoint == ENDPOINT_0)
638 continue;
639
640 cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
641
642 if (tot_credits > 4)
643 if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
644 (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
645 ath6kl_deposit_credit_to_ep(cred_info,
646 cur_ep_dist,
647 cur_ep_dist->cred_min);
648 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
649 }
650
651 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
652 ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
653 cur_ep_dist->cred_min);
654 /*
655 * Control service is always marked active, it
656 * never goes inactive EVER.
657 */
658 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
659 } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
660 /* this is the lowest priority data endpoint */
661 cred_info->lowestpri_ep_dist = cur_ep_dist->list;
662
663 /*
664 * Streams have to be created (explicit | implicit) for all
665 * kinds of traffic. BE endpoints are also inactive in the
666 * beginning. When BE traffic starts it creates implicit
667 * streams that redistributes credits.
668 *
669 * Note: all other endpoints have minimums set but are
670 * initially given NO credits. credits will be distributed
671 * as traffic activity demands
672 */
673 }
674
675 WARN_ON(cred_info->cur_free_credits <= 0);
676
677 list_for_each_entry(cur_ep_dist, ep_list, list) {
678 if (cur_ep_dist->endpoint == ENDPOINT_0)
679 continue;
680
681 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
682 cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
683 else {
684 /*
685 * For the remaining data endpoints, we assume that
686 * each cred_per_msg are the same. We use a simple
687 * calculation here, we take the remaining credits
688 * and determine how many max messages this can
689 * cover and then set each endpoint's normal value
690 * equal to 3/4 this amount.
691 */
692 count = (cred_info->cur_free_credits /
693 cur_ep_dist->cred_per_msg)
694 * cur_ep_dist->cred_per_msg;
695 count = (count * 3) >> 2;
696 count = max(count, cur_ep_dist->cred_per_msg);
697 cur_ep_dist->cred_norm = count;
698
699 }
700 }
701 }
702
703 /* initialize and setup credit distribution */
704 int ath6k_setup_credit_dist(void *htc_handle,
705 struct htc_credit_state_info *cred_info)
706 {
707 u16 servicepriority[5];
708
709 memset(cred_info, 0, sizeof(struct htc_credit_state_info));
710
711 servicepriority[0] = WMI_CONTROL_SVC; /* highest */
712 servicepriority[1] = WMI_DATA_VO_SVC;
713 servicepriority[2] = WMI_DATA_VI_SVC;
714 servicepriority[3] = WMI_DATA_BE_SVC;
715 servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
716
717 /* set priority list */
718 ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
719
720 return 0;
721 }
722
723 /* reduce an ep's credits back to a set limit */
724 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
725 struct htc_endpoint_credit_dist *ep_dist,
726 int limit)
727 {
728 int credits;
729
730 ep_dist->cred_assngd = limit;
731
732 if (ep_dist->credits <= limit)
733 return;
734
735 credits = ep_dist->credits - limit;
736 ep_dist->credits -= credits;
737 cred_info->cur_free_credits += credits;
738 }
739
740 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
741 struct list_head *epdist_list)
742 {
743 struct htc_endpoint_credit_dist *cur_dist_list;
744
745 list_for_each_entry(cur_dist_list, epdist_list, list) {
746 if (cur_dist_list->endpoint == ENDPOINT_0)
747 continue;
748
749 if (cur_dist_list->cred_to_dist > 0) {
750 cur_dist_list->credits +=
751 cur_dist_list->cred_to_dist;
752 cur_dist_list->cred_to_dist = 0;
753 if (cur_dist_list->credits >
754 cur_dist_list->cred_assngd)
755 ath6k_reduce_credits(cred_info,
756 cur_dist_list,
757 cur_dist_list->cred_assngd);
758
759 if (cur_dist_list->credits >
760 cur_dist_list->cred_norm)
761 ath6k_reduce_credits(cred_info, cur_dist_list,
762 cur_dist_list->cred_norm);
763
764 if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
765 if (cur_dist_list->txq_depth == 0)
766 ath6k_reduce_credits(cred_info,
767 cur_dist_list, 0);
768 }
769 }
770 }
771 }
772
773 /*
774 * HTC has an endpoint that needs credits, ep_dist is the endpoint in
775 * question.
776 */
777 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
778 struct htc_endpoint_credit_dist *ep_dist)
779 {
780 struct htc_endpoint_credit_dist *curdist_list;
781 int credits = 0;
782 int need;
783
784 if (ep_dist->svc_id == WMI_CONTROL_SVC)
785 goto out;
786
787 if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
788 (ep_dist->svc_id == WMI_DATA_VO_SVC))
789 if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
790 goto out;
791
792 /*
793 * For all other services, we follow a simple algorithm of:
794 *
795 * 1. checking the free pool for credits
796 * 2. checking lower priority endpoints for credits to take
797 */
798
799 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
800
801 if (credits >= ep_dist->seek_cred)
802 goto out;
803
804 /*
805 * We don't have enough in the free pool, try taking away from
806 * lower priority services The rule for taking away credits:
807 *
808 * 1. Only take from lower priority endpoints
809 * 2. Only take what is allocated above the minimum (never
810 * starve an endpoint completely)
811 * 3. Only take what you need.
812 */
813
814 list_for_each_entry_reverse(curdist_list,
815 &cred_info->lowestpri_ep_dist,
816 list) {
817 if (curdist_list == ep_dist)
818 break;
819
820 need = ep_dist->seek_cred - cred_info->cur_free_credits;
821
822 if ((curdist_list->cred_assngd - need) >=
823 curdist_list->cred_min) {
824 /*
825 * The current one has been allocated more than
826 * it's minimum and it has enough credits assigned
827 * above it's minimum to fulfill our need try to
828 * take away just enough to fulfill our need.
829 */
830 ath6k_reduce_credits(cred_info, curdist_list,
831 curdist_list->cred_assngd - need);
832
833 if (cred_info->cur_free_credits >=
834 ep_dist->seek_cred)
835 break;
836 }
837
838 if (curdist_list->endpoint == ENDPOINT_0)
839 break;
840 }
841
842 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
843
844 out:
845 /* did we find some credits? */
846 if (credits)
847 ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
848
849 ep_dist->seek_cred = 0;
850 }
851
852 /* redistribute credits based on activity change */
853 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
854 struct list_head *ep_dist_list)
855 {
856 struct htc_endpoint_credit_dist *curdist_list;
857
858 list_for_each_entry(curdist_list, ep_dist_list, list) {
859 if (curdist_list->endpoint == ENDPOINT_0)
860 continue;
861
862 if ((curdist_list->svc_id == WMI_DATA_BK_SVC) ||
863 (curdist_list->svc_id == WMI_DATA_BE_SVC))
864 curdist_list->dist_flags |= HTC_EP_ACTIVE;
865
866 if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
867 !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
868 if (curdist_list->txq_depth == 0)
869 ath6k_reduce_credits(info,
870 curdist_list, 0);
871 else
872 ath6k_reduce_credits(info,
873 curdist_list,
874 curdist_list->cred_min);
875 }
876 }
877 }
878
879 /*
880 *
881 * This function is invoked whenever endpoints require credit
882 * distributions. A lock is held while this function is invoked, this
883 * function shall NOT block. The ep_dist_list is a list of distribution
884 * structures in prioritized order as defined by the call to the
885 * htc_set_credit_dist() api.
886 */
887 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
888 struct list_head *ep_dist_list,
889 enum htc_credit_dist_reason reason)
890 {
891 switch (reason) {
892 case HTC_CREDIT_DIST_SEND_COMPLETE:
893 ath6k_credit_update(cred_info, ep_dist_list);
894 break;
895 case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
896 ath6k_redistribute_credits(cred_info, ep_dist_list);
897 break;
898 default:
899 break;
900 }
901
902 WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
903 WARN_ON(cred_info->cur_free_credits < 0);
904 }
905
906 void disconnect_timer_handler(unsigned long ptr)
907 {
908 struct net_device *dev = (struct net_device *)ptr;
909 struct ath6kl *ar = ath6kl_priv(dev);
910
911 ath6kl_init_profile_info(ar);
912 ath6kl_disconnect(ar);
913 }
914
915 void ath6kl_disconnect(struct ath6kl *ar)
916 {
917 if (test_bit(CONNECTED, &ar->flag) ||
918 test_bit(CONNECT_PEND, &ar->flag)) {
919 ath6kl_wmi_disconnect_cmd(ar->wmi);
920 /*
921 * Disconnect command is issued, clear the connect pending
922 * flag. The connected flag will be cleared in
923 * disconnect event notification.
924 */
925 clear_bit(CONNECT_PEND, &ar->flag);
926 }
927 }
928
929 void ath6kl_deep_sleep_enable(struct ath6kl *ar)
930 {
931 switch (ar->sme_state) {
932 case SME_CONNECTING:
933 cfg80211_connect_result(ar->net_dev, ar->bssid, NULL, 0,
934 NULL, 0,
935 WLAN_STATUS_UNSPECIFIED_FAILURE,
936 GFP_KERNEL);
937 break;
938 case SME_CONNECTED:
939 default:
940 /*
941 * FIXME: oddly enough smeState is in DISCONNECTED during
942 * suspend, why? Need to send disconnected event in that
943 * state.
944 */
945 cfg80211_disconnected(ar->net_dev, 0, NULL, 0, GFP_KERNEL);
946 break;
947 }
948
949 if (test_bit(CONNECTED, &ar->flag) ||
950 test_bit(CONNECT_PEND, &ar->flag))
951 ath6kl_wmi_disconnect_cmd(ar->wmi);
952
953 ar->sme_state = SME_DISCONNECTED;
954
955 /* disable scanning */
956 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0,
957 0, 0) != 0)
958 printk(KERN_WARNING "ath6kl: failed to disable scan "
959 "during suspend\n");
960
961 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
962 }
963
964 /* WMI Event handlers */
965
966 static const char *get_hw_id_string(u32 id)
967 {
968 switch (id) {
969 case AR6003_REV1_VERSION:
970 return "1.0";
971 case AR6003_REV2_VERSION:
972 return "2.0";
973 case AR6003_REV3_VERSION:
974 return "2.1.1";
975 default:
976 return "unknown";
977 }
978 }
979
980 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
981 {
982 struct ath6kl *ar = devt;
983 struct net_device *dev = ar->net_dev;
984
985 memcpy(dev->dev_addr, datap, ETH_ALEN);
986 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
987 __func__, dev->dev_addr);
988
989 ar->version.wlan_ver = sw_ver;
990 ar->version.abi_ver = abi_ver;
991
992 snprintf(ar->wdev->wiphy->fw_version,
993 sizeof(ar->wdev->wiphy->fw_version),
994 "%u.%u.%u.%u",
995 (ar->version.wlan_ver & 0xf0000000) >> 28,
996 (ar->version.wlan_ver & 0x0f000000) >> 24,
997 (ar->version.wlan_ver & 0x00ff0000) >> 16,
998 (ar->version.wlan_ver & 0x0000ffff));
999
1000 /* indicate to the waiting thread that the ready event was received */
1001 set_bit(WMI_READY, &ar->flag);
1002 wake_up(&ar->event_wq);
1003
1004 ath6kl_info("hw %s fw %s%s\n",
1005 get_hw_id_string(ar->wdev->wiphy->hw_version),
1006 ar->wdev->wiphy->fw_version,
1007 test_bit(TESTMODE, &ar->flag) ? " testmode" : "");
1008 }
1009
1010 void ath6kl_scan_complete_evt(struct ath6kl *ar, int status)
1011 {
1012 ath6kl_cfg80211_scan_complete_event(ar, status);
1013
1014 if (!ar->usr_bss_filter) {
1015 clear_bit(CLEAR_BSSFILTER_ON_BEACON, &ar->flag);
1016 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1017 }
1018
1019 ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
1020 }
1021
1022 void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid,
1023 u16 listen_int, u16 beacon_int,
1024 enum network_type net_type, u8 beacon_ie_len,
1025 u8 assoc_req_len, u8 assoc_resp_len,
1026 u8 *assoc_info)
1027 {
1028 unsigned long flags;
1029
1030 ath6kl_cfg80211_connect_event(ar, channel, bssid,
1031 listen_int, beacon_int,
1032 net_type, beacon_ie_len,
1033 assoc_req_len, assoc_resp_len,
1034 assoc_info);
1035
1036 memcpy(ar->bssid, bssid, sizeof(ar->bssid));
1037 ar->bss_ch = channel;
1038
1039 if ((ar->nw_type == INFRA_NETWORK))
1040 ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t,
1041 ar->listen_intvl_b);
1042
1043 netif_wake_queue(ar->net_dev);
1044
1045 /* Update connect & link status atomically */
1046 spin_lock_irqsave(&ar->lock, flags);
1047 set_bit(CONNECTED, &ar->flag);
1048 clear_bit(CONNECT_PEND, &ar->flag);
1049 netif_carrier_on(ar->net_dev);
1050 spin_unlock_irqrestore(&ar->lock, flags);
1051
1052 aggr_reset_state(ar->aggr_cntxt);
1053 ar->reconnect_flag = 0;
1054
1055 if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
1056 memset(ar->node_map, 0, sizeof(ar->node_map));
1057 ar->node_num = 0;
1058 ar->next_ep_id = ENDPOINT_2;
1059 }
1060
1061 if (!ar->usr_bss_filter) {
1062 set_bit(CLEAR_BSSFILTER_ON_BEACON, &ar->flag);
1063 ath6kl_wmi_bssfilter_cmd(ar->wmi, CURRENT_BSS_FILTER, 0);
1064 }
1065 }
1066
1067 void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast)
1068 {
1069 struct ath6kl_sta *sta;
1070 u8 tsc[6];
1071 /*
1072 * For AP case, keyid will have aid of STA which sent pkt with
1073 * MIC error. Use this aid to get MAC & send it to hostapd.
1074 */
1075 if (ar->nw_type == AP_NETWORK) {
1076 sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
1077 if (!sta)
1078 return;
1079
1080 ath6kl_dbg(ATH6KL_DBG_TRC,
1081 "ap tkip mic error received from aid=%d\n", keyid);
1082
1083 memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
1084 cfg80211_michael_mic_failure(ar->net_dev, sta->mac,
1085 NL80211_KEYTYPE_PAIRWISE, keyid,
1086 tsc, GFP_KERNEL);
1087 } else
1088 ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast);
1089
1090 }
1091
1092 static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len)
1093 {
1094 struct wmi_target_stats *tgt_stats =
1095 (struct wmi_target_stats *) ptr;
1096 struct target_stats *stats = &ar->target_stats;
1097 struct tkip_ccmp_stats *ccmp_stats;
1098 u8 ac;
1099
1100 if (len < sizeof(*tgt_stats))
1101 return;
1102
1103 ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
1104
1105 stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
1106 stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
1107 stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
1108 stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
1109 stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
1110 stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
1111 stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
1112 stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
1113 stats->tx_rts_success_cnt +=
1114 le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
1115
1116 for (ac = 0; ac < WMM_NUM_AC; ac++)
1117 stats->tx_pkt_per_ac[ac] +=
1118 le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
1119
1120 stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
1121 stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
1122 stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
1123 stats->tx_mult_retry_cnt +=
1124 le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
1125 stats->tx_rts_fail_cnt +=
1126 le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
1127 stats->tx_ucast_rate =
1128 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
1129
1130 stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
1131 stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
1132 stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
1133 stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
1134 stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
1135 stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
1136 stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
1137 stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
1138 stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
1139 stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
1140 stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
1141 stats->rx_key_cache_miss +=
1142 le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
1143 stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
1144 stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
1145 stats->rx_ucast_rate =
1146 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
1147
1148 ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1149
1150 stats->tkip_local_mic_fail +=
1151 le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1152 stats->tkip_cnter_measures_invoked +=
1153 le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1154 stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1155
1156 stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1157 stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1158
1159 stats->pwr_save_fail_cnt +=
1160 le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1161 stats->noise_floor_calib =
1162 a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1163
1164 stats->cs_bmiss_cnt +=
1165 le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1166 stats->cs_low_rssi_cnt +=
1167 le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1168 stats->cs_connect_cnt +=
1169 le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1170 stats->cs_discon_cnt +=
1171 le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1172
1173 stats->cs_ave_beacon_rssi =
1174 a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1175
1176 stats->cs_last_roam_msec =
1177 tgt_stats->cserv_stats.cs_last_roam_msec;
1178 stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1179 stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1180
1181 stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1182
1183 stats->wow_pkt_dropped +=
1184 le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1185 stats->wow_host_pkt_wakeups +=
1186 tgt_stats->wow_stats.wow_host_pkt_wakeups;
1187 stats->wow_host_evt_wakeups +=
1188 tgt_stats->wow_stats.wow_host_evt_wakeups;
1189 stats->wow_evt_discarded +=
1190 le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1191
1192 if (test_bit(STATS_UPDATE_PEND, &ar->flag)) {
1193 clear_bit(STATS_UPDATE_PEND, &ar->flag);
1194 wake_up(&ar->event_wq);
1195 }
1196 }
1197
1198 static void ath6kl_add_le32(__le32 *var, __le32 val)
1199 {
1200 *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1201 }
1202
1203 void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len)
1204 {
1205 struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1206 struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1207 struct wmi_per_sta_stat *st_ap, *st_p;
1208 u8 ac;
1209
1210 if (ar->nw_type == AP_NETWORK) {
1211 if (len < sizeof(*p))
1212 return;
1213
1214 for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1215 st_ap = &ap->sta[ac];
1216 st_p = &p->sta[ac];
1217
1218 ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1219 ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1220 ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1221 ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1222 ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1223 ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1224 ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1225 ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1226 }
1227
1228 } else {
1229 ath6kl_update_target_stats(ar, ptr, len);
1230 }
1231 }
1232
1233 void ath6kl_wakeup_event(void *dev)
1234 {
1235 struct ath6kl *ar = (struct ath6kl *) dev;
1236
1237 wake_up(&ar->event_wq);
1238 }
1239
1240 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1241 {
1242 struct ath6kl *ar = (struct ath6kl *) devt;
1243
1244 ar->tx_pwr = tx_pwr;
1245 wake_up(&ar->event_wq);
1246 }
1247
1248 void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid)
1249 {
1250 struct ath6kl_sta *conn;
1251 struct sk_buff *skb;
1252 bool psq_empty = false;
1253
1254 conn = ath6kl_find_sta_by_aid(ar, aid);
1255
1256 if (!conn)
1257 return;
1258 /*
1259 * Send out a packet queued on ps queue. When the ps queue
1260 * becomes empty update the PVB for this station.
1261 */
1262 spin_lock_bh(&conn->psq_lock);
1263 psq_empty = skb_queue_empty(&conn->psq);
1264 spin_unlock_bh(&conn->psq_lock);
1265
1266 if (psq_empty)
1267 /* TODO: Send out a NULL data frame */
1268 return;
1269
1270 spin_lock_bh(&conn->psq_lock);
1271 skb = skb_dequeue(&conn->psq);
1272 spin_unlock_bh(&conn->psq_lock);
1273
1274 conn->sta_flags |= STA_PS_POLLED;
1275 ath6kl_data_tx(skb, ar->net_dev);
1276 conn->sta_flags &= ~STA_PS_POLLED;
1277
1278 spin_lock_bh(&conn->psq_lock);
1279 psq_empty = skb_queue_empty(&conn->psq);
1280 spin_unlock_bh(&conn->psq_lock);
1281
1282 if (psq_empty)
1283 ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0);
1284 }
1285
1286 void ath6kl_dtimexpiry_event(struct ath6kl *ar)
1287 {
1288 bool mcastq_empty = false;
1289 struct sk_buff *skb;
1290
1291 /*
1292 * If there are no associated STAs, ignore the DTIM expiry event.
1293 * There can be potential race conditions where the last associated
1294 * STA may disconnect & before the host could clear the 'Indicate
1295 * DTIM' request to the firmware, the firmware would have just
1296 * indicated a DTIM expiry event. The race is between 'clear DTIM
1297 * expiry cmd' going from the host to the firmware & the DTIM
1298 * expiry event happening from the firmware to the host.
1299 */
1300 if (!ar->sta_list_index)
1301 return;
1302
1303 spin_lock_bh(&ar->mcastpsq_lock);
1304 mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1305 spin_unlock_bh(&ar->mcastpsq_lock);
1306
1307 if (mcastq_empty)
1308 return;
1309
1310 /* set the STA flag to dtim_expired for the frame to go out */
1311 set_bit(DTIM_EXPIRED, &ar->flag);
1312
1313 spin_lock_bh(&ar->mcastpsq_lock);
1314 while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1315 spin_unlock_bh(&ar->mcastpsq_lock);
1316
1317 ath6kl_data_tx(skb, ar->net_dev);
1318
1319 spin_lock_bh(&ar->mcastpsq_lock);
1320 }
1321 spin_unlock_bh(&ar->mcastpsq_lock);
1322
1323 clear_bit(DTIM_EXPIRED, &ar->flag);
1324
1325 /* clear the LSB of the BitMapCtl field of the TIM IE */
1326 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1327 }
1328
1329 void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid,
1330 u8 assoc_resp_len, u8 *assoc_info,
1331 u16 prot_reason_status)
1332 {
1333 unsigned long flags;
1334
1335 if (ar->nw_type == AP_NETWORK) {
1336 if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1337 return;
1338
1339 /* if no more associated STAs, empty the mcast PS q */
1340 if (ar->sta_list_index == 0) {
1341 spin_lock_bh(&ar->mcastpsq_lock);
1342 skb_queue_purge(&ar->mcastpsq);
1343 spin_unlock_bh(&ar->mcastpsq_lock);
1344
1345 /* clear the LSB of the TIM IE's BitMapCtl field */
1346 if (test_bit(WMI_READY, &ar->flag))
1347 ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0);
1348 }
1349
1350 if (!is_broadcast_ether_addr(bssid)) {
1351 /* send event to application */
1352 cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL);
1353 }
1354
1355 if (memcmp(ar->net_dev->dev_addr, bssid, ETH_ALEN) == 0) {
1356 memset(ar->wep_key_list, 0, sizeof(ar->wep_key_list));
1357 clear_bit(CONNECTED, &ar->flag);
1358 }
1359 return;
1360 }
1361
1362 ath6kl_cfg80211_disconnect_event(ar, reason, bssid,
1363 assoc_resp_len, assoc_info,
1364 prot_reason_status);
1365
1366 aggr_reset_state(ar->aggr_cntxt);
1367
1368 del_timer(&ar->disconnect_timer);
1369
1370 ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1371 "disconnect reason is %d\n", reason);
1372
1373 /*
1374 * If the event is due to disconnect cmd from the host, only they
1375 * the target would stop trying to connect. Under any other
1376 * condition, target would keep trying to connect.
1377 */
1378 if (reason == DISCONNECT_CMD) {
1379 if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1380 ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0);
1381 } else {
1382 set_bit(CONNECT_PEND, &ar->flag);
1383 if (((reason == ASSOC_FAILED) &&
1384 (prot_reason_status == 0x11)) ||
1385 ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1386 && (ar->reconnect_flag == 1))) {
1387 set_bit(CONNECTED, &ar->flag);
1388 return;
1389 }
1390 }
1391
1392 /* update connect & link status atomically */
1393 spin_lock_irqsave(&ar->lock, flags);
1394 clear_bit(CONNECTED, &ar->flag);
1395 netif_carrier_off(ar->net_dev);
1396 spin_unlock_irqrestore(&ar->lock, flags);
1397
1398 if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1))
1399 ar->reconnect_flag = 0;
1400
1401 if (reason != CSERV_DISCONNECT)
1402 ar->user_key_ctrl = 0;
1403
1404 netif_stop_queue(ar->net_dev);
1405 memset(ar->bssid, 0, sizeof(ar->bssid));
1406 ar->bss_ch = 0;
1407
1408 ath6kl_tx_data_cleanup(ar);
1409 }
1410
1411 static int ath6kl_open(struct net_device *dev)
1412 {
1413 struct ath6kl *ar = ath6kl_priv(dev);
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ar->lock, flags);
1417
1418 set_bit(WLAN_ENABLED, &ar->flag);
1419
1420 if (test_bit(CONNECTED, &ar->flag)) {
1421 netif_carrier_on(dev);
1422 netif_wake_queue(dev);
1423 } else
1424 netif_carrier_off(dev);
1425
1426 spin_unlock_irqrestore(&ar->lock, flags);
1427
1428 return 0;
1429 }
1430
1431 static int ath6kl_close(struct net_device *dev)
1432 {
1433 struct ath6kl *ar = ath6kl_priv(dev);
1434
1435 netif_stop_queue(dev);
1436
1437 ath6kl_disconnect(ar);
1438
1439 if (test_bit(WMI_READY, &ar->flag)) {
1440 if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0,
1441 0, 0, 0))
1442 return -EIO;
1443
1444 clear_bit(WLAN_ENABLED, &ar->flag);
1445 }
1446
1447 ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED);
1448
1449 return 0;
1450 }
1451
1452 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1453 {
1454 struct ath6kl *ar = ath6kl_priv(dev);
1455
1456 return &ar->net_stats;
1457 }
1458
1459 static struct net_device_ops ath6kl_netdev_ops = {
1460 .ndo_open = ath6kl_open,
1461 .ndo_stop = ath6kl_close,
1462 .ndo_start_xmit = ath6kl_data_tx,
1463 .ndo_get_stats = ath6kl_get_stats,
1464 };
1465
1466 void init_netdev(struct net_device *dev)
1467 {
1468 dev->netdev_ops = &ath6kl_netdev_ops;
1469 dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1470
1471 dev->needed_headroom = ETH_HLEN;
1472 dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1473 sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1474 + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1475
1476 return;
1477 }
This page took 0.064051 seconds and 6 git commands to generate.