Merge branch 'batman-adv/next' of git://git.open-mesh.org/linux-merge
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / wmi.c
1 /*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/ip.h>
18 #include "core.h"
19 #include "debug.h"
20
21 static int ath6kl_wmi_sync_point(struct wmi *wmi);
22
23 static const s32 wmi_rate_tbl[][2] = {
24 /* {W/O SGI, with SGI} */
25 {1000, 1000},
26 {2000, 2000},
27 {5500, 5500},
28 {11000, 11000},
29 {6000, 6000},
30 {9000, 9000},
31 {12000, 12000},
32 {18000, 18000},
33 {24000, 24000},
34 {36000, 36000},
35 {48000, 48000},
36 {54000, 54000},
37 {6500, 7200},
38 {13000, 14400},
39 {19500, 21700},
40 {26000, 28900},
41 {39000, 43300},
42 {52000, 57800},
43 {58500, 65000},
44 {65000, 72200},
45 {13500, 15000},
46 {27000, 30000},
47 {40500, 45000},
48 {54000, 60000},
49 {81000, 90000},
50 {108000, 120000},
51 {121500, 135000},
52 {135000, 150000},
53 {0, 0}
54 };
55
56 /* 802.1d to AC mapping. Refer pg 57 of WMM-test-plan-v1.2 */
57 static const u8 up_to_ac[] = {
58 WMM_AC_BE,
59 WMM_AC_BK,
60 WMM_AC_BK,
61 WMM_AC_BE,
62 WMM_AC_VI,
63 WMM_AC_VI,
64 WMM_AC_VO,
65 WMM_AC_VO,
66 };
67
68 void ath6kl_wmi_set_control_ep(struct wmi *wmi, enum htc_endpoint_id ep_id)
69 {
70 if (WARN_ON(ep_id == ENDPOINT_UNUSED || ep_id >= ENDPOINT_MAX))
71 return;
72
73 wmi->ep_id = ep_id;
74 }
75
76 enum htc_endpoint_id ath6kl_wmi_get_control_ep(struct wmi *wmi)
77 {
78 return wmi->ep_id;
79 }
80
81 /* Performs DIX to 802.3 encapsulation for transmit packets.
82 * Assumes the entire DIX header is contigous and that there is
83 * enough room in the buffer for a 802.3 mac header and LLC+SNAP headers.
84 */
85 int ath6kl_wmi_dix_2_dot3(struct wmi *wmi, struct sk_buff *skb)
86 {
87 struct ath6kl_llc_snap_hdr *llc_hdr;
88 struct ethhdr *eth_hdr;
89 size_t new_len;
90 __be16 type;
91 u8 *datap;
92 u16 size;
93
94 if (WARN_ON(skb == NULL))
95 return -EINVAL;
96
97 size = sizeof(struct ath6kl_llc_snap_hdr) + sizeof(struct wmi_data_hdr);
98 if (skb_headroom(skb) < size)
99 return -ENOMEM;
100
101 eth_hdr = (struct ethhdr *) skb->data;
102 type = eth_hdr->h_proto;
103
104 if (!is_ethertype(be16_to_cpu(type))) {
105 ath6kl_dbg(ATH6KL_DBG_WMI,
106 "%s: pkt is already in 802.3 format\n", __func__);
107 return 0;
108 }
109
110 new_len = skb->len - sizeof(*eth_hdr) + sizeof(*llc_hdr);
111
112 skb_push(skb, sizeof(struct ath6kl_llc_snap_hdr));
113 datap = skb->data;
114
115 eth_hdr->h_proto = cpu_to_be16(new_len);
116
117 memcpy(datap, eth_hdr, sizeof(*eth_hdr));
118
119 llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap + sizeof(*eth_hdr));
120 llc_hdr->dsap = 0xAA;
121 llc_hdr->ssap = 0xAA;
122 llc_hdr->cntl = 0x03;
123 llc_hdr->org_code[0] = 0x0;
124 llc_hdr->org_code[1] = 0x0;
125 llc_hdr->org_code[2] = 0x0;
126 llc_hdr->eth_type = type;
127
128 return 0;
129 }
130
131 static int ath6kl_wmi_meta_add(struct wmi *wmi, struct sk_buff *skb,
132 u8 *version, void *tx_meta_info)
133 {
134 struct wmi_tx_meta_v1 *v1;
135 struct wmi_tx_meta_v2 *v2;
136
137 if (WARN_ON(skb == NULL || version == NULL))
138 return -EINVAL;
139
140 switch (*version) {
141 case WMI_META_VERSION_1:
142 skb_push(skb, WMI_MAX_TX_META_SZ);
143 v1 = (struct wmi_tx_meta_v1 *) skb->data;
144 v1->pkt_id = 0;
145 v1->rate_plcy_id = 0;
146 *version = WMI_META_VERSION_1;
147 break;
148 case WMI_META_VERSION_2:
149 skb_push(skb, WMI_MAX_TX_META_SZ);
150 v2 = (struct wmi_tx_meta_v2 *) skb->data;
151 memcpy(v2, (struct wmi_tx_meta_v2 *) tx_meta_info,
152 sizeof(struct wmi_tx_meta_v2));
153 break;
154 }
155
156 return 0;
157 }
158
159 int ath6kl_wmi_data_hdr_add(struct wmi *wmi, struct sk_buff *skb,
160 u8 msg_type, bool more_data,
161 enum wmi_data_hdr_data_type data_type,
162 u8 meta_ver, void *tx_meta_info)
163 {
164 struct wmi_data_hdr *data_hdr;
165 int ret;
166
167 if (WARN_ON(skb == NULL))
168 return -EINVAL;
169
170 ret = ath6kl_wmi_meta_add(wmi, skb, &meta_ver, tx_meta_info);
171 if (ret)
172 return ret;
173
174 skb_push(skb, sizeof(struct wmi_data_hdr));
175
176 data_hdr = (struct wmi_data_hdr *)skb->data;
177 memset(data_hdr, 0, sizeof(struct wmi_data_hdr));
178
179 data_hdr->info = msg_type << WMI_DATA_HDR_MSG_TYPE_SHIFT;
180 data_hdr->info |= data_type << WMI_DATA_HDR_DATA_TYPE_SHIFT;
181
182 if (more_data)
183 data_hdr->info |=
184 WMI_DATA_HDR_MORE_MASK << WMI_DATA_HDR_MORE_SHIFT;
185
186 data_hdr->info2 = cpu_to_le16(meta_ver << WMI_DATA_HDR_META_SHIFT);
187 data_hdr->info3 = 0;
188
189 return 0;
190 }
191
192 static u8 ath6kl_wmi_determine_user_priority(u8 *pkt, u32 layer2_pri)
193 {
194 struct iphdr *ip_hdr = (struct iphdr *) pkt;
195 u8 ip_pri;
196
197 /*
198 * Determine IPTOS priority
199 *
200 * IP-TOS - 8bits
201 * : DSCP(6-bits) ECN(2-bits)
202 * : DSCP - P2 P1 P0 X X X
203 * where (P2 P1 P0) form 802.1D
204 */
205 ip_pri = ip_hdr->tos >> 5;
206 ip_pri &= 0x7;
207
208 if ((layer2_pri & 0x7) > ip_pri)
209 return (u8) layer2_pri & 0x7;
210 else
211 return ip_pri;
212 }
213
214 int ath6kl_wmi_implicit_create_pstream(struct wmi *wmi, struct sk_buff *skb,
215 u32 layer2_priority, bool wmm_enabled,
216 u8 *ac)
217 {
218 struct wmi_data_hdr *data_hdr;
219 struct ath6kl_llc_snap_hdr *llc_hdr;
220 struct wmi_create_pstream_cmd cmd;
221 u32 meta_size, hdr_size;
222 u16 ip_type = IP_ETHERTYPE;
223 u8 stream_exist, usr_pri;
224 u8 traffic_class = WMM_AC_BE;
225 u8 *datap;
226
227 if (WARN_ON(skb == NULL))
228 return -EINVAL;
229
230 datap = skb->data;
231 data_hdr = (struct wmi_data_hdr *) datap;
232
233 meta_size = ((le16_to_cpu(data_hdr->info2) >> WMI_DATA_HDR_META_SHIFT) &
234 WMI_DATA_HDR_META_MASK) ? WMI_MAX_TX_META_SZ : 0;
235
236 if (!wmm_enabled) {
237 /* If WMM is disabled all traffic goes as BE traffic */
238 usr_pri = 0;
239 } else {
240 hdr_size = sizeof(struct ethhdr);
241
242 llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap +
243 sizeof(struct
244 wmi_data_hdr) +
245 meta_size + hdr_size);
246
247 if (llc_hdr->eth_type == htons(ip_type)) {
248 /*
249 * Extract the endpoint info from the TOS field
250 * in the IP header.
251 */
252 usr_pri =
253 ath6kl_wmi_determine_user_priority(((u8 *) llc_hdr) +
254 sizeof(struct ath6kl_llc_snap_hdr),
255 layer2_priority);
256 } else
257 usr_pri = layer2_priority & 0x7;
258 }
259
260 /* workaround for WMM S5 */
261 if ((wmi->traffic_class == WMM_AC_VI) &&
262 ((usr_pri == 5) || (usr_pri == 4)))
263 usr_pri = 1;
264
265 /* Convert user priority to traffic class */
266 traffic_class = up_to_ac[usr_pri & 0x7];
267
268 wmi_data_hdr_set_up(data_hdr, usr_pri);
269
270 spin_lock_bh(&wmi->lock);
271 stream_exist = wmi->fat_pipe_exist;
272 spin_unlock_bh(&wmi->lock);
273
274 if (!(stream_exist & (1 << traffic_class))) {
275 memset(&cmd, 0, sizeof(cmd));
276 cmd.traffic_class = traffic_class;
277 cmd.user_pri = usr_pri;
278 cmd.inactivity_int =
279 cpu_to_le32(WMI_IMPLICIT_PSTREAM_INACTIVITY_INT);
280 /* Implicit streams are created with TSID 0xFF */
281 cmd.tsid = WMI_IMPLICIT_PSTREAM;
282 ath6kl_wmi_create_pstream_cmd(wmi, &cmd);
283 }
284
285 *ac = traffic_class;
286
287 return 0;
288 }
289
290 int ath6kl_wmi_dot11_hdr_remove(struct wmi *wmi, struct sk_buff *skb)
291 {
292 struct ieee80211_hdr_3addr *pwh, wh;
293 struct ath6kl_llc_snap_hdr *llc_hdr;
294 struct ethhdr eth_hdr;
295 u32 hdr_size;
296 u8 *datap;
297 __le16 sub_type;
298
299 if (WARN_ON(skb == NULL))
300 return -EINVAL;
301
302 datap = skb->data;
303 pwh = (struct ieee80211_hdr_3addr *) datap;
304
305 sub_type = pwh->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
306
307 memcpy((u8 *) &wh, datap, sizeof(struct ieee80211_hdr_3addr));
308
309 /* Strip off the 802.11 header */
310 if (sub_type == cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
311 hdr_size = roundup(sizeof(struct ieee80211_qos_hdr),
312 sizeof(u32));
313 skb_pull(skb, hdr_size);
314 } else if (sub_type == cpu_to_le16(IEEE80211_STYPE_DATA))
315 skb_pull(skb, sizeof(struct ieee80211_hdr_3addr));
316
317 datap = skb->data;
318 llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap);
319
320 memset(&eth_hdr, 0, sizeof(eth_hdr));
321 eth_hdr.h_proto = llc_hdr->eth_type;
322
323 switch ((le16_to_cpu(wh.frame_control)) &
324 (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
325 case 0:
326 memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
327 memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
328 break;
329 case IEEE80211_FCTL_TODS:
330 memcpy(eth_hdr.h_dest, wh.addr3, ETH_ALEN);
331 memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
332 break;
333 case IEEE80211_FCTL_FROMDS:
334 memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
335 memcpy(eth_hdr.h_source, wh.addr3, ETH_ALEN);
336 break;
337 case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
338 break;
339 }
340
341 skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
342 skb_push(skb, sizeof(eth_hdr));
343
344 datap = skb->data;
345
346 memcpy(datap, &eth_hdr, sizeof(eth_hdr));
347
348 return 0;
349 }
350
351 /*
352 * Performs 802.3 to DIX encapsulation for received packets.
353 * Assumes the entire 802.3 header is contigous.
354 */
355 int ath6kl_wmi_dot3_2_dix(struct sk_buff *skb)
356 {
357 struct ath6kl_llc_snap_hdr *llc_hdr;
358 struct ethhdr eth_hdr;
359 u8 *datap;
360
361 if (WARN_ON(skb == NULL))
362 return -EINVAL;
363
364 datap = skb->data;
365
366 memcpy(&eth_hdr, datap, sizeof(eth_hdr));
367
368 llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + sizeof(eth_hdr));
369 eth_hdr.h_proto = llc_hdr->eth_type;
370
371 skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
372 datap = skb->data;
373
374 memcpy(datap, &eth_hdr, sizeof(eth_hdr));
375
376 return 0;
377 }
378
379 int ath6kl_wmi_data_hdr_remove(struct wmi *wmi, struct sk_buff *skb)
380 {
381 if (WARN_ON(skb == NULL))
382 return -EINVAL;
383
384 skb_pull(skb, sizeof(struct wmi_data_hdr));
385
386 return 0;
387 }
388
389 static void ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(struct sk_buff *skb,
390 u8 *datap)
391 {
392 struct wmi_bss_info_hdr2 bih2;
393 struct wmi_bss_info_hdr *bih;
394
395 memcpy(&bih2, datap, sizeof(struct wmi_bss_info_hdr2));
396
397 skb_push(skb, 4);
398 bih = (struct wmi_bss_info_hdr *) skb->data;
399
400 bih->ch = bih2.ch;
401 bih->frame_type = bih2.frame_type;
402 bih->snr = bih2.snr;
403 bih->rssi = a_cpu_to_sle16(bih2.snr - 95);
404 bih->ie_mask = cpu_to_le32(le16_to_cpu(bih2.ie_mask));
405 memcpy(bih->bssid, bih2.bssid, ETH_ALEN);
406 }
407
408 static int ath6kl_wmi_tx_complete_event_rx(u8 *datap, int len)
409 {
410 struct tx_complete_msg_v1 *msg_v1;
411 struct wmi_tx_complete_event *evt;
412 int index;
413 u16 size;
414
415 evt = (struct wmi_tx_complete_event *) datap;
416
417 ath6kl_dbg(ATH6KL_DBG_WMI, "comp: %d %d %d\n",
418 evt->num_msg, evt->msg_len, evt->msg_type);
419
420 if (!AR_DBG_LVL_CHECK(ATH6KL_DBG_WMI))
421 return 0;
422
423 for (index = 0; index < evt->num_msg; index++) {
424 size = sizeof(struct wmi_tx_complete_event) +
425 (index * sizeof(struct tx_complete_msg_v1));
426 msg_v1 = (struct tx_complete_msg_v1 *)(datap + size);
427
428 ath6kl_dbg(ATH6KL_DBG_WMI, "msg: %d %d %d %d\n",
429 msg_v1->status, msg_v1->pkt_id,
430 msg_v1->rate_idx, msg_v1->ack_failures);
431 }
432
433 return 0;
434 }
435
436 static inline struct sk_buff *ath6kl_wmi_get_new_buf(u32 size)
437 {
438 struct sk_buff *skb;
439
440 skb = ath6kl_buf_alloc(size);
441 if (!skb)
442 return NULL;
443
444 skb_put(skb, size);
445 if (size)
446 memset(skb->data, 0, size);
447
448 return skb;
449 }
450
451 /* Send a "simple" wmi command -- one with no arguments */
452 static int ath6kl_wmi_simple_cmd(struct wmi *wmi, enum wmi_cmd_id cmd_id)
453 {
454 struct sk_buff *skb;
455 int ret;
456
457 skb = ath6kl_wmi_get_new_buf(0);
458 if (!skb)
459 return -ENOMEM;
460
461 ret = ath6kl_wmi_cmd_send(wmi, skb, cmd_id, NO_SYNC_WMIFLAG);
462
463 return ret;
464 }
465
466 static int ath6kl_wmi_ready_event_rx(struct wmi *wmi, u8 *datap, int len)
467 {
468 struct wmi_ready_event_2 *ev = (struct wmi_ready_event_2 *) datap;
469
470 if (len < sizeof(struct wmi_ready_event_2))
471 return -EINVAL;
472
473 wmi->ready = true;
474 ath6kl_ready_event(wmi->parent_dev, ev->mac_addr,
475 le32_to_cpu(ev->sw_version),
476 le32_to_cpu(ev->abi_version));
477
478 return 0;
479 }
480
481 static int ath6kl_wmi_connect_event_rx(struct wmi *wmi, u8 *datap, int len)
482 {
483 struct wmi_connect_event *ev;
484 u8 *pie, *peie;
485
486 if (len < sizeof(struct wmi_connect_event))
487 return -EINVAL;
488
489 ev = (struct wmi_connect_event *) datap;
490
491 ath6kl_dbg(ATH6KL_DBG_WMI, "%s: freq %d bssid %pM\n",
492 __func__, ev->ch, ev->bssid);
493
494 /* Start of assoc rsp IEs */
495 pie = ev->assoc_info + ev->beacon_ie_len +
496 ev->assoc_req_len + (sizeof(u16) * 3); /* capinfo, status, aid */
497
498 /* End of assoc rsp IEs */
499 peie = ev->assoc_info + ev->beacon_ie_len + ev->assoc_req_len +
500 ev->assoc_resp_len;
501
502 while (pie < peie) {
503 switch (*pie) {
504 case WLAN_EID_VENDOR_SPECIFIC:
505 if (pie[1] > 3 && pie[2] == 0x00 && pie[3] == 0x50 &&
506 pie[4] == 0xf2 && pie[5] == WMM_OUI_TYPE) {
507 /* WMM OUT (00:50:F2) */
508 if (pie[1] > 5
509 && pie[6] == WMM_PARAM_OUI_SUBTYPE)
510 wmi->is_wmm_enabled = true;
511 }
512 break;
513 }
514
515 if (wmi->is_wmm_enabled)
516 break;
517
518 pie += pie[1] + 2;
519 }
520
521 ath6kl_connect_event(wmi->parent_dev, le16_to_cpu(ev->ch), ev->bssid,
522 le16_to_cpu(ev->listen_intvl),
523 le16_to_cpu(ev->beacon_intvl),
524 le32_to_cpu(ev->nw_type),
525 ev->beacon_ie_len, ev->assoc_req_len,
526 ev->assoc_resp_len, ev->assoc_info);
527
528 return 0;
529 }
530
531 static int ath6kl_wmi_disconnect_event_rx(struct wmi *wmi, u8 *datap, int len)
532 {
533 struct wmi_disconnect_event *ev;
534 wmi->traffic_class = 100;
535
536 if (len < sizeof(struct wmi_disconnect_event))
537 return -EINVAL;
538
539 ev = (struct wmi_disconnect_event *) datap;
540
541 wmi->is_wmm_enabled = false;
542 wmi->pair_crypto_type = NONE_CRYPT;
543 wmi->grp_crypto_type = NONE_CRYPT;
544
545 ath6kl_disconnect_event(wmi->parent_dev, ev->disconn_reason,
546 ev->bssid, ev->assoc_resp_len, ev->assoc_info,
547 le16_to_cpu(ev->proto_reason_status));
548
549 return 0;
550 }
551
552 static int ath6kl_wmi_peer_node_event_rx(struct wmi *wmi, u8 *datap, int len)
553 {
554 struct wmi_peer_node_event *ev;
555
556 if (len < sizeof(struct wmi_peer_node_event))
557 return -EINVAL;
558
559 ev = (struct wmi_peer_node_event *) datap;
560
561 if (ev->event_code == PEER_NODE_JOIN_EVENT)
562 ath6kl_dbg(ATH6KL_DBG_WMI, "joined node with mac addr: %pM\n",
563 ev->peer_mac_addr);
564 else if (ev->event_code == PEER_NODE_LEAVE_EVENT)
565 ath6kl_dbg(ATH6KL_DBG_WMI, "left node with mac addr: %pM\n",
566 ev->peer_mac_addr);
567
568 return 0;
569 }
570
571 static int ath6kl_wmi_tkip_micerr_event_rx(struct wmi *wmi, u8 *datap, int len)
572 {
573 struct wmi_tkip_micerr_event *ev;
574
575 if (len < sizeof(struct wmi_tkip_micerr_event))
576 return -EINVAL;
577
578 ev = (struct wmi_tkip_micerr_event *) datap;
579
580 ath6kl_tkip_micerr_event(wmi->parent_dev, ev->key_id, ev->is_mcast);
581
582 return 0;
583 }
584
585 static int ath6kl_wlan_parse_beacon(u8 *buf, int frame_len,
586 struct ath6kl_common_ie *cie)
587 {
588 u8 *frm, *efrm;
589 u8 elemid_ssid = false;
590
591 frm = buf;
592 efrm = (u8 *) (frm + frame_len);
593
594 /*
595 * beacon/probe response frame format
596 * [8] time stamp
597 * [2] beacon interval
598 * [2] capability information
599 * [tlv] ssid
600 * [tlv] supported rates
601 * [tlv] country information
602 * [tlv] parameter set (FH/DS)
603 * [tlv] erp information
604 * [tlv] extended supported rates
605 * [tlv] WMM
606 * [tlv] WPA or RSN
607 * [tlv] Atheros Advanced Capabilities
608 */
609 if ((efrm - frm) < 12)
610 return -EINVAL;
611
612 memset(cie, 0, sizeof(*cie));
613
614 cie->ie_tstamp = frm;
615 frm += 8;
616 cie->ie_beaconInt = *(u16 *) frm;
617 frm += 2;
618 cie->ie_capInfo = *(u16 *) frm;
619 frm += 2;
620 cie->ie_chan = 0;
621
622 while (frm < efrm) {
623 switch (*frm) {
624 case WLAN_EID_SSID:
625 if (!elemid_ssid) {
626 cie->ie_ssid = frm;
627 elemid_ssid = true;
628 }
629 break;
630 case WLAN_EID_SUPP_RATES:
631 cie->ie_rates = frm;
632 break;
633 case WLAN_EID_COUNTRY:
634 cie->ie_country = frm;
635 break;
636 case WLAN_EID_FH_PARAMS:
637 break;
638 case WLAN_EID_DS_PARAMS:
639 cie->ie_chan = frm[2];
640 break;
641 case WLAN_EID_TIM:
642 cie->ie_tim = frm;
643 break;
644 case WLAN_EID_IBSS_PARAMS:
645 break;
646 case WLAN_EID_EXT_SUPP_RATES:
647 cie->ie_xrates = frm;
648 break;
649 case WLAN_EID_ERP_INFO:
650 if (frm[1] != 1)
651 return -EINVAL;
652
653 cie->ie_erp = frm[2];
654 break;
655 case WLAN_EID_RSN:
656 cie->ie_rsn = frm;
657 break;
658 case WLAN_EID_HT_CAPABILITY:
659 cie->ie_htcap = frm;
660 break;
661 case WLAN_EID_HT_INFORMATION:
662 cie->ie_htop = frm;
663 break;
664 case WLAN_EID_VENDOR_SPECIFIC:
665 if (frm[1] > 3 && frm[2] == 0x00 && frm[3] == 0x50 &&
666 frm[4] == 0xf2) {
667 /* OUT Type (00:50:F2) */
668
669 if (frm[5] == WPA_OUI_TYPE) {
670 /* WPA OUT */
671 cie->ie_wpa = frm;
672 } else if (frm[5] == WMM_OUI_TYPE) {
673 /* WMM OUT */
674 cie->ie_wmm = frm;
675 } else if (frm[5] == WSC_OUT_TYPE) {
676 /* WSC OUT */
677 cie->ie_wsc = frm;
678 }
679
680 } else if (frm[1] > 3 && frm[2] == 0x00
681 && frm[3] == 0x03 && frm[4] == 0x7f
682 && frm[5] == ATH_OUI_TYPE) {
683 /* Atheros OUI (00:03:7f) */
684 cie->ie_ath = frm;
685 }
686 break;
687 default:
688 break;
689 }
690 frm += frm[1] + 2;
691 }
692
693 if ((cie->ie_rates == NULL)
694 || (cie->ie_rates[1] > ATH6KL_RATE_MAXSIZE))
695 return -EINVAL;
696
697 if ((cie->ie_ssid == NULL)
698 || (cie->ie_ssid[1] > IEEE80211_MAX_SSID_LEN))
699 return -EINVAL;
700
701 return 0;
702 }
703
704 static int ath6kl_wmi_bssinfo_event_rx(struct wmi *wmi, u8 *datap, int len)
705 {
706 struct bss *bss = NULL;
707 struct wmi_bss_info_hdr *bih;
708 u8 cached_ssid_len = 0;
709 u8 cached_ssid[IEEE80211_MAX_SSID_LEN] = { 0 };
710 u8 beacon_ssid_len = 0;
711 u8 *buf, *ie_ssid;
712 u8 *ni_buf;
713 int buf_len;
714
715 int ret;
716
717 if (len <= sizeof(struct wmi_bss_info_hdr))
718 return -EINVAL;
719
720 bih = (struct wmi_bss_info_hdr *) datap;
721 bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid);
722
723 if (a_sle16_to_cpu(bih->rssi) > 0) {
724 if (bss == NULL)
725 return 0;
726 else
727 bih->rssi = a_cpu_to_sle16(bss->ni_rssi);
728 }
729
730 buf = datap + sizeof(struct wmi_bss_info_hdr);
731 len -= sizeof(struct wmi_bss_info_hdr);
732
733 ath6kl_dbg(ATH6KL_DBG_WMI,
734 "bss info evt - ch %u, rssi %02x, bssid \"%pM\"\n",
735 bih->ch, a_sle16_to_cpu(bih->rssi), bih->bssid);
736
737 if (bss != NULL) {
738 /*
739 * Free up the node. We are about to allocate a new node.
740 * In case of hidden AP, beacon will not have ssid,
741 * but a directed probe response will have it,
742 * so cache the probe-resp-ssid if already present.
743 */
744 if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE)) {
745 ie_ssid = bss->ni_cie.ie_ssid;
746 if (ie_ssid && (ie_ssid[1] <= IEEE80211_MAX_SSID_LEN) &&
747 (ie_ssid[2] != 0)) {
748 cached_ssid_len = ie_ssid[1];
749 memcpy(cached_ssid, ie_ssid + 2,
750 cached_ssid_len);
751 }
752 }
753
754 /*
755 * Use the current average rssi of associated AP base on
756 * assumption
757 * 1. Most os with GUI will update RSSI by
758 * ath6kl_wmi_get_stats_cmd() periodically.
759 * 2. ath6kl_wmi_get_stats_cmd(..) will be called when calling
760 * ath6kl_wmi_startscan_cmd(...)
761 * The average value of RSSI give end-user better feeling for
762 * instance value of scan result. It also sync up RSSI info
763 * in GUI between scan result and RSSI signal icon.
764 */
765 if (memcmp(wmi->parent_dev->bssid, bih->bssid, ETH_ALEN) == 0) {
766 bih->rssi = a_cpu_to_sle16(bss->ni_rssi);
767 bih->snr = bss->ni_snr;
768 }
769
770 wlan_node_reclaim(&wmi->parent_dev->scan_table, bss);
771 }
772
773 /*
774 * beacon/probe response frame format
775 * [8] time stamp
776 * [2] beacon interval
777 * [2] capability information
778 * [tlv] ssid
779 */
780 beacon_ssid_len = buf[SSID_IE_LEN_INDEX];
781
782 /*
783 * If ssid is cached for this hidden AP, then change
784 * buffer len accordingly.
785 */
786 if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) &&
787 (cached_ssid_len != 0) &&
788 (beacon_ssid_len == 0 || (cached_ssid_len > beacon_ssid_len &&
789 buf[SSID_IE_LEN_INDEX + 1] == 0))) {
790
791 len += (cached_ssid_len - beacon_ssid_len);
792 }
793
794 bss = wlan_node_alloc(len);
795 if (!bss)
796 return -ENOMEM;
797
798 bss->ni_snr = bih->snr;
799 bss->ni_rssi = a_sle16_to_cpu(bih->rssi);
800
801 if (WARN_ON(!bss->ni_buf))
802 return -EINVAL;
803
804 /*
805 * In case of hidden AP, beacon will not have ssid,
806 * but a directed probe response will have it,
807 * so place the cached-ssid(probe-resp) in the bss info.
808 */
809 if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) &&
810 (cached_ssid_len != 0) &&
811 (beacon_ssid_len == 0 || (beacon_ssid_len &&
812 buf[SSID_IE_LEN_INDEX + 1] == 0))) {
813 ni_buf = bss->ni_buf;
814 buf_len = len;
815
816 /*
817 * Copy the first 14 bytes:
818 * time-stamp(8), beacon-interval(2),
819 * cap-info(2), ssid-id(1), ssid-len(1).
820 */
821 memcpy(ni_buf, buf, SSID_IE_LEN_INDEX + 1);
822
823 ni_buf[SSID_IE_LEN_INDEX] = cached_ssid_len;
824 ni_buf += (SSID_IE_LEN_INDEX + 1);
825
826 buf += (SSID_IE_LEN_INDEX + 1);
827 buf_len -= (SSID_IE_LEN_INDEX + 1);
828
829 memcpy(ni_buf, cached_ssid, cached_ssid_len);
830 ni_buf += cached_ssid_len;
831
832 buf += beacon_ssid_len;
833 buf_len -= beacon_ssid_len;
834
835 if (cached_ssid_len > beacon_ssid_len)
836 buf_len -= (cached_ssid_len - beacon_ssid_len);
837
838 memcpy(ni_buf, buf, buf_len);
839 } else
840 memcpy(bss->ni_buf, buf, len);
841
842 bss->ni_framelen = len;
843
844 ret = ath6kl_wlan_parse_beacon(bss->ni_buf, len, &bss->ni_cie);
845 if (ret) {
846 wlan_node_free(bss);
847 return -EINVAL;
848 }
849
850 /*
851 * Update the frequency in ie_chan, overwriting of channel number
852 * which is done in ath6kl_wlan_parse_beacon
853 */
854 bss->ni_cie.ie_chan = le16_to_cpu(bih->ch);
855 wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid);
856
857 return 0;
858 }
859
860 static int ath6kl_wmi_opt_frame_event_rx(struct wmi *wmi, u8 *datap, int len)
861 {
862 struct bss *bss;
863 struct wmi_opt_rx_info_hdr *bih;
864 u8 *buf;
865
866 if (len <= sizeof(struct wmi_opt_rx_info_hdr))
867 return -EINVAL;
868
869 bih = (struct wmi_opt_rx_info_hdr *) datap;
870 buf = datap + sizeof(struct wmi_opt_rx_info_hdr);
871 len -= sizeof(struct wmi_opt_rx_info_hdr);
872
873 ath6kl_dbg(ATH6KL_DBG_WMI, "opt frame event %2.2x:%2.2x\n",
874 bih->bssid[4], bih->bssid[5]);
875
876 bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid);
877 if (bss != NULL) {
878 /* Free up the node. We are about to allocate a new node. */
879 wlan_node_reclaim(&wmi->parent_dev->scan_table, bss);
880 }
881
882 bss = wlan_node_alloc(len);
883 if (!bss)
884 return -ENOMEM;
885
886 bss->ni_snr = bih->snr;
887 bss->ni_cie.ie_chan = le16_to_cpu(bih->ch);
888
889 if (WARN_ON(!bss->ni_buf))
890 return -EINVAL;
891
892 memcpy(bss->ni_buf, buf, len);
893 wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid);
894
895 return 0;
896 }
897
898 /* Inactivity timeout of a fatpipe(pstream) at the target */
899 static int ath6kl_wmi_pstream_timeout_event_rx(struct wmi *wmi, u8 *datap,
900 int len)
901 {
902 struct wmi_pstream_timeout_event *ev;
903
904 if (len < sizeof(struct wmi_pstream_timeout_event))
905 return -EINVAL;
906
907 ev = (struct wmi_pstream_timeout_event *) datap;
908
909 /*
910 * When the pstream (fat pipe == AC) timesout, it means there were
911 * no thinStreams within this pstream & it got implicitly created
912 * due to data flow on this AC. We start the inactivity timer only
913 * for implicitly created pstream. Just reset the host state.
914 */
915 spin_lock_bh(&wmi->lock);
916 wmi->stream_exist_for_ac[ev->traffic_class] = 0;
917 wmi->fat_pipe_exist &= ~(1 << ev->traffic_class);
918 spin_unlock_bh(&wmi->lock);
919
920 /* Indicate inactivity to driver layer for this fatpipe (pstream) */
921 ath6kl_indicate_tx_activity(wmi->parent_dev, ev->traffic_class, false);
922
923 return 0;
924 }
925
926 static int ath6kl_wmi_bitrate_reply_rx(struct wmi *wmi, u8 *datap, int len)
927 {
928 struct wmi_bit_rate_reply *reply;
929 s32 rate;
930 u32 sgi, index;
931
932 if (len < sizeof(struct wmi_bit_rate_reply))
933 return -EINVAL;
934
935 reply = (struct wmi_bit_rate_reply *) datap;
936
937 ath6kl_dbg(ATH6KL_DBG_WMI, "rateindex %d\n", reply->rate_index);
938
939 if (reply->rate_index == (s8) RATE_AUTO) {
940 rate = RATE_AUTO;
941 } else {
942 index = reply->rate_index & 0x7f;
943 sgi = (reply->rate_index & 0x80) ? 1 : 0;
944 rate = wmi_rate_tbl[index][sgi];
945 }
946
947 ath6kl_wakeup_event(wmi->parent_dev);
948
949 return 0;
950 }
951
952 static int ath6kl_wmi_ratemask_reply_rx(struct wmi *wmi, u8 *datap, int len)
953 {
954 if (len < sizeof(struct wmi_fix_rates_reply))
955 return -EINVAL;
956
957 ath6kl_wakeup_event(wmi->parent_dev);
958
959 return 0;
960 }
961
962 static int ath6kl_wmi_ch_list_reply_rx(struct wmi *wmi, u8 *datap, int len)
963 {
964 if (len < sizeof(struct wmi_channel_list_reply))
965 return -EINVAL;
966
967 ath6kl_wakeup_event(wmi->parent_dev);
968
969 return 0;
970 }
971
972 static int ath6kl_wmi_tx_pwr_reply_rx(struct wmi *wmi, u8 *datap, int len)
973 {
974 struct wmi_tx_pwr_reply *reply;
975
976 if (len < sizeof(struct wmi_tx_pwr_reply))
977 return -EINVAL;
978
979 reply = (struct wmi_tx_pwr_reply *) datap;
980 ath6kl_txpwr_rx_evt(wmi->parent_dev, reply->dbM);
981
982 return 0;
983 }
984
985 static int ath6kl_wmi_keepalive_reply_rx(struct wmi *wmi, u8 *datap, int len)
986 {
987 if (len < sizeof(struct wmi_get_keepalive_cmd))
988 return -EINVAL;
989
990 ath6kl_wakeup_event(wmi->parent_dev);
991
992 return 0;
993 }
994
995 static int ath6kl_wmi_scan_complete_rx(struct wmi *wmi, u8 *datap, int len)
996 {
997 struct wmi_scan_complete_event *ev;
998
999 ev = (struct wmi_scan_complete_event *) datap;
1000
1001 if (a_sle32_to_cpu(ev->status) == 0)
1002 wlan_refresh_inactive_nodes(wmi->parent_dev);
1003
1004 ath6kl_scan_complete_evt(wmi->parent_dev, a_sle32_to_cpu(ev->status));
1005 wmi->is_probe_ssid = false;
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * Target is reporting a programming error. This is for
1012 * developer aid only. Target only checks a few common violations
1013 * and it is responsibility of host to do all error checking.
1014 * Behavior of target after wmi error event is undefined.
1015 * A reset is recommended.
1016 */
1017 static int ath6kl_wmi_error_event_rx(struct wmi *wmi, u8 *datap, int len)
1018 {
1019 const char *type = "unknown error";
1020 struct wmi_cmd_error_event *ev;
1021 ev = (struct wmi_cmd_error_event *) datap;
1022
1023 switch (ev->err_code) {
1024 case INVALID_PARAM:
1025 type = "invalid parameter";
1026 break;
1027 case ILLEGAL_STATE:
1028 type = "invalid state";
1029 break;
1030 case INTERNAL_ERROR:
1031 type = "internal error";
1032 break;
1033 }
1034
1035 ath6kl_dbg(ATH6KL_DBG_WMI, "programming error, cmd=%d %s\n",
1036 ev->cmd_id, type);
1037
1038 return 0;
1039 }
1040
1041 static int ath6kl_wmi_stats_event_rx(struct wmi *wmi, u8 *datap, int len)
1042 {
1043 ath6kl_tgt_stats_event(wmi->parent_dev, datap, len);
1044
1045 return 0;
1046 }
1047
1048 static u8 ath6kl_wmi_get_upper_threshold(s16 rssi,
1049 struct sq_threshold_params *sq_thresh,
1050 u32 size)
1051 {
1052 u32 index;
1053 u8 threshold = (u8) sq_thresh->upper_threshold[size - 1];
1054
1055 /* The list is already in sorted order. Get the next lower value */
1056 for (index = 0; index < size; index++) {
1057 if (rssi < sq_thresh->upper_threshold[index]) {
1058 threshold = (u8) sq_thresh->upper_threshold[index];
1059 break;
1060 }
1061 }
1062
1063 return threshold;
1064 }
1065
1066 static u8 ath6kl_wmi_get_lower_threshold(s16 rssi,
1067 struct sq_threshold_params *sq_thresh,
1068 u32 size)
1069 {
1070 u32 index;
1071 u8 threshold = (u8) sq_thresh->lower_threshold[size - 1];
1072
1073 /* The list is already in sorted order. Get the next lower value */
1074 for (index = 0; index < size; index++) {
1075 if (rssi > sq_thresh->lower_threshold[index]) {
1076 threshold = (u8) sq_thresh->lower_threshold[index];
1077 break;
1078 }
1079 }
1080
1081 return threshold;
1082 }
1083
1084 static int ath6kl_wmi_send_rssi_threshold_params(struct wmi *wmi,
1085 struct wmi_rssi_threshold_params_cmd *rssi_cmd)
1086 {
1087 struct sk_buff *skb;
1088 struct wmi_rssi_threshold_params_cmd *cmd;
1089
1090 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1091 if (!skb)
1092 return -ENOMEM;
1093
1094 cmd = (struct wmi_rssi_threshold_params_cmd *) skb->data;
1095 memcpy(cmd, rssi_cmd, sizeof(struct wmi_rssi_threshold_params_cmd));
1096
1097 return ath6kl_wmi_cmd_send(wmi, skb, WMI_RSSI_THRESHOLD_PARAMS_CMDID,
1098 NO_SYNC_WMIFLAG);
1099 }
1100
1101 static int ath6kl_wmi_rssi_threshold_event_rx(struct wmi *wmi, u8 *datap,
1102 int len)
1103 {
1104 struct wmi_rssi_threshold_event *reply;
1105 struct wmi_rssi_threshold_params_cmd cmd;
1106 struct sq_threshold_params *sq_thresh;
1107 enum wmi_rssi_threshold_val new_threshold;
1108 u8 upper_rssi_threshold, lower_rssi_threshold;
1109 s16 rssi;
1110 int ret;
1111
1112 if (len < sizeof(struct wmi_rssi_threshold_event))
1113 return -EINVAL;
1114
1115 reply = (struct wmi_rssi_threshold_event *) datap;
1116 new_threshold = (enum wmi_rssi_threshold_val) reply->range;
1117 rssi = a_sle16_to_cpu(reply->rssi);
1118
1119 sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_RSSI];
1120
1121 /*
1122 * Identify the threshold breached and communicate that to the app.
1123 * After that install a new set of thresholds based on the signal
1124 * quality reported by the target
1125 */
1126 if (new_threshold) {
1127 /* Upper threshold breached */
1128 if (rssi < sq_thresh->upper_threshold[0]) {
1129 ath6kl_dbg(ATH6KL_DBG_WMI,
1130 "spurious upper rssi threshold event: %d\n",
1131 rssi);
1132 } else if ((rssi < sq_thresh->upper_threshold[1]) &&
1133 (rssi >= sq_thresh->upper_threshold[0])) {
1134 new_threshold = WMI_RSSI_THRESHOLD1_ABOVE;
1135 } else if ((rssi < sq_thresh->upper_threshold[2]) &&
1136 (rssi >= sq_thresh->upper_threshold[1])) {
1137 new_threshold = WMI_RSSI_THRESHOLD2_ABOVE;
1138 } else if ((rssi < sq_thresh->upper_threshold[3]) &&
1139 (rssi >= sq_thresh->upper_threshold[2])) {
1140 new_threshold = WMI_RSSI_THRESHOLD3_ABOVE;
1141 } else if ((rssi < sq_thresh->upper_threshold[4]) &&
1142 (rssi >= sq_thresh->upper_threshold[3])) {
1143 new_threshold = WMI_RSSI_THRESHOLD4_ABOVE;
1144 } else if ((rssi < sq_thresh->upper_threshold[5]) &&
1145 (rssi >= sq_thresh->upper_threshold[4])) {
1146 new_threshold = WMI_RSSI_THRESHOLD5_ABOVE;
1147 } else if (rssi >= sq_thresh->upper_threshold[5]) {
1148 new_threshold = WMI_RSSI_THRESHOLD6_ABOVE;
1149 }
1150 } else {
1151 /* Lower threshold breached */
1152 if (rssi > sq_thresh->lower_threshold[0]) {
1153 ath6kl_dbg(ATH6KL_DBG_WMI,
1154 "spurious lower rssi threshold event: %d %d\n",
1155 rssi, sq_thresh->lower_threshold[0]);
1156 } else if ((rssi > sq_thresh->lower_threshold[1]) &&
1157 (rssi <= sq_thresh->lower_threshold[0])) {
1158 new_threshold = WMI_RSSI_THRESHOLD6_BELOW;
1159 } else if ((rssi > sq_thresh->lower_threshold[2]) &&
1160 (rssi <= sq_thresh->lower_threshold[1])) {
1161 new_threshold = WMI_RSSI_THRESHOLD5_BELOW;
1162 } else if ((rssi > sq_thresh->lower_threshold[3]) &&
1163 (rssi <= sq_thresh->lower_threshold[2])) {
1164 new_threshold = WMI_RSSI_THRESHOLD4_BELOW;
1165 } else if ((rssi > sq_thresh->lower_threshold[4]) &&
1166 (rssi <= sq_thresh->lower_threshold[3])) {
1167 new_threshold = WMI_RSSI_THRESHOLD3_BELOW;
1168 } else if ((rssi > sq_thresh->lower_threshold[5]) &&
1169 (rssi <= sq_thresh->lower_threshold[4])) {
1170 new_threshold = WMI_RSSI_THRESHOLD2_BELOW;
1171 } else if (rssi <= sq_thresh->lower_threshold[5]) {
1172 new_threshold = WMI_RSSI_THRESHOLD1_BELOW;
1173 }
1174 }
1175
1176 /* Calculate and install the next set of thresholds */
1177 lower_rssi_threshold = ath6kl_wmi_get_lower_threshold(rssi, sq_thresh,
1178 sq_thresh->lower_threshold_valid_count);
1179 upper_rssi_threshold = ath6kl_wmi_get_upper_threshold(rssi, sq_thresh,
1180 sq_thresh->upper_threshold_valid_count);
1181
1182 /* Issue a wmi command to install the thresholds */
1183 cmd.thresh_above1_val = a_cpu_to_sle16(upper_rssi_threshold);
1184 cmd.thresh_below1_val = a_cpu_to_sle16(lower_rssi_threshold);
1185 cmd.weight = sq_thresh->weight;
1186 cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
1187
1188 ret = ath6kl_wmi_send_rssi_threshold_params(wmi, &cmd);
1189 if (ret) {
1190 ath6kl_err("unable to configure rssi thresholds\n");
1191 return -EIO;
1192 }
1193
1194 return 0;
1195 }
1196
1197 static int ath6kl_wmi_cac_event_rx(struct wmi *wmi, u8 *datap, int len)
1198 {
1199 struct wmi_cac_event *reply;
1200 struct ieee80211_tspec_ie *ts;
1201 u16 active_tsids, tsinfo;
1202 u8 tsid, index;
1203 u8 ts_id;
1204
1205 if (len < sizeof(struct wmi_cac_event))
1206 return -EINVAL;
1207
1208 reply = (struct wmi_cac_event *) datap;
1209
1210 if ((reply->cac_indication == CAC_INDICATION_ADMISSION_RESP) &&
1211 (reply->status_code != IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED)) {
1212
1213 ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
1214 tsinfo = le16_to_cpu(ts->tsinfo);
1215 tsid = (tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
1216 IEEE80211_WMM_IE_TSPEC_TID_MASK;
1217
1218 ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, tsid);
1219 } else if (reply->cac_indication == CAC_INDICATION_NO_RESP) {
1220 /*
1221 * Following assumes that there is only one outstanding
1222 * ADDTS request when this event is received
1223 */
1224 spin_lock_bh(&wmi->lock);
1225 active_tsids = wmi->stream_exist_for_ac[reply->ac];
1226 spin_unlock_bh(&wmi->lock);
1227
1228 for (index = 0; index < sizeof(active_tsids) * 8; index++) {
1229 if ((active_tsids >> index) & 1)
1230 break;
1231 }
1232 if (index < (sizeof(active_tsids) * 8))
1233 ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, index);
1234 }
1235
1236 /*
1237 * Clear active tsids and Add missing handling
1238 * for delete qos stream from AP
1239 */
1240 else if (reply->cac_indication == CAC_INDICATION_DELETE) {
1241
1242 ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
1243 tsinfo = le16_to_cpu(ts->tsinfo);
1244 ts_id = ((tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
1245 IEEE80211_WMM_IE_TSPEC_TID_MASK);
1246
1247 spin_lock_bh(&wmi->lock);
1248 wmi->stream_exist_for_ac[reply->ac] &= ~(1 << ts_id);
1249 active_tsids = wmi->stream_exist_for_ac[reply->ac];
1250 spin_unlock_bh(&wmi->lock);
1251
1252 /* Indicate stream inactivity to driver layer only if all tsids
1253 * within this AC are deleted.
1254 */
1255 if (!active_tsids) {
1256 ath6kl_indicate_tx_activity(wmi->parent_dev, reply->ac,
1257 false);
1258 wmi->fat_pipe_exist &= ~(1 << reply->ac);
1259 }
1260 }
1261
1262 return 0;
1263 }
1264
1265 static int ath6kl_wmi_send_snr_threshold_params(struct wmi *wmi,
1266 struct wmi_snr_threshold_params_cmd *snr_cmd)
1267 {
1268 struct sk_buff *skb;
1269 struct wmi_snr_threshold_params_cmd *cmd;
1270
1271 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1272 if (!skb)
1273 return -ENOMEM;
1274
1275 cmd = (struct wmi_snr_threshold_params_cmd *) skb->data;
1276 memcpy(cmd, snr_cmd, sizeof(struct wmi_snr_threshold_params_cmd));
1277
1278 return ath6kl_wmi_cmd_send(wmi, skb, WMI_SNR_THRESHOLD_PARAMS_CMDID,
1279 NO_SYNC_WMIFLAG);
1280 }
1281
1282 static int ath6kl_wmi_snr_threshold_event_rx(struct wmi *wmi, u8 *datap,
1283 int len)
1284 {
1285 struct wmi_snr_threshold_event *reply;
1286 struct sq_threshold_params *sq_thresh;
1287 struct wmi_snr_threshold_params_cmd cmd;
1288 enum wmi_snr_threshold_val new_threshold;
1289 u8 upper_snr_threshold, lower_snr_threshold;
1290 s16 snr;
1291 int ret;
1292
1293 if (len < sizeof(struct wmi_snr_threshold_event))
1294 return -EINVAL;
1295
1296 reply = (struct wmi_snr_threshold_event *) datap;
1297
1298 new_threshold = (enum wmi_snr_threshold_val) reply->range;
1299 snr = reply->snr;
1300
1301 sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_SNR];
1302
1303 /*
1304 * Identify the threshold breached and communicate that to the app.
1305 * After that install a new set of thresholds based on the signal
1306 * quality reported by the target.
1307 */
1308 if (new_threshold) {
1309 /* Upper threshold breached */
1310 if (snr < sq_thresh->upper_threshold[0]) {
1311 ath6kl_dbg(ATH6KL_DBG_WMI,
1312 "spurious upper snr threshold event: %d\n",
1313 snr);
1314 } else if ((snr < sq_thresh->upper_threshold[1]) &&
1315 (snr >= sq_thresh->upper_threshold[0])) {
1316 new_threshold = WMI_SNR_THRESHOLD1_ABOVE;
1317 } else if ((snr < sq_thresh->upper_threshold[2]) &&
1318 (snr >= sq_thresh->upper_threshold[1])) {
1319 new_threshold = WMI_SNR_THRESHOLD2_ABOVE;
1320 } else if ((snr < sq_thresh->upper_threshold[3]) &&
1321 (snr >= sq_thresh->upper_threshold[2])) {
1322 new_threshold = WMI_SNR_THRESHOLD3_ABOVE;
1323 } else if (snr >= sq_thresh->upper_threshold[3]) {
1324 new_threshold = WMI_SNR_THRESHOLD4_ABOVE;
1325 }
1326 } else {
1327 /* Lower threshold breached */
1328 if (snr > sq_thresh->lower_threshold[0]) {
1329 ath6kl_dbg(ATH6KL_DBG_WMI,
1330 "spurious lower snr threshold event: %d\n",
1331 sq_thresh->lower_threshold[0]);
1332 } else if ((snr > sq_thresh->lower_threshold[1]) &&
1333 (snr <= sq_thresh->lower_threshold[0])) {
1334 new_threshold = WMI_SNR_THRESHOLD4_BELOW;
1335 } else if ((snr > sq_thresh->lower_threshold[2]) &&
1336 (snr <= sq_thresh->lower_threshold[1])) {
1337 new_threshold = WMI_SNR_THRESHOLD3_BELOW;
1338 } else if ((snr > sq_thresh->lower_threshold[3]) &&
1339 (snr <= sq_thresh->lower_threshold[2])) {
1340 new_threshold = WMI_SNR_THRESHOLD2_BELOW;
1341 } else if (snr <= sq_thresh->lower_threshold[3]) {
1342 new_threshold = WMI_SNR_THRESHOLD1_BELOW;
1343 }
1344 }
1345
1346 /* Calculate and install the next set of thresholds */
1347 lower_snr_threshold = ath6kl_wmi_get_lower_threshold(snr, sq_thresh,
1348 sq_thresh->lower_threshold_valid_count);
1349 upper_snr_threshold = ath6kl_wmi_get_upper_threshold(snr, sq_thresh,
1350 sq_thresh->upper_threshold_valid_count);
1351
1352 /* Issue a wmi command to install the thresholds */
1353 cmd.thresh_above1_val = upper_snr_threshold;
1354 cmd.thresh_below1_val = lower_snr_threshold;
1355 cmd.weight = sq_thresh->weight;
1356 cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
1357
1358 ath6kl_dbg(ATH6KL_DBG_WMI,
1359 "snr: %d, threshold: %d, lower: %d, upper: %d\n",
1360 snr, new_threshold,
1361 lower_snr_threshold, upper_snr_threshold);
1362
1363 ret = ath6kl_wmi_send_snr_threshold_params(wmi, &cmd);
1364 if (ret) {
1365 ath6kl_err("unable to configure snr threshold\n");
1366 return -EIO;
1367 }
1368
1369 return 0;
1370 }
1371
1372 static int ath6kl_wmi_aplist_event_rx(struct wmi *wmi, u8 *datap, int len)
1373 {
1374 u16 ap_info_entry_size;
1375 struct wmi_aplist_event *ev = (struct wmi_aplist_event *) datap;
1376 struct wmi_ap_info_v1 *ap_info_v1;
1377 u8 index;
1378
1379 if (len < sizeof(struct wmi_aplist_event) ||
1380 ev->ap_list_ver != APLIST_VER1)
1381 return -EINVAL;
1382
1383 ap_info_entry_size = sizeof(struct wmi_ap_info_v1);
1384 ap_info_v1 = (struct wmi_ap_info_v1 *) ev->ap_list;
1385
1386 ath6kl_dbg(ATH6KL_DBG_WMI,
1387 "number of APs in aplist event: %d\n", ev->num_ap);
1388
1389 if (len < (int) (sizeof(struct wmi_aplist_event) +
1390 (ev->num_ap - 1) * ap_info_entry_size))
1391 return -EINVAL;
1392
1393 /* AP list version 1 contents */
1394 for (index = 0; index < ev->num_ap; index++) {
1395 ath6kl_dbg(ATH6KL_DBG_WMI, "AP#%d BSSID %pM Channel %d\n",
1396 index, ap_info_v1->bssid, ap_info_v1->channel);
1397 ap_info_v1++;
1398 }
1399
1400 return 0;
1401 }
1402
1403 int ath6kl_wmi_cmd_send(struct wmi *wmi, struct sk_buff *skb,
1404 enum wmi_cmd_id cmd_id, enum wmi_sync_flag sync_flag)
1405 {
1406 struct wmi_cmd_hdr *cmd_hdr;
1407 enum htc_endpoint_id ep_id = wmi->ep_id;
1408 int ret;
1409
1410 if (WARN_ON(skb == NULL))
1411 return -EINVAL;
1412
1413 if (sync_flag >= END_WMIFLAG) {
1414 dev_kfree_skb(skb);
1415 return -EINVAL;
1416 }
1417
1418 if ((sync_flag == SYNC_BEFORE_WMIFLAG) ||
1419 (sync_flag == SYNC_BOTH_WMIFLAG)) {
1420 /*
1421 * Make sure all data currently queued is transmitted before
1422 * the cmd execution. Establish a new sync point.
1423 */
1424 ath6kl_wmi_sync_point(wmi);
1425 }
1426
1427 skb_push(skb, sizeof(struct wmi_cmd_hdr));
1428
1429 cmd_hdr = (struct wmi_cmd_hdr *) skb->data;
1430 cmd_hdr->cmd_id = cpu_to_le16(cmd_id);
1431 cmd_hdr->info1 = 0; /* added for virtual interface */
1432
1433 /* Only for OPT_TX_CMD, use BE endpoint. */
1434 if (cmd_id == WMI_OPT_TX_FRAME_CMDID) {
1435 ret = ath6kl_wmi_data_hdr_add(wmi, skb, OPT_MSGTYPE,
1436 false, false, 0, NULL);
1437 if (ret) {
1438 dev_kfree_skb(skb);
1439 return ret;
1440 }
1441 ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev, WMM_AC_BE);
1442 }
1443
1444 ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
1445
1446 if ((sync_flag == SYNC_AFTER_WMIFLAG) ||
1447 (sync_flag == SYNC_BOTH_WMIFLAG)) {
1448 /*
1449 * Make sure all new data queued waits for the command to
1450 * execute. Establish a new sync point.
1451 */
1452 ath6kl_wmi_sync_point(wmi);
1453 }
1454
1455 return 0;
1456 }
1457
1458 int ath6kl_wmi_connect_cmd(struct wmi *wmi, enum network_type nw_type,
1459 enum dot11_auth_mode dot11_auth_mode,
1460 enum auth_mode auth_mode,
1461 enum crypto_type pairwise_crypto,
1462 u8 pairwise_crypto_len,
1463 enum crypto_type group_crypto,
1464 u8 group_crypto_len, int ssid_len, u8 *ssid,
1465 u8 *bssid, u16 channel, u32 ctrl_flags)
1466 {
1467 struct sk_buff *skb;
1468 struct wmi_connect_cmd *cc;
1469 int ret;
1470
1471 wmi->traffic_class = 100;
1472
1473 if ((pairwise_crypto == NONE_CRYPT) && (group_crypto != NONE_CRYPT))
1474 return -EINVAL;
1475
1476 if ((pairwise_crypto != NONE_CRYPT) && (group_crypto == NONE_CRYPT))
1477 return -EINVAL;
1478
1479 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_connect_cmd));
1480 if (!skb)
1481 return -ENOMEM;
1482
1483 cc = (struct wmi_connect_cmd *) skb->data;
1484
1485 if (ssid_len)
1486 memcpy(cc->ssid, ssid, ssid_len);
1487
1488 cc->ssid_len = ssid_len;
1489 cc->nw_type = nw_type;
1490 cc->dot11_auth_mode = dot11_auth_mode;
1491 cc->auth_mode = auth_mode;
1492 cc->prwise_crypto_type = pairwise_crypto;
1493 cc->prwise_crypto_len = pairwise_crypto_len;
1494 cc->grp_crypto_type = group_crypto;
1495 cc->grp_crypto_len = group_crypto_len;
1496 cc->ch = cpu_to_le16(channel);
1497 cc->ctrl_flags = cpu_to_le32(ctrl_flags);
1498
1499 if (bssid != NULL)
1500 memcpy(cc->bssid, bssid, ETH_ALEN);
1501
1502 wmi->pair_crypto_type = pairwise_crypto;
1503 wmi->grp_crypto_type = group_crypto;
1504
1505 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CONNECT_CMDID, NO_SYNC_WMIFLAG);
1506
1507 return ret;
1508 }
1509
1510 int ath6kl_wmi_reconnect_cmd(struct wmi *wmi, u8 *bssid, u16 channel)
1511 {
1512 struct sk_buff *skb;
1513 struct wmi_reconnect_cmd *cc;
1514 int ret;
1515
1516 wmi->traffic_class = 100;
1517
1518 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_reconnect_cmd));
1519 if (!skb)
1520 return -ENOMEM;
1521
1522 cc = (struct wmi_reconnect_cmd *) skb->data;
1523 cc->channel = cpu_to_le16(channel);
1524
1525 if (bssid != NULL)
1526 memcpy(cc->bssid, bssid, ETH_ALEN);
1527
1528 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RECONNECT_CMDID,
1529 NO_SYNC_WMIFLAG);
1530
1531 return ret;
1532 }
1533
1534 int ath6kl_wmi_disconnect_cmd(struct wmi *wmi)
1535 {
1536 int ret;
1537
1538 wmi->traffic_class = 100;
1539
1540 /* Disconnect command does not need to do a SYNC before. */
1541 ret = ath6kl_wmi_simple_cmd(wmi, WMI_DISCONNECT_CMDID);
1542
1543 return ret;
1544 }
1545
1546 int ath6kl_wmi_startscan_cmd(struct wmi *wmi, enum wmi_scan_type scan_type,
1547 u32 force_fgscan, u32 is_legacy,
1548 u32 home_dwell_time, u32 force_scan_interval,
1549 s8 num_chan, u16 *ch_list)
1550 {
1551 struct sk_buff *skb;
1552 struct wmi_start_scan_cmd *sc;
1553 s8 size;
1554 int ret;
1555
1556 size = sizeof(struct wmi_start_scan_cmd);
1557
1558 if ((scan_type != WMI_LONG_SCAN) && (scan_type != WMI_SHORT_SCAN))
1559 return -EINVAL;
1560
1561 if (num_chan > WMI_MAX_CHANNELS)
1562 return -EINVAL;
1563
1564 if (num_chan)
1565 size += sizeof(u16) * (num_chan - 1);
1566
1567 skb = ath6kl_wmi_get_new_buf(size);
1568 if (!skb)
1569 return -ENOMEM;
1570
1571 sc = (struct wmi_start_scan_cmd *) skb->data;
1572 sc->scan_type = scan_type;
1573 sc->force_fg_scan = cpu_to_le32(force_fgscan);
1574 sc->is_legacy = cpu_to_le32(is_legacy);
1575 sc->home_dwell_time = cpu_to_le32(home_dwell_time);
1576 sc->force_scan_intvl = cpu_to_le32(force_scan_interval);
1577 sc->num_ch = num_chan;
1578
1579 if (num_chan)
1580 memcpy(sc->ch_list, ch_list, num_chan * sizeof(u16));
1581
1582 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_START_SCAN_CMDID,
1583 NO_SYNC_WMIFLAG);
1584
1585 return ret;
1586 }
1587
1588 int ath6kl_wmi_scanparams_cmd(struct wmi *wmi, u16 fg_start_sec,
1589 u16 fg_end_sec, u16 bg_sec,
1590 u16 minact_chdw_msec, u16 maxact_chdw_msec,
1591 u16 pas_chdw_msec, u8 short_scan_ratio,
1592 u8 scan_ctrl_flag, u32 max_dfsch_act_time,
1593 u16 maxact_scan_per_ssid)
1594 {
1595 struct sk_buff *skb;
1596 struct wmi_scan_params_cmd *sc;
1597 int ret;
1598
1599 skb = ath6kl_wmi_get_new_buf(sizeof(*sc));
1600 if (!skb)
1601 return -ENOMEM;
1602
1603 sc = (struct wmi_scan_params_cmd *) skb->data;
1604 sc->fg_start_period = cpu_to_le16(fg_start_sec);
1605 sc->fg_end_period = cpu_to_le16(fg_end_sec);
1606 sc->bg_period = cpu_to_le16(bg_sec);
1607 sc->minact_chdwell_time = cpu_to_le16(minact_chdw_msec);
1608 sc->maxact_chdwell_time = cpu_to_le16(maxact_chdw_msec);
1609 sc->pas_chdwell_time = cpu_to_le16(pas_chdw_msec);
1610 sc->short_scan_ratio = short_scan_ratio;
1611 sc->scan_ctrl_flags = scan_ctrl_flag;
1612 sc->max_dfsch_act_time = cpu_to_le32(max_dfsch_act_time);
1613 sc->maxact_scan_per_ssid = cpu_to_le16(maxact_scan_per_ssid);
1614
1615 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_SCAN_PARAMS_CMDID,
1616 NO_SYNC_WMIFLAG);
1617 return ret;
1618 }
1619
1620 int ath6kl_wmi_bssfilter_cmd(struct wmi *wmi, u8 filter, u32 ie_mask)
1621 {
1622 struct sk_buff *skb;
1623 struct wmi_bss_filter_cmd *cmd;
1624 int ret;
1625
1626 if (filter >= LAST_BSS_FILTER)
1627 return -EINVAL;
1628
1629 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1630 if (!skb)
1631 return -ENOMEM;
1632
1633 cmd = (struct wmi_bss_filter_cmd *) skb->data;
1634 cmd->bss_filter = filter;
1635 cmd->ie_mask = cpu_to_le32(ie_mask);
1636
1637 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_BSS_FILTER_CMDID,
1638 NO_SYNC_WMIFLAG);
1639 return ret;
1640 }
1641
1642 int ath6kl_wmi_probedssid_cmd(struct wmi *wmi, u8 index, u8 flag,
1643 u8 ssid_len, u8 *ssid)
1644 {
1645 struct sk_buff *skb;
1646 struct wmi_probed_ssid_cmd *cmd;
1647 int ret;
1648
1649 if (index > MAX_PROBED_SSID_INDEX)
1650 return -EINVAL;
1651
1652 if (ssid_len > sizeof(cmd->ssid))
1653 return -EINVAL;
1654
1655 if ((flag & (DISABLE_SSID_FLAG | ANY_SSID_FLAG)) && (ssid_len > 0))
1656 return -EINVAL;
1657
1658 if ((flag & SPECIFIC_SSID_FLAG) && !ssid_len)
1659 return -EINVAL;
1660
1661 if (flag & SPECIFIC_SSID_FLAG)
1662 wmi->is_probe_ssid = true;
1663
1664 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1665 if (!skb)
1666 return -ENOMEM;
1667
1668 cmd = (struct wmi_probed_ssid_cmd *) skb->data;
1669 cmd->entry_index = index;
1670 cmd->flag = flag;
1671 cmd->ssid_len = ssid_len;
1672 memcpy(cmd->ssid, ssid, ssid_len);
1673
1674 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PROBED_SSID_CMDID,
1675 NO_SYNC_WMIFLAG);
1676 return ret;
1677 }
1678
1679 int ath6kl_wmi_listeninterval_cmd(struct wmi *wmi, u16 listen_interval,
1680 u16 listen_beacons)
1681 {
1682 struct sk_buff *skb;
1683 struct wmi_listen_int_cmd *cmd;
1684 int ret;
1685
1686 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1687 if (!skb)
1688 return -ENOMEM;
1689
1690 cmd = (struct wmi_listen_int_cmd *) skb->data;
1691 cmd->listen_intvl = cpu_to_le16(listen_interval);
1692 cmd->num_beacons = cpu_to_le16(listen_beacons);
1693
1694 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LISTEN_INT_CMDID,
1695 NO_SYNC_WMIFLAG);
1696 return ret;
1697 }
1698
1699 int ath6kl_wmi_powermode_cmd(struct wmi *wmi, u8 pwr_mode)
1700 {
1701 struct sk_buff *skb;
1702 struct wmi_power_mode_cmd *cmd;
1703 int ret;
1704
1705 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1706 if (!skb)
1707 return -ENOMEM;
1708
1709 cmd = (struct wmi_power_mode_cmd *) skb->data;
1710 cmd->pwr_mode = pwr_mode;
1711 wmi->pwr_mode = pwr_mode;
1712
1713 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_MODE_CMDID,
1714 NO_SYNC_WMIFLAG);
1715 return ret;
1716 }
1717
1718 int ath6kl_wmi_pmparams_cmd(struct wmi *wmi, u16 idle_period,
1719 u16 ps_poll_num, u16 dtim_policy,
1720 u16 tx_wakeup_policy, u16 num_tx_to_wakeup,
1721 u16 ps_fail_event_policy)
1722 {
1723 struct sk_buff *skb;
1724 struct wmi_power_params_cmd *pm;
1725 int ret;
1726
1727 skb = ath6kl_wmi_get_new_buf(sizeof(*pm));
1728 if (!skb)
1729 return -ENOMEM;
1730
1731 pm = (struct wmi_power_params_cmd *)skb->data;
1732 pm->idle_period = cpu_to_le16(idle_period);
1733 pm->pspoll_number = cpu_to_le16(ps_poll_num);
1734 pm->dtim_policy = cpu_to_le16(dtim_policy);
1735 pm->tx_wakeup_policy = cpu_to_le16(tx_wakeup_policy);
1736 pm->num_tx_to_wakeup = cpu_to_le16(num_tx_to_wakeup);
1737 pm->ps_fail_event_policy = cpu_to_le16(ps_fail_event_policy);
1738
1739 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_PARAMS_CMDID,
1740 NO_SYNC_WMIFLAG);
1741 return ret;
1742 }
1743
1744 int ath6kl_wmi_disctimeout_cmd(struct wmi *wmi, u8 timeout)
1745 {
1746 struct sk_buff *skb;
1747 struct wmi_disc_timeout_cmd *cmd;
1748 int ret;
1749
1750 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1751 if (!skb)
1752 return -ENOMEM;
1753
1754 cmd = (struct wmi_disc_timeout_cmd *) skb->data;
1755 cmd->discon_timeout = timeout;
1756
1757 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_DISC_TIMEOUT_CMDID,
1758 NO_SYNC_WMIFLAG);
1759 return ret;
1760 }
1761
1762 int ath6kl_wmi_addkey_cmd(struct wmi *wmi, u8 key_index,
1763 enum crypto_type key_type,
1764 u8 key_usage, u8 key_len,
1765 u8 *key_rsc, u8 *key_material,
1766 u8 key_op_ctrl, u8 *mac_addr,
1767 enum wmi_sync_flag sync_flag)
1768 {
1769 struct sk_buff *skb;
1770 struct wmi_add_cipher_key_cmd *cmd;
1771 int ret;
1772
1773 if ((key_index > WMI_MAX_KEY_INDEX) || (key_len > WMI_MAX_KEY_LEN) ||
1774 (key_material == NULL))
1775 return -EINVAL;
1776
1777 if ((WEP_CRYPT != key_type) && (NULL == key_rsc))
1778 return -EINVAL;
1779
1780 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1781 if (!skb)
1782 return -ENOMEM;
1783
1784 cmd = (struct wmi_add_cipher_key_cmd *) skb->data;
1785 cmd->key_index = key_index;
1786 cmd->key_type = key_type;
1787 cmd->key_usage = key_usage;
1788 cmd->key_len = key_len;
1789 memcpy(cmd->key, key_material, key_len);
1790
1791 if (key_rsc != NULL)
1792 memcpy(cmd->key_rsc, key_rsc, sizeof(cmd->key_rsc));
1793
1794 cmd->key_op_ctrl = key_op_ctrl;
1795
1796 if (mac_addr)
1797 memcpy(cmd->key_mac_addr, mac_addr, ETH_ALEN);
1798
1799 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_CIPHER_KEY_CMDID,
1800 sync_flag);
1801
1802 return ret;
1803 }
1804
1805 int ath6kl_wmi_add_krk_cmd(struct wmi *wmi, u8 *krk)
1806 {
1807 struct sk_buff *skb;
1808 struct wmi_add_krk_cmd *cmd;
1809 int ret;
1810
1811 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1812 if (!skb)
1813 return -ENOMEM;
1814
1815 cmd = (struct wmi_add_krk_cmd *) skb->data;
1816 memcpy(cmd->krk, krk, WMI_KRK_LEN);
1817
1818 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_KRK_CMDID, NO_SYNC_WMIFLAG);
1819
1820 return ret;
1821 }
1822
1823 int ath6kl_wmi_deletekey_cmd(struct wmi *wmi, u8 key_index)
1824 {
1825 struct sk_buff *skb;
1826 struct wmi_delete_cipher_key_cmd *cmd;
1827 int ret;
1828
1829 if (key_index > WMI_MAX_KEY_INDEX)
1830 return -EINVAL;
1831
1832 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1833 if (!skb)
1834 return -ENOMEM;
1835
1836 cmd = (struct wmi_delete_cipher_key_cmd *) skb->data;
1837 cmd->key_index = key_index;
1838
1839 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_CIPHER_KEY_CMDID,
1840 NO_SYNC_WMIFLAG);
1841
1842 return ret;
1843 }
1844
1845 int ath6kl_wmi_setpmkid_cmd(struct wmi *wmi, const u8 *bssid,
1846 const u8 *pmkid, bool set)
1847 {
1848 struct sk_buff *skb;
1849 struct wmi_setpmkid_cmd *cmd;
1850 int ret;
1851
1852 if (bssid == NULL)
1853 return -EINVAL;
1854
1855 if (set && pmkid == NULL)
1856 return -EINVAL;
1857
1858 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1859 if (!skb)
1860 return -ENOMEM;
1861
1862 cmd = (struct wmi_setpmkid_cmd *) skb->data;
1863 memcpy(cmd->bssid, bssid, ETH_ALEN);
1864 if (set) {
1865 memcpy(cmd->pmkid, pmkid, sizeof(cmd->pmkid));
1866 cmd->enable = PMKID_ENABLE;
1867 } else {
1868 memset(cmd->pmkid, 0, sizeof(cmd->pmkid));
1869 cmd->enable = PMKID_DISABLE;
1870 }
1871
1872 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PMKID_CMDID,
1873 NO_SYNC_WMIFLAG);
1874
1875 return ret;
1876 }
1877
1878 static int ath6kl_wmi_data_sync_send(struct wmi *wmi, struct sk_buff *skb,
1879 enum htc_endpoint_id ep_id)
1880 {
1881 struct wmi_data_hdr *data_hdr;
1882 int ret;
1883
1884 if (WARN_ON(skb == NULL || ep_id == wmi->ep_id))
1885 return -EINVAL;
1886
1887 skb_push(skb, sizeof(struct wmi_data_hdr));
1888
1889 data_hdr = (struct wmi_data_hdr *) skb->data;
1890 data_hdr->info = SYNC_MSGTYPE << WMI_DATA_HDR_MSG_TYPE_SHIFT;
1891 data_hdr->info3 = 0;
1892
1893 ret = ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
1894
1895 return ret;
1896 }
1897
1898 static int ath6kl_wmi_sync_point(struct wmi *wmi)
1899 {
1900 struct sk_buff *skb;
1901 struct wmi_sync_cmd *cmd;
1902 struct wmi_data_sync_bufs data_sync_bufs[WMM_NUM_AC];
1903 enum htc_endpoint_id ep_id;
1904 u8 index, num_pri_streams = 0;
1905 int ret = 0;
1906
1907 memset(data_sync_bufs, 0, sizeof(data_sync_bufs));
1908
1909 spin_lock_bh(&wmi->lock);
1910
1911 for (index = 0; index < WMM_NUM_AC; index++) {
1912 if (wmi->fat_pipe_exist & (1 << index)) {
1913 num_pri_streams++;
1914 data_sync_bufs[num_pri_streams - 1].traffic_class =
1915 index;
1916 }
1917 }
1918
1919 spin_unlock_bh(&wmi->lock);
1920
1921 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
1922 if (!skb) {
1923 ret = -ENOMEM;
1924 goto free_skb;
1925 }
1926
1927 cmd = (struct wmi_sync_cmd *) skb->data;
1928
1929 /*
1930 * In the SYNC cmd sent on the control Ep, send a bitmap
1931 * of the data eps on which the Data Sync will be sent
1932 */
1933 cmd->data_sync_map = wmi->fat_pipe_exist;
1934
1935 for (index = 0; index < num_pri_streams; index++) {
1936 data_sync_bufs[index].skb = ath6kl_buf_alloc(0);
1937 if (data_sync_bufs[index].skb == NULL) {
1938 ret = -ENOMEM;
1939 break;
1940 }
1941 }
1942
1943 /*
1944 * If buffer allocation for any of the dataSync fails,
1945 * then do not send the Synchronize cmd on the control ep
1946 */
1947 if (ret)
1948 goto free_skb;
1949
1950 /*
1951 * Send sync cmd followed by sync data messages on all
1952 * endpoints being used
1953 */
1954 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SYNCHRONIZE_CMDID,
1955 NO_SYNC_WMIFLAG);
1956
1957 if (ret)
1958 goto free_skb;
1959
1960 /* cmd buffer sent, we no longer own it */
1961 skb = NULL;
1962
1963 for (index = 0; index < num_pri_streams; index++) {
1964
1965 if (WARN_ON(!data_sync_bufs[index].skb))
1966 break;
1967
1968 ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev,
1969 data_sync_bufs[index].
1970 traffic_class);
1971 ret =
1972 ath6kl_wmi_data_sync_send(wmi, data_sync_bufs[index].skb,
1973 ep_id);
1974
1975 if (ret)
1976 break;
1977
1978 data_sync_bufs[index].skb = NULL;
1979 }
1980
1981 free_skb:
1982 /* free up any resources left over (possibly due to an error) */
1983 if (skb)
1984 dev_kfree_skb(skb);
1985
1986 for (index = 0; index < num_pri_streams; index++) {
1987 if (data_sync_bufs[index].skb != NULL) {
1988 dev_kfree_skb((struct sk_buff *)data_sync_bufs[index].
1989 skb);
1990 }
1991 }
1992
1993 return ret;
1994 }
1995
1996 int ath6kl_wmi_create_pstream_cmd(struct wmi *wmi,
1997 struct wmi_create_pstream_cmd *params)
1998 {
1999 struct sk_buff *skb;
2000 struct wmi_create_pstream_cmd *cmd;
2001 u8 fatpipe_exist_for_ac = 0;
2002 s32 min_phy = 0;
2003 s32 nominal_phy = 0;
2004 int ret;
2005
2006 if (!((params->user_pri < 8) &&
2007 (params->user_pri <= 0x7) &&
2008 (up_to_ac[params->user_pri & 0x7] == params->traffic_class) &&
2009 (params->traffic_direc == UPLINK_TRAFFIC ||
2010 params->traffic_direc == DNLINK_TRAFFIC ||
2011 params->traffic_direc == BIDIR_TRAFFIC) &&
2012 (params->traffic_type == TRAFFIC_TYPE_APERIODIC ||
2013 params->traffic_type == TRAFFIC_TYPE_PERIODIC) &&
2014 (params->voice_psc_cap == DISABLE_FOR_THIS_AC ||
2015 params->voice_psc_cap == ENABLE_FOR_THIS_AC ||
2016 params->voice_psc_cap == ENABLE_FOR_ALL_AC) &&
2017 (params->tsid == WMI_IMPLICIT_PSTREAM ||
2018 params->tsid <= WMI_MAX_THINSTREAM))) {
2019 return -EINVAL;
2020 }
2021
2022 /*
2023 * Check nominal PHY rate is >= minimalPHY,
2024 * so that DUT can allow TSRS IE
2025 */
2026
2027 /* Get the physical rate (units of bps) */
2028 min_phy = ((le32_to_cpu(params->min_phy_rate) / 1000) / 1000);
2029
2030 /* Check minimal phy < nominal phy rate */
2031 if (params->nominal_phy >= min_phy) {
2032 /* unit of 500 kbps */
2033 nominal_phy = (params->nominal_phy * 1000) / 500;
2034 ath6kl_dbg(ATH6KL_DBG_WMI,
2035 "TSRS IE enabled::MinPhy %x->NominalPhy ===> %x\n",
2036 min_phy, nominal_phy);
2037
2038 params->nominal_phy = nominal_phy;
2039 } else {
2040 params->nominal_phy = 0;
2041 }
2042
2043 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
2044 if (!skb)
2045 return -ENOMEM;
2046
2047 ath6kl_dbg(ATH6KL_DBG_WMI,
2048 "sending create_pstream_cmd: ac=%d tsid:%d\n",
2049 params->traffic_class, params->tsid);
2050
2051 cmd = (struct wmi_create_pstream_cmd *) skb->data;
2052 memcpy(cmd, params, sizeof(*cmd));
2053
2054 /* This is an implicitly created Fat pipe */
2055 if ((u32) params->tsid == (u32) WMI_IMPLICIT_PSTREAM) {
2056 spin_lock_bh(&wmi->lock);
2057 fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
2058 (1 << params->traffic_class));
2059 wmi->fat_pipe_exist |= (1 << params->traffic_class);
2060 spin_unlock_bh(&wmi->lock);
2061 } else {
2062 /* explicitly created thin stream within a fat pipe */
2063 spin_lock_bh(&wmi->lock);
2064 fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
2065 (1 << params->traffic_class));
2066 wmi->stream_exist_for_ac[params->traffic_class] |=
2067 (1 << params->tsid);
2068 /*
2069 * If a thinstream becomes active, the fat pipe automatically
2070 * becomes active
2071 */
2072 wmi->fat_pipe_exist |= (1 << params->traffic_class);
2073 spin_unlock_bh(&wmi->lock);
2074 }
2075
2076 /*
2077 * Indicate activty change to driver layer only if this is the
2078 * first TSID to get created in this AC explicitly or an implicit
2079 * fat pipe is getting created.
2080 */
2081 if (!fatpipe_exist_for_ac)
2082 ath6kl_indicate_tx_activity(wmi->parent_dev,
2083 params->traffic_class, true);
2084
2085 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CREATE_PSTREAM_CMDID,
2086 NO_SYNC_WMIFLAG);
2087 return ret;
2088 }
2089
2090 int ath6kl_wmi_delete_pstream_cmd(struct wmi *wmi, u8 traffic_class, u8 tsid)
2091 {
2092 struct sk_buff *skb;
2093 struct wmi_delete_pstream_cmd *cmd;
2094 u16 active_tsids = 0;
2095 int ret;
2096
2097 if (traffic_class > 3) {
2098 ath6kl_err("invalid traffic class: %d\n", traffic_class);
2099 return -EINVAL;
2100 }
2101
2102 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
2103 if (!skb)
2104 return -ENOMEM;
2105
2106 cmd = (struct wmi_delete_pstream_cmd *) skb->data;
2107 cmd->traffic_class = traffic_class;
2108 cmd->tsid = tsid;
2109
2110 spin_lock_bh(&wmi->lock);
2111 active_tsids = wmi->stream_exist_for_ac[traffic_class];
2112 spin_unlock_bh(&wmi->lock);
2113
2114 if (!(active_tsids & (1 << tsid))) {
2115 dev_kfree_skb(skb);
2116 ath6kl_dbg(ATH6KL_DBG_WMI,
2117 "TSID %d doesn't exist for traffic class: %d\n",
2118 tsid, traffic_class);
2119 return -ENODATA;
2120 }
2121
2122 ath6kl_dbg(ATH6KL_DBG_WMI,
2123 "sending delete_pstream_cmd: traffic class: %d tsid=%d\n",
2124 traffic_class, tsid);
2125
2126 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_PSTREAM_CMDID,
2127 SYNC_BEFORE_WMIFLAG);
2128
2129 spin_lock_bh(&wmi->lock);
2130 wmi->stream_exist_for_ac[traffic_class] &= ~(1 << tsid);
2131 active_tsids = wmi->stream_exist_for_ac[traffic_class];
2132 spin_unlock_bh(&wmi->lock);
2133
2134 /*
2135 * Indicate stream inactivity to driver layer only if all tsids
2136 * within this AC are deleted.
2137 */
2138 if (!active_tsids) {
2139 ath6kl_indicate_tx_activity(wmi->parent_dev,
2140 traffic_class, false);
2141 wmi->fat_pipe_exist &= ~(1 << traffic_class);
2142 }
2143
2144 return ret;
2145 }
2146
2147 int ath6kl_wmi_set_ip_cmd(struct wmi *wmi, struct wmi_set_ip_cmd *ip_cmd)
2148 {
2149 struct sk_buff *skb;
2150 struct wmi_set_ip_cmd *cmd;
2151 int ret;
2152
2153 /* Multicast address are not valid */
2154 if ((*((u8 *) &ip_cmd->ips[0]) >= 0xE0) ||
2155 (*((u8 *) &ip_cmd->ips[1]) >= 0xE0))
2156 return -EINVAL;
2157
2158 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_ip_cmd));
2159 if (!skb)
2160 return -ENOMEM;
2161
2162 cmd = (struct wmi_set_ip_cmd *) skb->data;
2163 memcpy(cmd, ip_cmd, sizeof(struct wmi_set_ip_cmd));
2164
2165 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_IP_CMDID, NO_SYNC_WMIFLAG);
2166 return ret;
2167 }
2168
2169 static int ath6kl_wmi_get_wow_list_event_rx(struct wmi *wmi, u8 * datap,
2170 int len)
2171 {
2172 if (len < sizeof(struct wmi_get_wow_list_reply))
2173 return -EINVAL;
2174
2175 return 0;
2176 }
2177
2178 static int ath6kl_wmi_cmd_send_xtnd(struct wmi *wmi, struct sk_buff *skb,
2179 enum wmix_command_id cmd_id,
2180 enum wmi_sync_flag sync_flag)
2181 {
2182 struct wmix_cmd_hdr *cmd_hdr;
2183 int ret;
2184
2185 skb_push(skb, sizeof(struct wmix_cmd_hdr));
2186
2187 cmd_hdr = (struct wmix_cmd_hdr *) skb->data;
2188 cmd_hdr->cmd_id = cpu_to_le32(cmd_id);
2189
2190 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_EXTENSION_CMDID, sync_flag);
2191
2192 return ret;
2193 }
2194
2195 int ath6kl_wmi_get_challenge_resp_cmd(struct wmi *wmi, u32 cookie, u32 source)
2196 {
2197 struct sk_buff *skb;
2198 struct wmix_hb_challenge_resp_cmd *cmd;
2199 int ret;
2200
2201 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
2202 if (!skb)
2203 return -ENOMEM;
2204
2205 cmd = (struct wmix_hb_challenge_resp_cmd *) skb->data;
2206 cmd->cookie = cpu_to_le32(cookie);
2207 cmd->source = cpu_to_le32(source);
2208
2209 ret = ath6kl_wmi_cmd_send_xtnd(wmi, skb, WMIX_HB_CHALLENGE_RESP_CMDID,
2210 NO_SYNC_WMIFLAG);
2211 return ret;
2212 }
2213
2214 int ath6kl_wmi_get_stats_cmd(struct wmi *wmi)
2215 {
2216 return ath6kl_wmi_simple_cmd(wmi, WMI_GET_STATISTICS_CMDID);
2217 }
2218
2219 int ath6kl_wmi_set_tx_pwr_cmd(struct wmi *wmi, u8 dbM)
2220 {
2221 struct sk_buff *skb;
2222 struct wmi_set_tx_pwr_cmd *cmd;
2223 int ret;
2224
2225 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_tx_pwr_cmd));
2226 if (!skb)
2227 return -ENOMEM;
2228
2229 cmd = (struct wmi_set_tx_pwr_cmd *) skb->data;
2230 cmd->dbM = dbM;
2231
2232 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_TX_PWR_CMDID,
2233 NO_SYNC_WMIFLAG);
2234
2235 return ret;
2236 }
2237
2238 int ath6kl_wmi_get_tx_pwr_cmd(struct wmi *wmi)
2239 {
2240 return ath6kl_wmi_simple_cmd(wmi, WMI_GET_TX_PWR_CMDID);
2241 }
2242
2243 int ath6kl_wmi_set_lpreamble_cmd(struct wmi *wmi, u8 status, u8 preamble_policy)
2244 {
2245 struct sk_buff *skb;
2246 struct wmi_set_lpreamble_cmd *cmd;
2247 int ret;
2248
2249 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_lpreamble_cmd));
2250 if (!skb)
2251 return -ENOMEM;
2252
2253 cmd = (struct wmi_set_lpreamble_cmd *) skb->data;
2254 cmd->status = status;
2255 cmd->preamble_policy = preamble_policy;
2256
2257 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LPREAMBLE_CMDID,
2258 NO_SYNC_WMIFLAG);
2259 return ret;
2260 }
2261
2262 int ath6kl_wmi_set_rts_cmd(struct wmi *wmi, u16 threshold)
2263 {
2264 struct sk_buff *skb;
2265 struct wmi_set_rts_cmd *cmd;
2266 int ret;
2267
2268 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_rts_cmd));
2269 if (!skb)
2270 return -ENOMEM;
2271
2272 cmd = (struct wmi_set_rts_cmd *) skb->data;
2273 cmd->threshold = cpu_to_le16(threshold);
2274
2275 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_RTS_CMDID, NO_SYNC_WMIFLAG);
2276 return ret;
2277 }
2278
2279 int ath6kl_wmi_set_wmm_txop(struct wmi *wmi, enum wmi_txop_cfg cfg)
2280 {
2281 struct sk_buff *skb;
2282 struct wmi_set_wmm_txop_cmd *cmd;
2283 int ret;
2284
2285 if (!((cfg == WMI_TXOP_DISABLED) || (cfg == WMI_TXOP_ENABLED)))
2286 return -EINVAL;
2287
2288 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_wmm_txop_cmd));
2289 if (!skb)
2290 return -ENOMEM;
2291
2292 cmd = (struct wmi_set_wmm_txop_cmd *) skb->data;
2293 cmd->txop_enable = cfg;
2294
2295 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_WMM_TXOP_CMDID,
2296 NO_SYNC_WMIFLAG);
2297 return ret;
2298 }
2299
2300 int ath6kl_wmi_set_keepalive_cmd(struct wmi *wmi, u8 keep_alive_intvl)
2301 {
2302 struct sk_buff *skb;
2303 struct wmi_set_keepalive_cmd *cmd;
2304 int ret;
2305
2306 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
2307 if (!skb)
2308 return -ENOMEM;
2309
2310 cmd = (struct wmi_set_keepalive_cmd *) skb->data;
2311 cmd->keep_alive_intvl = keep_alive_intvl;
2312 wmi->keep_alive_intvl = keep_alive_intvl;
2313
2314 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_KEEPALIVE_CMDID,
2315 NO_SYNC_WMIFLAG);
2316 return ret;
2317 }
2318
2319 s32 ath6kl_wmi_get_rate(s8 rate_index)
2320 {
2321 if (rate_index == RATE_AUTO)
2322 return 0;
2323
2324 return wmi_rate_tbl[(u32) rate_index][0];
2325 }
2326
2327 void ath6kl_wmi_node_return(struct wmi *wmi, struct bss *bss)
2328 {
2329 if (bss)
2330 wlan_node_return(&wmi->parent_dev->scan_table, bss);
2331 }
2332
2333 struct bss *ath6kl_wmi_find_ssid_node(struct wmi *wmi, u8 * ssid,
2334 u32 ssid_len, bool is_wpa2,
2335 bool match_ssid)
2336 {
2337 struct bss *node = NULL;
2338
2339 node = wlan_find_ssid_node(&wmi->parent_dev->scan_table, ssid,
2340 ssid_len, is_wpa2, match_ssid);
2341 return node;
2342 }
2343
2344 struct bss *ath6kl_wmi_find_node(struct wmi *wmi, const u8 * mac_addr)
2345 {
2346 struct bss *ni = NULL;
2347
2348 ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr);
2349
2350 return ni;
2351 }
2352
2353 void ath6kl_wmi_node_free(struct wmi *wmi, const u8 * mac_addr)
2354 {
2355 struct bss *ni = NULL;
2356
2357 ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr);
2358 if (ni != NULL)
2359 wlan_node_reclaim(&wmi->parent_dev->scan_table, ni);
2360
2361 return;
2362 }
2363
2364 static int ath6kl_wmi_get_pmkid_list_event_rx(struct wmi *wmi, u8 *datap,
2365 u32 len)
2366 {
2367 struct wmi_pmkid_list_reply *reply;
2368 u32 expected_len;
2369
2370 if (len < sizeof(struct wmi_pmkid_list_reply))
2371 return -EINVAL;
2372
2373 reply = (struct wmi_pmkid_list_reply *)datap;
2374 expected_len = sizeof(reply->num_pmkid) +
2375 le32_to_cpu(reply->num_pmkid) * WMI_PMKID_LEN;
2376
2377 if (len < expected_len)
2378 return -EINVAL;
2379
2380 return 0;
2381 }
2382
2383 static int ath6kl_wmi_addba_req_event_rx(struct wmi *wmi, u8 *datap, int len)
2384 {
2385 struct wmi_addba_req_event *cmd = (struct wmi_addba_req_event *) datap;
2386
2387 aggr_recv_addba_req_evt(wmi->parent_dev, cmd->tid,
2388 le16_to_cpu(cmd->st_seq_no), cmd->win_sz);
2389
2390 return 0;
2391 }
2392
2393 static int ath6kl_wmi_delba_req_event_rx(struct wmi *wmi, u8 *datap, int len)
2394 {
2395 struct wmi_delba_event *cmd = (struct wmi_delba_event *) datap;
2396
2397 aggr_recv_delba_req_evt(wmi->parent_dev, cmd->tid);
2398
2399 return 0;
2400 }
2401
2402 /* AP mode functions */
2403 static int ath6kl_wmi_pspoll_event_rx(struct wmi *wmi, u8 *datap, int len)
2404 {
2405 struct wmi_pspoll_event *ev;
2406
2407 if (len < sizeof(struct wmi_pspoll_event))
2408 return -EINVAL;
2409
2410 ev = (struct wmi_pspoll_event *) datap;
2411
2412 ath6kl_pspoll_event(wmi->parent_dev, le16_to_cpu(ev->aid));
2413
2414 return 0;
2415 }
2416
2417 static int ath6kl_wmi_dtimexpiry_event_rx(struct wmi *wmi, u8 *datap, int len)
2418 {
2419 ath6kl_dtimexpiry_event(wmi->parent_dev);
2420
2421 return 0;
2422 }
2423
2424 int ath6kl_wmi_set_pvb_cmd(struct wmi *wmi, u16 aid, bool flag)
2425 {
2426 struct sk_buff *skb;
2427 struct wmi_ap_set_pvb_cmd *cmd;
2428 int ret;
2429
2430 skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_ap_set_pvb_cmd));
2431 if (!skb)
2432 return -ENOMEM;
2433
2434 cmd = (struct wmi_ap_set_pvb_cmd *) skb->data;
2435 cmd->aid = cpu_to_le16(aid);
2436 cmd->flag = cpu_to_le32(flag);
2437
2438 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_AP_SET_PVB_CMDID,
2439 NO_SYNC_WMIFLAG);
2440
2441 return 0;
2442 }
2443
2444 int ath6kl_wmi_set_rx_frame_format_cmd(struct wmi *wmi, u8 rx_meta_ver,
2445 bool rx_dot11_hdr, bool defrag_on_host)
2446 {
2447 struct sk_buff *skb;
2448 struct wmi_rx_frame_format_cmd *cmd;
2449 int ret;
2450
2451 skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
2452 if (!skb)
2453 return -ENOMEM;
2454
2455 cmd = (struct wmi_rx_frame_format_cmd *) skb->data;
2456 cmd->dot11_hdr = rx_dot11_hdr ? 1 : 0;
2457 cmd->defrag_on_host = defrag_on_host ? 1 : 0;
2458 cmd->meta_ver = rx_meta_ver;
2459
2460 /* Delete the local aggr state, on host */
2461 ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RX_FRAME_FORMAT_CMDID,
2462 NO_SYNC_WMIFLAG);
2463
2464 return ret;
2465 }
2466
2467 static int ath6kl_wmi_control_rx_xtnd(struct wmi *wmi, struct sk_buff *skb)
2468 {
2469 struct wmix_cmd_hdr *cmd;
2470 u32 len;
2471 u16 id;
2472 u8 *datap;
2473 int ret = 0;
2474
2475 if (skb->len < sizeof(struct wmix_cmd_hdr)) {
2476 ath6kl_err("bad packet 1\n");
2477 wmi->stat.cmd_len_err++;
2478 return -EINVAL;
2479 }
2480
2481 cmd = (struct wmix_cmd_hdr *) skb->data;
2482 id = le32_to_cpu(cmd->cmd_id);
2483
2484 skb_pull(skb, sizeof(struct wmix_cmd_hdr));
2485
2486 datap = skb->data;
2487 len = skb->len;
2488
2489 switch (id) {
2490 case WMIX_HB_CHALLENGE_RESP_EVENTID:
2491 break;
2492 case WMIX_DBGLOG_EVENTID:
2493 break;
2494 default:
2495 ath6kl_err("unknown cmd id 0x%x\n", id);
2496 wmi->stat.cmd_id_err++;
2497 ret = -EINVAL;
2498 break;
2499 }
2500
2501 return ret;
2502 }
2503
2504 /* Control Path */
2505 int ath6kl_wmi_control_rx(struct wmi *wmi, struct sk_buff *skb)
2506 {
2507 struct wmi_cmd_hdr *cmd;
2508 u32 len;
2509 u16 id;
2510 u8 *datap;
2511 int ret = 0;
2512
2513 if (WARN_ON(skb == NULL))
2514 return -EINVAL;
2515
2516 if (skb->len < sizeof(struct wmi_cmd_hdr)) {
2517 ath6kl_err("bad packet 1\n");
2518 dev_kfree_skb(skb);
2519 wmi->stat.cmd_len_err++;
2520 return -EINVAL;
2521 }
2522
2523 cmd = (struct wmi_cmd_hdr *) skb->data;
2524 id = le16_to_cpu(cmd->cmd_id);
2525
2526 skb_pull(skb, sizeof(struct wmi_cmd_hdr));
2527
2528 datap = skb->data;
2529 len = skb->len;
2530
2531 ath6kl_dbg(ATH6KL_DBG_WMI, "%s: wmi id: %d\n", __func__, id);
2532 ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, "msg payload ", datap, len);
2533
2534 switch (id) {
2535 case WMI_GET_BITRATE_CMDID:
2536 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_BITRATE_CMDID\n");
2537 ret = ath6kl_wmi_bitrate_reply_rx(wmi, datap, len);
2538 break;
2539 case WMI_GET_CHANNEL_LIST_CMDID:
2540 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_CHANNEL_LIST_CMDID\n");
2541 ret = ath6kl_wmi_ch_list_reply_rx(wmi, datap, len);
2542 break;
2543 case WMI_GET_TX_PWR_CMDID:
2544 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_TX_PWR_CMDID\n");
2545 ret = ath6kl_wmi_tx_pwr_reply_rx(wmi, datap, len);
2546 break;
2547 case WMI_READY_EVENTID:
2548 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_READY_EVENTID\n");
2549 ret = ath6kl_wmi_ready_event_rx(wmi, datap, len);
2550 break;
2551 case WMI_CONNECT_EVENTID:
2552 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CONNECT_EVENTID\n");
2553 ret = ath6kl_wmi_connect_event_rx(wmi, datap, len);
2554 break;
2555 case WMI_DISCONNECT_EVENTID:
2556 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DISCONNECT_EVENTID\n");
2557 ret = ath6kl_wmi_disconnect_event_rx(wmi, datap, len);
2558 break;
2559 case WMI_PEER_NODE_EVENTID:
2560 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PEER_NODE_EVENTID\n");
2561 ret = ath6kl_wmi_peer_node_event_rx(wmi, datap, len);
2562 break;
2563 case WMI_TKIP_MICERR_EVENTID:
2564 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TKIP_MICERR_EVENTID\n");
2565 ret = ath6kl_wmi_tkip_micerr_event_rx(wmi, datap, len);
2566 break;
2567 case WMI_BSSINFO_EVENTID:
2568 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_BSSINFO_EVENTID\n");
2569 ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(skb, datap);
2570 ret = ath6kl_wmi_bssinfo_event_rx(wmi, skb->data, skb->len);
2571 break;
2572 case WMI_REGDOMAIN_EVENTID:
2573 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REGDOMAIN_EVENTID\n");
2574 break;
2575 case WMI_PSTREAM_TIMEOUT_EVENTID:
2576 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSTREAM_TIMEOUT_EVENTID\n");
2577 ret = ath6kl_wmi_pstream_timeout_event_rx(wmi, datap, len);
2578 break;
2579 case WMI_NEIGHBOR_REPORT_EVENTID:
2580 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_NEIGHBOR_REPORT_EVENTID\n");
2581 break;
2582 case WMI_SCAN_COMPLETE_EVENTID:
2583 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SCAN_COMPLETE_EVENTID\n");
2584 ret = ath6kl_wmi_scan_complete_rx(wmi, datap, len);
2585 break;
2586 case WMI_CMDERROR_EVENTID:
2587 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CMDERROR_EVENTID\n");
2588 ret = ath6kl_wmi_error_event_rx(wmi, datap, len);
2589 break;
2590 case WMI_REPORT_STATISTICS_EVENTID:
2591 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_STATISTICS_EVENTID\n");
2592 ret = ath6kl_wmi_stats_event_rx(wmi, datap, len);
2593 break;
2594 case WMI_RSSI_THRESHOLD_EVENTID:
2595 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RSSI_THRESHOLD_EVENTID\n");
2596 ret = ath6kl_wmi_rssi_threshold_event_rx(wmi, datap, len);
2597 break;
2598 case WMI_ERROR_REPORT_EVENTID:
2599 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ERROR_REPORT_EVENTID\n");
2600 break;
2601 case WMI_OPT_RX_FRAME_EVENTID:
2602 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_OPT_RX_FRAME_EVENTID\n");
2603 ret = ath6kl_wmi_opt_frame_event_rx(wmi, datap, len);
2604 break;
2605 case WMI_REPORT_ROAM_TBL_EVENTID:
2606 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_TBL_EVENTID\n");
2607 break;
2608 case WMI_EXTENSION_EVENTID:
2609 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_EXTENSION_EVENTID\n");
2610 ret = ath6kl_wmi_control_rx_xtnd(wmi, skb);
2611 break;
2612 case WMI_CAC_EVENTID:
2613 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CAC_EVENTID\n");
2614 ret = ath6kl_wmi_cac_event_rx(wmi, datap, len);
2615 break;
2616 case WMI_CHANNEL_CHANGE_EVENTID:
2617 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CHANNEL_CHANGE_EVENTID\n");
2618 break;
2619 case WMI_REPORT_ROAM_DATA_EVENTID:
2620 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_DATA_EVENTID\n");
2621 break;
2622 case WMI_GET_FIXRATES_CMDID:
2623 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_FIXRATES_CMDID\n");
2624 ret = ath6kl_wmi_ratemask_reply_rx(wmi, datap, len);
2625 break;
2626 case WMI_TX_RETRY_ERR_EVENTID:
2627 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_RETRY_ERR_EVENTID\n");
2628 break;
2629 case WMI_SNR_THRESHOLD_EVENTID:
2630 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SNR_THRESHOLD_EVENTID\n");
2631 ret = ath6kl_wmi_snr_threshold_event_rx(wmi, datap, len);
2632 break;
2633 case WMI_LQ_THRESHOLD_EVENTID:
2634 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_LQ_THRESHOLD_EVENTID\n");
2635 break;
2636 case WMI_APLIST_EVENTID:
2637 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_APLIST_EVENTID\n");
2638 ret = ath6kl_wmi_aplist_event_rx(wmi, datap, len);
2639 break;
2640 case WMI_GET_KEEPALIVE_CMDID:
2641 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_KEEPALIVE_CMDID\n");
2642 ret = ath6kl_wmi_keepalive_reply_rx(wmi, datap, len);
2643 break;
2644 case WMI_GET_WOW_LIST_EVENTID:
2645 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_WOW_LIST_EVENTID\n");
2646 ret = ath6kl_wmi_get_wow_list_event_rx(wmi, datap, len);
2647 break;
2648 case WMI_GET_PMKID_LIST_EVENTID:
2649 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_PMKID_LIST_EVENTID\n");
2650 ret = ath6kl_wmi_get_pmkid_list_event_rx(wmi, datap, len);
2651 break;
2652 case WMI_PSPOLL_EVENTID:
2653 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSPOLL_EVENTID\n");
2654 ret = ath6kl_wmi_pspoll_event_rx(wmi, datap, len);
2655 break;
2656 case WMI_DTIMEXPIRY_EVENTID:
2657 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DTIMEXPIRY_EVENTID\n");
2658 ret = ath6kl_wmi_dtimexpiry_event_rx(wmi, datap, len);
2659 break;
2660 case WMI_SET_PARAMS_REPLY_EVENTID:
2661 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SET_PARAMS_REPLY_EVENTID\n");
2662 break;
2663 case WMI_ADDBA_REQ_EVENTID:
2664 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_REQ_EVENTID\n");
2665 ret = ath6kl_wmi_addba_req_event_rx(wmi, datap, len);
2666 break;
2667 case WMI_ADDBA_RESP_EVENTID:
2668 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_RESP_EVENTID\n");
2669 break;
2670 case WMI_DELBA_REQ_EVENTID:
2671 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DELBA_REQ_EVENTID\n");
2672 ret = ath6kl_wmi_delba_req_event_rx(wmi, datap, len);
2673 break;
2674 case WMI_REPORT_BTCOEX_CONFIG_EVENTID:
2675 ath6kl_dbg(ATH6KL_DBG_WMI,
2676 "WMI_REPORT_BTCOEX_CONFIG_EVENTID\n");
2677 break;
2678 case WMI_REPORT_BTCOEX_STATS_EVENTID:
2679 ath6kl_dbg(ATH6KL_DBG_WMI,
2680 "WMI_REPORT_BTCOEX_STATS_EVENTID\n");
2681 break;
2682 case WMI_TX_COMPLETE_EVENTID:
2683 ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_COMPLETE_EVENTID\n");
2684 ret = ath6kl_wmi_tx_complete_event_rx(datap, len);
2685 break;
2686 default:
2687 ath6kl_dbg(ATH6KL_DBG_WMI, "unknown cmd id 0x%x\n", id);
2688 wmi->stat.cmd_id_err++;
2689 ret = -EINVAL;
2690 break;
2691 }
2692
2693 dev_kfree_skb(skb);
2694
2695 return ret;
2696 }
2697
2698 static void ath6kl_wmi_qos_state_init(struct wmi *wmi)
2699 {
2700 if (!wmi)
2701 return;
2702
2703 spin_lock_bh(&wmi->lock);
2704
2705 wmi->fat_pipe_exist = 0;
2706 memset(wmi->stream_exist_for_ac, 0, sizeof(wmi->stream_exist_for_ac));
2707
2708 spin_unlock_bh(&wmi->lock);
2709 }
2710
2711 void *ath6kl_wmi_init(struct ath6kl *dev)
2712 {
2713 struct wmi *wmi;
2714
2715 wmi = kzalloc(sizeof(struct wmi), GFP_KERNEL);
2716 if (!wmi)
2717 return NULL;
2718
2719 spin_lock_init(&wmi->lock);
2720
2721 wmi->parent_dev = dev;
2722
2723 ath6kl_wmi_qos_state_init(wmi);
2724
2725 wmi->pwr_mode = REC_POWER;
2726 wmi->phy_mode = WMI_11G_MODE;
2727
2728 wmi->pair_crypto_type = NONE_CRYPT;
2729 wmi->grp_crypto_type = NONE_CRYPT;
2730
2731 wmi->ht_allowed[A_BAND_24GHZ] = 1;
2732 wmi->ht_allowed[A_BAND_5GHZ] = 1;
2733
2734 return wmi;
2735 }
2736
2737 void ath6kl_wmi_shutdown(struct wmi *wmi)
2738 {
2739 if (!wmi)
2740 return;
2741
2742 kfree(wmi);
2743 }
This page took 0.091679 seconds and 6 git commands to generate.