4febee723495c672f6a4f86e10117b1c81097381
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / sdio.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/module.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/sdio_func.h>
22 #include <linux/mmc/sdio_ids.h>
23 #include <linux/mmc/sdio.h>
24 #include <linux/mmc/sd.h>
25 #include "hif.h"
26 #include "hif-ops.h"
27 #include "target.h"
28 #include "debug.h"
29 #include "cfg80211.h"
30
31 struct ath6kl_sdio {
32 struct sdio_func *func;
33
34 spinlock_t lock;
35
36 /* free list */
37 struct list_head bus_req_freeq;
38
39 /* available bus requests */
40 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
41
42 struct ath6kl *ar;
43
44 u8 *dma_buffer;
45
46 /* protects access to dma_buffer */
47 struct mutex dma_buffer_mutex;
48
49 /* scatter request list head */
50 struct list_head scat_req;
51
52 /* Avoids disabling irq while the interrupts being handled */
53 struct mutex mtx_irq;
54
55 spinlock_t scat_lock;
56 bool scatter_enabled;
57
58 bool is_disabled;
59 const struct sdio_device_id *id;
60 struct work_struct wr_async_work;
61 struct list_head wr_asyncq;
62 spinlock_t wr_async_lock;
63 };
64
65 #define CMD53_ARG_READ 0
66 #define CMD53_ARG_WRITE 1
67 #define CMD53_ARG_BLOCK_BASIS 1
68 #define CMD53_ARG_FIXED_ADDRESS 0
69 #define CMD53_ARG_INCR_ADDRESS 1
70
71 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
72 {
73 return ar->hif_priv;
74 }
75
76 /*
77 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
78 * Most host controllers assume the buffer is DMA'able and will
79 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
80 * check fails on stack memory.
81 */
82 static inline bool buf_needs_bounce(u8 *buf)
83 {
84 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
85 }
86
87 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
88 {
89 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
90
91 /* EP1 has an extended range */
92 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
93 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
94 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
95 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
96 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
97 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
98 }
99
100 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
101 u8 mode, u8 opcode, u32 addr,
102 u16 blksz)
103 {
104 *arg = (((rw & 1) << 31) |
105 ((func & 0x7) << 28) |
106 ((mode & 1) << 27) |
107 ((opcode & 1) << 26) |
108 ((addr & 0x1FFFF) << 9) |
109 (blksz & 0x1FF));
110 }
111
112 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
113 unsigned int address,
114 unsigned char val)
115 {
116 const u8 func = 0;
117
118 *arg = ((write & 1) << 31) |
119 ((func & 0x7) << 28) |
120 ((raw & 1) << 27) |
121 (1 << 26) |
122 ((address & 0x1FFFF) << 9) |
123 (1 << 8) |
124 (val & 0xFF);
125 }
126
127 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
128 unsigned int address,
129 unsigned char byte)
130 {
131 struct mmc_command io_cmd;
132
133 memset(&io_cmd, 0, sizeof(io_cmd));
134 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
135 io_cmd.opcode = SD_IO_RW_DIRECT;
136 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
137
138 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
139 }
140
141 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
142 u8 *buf, u32 len)
143 {
144 int ret = 0;
145
146 sdio_claim_host(func);
147
148 if (request & HIF_WRITE) {
149 /* FIXME: looks like ugly workaround for something */
150 if (addr >= HIF_MBOX_BASE_ADDR &&
151 addr <= HIF_MBOX_END_ADDR)
152 addr += (HIF_MBOX_WIDTH - len);
153
154 /* FIXME: this also looks like ugly workaround */
155 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
156 addr += HIF_MBOX0_EXT_WIDTH - len;
157
158 if (request & HIF_FIXED_ADDRESS)
159 ret = sdio_writesb(func, addr, buf, len);
160 else
161 ret = sdio_memcpy_toio(func, addr, buf, len);
162 } else {
163 if (request & HIF_FIXED_ADDRESS)
164 ret = sdio_readsb(func, buf, addr, len);
165 else
166 ret = sdio_memcpy_fromio(func, buf, addr, len);
167 }
168
169 sdio_release_host(func);
170
171 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
172 request & HIF_WRITE ? "wr" : "rd", addr,
173 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
174 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
175
176 return ret;
177 }
178
179 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
180 {
181 struct bus_request *bus_req;
182
183 spin_lock_bh(&ar_sdio->lock);
184
185 if (list_empty(&ar_sdio->bus_req_freeq)) {
186 spin_unlock_bh(&ar_sdio->lock);
187 return NULL;
188 }
189
190 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
191 struct bus_request, list);
192 list_del(&bus_req->list);
193
194 spin_unlock_bh(&ar_sdio->lock);
195 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
196 __func__, bus_req);
197
198 return bus_req;
199 }
200
201 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
202 struct bus_request *bus_req)
203 {
204 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
205 __func__, bus_req);
206
207 spin_lock_bh(&ar_sdio->lock);
208 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
209 spin_unlock_bh(&ar_sdio->lock);
210 }
211
212 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
213 struct mmc_data *data)
214 {
215 struct scatterlist *sg;
216 int i;
217
218 data->blksz = HIF_MBOX_BLOCK_SIZE;
219 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
220
221 ath6kl_dbg(ATH6KL_DBG_SCATTER,
222 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
223 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
224 data->blksz, data->blocks, scat_req->len,
225 scat_req->scat_entries);
226
227 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
228 MMC_DATA_READ;
229
230 /* fill SG entries */
231 sg = scat_req->sgentries;
232 sg_init_table(sg, scat_req->scat_entries);
233
234 /* assemble SG list */
235 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
236 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
237 i, scat_req->scat_list[i].buf,
238 scat_req->scat_list[i].len);
239
240 sg_set_buf(sg, scat_req->scat_list[i].buf,
241 scat_req->scat_list[i].len);
242 }
243
244 /* set scatter-gather table for request */
245 data->sg = scat_req->sgentries;
246 data->sg_len = scat_req->scat_entries;
247 }
248
249 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
250 struct bus_request *req)
251 {
252 struct mmc_request mmc_req;
253 struct mmc_command cmd;
254 struct mmc_data data;
255 struct hif_scatter_req *scat_req;
256 u8 opcode, rw;
257 int status, len;
258
259 scat_req = req->scat_req;
260
261 if (scat_req->virt_scat) {
262 len = scat_req->len;
263 if (scat_req->req & HIF_BLOCK_BASIS)
264 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
265
266 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
267 scat_req->addr, scat_req->virt_dma_buf,
268 len);
269 goto scat_complete;
270 }
271
272 memset(&mmc_req, 0, sizeof(struct mmc_request));
273 memset(&cmd, 0, sizeof(struct mmc_command));
274 memset(&data, 0, sizeof(struct mmc_data));
275
276 ath6kl_sdio_setup_scat_data(scat_req, &data);
277
278 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
279 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
280
281 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
282
283 /* Fixup the address so that the last byte will fall on MBOX EOM */
284 if (scat_req->req & HIF_WRITE) {
285 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
286 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
287 else
288 /* Uses extended address range */
289 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
290 }
291
292 /* set command argument */
293 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
294 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
295 data.blocks);
296
297 cmd.opcode = SD_IO_RW_EXTENDED;
298 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
299
300 mmc_req.cmd = &cmd;
301 mmc_req.data = &data;
302
303 sdio_claim_host(ar_sdio->func);
304
305 mmc_set_data_timeout(&data, ar_sdio->func->card);
306 /* synchronous call to process request */
307 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
308
309 sdio_release_host(ar_sdio->func);
310
311 status = cmd.error ? cmd.error : data.error;
312
313 scat_complete:
314 scat_req->status = status;
315
316 if (scat_req->status)
317 ath6kl_err("Scatter write request failed:%d\n",
318 scat_req->status);
319
320 if (scat_req->req & HIF_ASYNCHRONOUS)
321 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
322
323 return status;
324 }
325
326 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
327 int n_scat_entry, int n_scat_req,
328 bool virt_scat)
329 {
330 struct hif_scatter_req *s_req;
331 struct bus_request *bus_req;
332 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
333 u8 *virt_buf;
334
335 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
336 scat_req_sz = sizeof(*s_req) + scat_list_sz;
337
338 if (!virt_scat)
339 sg_sz = sizeof(struct scatterlist) * n_scat_entry;
340 else
341 buf_sz = 2 * L1_CACHE_BYTES +
342 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
343
344 for (i = 0; i < n_scat_req; i++) {
345 /* allocate the scatter request */
346 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
347 if (!s_req)
348 return -ENOMEM;
349
350 if (virt_scat) {
351 virt_buf = kzalloc(buf_sz, GFP_KERNEL);
352 if (!virt_buf) {
353 kfree(s_req);
354 return -ENOMEM;
355 }
356
357 s_req->virt_dma_buf =
358 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
359 } else {
360 /* allocate sglist */
361 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
362
363 if (!s_req->sgentries) {
364 kfree(s_req);
365 return -ENOMEM;
366 }
367 }
368
369 /* allocate a bus request for this scatter request */
370 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
371 if (!bus_req) {
372 kfree(s_req->sgentries);
373 kfree(s_req->virt_dma_buf);
374 kfree(s_req);
375 return -ENOMEM;
376 }
377
378 /* assign the scatter request to this bus request */
379 bus_req->scat_req = s_req;
380 s_req->busrequest = bus_req;
381
382 s_req->virt_scat = virt_scat;
383
384 /* add it to the scatter pool */
385 hif_scatter_req_add(ar_sdio->ar, s_req);
386 }
387
388 return 0;
389 }
390
391 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
392 u32 len, u32 request)
393 {
394 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
395 u8 *tbuf = NULL;
396 int ret;
397 bool bounced = false;
398
399 if (request & HIF_BLOCK_BASIS)
400 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
401
402 if (buf_needs_bounce(buf)) {
403 if (!ar_sdio->dma_buffer)
404 return -ENOMEM;
405 mutex_lock(&ar_sdio->dma_buffer_mutex);
406 tbuf = ar_sdio->dma_buffer;
407 memcpy(tbuf, buf, len);
408 bounced = true;
409 } else
410 tbuf = buf;
411
412 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
413 if ((request & HIF_READ) && bounced)
414 memcpy(buf, tbuf, len);
415
416 if (bounced)
417 mutex_unlock(&ar_sdio->dma_buffer_mutex);
418
419 return ret;
420 }
421
422 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
423 struct bus_request *req)
424 {
425 if (req->scat_req)
426 ath6kl_sdio_scat_rw(ar_sdio, req);
427 else {
428 void *context;
429 int status;
430
431 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
432 req->buffer, req->length,
433 req->request);
434 context = req->packet;
435 ath6kl_sdio_free_bus_req(ar_sdio, req);
436 ath6kl_hif_rw_comp_handler(context, status);
437 }
438 }
439
440 static void ath6kl_sdio_write_async_work(struct work_struct *work)
441 {
442 struct ath6kl_sdio *ar_sdio;
443 struct bus_request *req, *tmp_req;
444
445 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
446
447 spin_lock_bh(&ar_sdio->wr_async_lock);
448 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
449 list_del(&req->list);
450 spin_unlock_bh(&ar_sdio->wr_async_lock);
451 __ath6kl_sdio_write_async(ar_sdio, req);
452 spin_lock_bh(&ar_sdio->wr_async_lock);
453 }
454 spin_unlock_bh(&ar_sdio->wr_async_lock);
455 }
456
457 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
458 {
459 int status;
460 struct ath6kl_sdio *ar_sdio;
461
462 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
463
464 ar_sdio = sdio_get_drvdata(func);
465 mutex_lock(&ar_sdio->mtx_irq);
466 /*
467 * Release the host during interrups so we can pick it back up when
468 * we process commands.
469 */
470 sdio_release_host(ar_sdio->func);
471
472 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
473 sdio_claim_host(ar_sdio->func);
474 mutex_unlock(&ar_sdio->mtx_irq);
475 WARN_ON(status && status != -ECANCELED);
476 }
477
478 static int ath6kl_sdio_power_on(struct ath6kl *ar)
479 {
480 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
481 struct sdio_func *func = ar_sdio->func;
482 int ret = 0;
483
484 if (!ar_sdio->is_disabled)
485 return 0;
486
487 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
488
489 sdio_claim_host(func);
490
491 ret = sdio_enable_func(func);
492 if (ret) {
493 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
494 sdio_release_host(func);
495 return ret;
496 }
497
498 sdio_release_host(func);
499
500 /*
501 * Wait for hardware to initialise. It should take a lot less than
502 * 10 ms but let's be conservative here.
503 */
504 msleep(10);
505
506 ar_sdio->is_disabled = false;
507
508 return ret;
509 }
510
511 static int ath6kl_sdio_power_off(struct ath6kl *ar)
512 {
513 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
514 int ret;
515
516 if (ar_sdio->is_disabled)
517 return 0;
518
519 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
520
521 /* Disable the card */
522 sdio_claim_host(ar_sdio->func);
523 ret = sdio_disable_func(ar_sdio->func);
524 sdio_release_host(ar_sdio->func);
525
526 if (ret)
527 return ret;
528
529 ar_sdio->is_disabled = true;
530
531 return ret;
532 }
533
534 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
535 u32 length, u32 request,
536 struct htc_packet *packet)
537 {
538 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
539 struct bus_request *bus_req;
540
541 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
542
543 if (!bus_req)
544 return -ENOMEM;
545
546 bus_req->address = address;
547 bus_req->buffer = buffer;
548 bus_req->length = length;
549 bus_req->request = request;
550 bus_req->packet = packet;
551
552 spin_lock_bh(&ar_sdio->wr_async_lock);
553 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
554 spin_unlock_bh(&ar_sdio->wr_async_lock);
555 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
556
557 return 0;
558 }
559
560 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
561 {
562 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
563 int ret;
564
565 sdio_claim_host(ar_sdio->func);
566
567 /* Register the isr */
568 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
569 if (ret)
570 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
571
572 sdio_release_host(ar_sdio->func);
573 }
574
575 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
576 {
577 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
578 int ret;
579
580 sdio_claim_host(ar_sdio->func);
581
582 mutex_lock(&ar_sdio->mtx_irq);
583
584 ret = sdio_release_irq(ar_sdio->func);
585 if (ret)
586 ath6kl_err("Failed to release sdio irq: %d\n", ret);
587
588 mutex_unlock(&ar_sdio->mtx_irq);
589
590 sdio_release_host(ar_sdio->func);
591 }
592
593 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
594 {
595 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
596 struct hif_scatter_req *node = NULL;
597
598 spin_lock_bh(&ar_sdio->scat_lock);
599
600 if (!list_empty(&ar_sdio->scat_req)) {
601 node = list_first_entry(&ar_sdio->scat_req,
602 struct hif_scatter_req, list);
603 list_del(&node->list);
604 }
605
606 spin_unlock_bh(&ar_sdio->scat_lock);
607
608 return node;
609 }
610
611 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
612 struct hif_scatter_req *s_req)
613 {
614 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
615
616 spin_lock_bh(&ar_sdio->scat_lock);
617
618 list_add_tail(&s_req->list, &ar_sdio->scat_req);
619
620 spin_unlock_bh(&ar_sdio->scat_lock);
621
622 }
623
624 /* scatter gather read write request */
625 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
626 struct hif_scatter_req *scat_req)
627 {
628 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
629 u32 request = scat_req->req;
630 int status = 0;
631
632 if (!scat_req->len)
633 return -EINVAL;
634
635 ath6kl_dbg(ATH6KL_DBG_SCATTER,
636 "hif-scatter: total len: %d scatter entries: %d\n",
637 scat_req->len, scat_req->scat_entries);
638
639 if (request & HIF_SYNCHRONOUS)
640 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
641 else {
642 spin_lock_bh(&ar_sdio->wr_async_lock);
643 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
644 spin_unlock_bh(&ar_sdio->wr_async_lock);
645 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
646 }
647
648 return status;
649 }
650
651 /* clean up scatter support */
652 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
653 {
654 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
655 struct hif_scatter_req *s_req, *tmp_req;
656
657 /* empty the free list */
658 spin_lock_bh(&ar_sdio->scat_lock);
659 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
660 list_del(&s_req->list);
661 spin_unlock_bh(&ar_sdio->scat_lock);
662
663 /*
664 * FIXME: should we also call completion handler with
665 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
666 * that the packet is properly freed?
667 */
668 if (s_req->busrequest)
669 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
670 kfree(s_req->virt_dma_buf);
671 kfree(s_req->sgentries);
672 kfree(s_req);
673
674 spin_lock_bh(&ar_sdio->scat_lock);
675 }
676 spin_unlock_bh(&ar_sdio->scat_lock);
677 }
678
679 /* setup of HIF scatter resources */
680 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
681 {
682 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
683 struct htc_target *target = ar->htc_target;
684 int ret;
685 bool virt_scat = false;
686
687 if (ar_sdio->scatter_enabled)
688 return 0;
689
690 ar_sdio->scatter_enabled = true;
691
692 /* check if host supports scatter and it meets our requirements */
693 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
694 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
695 ar_sdio->func->card->host->max_segs,
696 MAX_SCATTER_ENTRIES_PER_REQ);
697 virt_scat = true;
698 }
699
700 if (!virt_scat) {
701 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
702 MAX_SCATTER_ENTRIES_PER_REQ,
703 MAX_SCATTER_REQUESTS, virt_scat);
704
705 if (!ret) {
706 ath6kl_dbg(ATH6KL_DBG_BOOT,
707 "hif-scatter enabled requests %d entries %d\n",
708 MAX_SCATTER_REQUESTS,
709 MAX_SCATTER_ENTRIES_PER_REQ);
710
711 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
712 target->max_xfer_szper_scatreq =
713 MAX_SCATTER_REQ_TRANSFER_SIZE;
714 } else {
715 ath6kl_sdio_cleanup_scatter(ar);
716 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
717 }
718 }
719
720 if (virt_scat || ret) {
721 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
722 ATH6KL_SCATTER_ENTRIES_PER_REQ,
723 ATH6KL_SCATTER_REQS, virt_scat);
724
725 if (ret) {
726 ath6kl_err("failed to alloc virtual scatter resources !\n");
727 ath6kl_sdio_cleanup_scatter(ar);
728 return ret;
729 }
730
731 ath6kl_dbg(ATH6KL_DBG_BOOT,
732 "virtual scatter enabled requests %d entries %d\n",
733 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
734
735 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
736 target->max_xfer_szper_scatreq =
737 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
738 }
739
740 return 0;
741 }
742
743 static int ath6kl_sdio_config(struct ath6kl *ar)
744 {
745 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
746 struct sdio_func *func = ar_sdio->func;
747 int ret;
748
749 sdio_claim_host(func);
750
751 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
752 MANUFACTURER_ID_AR6003_BASE) {
753 /* enable 4-bit ASYNC interrupt on AR6003 or later */
754 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
755 CCCR_SDIO_IRQ_MODE_REG,
756 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
757 if (ret) {
758 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
759 ret);
760 goto out;
761 }
762
763 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
764 }
765
766 /* give us some time to enable, in ms */
767 func->enable_timeout = 100;
768
769 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
770 if (ret) {
771 ath6kl_err("Set sdio block size %d failed: %d)\n",
772 HIF_MBOX_BLOCK_SIZE, ret);
773 goto out;
774 }
775
776 out:
777 sdio_release_host(func);
778
779 return ret;
780 }
781
782 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
783 {
784 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
785 struct sdio_func *func = ar_sdio->func;
786 mmc_pm_flag_t flags;
787 int ret;
788
789 flags = sdio_get_host_pm_caps(func);
790
791 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
792
793 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
794 !(flags & MMC_PM_KEEP_POWER))
795 return -EINVAL;
796
797 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
798 if (ret) {
799 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
800 return ret;
801 }
802
803 /* sdio irq wakes up host */
804 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
805 if (ret)
806 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
807
808 return ret;
809 }
810
811 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
812 {
813 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
814 struct sdio_func *func = ar_sdio->func;
815 mmc_pm_flag_t flags;
816 int ret;
817
818 if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
819 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n");
820
821 ret = ath6kl_set_sdio_pm_caps(ar);
822 if (ret)
823 goto cut_pwr;
824
825 ret = ath6kl_cfg80211_suspend(ar,
826 ATH6KL_CFG_SUSPEND_SCHED_SCAN,
827 NULL);
828 if (ret)
829 goto cut_pwr;
830
831 return 0;
832 }
833
834 if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
835 (!ar->suspend_mode && wow)) {
836
837 ret = ath6kl_set_sdio_pm_caps(ar);
838 if (ret)
839 goto cut_pwr;
840
841 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
842 if (ret)
843 goto cut_pwr;
844
845 return 0;
846 }
847
848 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
849 !ar->suspend_mode) {
850
851 flags = sdio_get_host_pm_caps(func);
852 if (!(flags & MMC_PM_KEEP_POWER))
853 goto cut_pwr;
854
855 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
856 if (ret)
857 goto cut_pwr;
858
859 /*
860 * Workaround to support Deep Sleep with MSM, set the host pm
861 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
862 * the sdc2_clock and internally allows MSM to enter
863 * TCXO shutdown properly.
864 */
865 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
866 ret = sdio_set_host_pm_flags(func,
867 MMC_PM_WAKE_SDIO_IRQ);
868 if (ret)
869 goto cut_pwr;
870 }
871
872 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
873 NULL);
874 if (ret)
875 goto cut_pwr;
876
877 return 0;
878 }
879
880 cut_pwr:
881 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
882 }
883
884 static int ath6kl_sdio_resume(struct ath6kl *ar)
885 {
886 switch (ar->state) {
887 case ATH6KL_STATE_OFF:
888 case ATH6KL_STATE_CUTPOWER:
889 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
890 "sdio resume configuring sdio\n");
891
892 /* need to set sdio settings after power is cut from sdio */
893 ath6kl_sdio_config(ar);
894 break;
895
896 case ATH6KL_STATE_ON:
897 break;
898
899 case ATH6KL_STATE_DEEPSLEEP:
900 break;
901
902 case ATH6KL_STATE_WOW:
903 break;
904 case ATH6KL_STATE_SCHED_SCAN:
905 break;
906 }
907
908 ath6kl_cfg80211_resume(ar);
909
910 return 0;
911 }
912
913 /* set the window address register (using 4-byte register access ). */
914 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
915 {
916 int status;
917 u8 addr_val[4];
918 s32 i;
919
920 /*
921 * Write bytes 1,2,3 of the register to set the upper address bytes,
922 * the LSB is written last to initiate the access cycle
923 */
924
925 for (i = 1; i <= 3; i++) {
926 /*
927 * Fill the buffer with the address byte value we want to
928 * hit 4 times.
929 */
930 memset(addr_val, ((u8 *)&addr)[i], 4);
931
932 /*
933 * Hit each byte of the register address with a 4-byte
934 * write operation to the same address, this is a harmless
935 * operation.
936 */
937 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
938 4, HIF_WR_SYNC_BYTE_FIX);
939 if (status)
940 break;
941 }
942
943 if (status) {
944 ath6kl_err("%s: failed to write initial bytes of 0x%x "
945 "to window reg: 0x%X\n", __func__,
946 addr, reg_addr);
947 return status;
948 }
949
950 /*
951 * Write the address register again, this time write the whole
952 * 4-byte value. The effect here is that the LSB write causes the
953 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
954 * effect since we are writing the same values again
955 */
956 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
957 4, HIF_WR_SYNC_BYTE_INC);
958
959 if (status) {
960 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
961 __func__, addr, reg_addr);
962 return status;
963 }
964
965 return 0;
966 }
967
968 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
969 {
970 int status;
971
972 /* set window register to start read cycle */
973 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
974 address);
975
976 if (status)
977 return status;
978
979 /* read the data */
980 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
981 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
982 if (status) {
983 ath6kl_err("%s: failed to read from window data addr\n",
984 __func__);
985 return status;
986 }
987
988 return status;
989 }
990
991 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
992 __le32 data)
993 {
994 int status;
995 u32 val = (__force u32) data;
996
997 /* set write data */
998 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
999 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1000 if (status) {
1001 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1002 __func__, data);
1003 return status;
1004 }
1005
1006 /* set window register, which starts the write cycle */
1007 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1008 address);
1009 }
1010
1011 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1012 {
1013 u32 addr;
1014 unsigned long timeout;
1015 int ret;
1016
1017 ar->bmi.cmd_credits = 0;
1018
1019 /* Read the counter register to get the command credits */
1020 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1021
1022 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1023 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1024
1025 /*
1026 * Hit the credit counter with a 4-byte access, the first byte
1027 * read will hit the counter and cause a decrement, while the
1028 * remaining 3 bytes has no effect. The rationale behind this
1029 * is to make all HIF accesses 4-byte aligned.
1030 */
1031 ret = ath6kl_sdio_read_write_sync(ar, addr,
1032 (u8 *)&ar->bmi.cmd_credits, 4,
1033 HIF_RD_SYNC_BYTE_INC);
1034 if (ret) {
1035 ath6kl_err("Unable to decrement the command credit "
1036 "count register: %d\n", ret);
1037 return ret;
1038 }
1039
1040 /* The counter is only 8 bits.
1041 * Ignore anything in the upper 3 bytes
1042 */
1043 ar->bmi.cmd_credits &= 0xFF;
1044 }
1045
1046 if (!ar->bmi.cmd_credits) {
1047 ath6kl_err("bmi communication timeout\n");
1048 return -ETIMEDOUT;
1049 }
1050
1051 return 0;
1052 }
1053
1054 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1055 {
1056 unsigned long timeout;
1057 u32 rx_word = 0;
1058 int ret = 0;
1059
1060 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1061 while ((time_before(jiffies, timeout)) && !rx_word) {
1062 ret = ath6kl_sdio_read_write_sync(ar,
1063 RX_LOOKAHEAD_VALID_ADDRESS,
1064 (u8 *)&rx_word, sizeof(rx_word),
1065 HIF_RD_SYNC_BYTE_INC);
1066 if (ret) {
1067 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1068 return ret;
1069 }
1070
1071 /* all we really want is one bit */
1072 rx_word &= (1 << ENDPOINT1);
1073 }
1074
1075 if (!rx_word) {
1076 ath6kl_err("bmi_recv_buf FIFO empty\n");
1077 return -EINVAL;
1078 }
1079
1080 return ret;
1081 }
1082
1083 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1084 {
1085 int ret;
1086 u32 addr;
1087
1088 ret = ath6kl_sdio_bmi_credits(ar);
1089 if (ret)
1090 return ret;
1091
1092 addr = ar->mbox_info.htc_addr;
1093
1094 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1095 HIF_WR_SYNC_BYTE_INC);
1096 if (ret)
1097 ath6kl_err("unable to send the bmi data to the device\n");
1098
1099 return ret;
1100 }
1101
1102 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1103 {
1104 int ret;
1105 u32 addr;
1106
1107 /*
1108 * During normal bootup, small reads may be required.
1109 * Rather than issue an HIF Read and then wait as the Target
1110 * adds successive bytes to the FIFO, we wait here until
1111 * we know that response data is available.
1112 *
1113 * This allows us to cleanly timeout on an unexpected
1114 * Target failure rather than risk problems at the HIF level.
1115 * In particular, this avoids SDIO timeouts and possibly garbage
1116 * data on some host controllers. And on an interconnect
1117 * such as Compact Flash (as well as some SDIO masters) which
1118 * does not provide any indication on data timeout, it avoids
1119 * a potential hang or garbage response.
1120 *
1121 * Synchronization is more difficult for reads larger than the
1122 * size of the MBOX FIFO (128B), because the Target is unable
1123 * to push the 129th byte of data until AFTER the Host posts an
1124 * HIF Read and removes some FIFO data. So for large reads the
1125 * Host proceeds to post an HIF Read BEFORE all the data is
1126 * actually available to read. Fortunately, large BMI reads do
1127 * not occur in practice -- they're supported for debug/development.
1128 *
1129 * So Host/Target BMI synchronization is divided into these cases:
1130 * CASE 1: length < 4
1131 * Should not happen
1132 *
1133 * CASE 2: 4 <= length <= 128
1134 * Wait for first 4 bytes to be in FIFO
1135 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1136 * a BMI command credit, which indicates that the ENTIRE
1137 * response is available in the the FIFO
1138 *
1139 * CASE 3: length > 128
1140 * Wait for the first 4 bytes to be in FIFO
1141 *
1142 * For most uses, a small timeout should be sufficient and we will
1143 * usually see a response quickly; but there may be some unusual
1144 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1145 * For now, we use an unbounded busy loop while waiting for
1146 * BMI_EXECUTE.
1147 *
1148 * If BMI_EXECUTE ever needs to support longer-latency execution,
1149 * especially in production, this code needs to be enhanced to sleep
1150 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1151 * a function of Host processor speed.
1152 */
1153 if (len >= 4) { /* NB: Currently, always true */
1154 ret = ath6kl_bmi_get_rx_lkahd(ar);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 addr = ar->mbox_info.htc_addr;
1160 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1161 HIF_RD_SYNC_BYTE_INC);
1162 if (ret) {
1163 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1164 ret);
1165 return ret;
1166 }
1167
1168 return 0;
1169 }
1170
1171 static void ath6kl_sdio_stop(struct ath6kl *ar)
1172 {
1173 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1174 struct bus_request *req, *tmp_req;
1175 void *context;
1176
1177 /* FIXME: make sure that wq is not queued again */
1178
1179 cancel_work_sync(&ar_sdio->wr_async_work);
1180
1181 spin_lock_bh(&ar_sdio->wr_async_lock);
1182
1183 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1184 list_del(&req->list);
1185
1186 if (req->scat_req) {
1187 /* this is a scatter gather request */
1188 req->scat_req->status = -ECANCELED;
1189 req->scat_req->complete(ar_sdio->ar->htc_target,
1190 req->scat_req);
1191 } else {
1192 context = req->packet;
1193 ath6kl_sdio_free_bus_req(ar_sdio, req);
1194 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1195 }
1196 }
1197
1198 spin_unlock_bh(&ar_sdio->wr_async_lock);
1199
1200 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1201 }
1202
1203 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1204 .read_write_sync = ath6kl_sdio_read_write_sync,
1205 .write_async = ath6kl_sdio_write_async,
1206 .irq_enable = ath6kl_sdio_irq_enable,
1207 .irq_disable = ath6kl_sdio_irq_disable,
1208 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1209 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1210 .enable_scatter = ath6kl_sdio_enable_scatter,
1211 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
1212 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1213 .suspend = ath6kl_sdio_suspend,
1214 .resume = ath6kl_sdio_resume,
1215 .diag_read32 = ath6kl_sdio_diag_read32,
1216 .diag_write32 = ath6kl_sdio_diag_write32,
1217 .bmi_read = ath6kl_sdio_bmi_read,
1218 .bmi_write = ath6kl_sdio_bmi_write,
1219 .power_on = ath6kl_sdio_power_on,
1220 .power_off = ath6kl_sdio_power_off,
1221 .stop = ath6kl_sdio_stop,
1222 };
1223
1224 #ifdef CONFIG_PM_SLEEP
1225
1226 /*
1227 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1228 * suspend. We instead follow cfg80211 suspend/resume handlers.
1229 */
1230 static int ath6kl_sdio_pm_suspend(struct device *device)
1231 {
1232 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1233
1234 return 0;
1235 }
1236
1237 static int ath6kl_sdio_pm_resume(struct device *device)
1238 {
1239 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1240
1241 return 0;
1242 }
1243
1244 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1245 ath6kl_sdio_pm_resume);
1246
1247 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1248
1249 #else
1250
1251 #define ATH6KL_SDIO_PM_OPS NULL
1252
1253 #endif /* CONFIG_PM_SLEEP */
1254
1255 static int ath6kl_sdio_probe(struct sdio_func *func,
1256 const struct sdio_device_id *id)
1257 {
1258 int ret;
1259 struct ath6kl_sdio *ar_sdio;
1260 struct ath6kl *ar;
1261 int count;
1262
1263 ath6kl_dbg(ATH6KL_DBG_BOOT,
1264 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1265 func->num, func->vendor, func->device,
1266 func->max_blksize, func->cur_blksize);
1267
1268 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1269 if (!ar_sdio)
1270 return -ENOMEM;
1271
1272 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1273 if (!ar_sdio->dma_buffer) {
1274 ret = -ENOMEM;
1275 goto err_hif;
1276 }
1277
1278 ar_sdio->func = func;
1279 sdio_set_drvdata(func, ar_sdio);
1280
1281 ar_sdio->id = id;
1282 ar_sdio->is_disabled = true;
1283
1284 spin_lock_init(&ar_sdio->lock);
1285 spin_lock_init(&ar_sdio->scat_lock);
1286 spin_lock_init(&ar_sdio->wr_async_lock);
1287 mutex_init(&ar_sdio->dma_buffer_mutex);
1288 mutex_init(&ar_sdio->mtx_irq);
1289
1290 INIT_LIST_HEAD(&ar_sdio->scat_req);
1291 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1292 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1293
1294 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1295
1296 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1297 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1298
1299 ar = ath6kl_core_create(&ar_sdio->func->dev);
1300 if (!ar) {
1301 ath6kl_err("Failed to alloc ath6kl core\n");
1302 ret = -ENOMEM;
1303 goto err_dma;
1304 }
1305
1306 ar_sdio->ar = ar;
1307 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1308 ar->hif_priv = ar_sdio;
1309 ar->hif_ops = &ath6kl_sdio_ops;
1310 ar->bmi.max_data_size = 256;
1311
1312 ath6kl_sdio_set_mbox_info(ar);
1313
1314 ret = ath6kl_sdio_config(ar);
1315 if (ret) {
1316 ath6kl_err("Failed to config sdio: %d\n", ret);
1317 goto err_core_alloc;
1318 }
1319
1320 ret = ath6kl_core_init(ar);
1321 if (ret) {
1322 ath6kl_err("Failed to init ath6kl core\n");
1323 goto err_core_alloc;
1324 }
1325
1326 return ret;
1327
1328 err_core_alloc:
1329 ath6kl_core_destroy(ar_sdio->ar);
1330 err_dma:
1331 kfree(ar_sdio->dma_buffer);
1332 err_hif:
1333 kfree(ar_sdio);
1334
1335 return ret;
1336 }
1337
1338 static void ath6kl_sdio_remove(struct sdio_func *func)
1339 {
1340 struct ath6kl_sdio *ar_sdio;
1341
1342 ath6kl_dbg(ATH6KL_DBG_BOOT,
1343 "sdio removed func %d vendor 0x%x device 0x%x\n",
1344 func->num, func->vendor, func->device);
1345
1346 ar_sdio = sdio_get_drvdata(func);
1347
1348 ath6kl_stop_txrx(ar_sdio->ar);
1349 cancel_work_sync(&ar_sdio->wr_async_work);
1350
1351 ath6kl_core_cleanup(ar_sdio->ar);
1352 ath6kl_core_destroy(ar_sdio->ar);
1353
1354 kfree(ar_sdio->dma_buffer);
1355 kfree(ar_sdio);
1356 }
1357
1358 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1359 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1360 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1361 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1362 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1363 {},
1364 };
1365
1366 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1367
1368 static struct sdio_driver ath6kl_sdio_driver = {
1369 .name = "ath6kl_sdio",
1370 .id_table = ath6kl_sdio_devices,
1371 .probe = ath6kl_sdio_probe,
1372 .remove = ath6kl_sdio_remove,
1373 .drv.pm = ATH6KL_SDIO_PM_OPS,
1374 };
1375
1376 static int __init ath6kl_sdio_init(void)
1377 {
1378 int ret;
1379
1380 ret = sdio_register_driver(&ath6kl_sdio_driver);
1381 if (ret)
1382 ath6kl_err("sdio driver registration failed: %d\n", ret);
1383
1384 return ret;
1385 }
1386
1387 static void __exit ath6kl_sdio_exit(void)
1388 {
1389 sdio_unregister_driver(&ath6kl_sdio_driver);
1390 }
1391
1392 module_init(ath6kl_sdio_init);
1393 module_exit(ath6kl_sdio_exit);
1394
1395 MODULE_AUTHOR("Atheros Communications, Inc.");
1396 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1397 MODULE_LICENSE("Dual BSD/GPL");
1398
1399 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1400 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1401 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1402 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1403 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1404 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1405 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1406 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1407 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1408 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1409 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1410 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1411 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1412 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1413 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1414 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
This page took 0.05823 seconds and 4 git commands to generate.