ath9k: Fix register definitions for QCA956x
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 #include "ar9003_mci.h"
22
23 #define COMP_HDR_LEN 4
24 #define COMP_CKSUM_LEN 2
25
26 #define LE16(x) cpu_to_le16(x)
27 #define LE32(x) cpu_to_le32(x)
28
29 /* Local defines to distinguish between extension and control CTL's */
30 #define EXT_ADDITIVE (0x8000)
31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
34
35 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
36 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
37
38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
39
40 #define EEPROM_DATA_LEN_9485 1088
41
42 static int ar9003_hw_power_interpolate(int32_t x,
43 int32_t *px, int32_t *py, u_int16_t np);
44
45 static const struct ar9300_eeprom ar9300_default = {
46 .eepromVersion = 2,
47 .templateVersion = 2,
48 .macAddr = {0, 2, 3, 4, 5, 6},
49 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 .baseEepHeader = {
52 .regDmn = { LE16(0), LE16(0x1f) },
53 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
54 .opCapFlags = {
55 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 .eepMisc = 0,
57 },
58 .rfSilent = 0,
59 .blueToothOptions = 0,
60 .deviceCap = 0,
61 .deviceType = 5, /* takes lower byte in eeprom location */
62 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 .params_for_tuning_caps = {0, 0},
64 .featureEnable = 0x0c,
65 /*
66 * bit0 - enable tx temp comp - disabled
67 * bit1 - enable tx volt comp - disabled
68 * bit2 - enable fastClock - enabled
69 * bit3 - enable doubling - enabled
70 * bit4 - enable internal regulator - disabled
71 * bit5 - enable pa predistortion - disabled
72 */
73 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 .eepromWriteEnableGpio = 3,
75 .wlanDisableGpio = 0,
76 .wlanLedGpio = 8,
77 .rxBandSelectGpio = 0xff,
78 .txrxgain = 0,
79 .swreg = 0,
80 },
81 .modalHeader2G = {
82 /* ar9300_modal_eep_header 2g */
83 /* 4 idle,t1,t2,b(4 bits per setting) */
84 .antCtrlCommon = LE32(0x110),
85 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 .antCtrlCommon2 = LE32(0x22222),
87
88 /*
89 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 * rx1, rx12, b (2 bits each)
91 */
92 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93
94 /*
95 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
96 * for ar9280 (0xa20c/b20c 5:0)
97 */
98 .xatten1DB = {0, 0, 0},
99
100 /*
101 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 * for ar9280 (0xa20c/b20c 16:12
103 */
104 .xatten1Margin = {0, 0, 0},
105 .tempSlope = 36,
106 .voltSlope = 0,
107
108 /*
109 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 * channels in usual fbin coding format
111 */
112 .spurChans = {0, 0, 0, 0, 0},
113
114 /*
115 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 * if the register is per chain
117 */
118 .noiseFloorThreshCh = {-1, 0, 0},
119 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 .quick_drop = 0,
121 .xpaBiasLvl = 0,
122 .txFrameToDataStart = 0x0e,
123 .txFrameToPaOn = 0x0e,
124 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 .antennaGain = 0,
126 .switchSettling = 0x2c,
127 .adcDesiredSize = -30,
128 .txEndToXpaOff = 0,
129 .txEndToRxOn = 0x2,
130 .txFrameToXpaOn = 0xe,
131 .thresh62 = 28,
132 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 .switchcomspdt = 0,
135 .xlna_bias_strength = 0,
136 .futureModal = {
137 0, 0, 0, 0, 0, 0, 0,
138 },
139 },
140 .base_ext1 = {
141 .ant_div_control = 0,
142 .future = {0, 0},
143 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
144 },
145 .calFreqPier2G = {
146 FREQ2FBIN(2412, 1),
147 FREQ2FBIN(2437, 1),
148 FREQ2FBIN(2472, 1),
149 },
150 /* ar9300_cal_data_per_freq_op_loop 2g */
151 .calPierData2G = {
152 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 },
156 .calTarget_freqbin_Cck = {
157 FREQ2FBIN(2412, 1),
158 FREQ2FBIN(2484, 1),
159 },
160 .calTarget_freqbin_2G = {
161 FREQ2FBIN(2412, 1),
162 FREQ2FBIN(2437, 1),
163 FREQ2FBIN(2472, 1)
164 },
165 .calTarget_freqbin_2GHT20 = {
166 FREQ2FBIN(2412, 1),
167 FREQ2FBIN(2437, 1),
168 FREQ2FBIN(2472, 1)
169 },
170 .calTarget_freqbin_2GHT40 = {
171 FREQ2FBIN(2412, 1),
172 FREQ2FBIN(2437, 1),
173 FREQ2FBIN(2472, 1)
174 },
175 .calTargetPowerCck = {
176 /* 1L-5L,5S,11L,11S */
177 { {36, 36, 36, 36} },
178 { {36, 36, 36, 36} },
179 },
180 .calTargetPower2G = {
181 /* 6-24,36,48,54 */
182 { {32, 32, 28, 24} },
183 { {32, 32, 28, 24} },
184 { {32, 32, 28, 24} },
185 },
186 .calTargetPower2GHT20 = {
187 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 },
191 .calTargetPower2GHT40 = {
192 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 },
196 .ctlIndex_2G = {
197 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
198 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
199 },
200 .ctl_freqbin_2G = {
201 {
202 FREQ2FBIN(2412, 1),
203 FREQ2FBIN(2417, 1),
204 FREQ2FBIN(2457, 1),
205 FREQ2FBIN(2462, 1)
206 },
207 {
208 FREQ2FBIN(2412, 1),
209 FREQ2FBIN(2417, 1),
210 FREQ2FBIN(2462, 1),
211 0xFF,
212 },
213
214 {
215 FREQ2FBIN(2412, 1),
216 FREQ2FBIN(2417, 1),
217 FREQ2FBIN(2462, 1),
218 0xFF,
219 },
220 {
221 FREQ2FBIN(2422, 1),
222 FREQ2FBIN(2427, 1),
223 FREQ2FBIN(2447, 1),
224 FREQ2FBIN(2452, 1)
225 },
226
227 {
228 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
229 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
230 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
231 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
232 },
233
234 {
235 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
236 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
237 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
238 0,
239 },
240
241 {
242 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
243 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
244 FREQ2FBIN(2472, 1),
245 0,
246 },
247
248 {
249 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
250 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
251 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
252 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
253 },
254
255 {
256 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
257 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
258 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
259 },
260
261 {
262 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
263 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
264 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
265 0
266 },
267
268 {
269 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
270 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
271 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
272 0
273 },
274
275 {
276 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
277 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
278 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
279 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
280 }
281 },
282 .ctlPowerData_2G = {
283 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
286
287 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
288 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290
291 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
292 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294
295 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298 },
299 .modalHeader5G = {
300 /* 4 idle,t1,t2,b (4 bits per setting) */
301 .antCtrlCommon = LE32(0x110),
302 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
303 .antCtrlCommon2 = LE32(0x22222),
304 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
305 .antCtrlChain = {
306 LE16(0x000), LE16(0x000), LE16(0x000),
307 },
308 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
309 .xatten1DB = {0, 0, 0},
310
311 /*
312 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
313 * for merlin (0xa20c/b20c 16:12
314 */
315 .xatten1Margin = {0, 0, 0},
316 .tempSlope = 68,
317 .voltSlope = 0,
318 /* spurChans spur channels in usual fbin coding format */
319 .spurChans = {0, 0, 0, 0, 0},
320 /* noiseFloorThreshCh Check if the register is per chain */
321 .noiseFloorThreshCh = {-1, 0, 0},
322 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
323 .quick_drop = 0,
324 .xpaBiasLvl = 0,
325 .txFrameToDataStart = 0x0e,
326 .txFrameToPaOn = 0x0e,
327 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
328 .antennaGain = 0,
329 .switchSettling = 0x2d,
330 .adcDesiredSize = -30,
331 .txEndToXpaOff = 0,
332 .txEndToRxOn = 0x2,
333 .txFrameToXpaOn = 0xe,
334 .thresh62 = 28,
335 .papdRateMaskHt20 = LE32(0x0c80c080),
336 .papdRateMaskHt40 = LE32(0x0080c080),
337 .switchcomspdt = 0,
338 .xlna_bias_strength = 0,
339 .futureModal = {
340 0, 0, 0, 0, 0, 0, 0,
341 },
342 },
343 .base_ext2 = {
344 .tempSlopeLow = 0,
345 .tempSlopeHigh = 0,
346 .xatten1DBLow = {0, 0, 0},
347 .xatten1MarginLow = {0, 0, 0},
348 .xatten1DBHigh = {0, 0, 0},
349 .xatten1MarginHigh = {0, 0, 0}
350 },
351 .calFreqPier5G = {
352 FREQ2FBIN(5180, 0),
353 FREQ2FBIN(5220, 0),
354 FREQ2FBIN(5320, 0),
355 FREQ2FBIN(5400, 0),
356 FREQ2FBIN(5500, 0),
357 FREQ2FBIN(5600, 0),
358 FREQ2FBIN(5725, 0),
359 FREQ2FBIN(5825, 0)
360 },
361 .calPierData5G = {
362 {
363 {0, 0, 0, 0, 0},
364 {0, 0, 0, 0, 0},
365 {0, 0, 0, 0, 0},
366 {0, 0, 0, 0, 0},
367 {0, 0, 0, 0, 0},
368 {0, 0, 0, 0, 0},
369 {0, 0, 0, 0, 0},
370 {0, 0, 0, 0, 0},
371 },
372 {
373 {0, 0, 0, 0, 0},
374 {0, 0, 0, 0, 0},
375 {0, 0, 0, 0, 0},
376 {0, 0, 0, 0, 0},
377 {0, 0, 0, 0, 0},
378 {0, 0, 0, 0, 0},
379 {0, 0, 0, 0, 0},
380 {0, 0, 0, 0, 0},
381 },
382 {
383 {0, 0, 0, 0, 0},
384 {0, 0, 0, 0, 0},
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 },
392
393 },
394 .calTarget_freqbin_5G = {
395 FREQ2FBIN(5180, 0),
396 FREQ2FBIN(5220, 0),
397 FREQ2FBIN(5320, 0),
398 FREQ2FBIN(5400, 0),
399 FREQ2FBIN(5500, 0),
400 FREQ2FBIN(5600, 0),
401 FREQ2FBIN(5725, 0),
402 FREQ2FBIN(5825, 0)
403 },
404 .calTarget_freqbin_5GHT20 = {
405 FREQ2FBIN(5180, 0),
406 FREQ2FBIN(5240, 0),
407 FREQ2FBIN(5320, 0),
408 FREQ2FBIN(5500, 0),
409 FREQ2FBIN(5700, 0),
410 FREQ2FBIN(5745, 0),
411 FREQ2FBIN(5725, 0),
412 FREQ2FBIN(5825, 0)
413 },
414 .calTarget_freqbin_5GHT40 = {
415 FREQ2FBIN(5180, 0),
416 FREQ2FBIN(5240, 0),
417 FREQ2FBIN(5320, 0),
418 FREQ2FBIN(5500, 0),
419 FREQ2FBIN(5700, 0),
420 FREQ2FBIN(5745, 0),
421 FREQ2FBIN(5725, 0),
422 FREQ2FBIN(5825, 0)
423 },
424 .calTargetPower5G = {
425 /* 6-24,36,48,54 */
426 { {20, 20, 20, 10} },
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
432 { {20, 20, 20, 10} },
433 { {20, 20, 20, 10} },
434 },
435 .calTargetPower5GHT20 = {
436 /*
437 * 0_8_16,1-3_9-11_17-19,
438 * 4,5,6,7,12,13,14,15,20,21,22,23
439 */
440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 },
449 .calTargetPower5GHT40 = {
450 /*
451 * 0_8_16,1-3_9-11_17-19,
452 * 4,5,6,7,12,13,14,15,20,21,22,23
453 */
454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 },
463 .ctlIndex_5G = {
464 0x10, 0x16, 0x18, 0x40, 0x46,
465 0x48, 0x30, 0x36, 0x38
466 },
467 .ctl_freqbin_5G = {
468 {
469 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 },
478 {
479 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487 },
488
489 {
490 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498 },
499
500 {
501 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
508 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
509 },
510
511 {
512 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
517 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
518 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
519 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
520 },
521
522 {
523 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
530 /* Data[5].ctlEdges[7].bChannel */ 0xFF
531 },
532
533 {
534 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542 },
543
544 {
545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553 },
554
555 {
556 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564 }
565 },
566 .ctlPowerData_5G = {
567 {
568 {
569 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571 }
572 },
573 {
574 {
575 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577 }
578 },
579 {
580 {
581 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583 }
584 },
585 {
586 {
587 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589 }
590 },
591 {
592 {
593 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595 }
596 },
597 {
598 {
599 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601 }
602 },
603 {
604 {
605 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 }
608 },
609 {
610 {
611 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613 }
614 },
615 {
616 {
617 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619 }
620 },
621 }
622 };
623
624 static const struct ar9300_eeprom ar9300_x113 = {
625 .eepromVersion = 2,
626 .templateVersion = 6,
627 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628 .custData = {"x113-023-f0000"},
629 .baseEepHeader = {
630 .regDmn = { LE16(0), LE16(0x1f) },
631 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
632 .opCapFlags = {
633 .opFlags = AR5416_OPFLAGS_11A,
634 .eepMisc = 0,
635 },
636 .rfSilent = 0,
637 .blueToothOptions = 0,
638 .deviceCap = 0,
639 .deviceType = 5, /* takes lower byte in eeprom location */
640 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641 .params_for_tuning_caps = {0, 0},
642 .featureEnable = 0x0d,
643 /*
644 * bit0 - enable tx temp comp - disabled
645 * bit1 - enable tx volt comp - disabled
646 * bit2 - enable fastClock - enabled
647 * bit3 - enable doubling - enabled
648 * bit4 - enable internal regulator - disabled
649 * bit5 - enable pa predistortion - disabled
650 */
651 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
652 .eepromWriteEnableGpio = 6,
653 .wlanDisableGpio = 0,
654 .wlanLedGpio = 8,
655 .rxBandSelectGpio = 0xff,
656 .txrxgain = 0x21,
657 .swreg = 0,
658 },
659 .modalHeader2G = {
660 /* ar9300_modal_eep_header 2g */
661 /* 4 idle,t1,t2,b(4 bits per setting) */
662 .antCtrlCommon = LE32(0x110),
663 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664 .antCtrlCommon2 = LE32(0x44444),
665
666 /*
667 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668 * rx1, rx12, b (2 bits each)
669 */
670 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671
672 /*
673 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
674 * for ar9280 (0xa20c/b20c 5:0)
675 */
676 .xatten1DB = {0, 0, 0},
677
678 /*
679 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680 * for ar9280 (0xa20c/b20c 16:12
681 */
682 .xatten1Margin = {0, 0, 0},
683 .tempSlope = 25,
684 .voltSlope = 0,
685
686 /*
687 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688 * channels in usual fbin coding format
689 */
690 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691
692 /*
693 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694 * if the register is per chain
695 */
696 .noiseFloorThreshCh = {-1, 0, 0},
697 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 .quick_drop = 0,
699 .xpaBiasLvl = 0,
700 .txFrameToDataStart = 0x0e,
701 .txFrameToPaOn = 0x0e,
702 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703 .antennaGain = 0,
704 .switchSettling = 0x2c,
705 .adcDesiredSize = -30,
706 .txEndToXpaOff = 0,
707 .txEndToRxOn = 0x2,
708 .txFrameToXpaOn = 0xe,
709 .thresh62 = 28,
710 .papdRateMaskHt20 = LE32(0x0c80c080),
711 .papdRateMaskHt40 = LE32(0x0080c080),
712 .switchcomspdt = 0,
713 .xlna_bias_strength = 0,
714 .futureModal = {
715 0, 0, 0, 0, 0, 0, 0,
716 },
717 },
718 .base_ext1 = {
719 .ant_div_control = 0,
720 .future = {0, 0},
721 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
722 },
723 .calFreqPier2G = {
724 FREQ2FBIN(2412, 1),
725 FREQ2FBIN(2437, 1),
726 FREQ2FBIN(2472, 1),
727 },
728 /* ar9300_cal_data_per_freq_op_loop 2g */
729 .calPierData2G = {
730 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
731 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733 },
734 .calTarget_freqbin_Cck = {
735 FREQ2FBIN(2412, 1),
736 FREQ2FBIN(2472, 1),
737 },
738 .calTarget_freqbin_2G = {
739 FREQ2FBIN(2412, 1),
740 FREQ2FBIN(2437, 1),
741 FREQ2FBIN(2472, 1)
742 },
743 .calTarget_freqbin_2GHT20 = {
744 FREQ2FBIN(2412, 1),
745 FREQ2FBIN(2437, 1),
746 FREQ2FBIN(2472, 1)
747 },
748 .calTarget_freqbin_2GHT40 = {
749 FREQ2FBIN(2412, 1),
750 FREQ2FBIN(2437, 1),
751 FREQ2FBIN(2472, 1)
752 },
753 .calTargetPowerCck = {
754 /* 1L-5L,5S,11L,11S */
755 { {34, 34, 34, 34} },
756 { {34, 34, 34, 34} },
757 },
758 .calTargetPower2G = {
759 /* 6-24,36,48,54 */
760 { {34, 34, 32, 32} },
761 { {34, 34, 32, 32} },
762 { {34, 34, 32, 32} },
763 },
764 .calTargetPower2GHT20 = {
765 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
766 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768 },
769 .calTargetPower2GHT40 = {
770 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
771 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773 },
774 .ctlIndex_2G = {
775 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
776 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
777 },
778 .ctl_freqbin_2G = {
779 {
780 FREQ2FBIN(2412, 1),
781 FREQ2FBIN(2417, 1),
782 FREQ2FBIN(2457, 1),
783 FREQ2FBIN(2462, 1)
784 },
785 {
786 FREQ2FBIN(2412, 1),
787 FREQ2FBIN(2417, 1),
788 FREQ2FBIN(2462, 1),
789 0xFF,
790 },
791
792 {
793 FREQ2FBIN(2412, 1),
794 FREQ2FBIN(2417, 1),
795 FREQ2FBIN(2462, 1),
796 0xFF,
797 },
798 {
799 FREQ2FBIN(2422, 1),
800 FREQ2FBIN(2427, 1),
801 FREQ2FBIN(2447, 1),
802 FREQ2FBIN(2452, 1)
803 },
804
805 {
806 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
807 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
808 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
809 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
810 },
811
812 {
813 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
814 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
815 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
816 0,
817 },
818
819 {
820 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
821 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
822 FREQ2FBIN(2472, 1),
823 0,
824 },
825
826 {
827 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
828 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
829 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
830 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
831 },
832
833 {
834 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 },
838
839 {
840 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
841 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
842 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
843 0
844 },
845
846 {
847 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
848 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
849 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
850 0
851 },
852
853 {
854 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
855 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
856 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
857 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
858 }
859 },
860 .ctlPowerData_2G = {
861 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
862 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
864
865 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
866 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868
869 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872
873 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
874 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
875 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876 },
877 .modalHeader5G = {
878 /* 4 idle,t1,t2,b (4 bits per setting) */
879 .antCtrlCommon = LE32(0x220),
880 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
881 .antCtrlCommon2 = LE32(0x11111),
882 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
883 .antCtrlChain = {
884 LE16(0x150), LE16(0x150), LE16(0x150),
885 },
886 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
887 .xatten1DB = {0, 0, 0},
888
889 /*
890 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
891 * for merlin (0xa20c/b20c 16:12
892 */
893 .xatten1Margin = {0, 0, 0},
894 .tempSlope = 68,
895 .voltSlope = 0,
896 /* spurChans spur channels in usual fbin coding format */
897 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
898 /* noiseFloorThreshCh Check if the register is per chain */
899 .noiseFloorThreshCh = {-1, 0, 0},
900 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
901 .quick_drop = 0,
902 .xpaBiasLvl = 0xf,
903 .txFrameToDataStart = 0x0e,
904 .txFrameToPaOn = 0x0e,
905 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
906 .antennaGain = 0,
907 .switchSettling = 0x2d,
908 .adcDesiredSize = -30,
909 .txEndToXpaOff = 0,
910 .txEndToRxOn = 0x2,
911 .txFrameToXpaOn = 0xe,
912 .thresh62 = 28,
913 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
914 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
915 .switchcomspdt = 0,
916 .xlna_bias_strength = 0,
917 .futureModal = {
918 0, 0, 0, 0, 0, 0, 0,
919 },
920 },
921 .base_ext2 = {
922 .tempSlopeLow = 72,
923 .tempSlopeHigh = 105,
924 .xatten1DBLow = {0, 0, 0},
925 .xatten1MarginLow = {0, 0, 0},
926 .xatten1DBHigh = {0, 0, 0},
927 .xatten1MarginHigh = {0, 0, 0}
928 },
929 .calFreqPier5G = {
930 FREQ2FBIN(5180, 0),
931 FREQ2FBIN(5240, 0),
932 FREQ2FBIN(5320, 0),
933 FREQ2FBIN(5400, 0),
934 FREQ2FBIN(5500, 0),
935 FREQ2FBIN(5600, 0),
936 FREQ2FBIN(5745, 0),
937 FREQ2FBIN(5785, 0)
938 },
939 .calPierData5G = {
940 {
941 {0, 0, 0, 0, 0},
942 {0, 0, 0, 0, 0},
943 {0, 0, 0, 0, 0},
944 {0, 0, 0, 0, 0},
945 {0, 0, 0, 0, 0},
946 {0, 0, 0, 0, 0},
947 {0, 0, 0, 0, 0},
948 {0, 0, 0, 0, 0},
949 },
950 {
951 {0, 0, 0, 0, 0},
952 {0, 0, 0, 0, 0},
953 {0, 0, 0, 0, 0},
954 {0, 0, 0, 0, 0},
955 {0, 0, 0, 0, 0},
956 {0, 0, 0, 0, 0},
957 {0, 0, 0, 0, 0},
958 {0, 0, 0, 0, 0},
959 },
960 {
961 {0, 0, 0, 0, 0},
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 {0, 0, 0, 0, 0},
965 {0, 0, 0, 0, 0},
966 {0, 0, 0, 0, 0},
967 {0, 0, 0, 0, 0},
968 {0, 0, 0, 0, 0},
969 },
970
971 },
972 .calTarget_freqbin_5G = {
973 FREQ2FBIN(5180, 0),
974 FREQ2FBIN(5220, 0),
975 FREQ2FBIN(5320, 0),
976 FREQ2FBIN(5400, 0),
977 FREQ2FBIN(5500, 0),
978 FREQ2FBIN(5600, 0),
979 FREQ2FBIN(5745, 0),
980 FREQ2FBIN(5785, 0)
981 },
982 .calTarget_freqbin_5GHT20 = {
983 FREQ2FBIN(5180, 0),
984 FREQ2FBIN(5240, 0),
985 FREQ2FBIN(5320, 0),
986 FREQ2FBIN(5400, 0),
987 FREQ2FBIN(5500, 0),
988 FREQ2FBIN(5700, 0),
989 FREQ2FBIN(5745, 0),
990 FREQ2FBIN(5825, 0)
991 },
992 .calTarget_freqbin_5GHT40 = {
993 FREQ2FBIN(5190, 0),
994 FREQ2FBIN(5230, 0),
995 FREQ2FBIN(5320, 0),
996 FREQ2FBIN(5410, 0),
997 FREQ2FBIN(5510, 0),
998 FREQ2FBIN(5670, 0),
999 FREQ2FBIN(5755, 0),
1000 FREQ2FBIN(5825, 0)
1001 },
1002 .calTargetPower5G = {
1003 /* 6-24,36,48,54 */
1004 { {42, 40, 40, 34} },
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 { {42, 40, 40, 34} },
1008 { {42, 40, 40, 34} },
1009 { {42, 40, 40, 34} },
1010 { {42, 40, 40, 34} },
1011 { {42, 40, 40, 34} },
1012 },
1013 .calTargetPower5GHT20 = {
1014 /*
1015 * 0_8_16,1-3_9-11_17-19,
1016 * 4,5,6,7,12,13,14,15,20,21,22,23
1017 */
1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1025 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1026 },
1027 .calTargetPower5GHT40 = {
1028 /*
1029 * 0_8_16,1-3_9-11_17-19,
1030 * 4,5,6,7,12,13,14,15,20,21,22,23
1031 */
1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1039 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1040 },
1041 .ctlIndex_5G = {
1042 0x10, 0x16, 0x18, 0x40, 0x46,
1043 0x48, 0x30, 0x36, 0x38
1044 },
1045 .ctl_freqbin_5G = {
1046 {
1047 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1048 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1049 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1050 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1051 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1052 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1053 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1054 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1055 },
1056 {
1057 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1058 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1059 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1060 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1061 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1062 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1063 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1064 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1065 },
1066
1067 {
1068 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1069 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1070 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1071 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1072 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1073 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1074 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1075 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1076 },
1077
1078 {
1079 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1080 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1081 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1082 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1083 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1084 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1085 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1086 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1087 },
1088
1089 {
1090 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1091 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1092 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1093 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1094 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1095 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1096 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1097 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1098 },
1099
1100 {
1101 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1102 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1103 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1104 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1105 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1106 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1107 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1108 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1109 },
1110
1111 {
1112 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1113 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1114 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1115 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1116 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1117 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1118 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1119 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1120 },
1121
1122 {
1123 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1124 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1125 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1126 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1127 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1128 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1129 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1130 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1131 },
1132
1133 {
1134 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1135 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1136 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1137 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1138 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1139 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1140 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1141 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1142 }
1143 },
1144 .ctlPowerData_5G = {
1145 {
1146 {
1147 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1148 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149 }
1150 },
1151 {
1152 {
1153 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1154 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1155 }
1156 },
1157 {
1158 {
1159 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1160 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1161 }
1162 },
1163 {
1164 {
1165 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1166 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167 }
1168 },
1169 {
1170 {
1171 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1172 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173 }
1174 },
1175 {
1176 {
1177 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1178 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1179 }
1180 },
1181 {
1182 {
1183 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1184 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 }
1186 },
1187 {
1188 {
1189 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1190 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1191 }
1192 },
1193 {
1194 {
1195 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1196 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1197 }
1198 },
1199 }
1200 };
1201
1202
1203 static const struct ar9300_eeprom ar9300_h112 = {
1204 .eepromVersion = 2,
1205 .templateVersion = 3,
1206 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1207 .custData = {"h112-241-f0000"},
1208 .baseEepHeader = {
1209 .regDmn = { LE16(0), LE16(0x1f) },
1210 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1211 .opCapFlags = {
1212 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1213 .eepMisc = 0,
1214 },
1215 .rfSilent = 0,
1216 .blueToothOptions = 0,
1217 .deviceCap = 0,
1218 .deviceType = 5, /* takes lower byte in eeprom location */
1219 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1220 .params_for_tuning_caps = {0, 0},
1221 .featureEnable = 0x0d,
1222 /*
1223 * bit0 - enable tx temp comp - disabled
1224 * bit1 - enable tx volt comp - disabled
1225 * bit2 - enable fastClock - enabled
1226 * bit3 - enable doubling - enabled
1227 * bit4 - enable internal regulator - disabled
1228 * bit5 - enable pa predistortion - disabled
1229 */
1230 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1231 .eepromWriteEnableGpio = 6,
1232 .wlanDisableGpio = 0,
1233 .wlanLedGpio = 8,
1234 .rxBandSelectGpio = 0xff,
1235 .txrxgain = 0x10,
1236 .swreg = 0,
1237 },
1238 .modalHeader2G = {
1239 /* ar9300_modal_eep_header 2g */
1240 /* 4 idle,t1,t2,b(4 bits per setting) */
1241 .antCtrlCommon = LE32(0x110),
1242 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1243 .antCtrlCommon2 = LE32(0x44444),
1244
1245 /*
1246 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1247 * rx1, rx12, b (2 bits each)
1248 */
1249 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1250
1251 /*
1252 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1253 * for ar9280 (0xa20c/b20c 5:0)
1254 */
1255 .xatten1DB = {0, 0, 0},
1256
1257 /*
1258 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1259 * for ar9280 (0xa20c/b20c 16:12
1260 */
1261 .xatten1Margin = {0, 0, 0},
1262 .tempSlope = 25,
1263 .voltSlope = 0,
1264
1265 /*
1266 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1267 * channels in usual fbin coding format
1268 */
1269 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1270
1271 /*
1272 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1273 * if the register is per chain
1274 */
1275 .noiseFloorThreshCh = {-1, 0, 0},
1276 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1277 .quick_drop = 0,
1278 .xpaBiasLvl = 0,
1279 .txFrameToDataStart = 0x0e,
1280 .txFrameToPaOn = 0x0e,
1281 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1282 .antennaGain = 0,
1283 .switchSettling = 0x2c,
1284 .adcDesiredSize = -30,
1285 .txEndToXpaOff = 0,
1286 .txEndToRxOn = 0x2,
1287 .txFrameToXpaOn = 0xe,
1288 .thresh62 = 28,
1289 .papdRateMaskHt20 = LE32(0x0c80c080),
1290 .papdRateMaskHt40 = LE32(0x0080c080),
1291 .switchcomspdt = 0,
1292 .xlna_bias_strength = 0,
1293 .futureModal = {
1294 0, 0, 0, 0, 0, 0, 0,
1295 },
1296 },
1297 .base_ext1 = {
1298 .ant_div_control = 0,
1299 .future = {0, 0},
1300 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1301 },
1302 .calFreqPier2G = {
1303 FREQ2FBIN(2412, 1),
1304 FREQ2FBIN(2437, 1),
1305 FREQ2FBIN(2462, 1),
1306 },
1307 /* ar9300_cal_data_per_freq_op_loop 2g */
1308 .calPierData2G = {
1309 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1310 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 },
1313 .calTarget_freqbin_Cck = {
1314 FREQ2FBIN(2412, 1),
1315 FREQ2FBIN(2472, 1),
1316 },
1317 .calTarget_freqbin_2G = {
1318 FREQ2FBIN(2412, 1),
1319 FREQ2FBIN(2437, 1),
1320 FREQ2FBIN(2472, 1)
1321 },
1322 .calTarget_freqbin_2GHT20 = {
1323 FREQ2FBIN(2412, 1),
1324 FREQ2FBIN(2437, 1),
1325 FREQ2FBIN(2472, 1)
1326 },
1327 .calTarget_freqbin_2GHT40 = {
1328 FREQ2FBIN(2412, 1),
1329 FREQ2FBIN(2437, 1),
1330 FREQ2FBIN(2472, 1)
1331 },
1332 .calTargetPowerCck = {
1333 /* 1L-5L,5S,11L,11S */
1334 { {34, 34, 34, 34} },
1335 { {34, 34, 34, 34} },
1336 },
1337 .calTargetPower2G = {
1338 /* 6-24,36,48,54 */
1339 { {34, 34, 32, 32} },
1340 { {34, 34, 32, 32} },
1341 { {34, 34, 32, 32} },
1342 },
1343 .calTargetPower2GHT20 = {
1344 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1345 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 },
1348 .calTargetPower2GHT40 = {
1349 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1350 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 },
1353 .ctlIndex_2G = {
1354 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1355 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1356 },
1357 .ctl_freqbin_2G = {
1358 {
1359 FREQ2FBIN(2412, 1),
1360 FREQ2FBIN(2417, 1),
1361 FREQ2FBIN(2457, 1),
1362 FREQ2FBIN(2462, 1)
1363 },
1364 {
1365 FREQ2FBIN(2412, 1),
1366 FREQ2FBIN(2417, 1),
1367 FREQ2FBIN(2462, 1),
1368 0xFF,
1369 },
1370
1371 {
1372 FREQ2FBIN(2412, 1),
1373 FREQ2FBIN(2417, 1),
1374 FREQ2FBIN(2462, 1),
1375 0xFF,
1376 },
1377 {
1378 FREQ2FBIN(2422, 1),
1379 FREQ2FBIN(2427, 1),
1380 FREQ2FBIN(2447, 1),
1381 FREQ2FBIN(2452, 1)
1382 },
1383
1384 {
1385 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1386 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1387 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1388 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1389 },
1390
1391 {
1392 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1393 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1394 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1395 0,
1396 },
1397
1398 {
1399 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1400 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1401 FREQ2FBIN(2472, 1),
1402 0,
1403 },
1404
1405 {
1406 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1407 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1408 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1409 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1410 },
1411
1412 {
1413 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416 },
1417
1418 {
1419 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1422 0
1423 },
1424
1425 {
1426 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1427 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1428 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1429 0
1430 },
1431
1432 {
1433 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1434 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1435 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1436 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1437 }
1438 },
1439 .ctlPowerData_2G = {
1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1443
1444 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447
1448 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1449 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1450 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451
1452 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1453 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1454 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455 },
1456 .modalHeader5G = {
1457 /* 4 idle,t1,t2,b (4 bits per setting) */
1458 .antCtrlCommon = LE32(0x220),
1459 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1460 .antCtrlCommon2 = LE32(0x44444),
1461 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1462 .antCtrlChain = {
1463 LE16(0x150), LE16(0x150), LE16(0x150),
1464 },
1465 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1466 .xatten1DB = {0, 0, 0},
1467
1468 /*
1469 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1470 * for merlin (0xa20c/b20c 16:12
1471 */
1472 .xatten1Margin = {0, 0, 0},
1473 .tempSlope = 45,
1474 .voltSlope = 0,
1475 /* spurChans spur channels in usual fbin coding format */
1476 .spurChans = {0, 0, 0, 0, 0},
1477 /* noiseFloorThreshCh Check if the register is per chain */
1478 .noiseFloorThreshCh = {-1, 0, 0},
1479 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1480 .quick_drop = 0,
1481 .xpaBiasLvl = 0,
1482 .txFrameToDataStart = 0x0e,
1483 .txFrameToPaOn = 0x0e,
1484 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1485 .antennaGain = 0,
1486 .switchSettling = 0x2d,
1487 .adcDesiredSize = -30,
1488 .txEndToXpaOff = 0,
1489 .txEndToRxOn = 0x2,
1490 .txFrameToXpaOn = 0xe,
1491 .thresh62 = 28,
1492 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1493 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1494 .switchcomspdt = 0,
1495 .xlna_bias_strength = 0,
1496 .futureModal = {
1497 0, 0, 0, 0, 0, 0, 0,
1498 },
1499 },
1500 .base_ext2 = {
1501 .tempSlopeLow = 40,
1502 .tempSlopeHigh = 50,
1503 .xatten1DBLow = {0, 0, 0},
1504 .xatten1MarginLow = {0, 0, 0},
1505 .xatten1DBHigh = {0, 0, 0},
1506 .xatten1MarginHigh = {0, 0, 0}
1507 },
1508 .calFreqPier5G = {
1509 FREQ2FBIN(5180, 0),
1510 FREQ2FBIN(5220, 0),
1511 FREQ2FBIN(5320, 0),
1512 FREQ2FBIN(5400, 0),
1513 FREQ2FBIN(5500, 0),
1514 FREQ2FBIN(5600, 0),
1515 FREQ2FBIN(5700, 0),
1516 FREQ2FBIN(5785, 0)
1517 },
1518 .calPierData5G = {
1519 {
1520 {0, 0, 0, 0, 0},
1521 {0, 0, 0, 0, 0},
1522 {0, 0, 0, 0, 0},
1523 {0, 0, 0, 0, 0},
1524 {0, 0, 0, 0, 0},
1525 {0, 0, 0, 0, 0},
1526 {0, 0, 0, 0, 0},
1527 {0, 0, 0, 0, 0},
1528 },
1529 {
1530 {0, 0, 0, 0, 0},
1531 {0, 0, 0, 0, 0},
1532 {0, 0, 0, 0, 0},
1533 {0, 0, 0, 0, 0},
1534 {0, 0, 0, 0, 0},
1535 {0, 0, 0, 0, 0},
1536 {0, 0, 0, 0, 0},
1537 {0, 0, 0, 0, 0},
1538 },
1539 {
1540 {0, 0, 0, 0, 0},
1541 {0, 0, 0, 0, 0},
1542 {0, 0, 0, 0, 0},
1543 {0, 0, 0, 0, 0},
1544 {0, 0, 0, 0, 0},
1545 {0, 0, 0, 0, 0},
1546 {0, 0, 0, 0, 0},
1547 {0, 0, 0, 0, 0},
1548 },
1549
1550 },
1551 .calTarget_freqbin_5G = {
1552 FREQ2FBIN(5180, 0),
1553 FREQ2FBIN(5240, 0),
1554 FREQ2FBIN(5320, 0),
1555 FREQ2FBIN(5400, 0),
1556 FREQ2FBIN(5500, 0),
1557 FREQ2FBIN(5600, 0),
1558 FREQ2FBIN(5700, 0),
1559 FREQ2FBIN(5825, 0)
1560 },
1561 .calTarget_freqbin_5GHT20 = {
1562 FREQ2FBIN(5180, 0),
1563 FREQ2FBIN(5240, 0),
1564 FREQ2FBIN(5320, 0),
1565 FREQ2FBIN(5400, 0),
1566 FREQ2FBIN(5500, 0),
1567 FREQ2FBIN(5700, 0),
1568 FREQ2FBIN(5745, 0),
1569 FREQ2FBIN(5825, 0)
1570 },
1571 .calTarget_freqbin_5GHT40 = {
1572 FREQ2FBIN(5180, 0),
1573 FREQ2FBIN(5240, 0),
1574 FREQ2FBIN(5320, 0),
1575 FREQ2FBIN(5400, 0),
1576 FREQ2FBIN(5500, 0),
1577 FREQ2FBIN(5700, 0),
1578 FREQ2FBIN(5745, 0),
1579 FREQ2FBIN(5825, 0)
1580 },
1581 .calTargetPower5G = {
1582 /* 6-24,36,48,54 */
1583 { {30, 30, 28, 24} },
1584 { {30, 30, 28, 24} },
1585 { {30, 30, 28, 24} },
1586 { {30, 30, 28, 24} },
1587 { {30, 30, 28, 24} },
1588 { {30, 30, 28, 24} },
1589 { {30, 30, 28, 24} },
1590 { {30, 30, 28, 24} },
1591 },
1592 .calTargetPower5GHT20 = {
1593 /*
1594 * 0_8_16,1-3_9-11_17-19,
1595 * 4,5,6,7,12,13,14,15,20,21,22,23
1596 */
1597 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1598 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1600 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1602 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1604 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605 },
1606 .calTargetPower5GHT40 = {
1607 /*
1608 * 0_8_16,1-3_9-11_17-19,
1609 * 4,5,6,7,12,13,14,15,20,21,22,23
1610 */
1611 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1612 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1614 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1616 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1618 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619 },
1620 .ctlIndex_5G = {
1621 0x10, 0x16, 0x18, 0x40, 0x46,
1622 0x48, 0x30, 0x36, 0x38
1623 },
1624 .ctl_freqbin_5G = {
1625 {
1626 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1631 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634 },
1635 {
1636 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1637 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1638 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1639 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1640 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1641 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1642 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1643 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1644 },
1645
1646 {
1647 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1648 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1649 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1650 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1651 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1652 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1653 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1654 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1655 },
1656
1657 {
1658 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1659 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1660 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1661 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1662 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1663 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1664 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1665 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1666 },
1667
1668 {
1669 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1670 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1671 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1672 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1673 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1674 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1675 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1676 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1677 },
1678
1679 {
1680 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1681 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1682 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1683 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1684 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1685 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1686 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1687 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1688 },
1689
1690 {
1691 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1692 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1693 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1694 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1695 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1696 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1697 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1698 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1699 },
1700
1701 {
1702 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1703 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1704 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1705 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1706 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1707 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1708 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1709 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1710 },
1711
1712 {
1713 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1714 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1715 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1716 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1717 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1718 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1719 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1720 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1721 }
1722 },
1723 .ctlPowerData_5G = {
1724 {
1725 {
1726 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 }
1729 },
1730 {
1731 {
1732 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1733 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1734 }
1735 },
1736 {
1737 {
1738 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1739 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1740 }
1741 },
1742 {
1743 {
1744 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 }
1747 },
1748 {
1749 {
1750 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1751 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 }
1753 },
1754 {
1755 {
1756 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1758 }
1759 },
1760 {
1761 {
1762 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1763 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764 }
1765 },
1766 {
1767 {
1768 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1769 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1770 }
1771 },
1772 {
1773 {
1774 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1775 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1776 }
1777 },
1778 }
1779 };
1780
1781
1782 static const struct ar9300_eeprom ar9300_x112 = {
1783 .eepromVersion = 2,
1784 .templateVersion = 5,
1785 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1786 .custData = {"x112-041-f0000"},
1787 .baseEepHeader = {
1788 .regDmn = { LE16(0), LE16(0x1f) },
1789 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1790 .opCapFlags = {
1791 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1792 .eepMisc = 0,
1793 },
1794 .rfSilent = 0,
1795 .blueToothOptions = 0,
1796 .deviceCap = 0,
1797 .deviceType = 5, /* takes lower byte in eeprom location */
1798 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1799 .params_for_tuning_caps = {0, 0},
1800 .featureEnable = 0x0d,
1801 /*
1802 * bit0 - enable tx temp comp - disabled
1803 * bit1 - enable tx volt comp - disabled
1804 * bit2 - enable fastclock - enabled
1805 * bit3 - enable doubling - enabled
1806 * bit4 - enable internal regulator - disabled
1807 * bit5 - enable pa predistortion - disabled
1808 */
1809 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1810 .eepromWriteEnableGpio = 6,
1811 .wlanDisableGpio = 0,
1812 .wlanLedGpio = 8,
1813 .rxBandSelectGpio = 0xff,
1814 .txrxgain = 0x0,
1815 .swreg = 0,
1816 },
1817 .modalHeader2G = {
1818 /* ar9300_modal_eep_header 2g */
1819 /* 4 idle,t1,t2,b(4 bits per setting) */
1820 .antCtrlCommon = LE32(0x110),
1821 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1822 .antCtrlCommon2 = LE32(0x22222),
1823
1824 /*
1825 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1826 * rx1, rx12, b (2 bits each)
1827 */
1828 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1829
1830 /*
1831 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1832 * for ar9280 (0xa20c/b20c 5:0)
1833 */
1834 .xatten1DB = {0x1b, 0x1b, 0x1b},
1835
1836 /*
1837 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1838 * for ar9280 (0xa20c/b20c 16:12
1839 */
1840 .xatten1Margin = {0x15, 0x15, 0x15},
1841 .tempSlope = 50,
1842 .voltSlope = 0,
1843
1844 /*
1845 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1846 * channels in usual fbin coding format
1847 */
1848 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1849
1850 /*
1851 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1852 * if the register is per chain
1853 */
1854 .noiseFloorThreshCh = {-1, 0, 0},
1855 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1856 .quick_drop = 0,
1857 .xpaBiasLvl = 0,
1858 .txFrameToDataStart = 0x0e,
1859 .txFrameToPaOn = 0x0e,
1860 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1861 .antennaGain = 0,
1862 .switchSettling = 0x2c,
1863 .adcDesiredSize = -30,
1864 .txEndToXpaOff = 0,
1865 .txEndToRxOn = 0x2,
1866 .txFrameToXpaOn = 0xe,
1867 .thresh62 = 28,
1868 .papdRateMaskHt20 = LE32(0x0c80c080),
1869 .papdRateMaskHt40 = LE32(0x0080c080),
1870 .switchcomspdt = 0,
1871 .xlna_bias_strength = 0,
1872 .futureModal = {
1873 0, 0, 0, 0, 0, 0, 0,
1874 },
1875 },
1876 .base_ext1 = {
1877 .ant_div_control = 0,
1878 .future = {0, 0},
1879 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1880 },
1881 .calFreqPier2G = {
1882 FREQ2FBIN(2412, 1),
1883 FREQ2FBIN(2437, 1),
1884 FREQ2FBIN(2472, 1),
1885 },
1886 /* ar9300_cal_data_per_freq_op_loop 2g */
1887 .calPierData2G = {
1888 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1889 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 },
1892 .calTarget_freqbin_Cck = {
1893 FREQ2FBIN(2412, 1),
1894 FREQ2FBIN(2472, 1),
1895 },
1896 .calTarget_freqbin_2G = {
1897 FREQ2FBIN(2412, 1),
1898 FREQ2FBIN(2437, 1),
1899 FREQ2FBIN(2472, 1)
1900 },
1901 .calTarget_freqbin_2GHT20 = {
1902 FREQ2FBIN(2412, 1),
1903 FREQ2FBIN(2437, 1),
1904 FREQ2FBIN(2472, 1)
1905 },
1906 .calTarget_freqbin_2GHT40 = {
1907 FREQ2FBIN(2412, 1),
1908 FREQ2FBIN(2437, 1),
1909 FREQ2FBIN(2472, 1)
1910 },
1911 .calTargetPowerCck = {
1912 /* 1L-5L,5S,11L,11s */
1913 { {38, 38, 38, 38} },
1914 { {38, 38, 38, 38} },
1915 },
1916 .calTargetPower2G = {
1917 /* 6-24,36,48,54 */
1918 { {38, 38, 36, 34} },
1919 { {38, 38, 36, 34} },
1920 { {38, 38, 34, 32} },
1921 },
1922 .calTargetPower2GHT20 = {
1923 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1924 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1925 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1926 },
1927 .calTargetPower2GHT40 = {
1928 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1929 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1930 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1931 },
1932 .ctlIndex_2G = {
1933 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1934 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1935 },
1936 .ctl_freqbin_2G = {
1937 {
1938 FREQ2FBIN(2412, 1),
1939 FREQ2FBIN(2417, 1),
1940 FREQ2FBIN(2457, 1),
1941 FREQ2FBIN(2462, 1)
1942 },
1943 {
1944 FREQ2FBIN(2412, 1),
1945 FREQ2FBIN(2417, 1),
1946 FREQ2FBIN(2462, 1),
1947 0xFF,
1948 },
1949
1950 {
1951 FREQ2FBIN(2412, 1),
1952 FREQ2FBIN(2417, 1),
1953 FREQ2FBIN(2462, 1),
1954 0xFF,
1955 },
1956 {
1957 FREQ2FBIN(2422, 1),
1958 FREQ2FBIN(2427, 1),
1959 FREQ2FBIN(2447, 1),
1960 FREQ2FBIN(2452, 1)
1961 },
1962
1963 {
1964 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1968 },
1969
1970 {
1971 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1974 0,
1975 },
1976
1977 {
1978 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1979 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1980 FREQ2FBIN(2472, 1),
1981 0,
1982 },
1983
1984 {
1985 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1986 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1987 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1988 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1989 },
1990
1991 {
1992 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995 },
1996
1997 {
1998 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 0
2002 },
2003
2004 {
2005 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2006 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2007 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2008 0
2009 },
2010
2011 {
2012 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2013 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2014 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2015 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2016 }
2017 },
2018 .ctlPowerData_2G = {
2019 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2022
2023 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2024 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026
2027 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2028 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2029 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030
2031 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2032 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2033 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 },
2035 .modalHeader5G = {
2036 /* 4 idle,t1,t2,b (4 bits per setting) */
2037 .antCtrlCommon = LE32(0x110),
2038 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2039 .antCtrlCommon2 = LE32(0x22222),
2040 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2041 .antCtrlChain = {
2042 LE16(0x0), LE16(0x0), LE16(0x0),
2043 },
2044 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2045 .xatten1DB = {0x13, 0x19, 0x17},
2046
2047 /*
2048 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2049 * for merlin (0xa20c/b20c 16:12
2050 */
2051 .xatten1Margin = {0x19, 0x19, 0x19},
2052 .tempSlope = 70,
2053 .voltSlope = 15,
2054 /* spurChans spur channels in usual fbin coding format */
2055 .spurChans = {0, 0, 0, 0, 0},
2056 /* noiseFloorThreshch check if the register is per chain */
2057 .noiseFloorThreshCh = {-1, 0, 0},
2058 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2059 .quick_drop = 0,
2060 .xpaBiasLvl = 0,
2061 .txFrameToDataStart = 0x0e,
2062 .txFrameToPaOn = 0x0e,
2063 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2064 .antennaGain = 0,
2065 .switchSettling = 0x2d,
2066 .adcDesiredSize = -30,
2067 .txEndToXpaOff = 0,
2068 .txEndToRxOn = 0x2,
2069 .txFrameToXpaOn = 0xe,
2070 .thresh62 = 28,
2071 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2072 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2073 .switchcomspdt = 0,
2074 .xlna_bias_strength = 0,
2075 .futureModal = {
2076 0, 0, 0, 0, 0, 0, 0,
2077 },
2078 },
2079 .base_ext2 = {
2080 .tempSlopeLow = 72,
2081 .tempSlopeHigh = 105,
2082 .xatten1DBLow = {0x10, 0x14, 0x10},
2083 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2084 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2085 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2086 },
2087 .calFreqPier5G = {
2088 FREQ2FBIN(5180, 0),
2089 FREQ2FBIN(5220, 0),
2090 FREQ2FBIN(5320, 0),
2091 FREQ2FBIN(5400, 0),
2092 FREQ2FBIN(5500, 0),
2093 FREQ2FBIN(5600, 0),
2094 FREQ2FBIN(5700, 0),
2095 FREQ2FBIN(5785, 0)
2096 },
2097 .calPierData5G = {
2098 {
2099 {0, 0, 0, 0, 0},
2100 {0, 0, 0, 0, 0},
2101 {0, 0, 0, 0, 0},
2102 {0, 0, 0, 0, 0},
2103 {0, 0, 0, 0, 0},
2104 {0, 0, 0, 0, 0},
2105 {0, 0, 0, 0, 0},
2106 {0, 0, 0, 0, 0},
2107 },
2108 {
2109 {0, 0, 0, 0, 0},
2110 {0, 0, 0, 0, 0},
2111 {0, 0, 0, 0, 0},
2112 {0, 0, 0, 0, 0},
2113 {0, 0, 0, 0, 0},
2114 {0, 0, 0, 0, 0},
2115 {0, 0, 0, 0, 0},
2116 {0, 0, 0, 0, 0},
2117 },
2118 {
2119 {0, 0, 0, 0, 0},
2120 {0, 0, 0, 0, 0},
2121 {0, 0, 0, 0, 0},
2122 {0, 0, 0, 0, 0},
2123 {0, 0, 0, 0, 0},
2124 {0, 0, 0, 0, 0},
2125 {0, 0, 0, 0, 0},
2126 {0, 0, 0, 0, 0},
2127 },
2128
2129 },
2130 .calTarget_freqbin_5G = {
2131 FREQ2FBIN(5180, 0),
2132 FREQ2FBIN(5220, 0),
2133 FREQ2FBIN(5320, 0),
2134 FREQ2FBIN(5400, 0),
2135 FREQ2FBIN(5500, 0),
2136 FREQ2FBIN(5600, 0),
2137 FREQ2FBIN(5725, 0),
2138 FREQ2FBIN(5825, 0)
2139 },
2140 .calTarget_freqbin_5GHT20 = {
2141 FREQ2FBIN(5180, 0),
2142 FREQ2FBIN(5220, 0),
2143 FREQ2FBIN(5320, 0),
2144 FREQ2FBIN(5400, 0),
2145 FREQ2FBIN(5500, 0),
2146 FREQ2FBIN(5600, 0),
2147 FREQ2FBIN(5725, 0),
2148 FREQ2FBIN(5825, 0)
2149 },
2150 .calTarget_freqbin_5GHT40 = {
2151 FREQ2FBIN(5180, 0),
2152 FREQ2FBIN(5220, 0),
2153 FREQ2FBIN(5320, 0),
2154 FREQ2FBIN(5400, 0),
2155 FREQ2FBIN(5500, 0),
2156 FREQ2FBIN(5600, 0),
2157 FREQ2FBIN(5725, 0),
2158 FREQ2FBIN(5825, 0)
2159 },
2160 .calTargetPower5G = {
2161 /* 6-24,36,48,54 */
2162 { {32, 32, 28, 26} },
2163 { {32, 32, 28, 26} },
2164 { {32, 32, 28, 26} },
2165 { {32, 32, 26, 24} },
2166 { {32, 32, 26, 24} },
2167 { {32, 32, 24, 22} },
2168 { {30, 30, 24, 22} },
2169 { {30, 30, 24, 22} },
2170 },
2171 .calTargetPower5GHT20 = {
2172 /*
2173 * 0_8_16,1-3_9-11_17-19,
2174 * 4,5,6,7,12,13,14,15,20,21,22,23
2175 */
2176 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2177 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2180 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2181 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2182 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2183 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 },
2185 .calTargetPower5GHT40 = {
2186 /*
2187 * 0_8_16,1-3_9-11_17-19,
2188 * 4,5,6,7,12,13,14,15,20,21,22,23
2189 */
2190 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2191 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2194 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2195 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2196 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 },
2199 .ctlIndex_5G = {
2200 0x10, 0x16, 0x18, 0x40, 0x46,
2201 0x48, 0x30, 0x36, 0x38
2202 },
2203 .ctl_freqbin_5G = {
2204 {
2205 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2206 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2207 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2208 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2209 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2210 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2211 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2212 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2213 },
2214 {
2215 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2216 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2217 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2218 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2219 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2220 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2221 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2222 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2223 },
2224
2225 {
2226 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2227 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2228 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2229 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2230 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2231 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2232 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2233 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2234 },
2235
2236 {
2237 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2238 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2239 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2240 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2241 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2242 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2243 /* Data[3].ctledges[6].bchannel */ 0xFF,
2244 /* Data[3].ctledges[7].bchannel */ 0xFF,
2245 },
2246
2247 {
2248 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2249 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2250 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2251 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2252 /* Data[4].ctledges[4].bchannel */ 0xFF,
2253 /* Data[4].ctledges[5].bchannel */ 0xFF,
2254 /* Data[4].ctledges[6].bchannel */ 0xFF,
2255 /* Data[4].ctledges[7].bchannel */ 0xFF,
2256 },
2257
2258 {
2259 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2260 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2261 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2262 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2263 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2264 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2265 /* Data[5].ctledges[6].bchannel */ 0xFF,
2266 /* Data[5].ctledges[7].bchannel */ 0xFF
2267 },
2268
2269 {
2270 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2271 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2272 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2273 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2274 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2275 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2276 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2277 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2278 },
2279
2280 {
2281 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2282 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2283 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2284 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2285 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2286 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2287 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2288 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2289 },
2290
2291 {
2292 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2293 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2294 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2295 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2296 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2297 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2298 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2299 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2300 }
2301 },
2302 .ctlPowerData_5G = {
2303 {
2304 {
2305 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2306 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2307 }
2308 },
2309 {
2310 {
2311 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2312 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2313 }
2314 },
2315 {
2316 {
2317 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2318 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2319 }
2320 },
2321 {
2322 {
2323 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2324 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2325 }
2326 },
2327 {
2328 {
2329 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2330 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2331 }
2332 },
2333 {
2334 {
2335 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2336 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2337 }
2338 },
2339 {
2340 {
2341 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2342 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 }
2344 },
2345 {
2346 {
2347 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2348 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349 }
2350 },
2351 {
2352 {
2353 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2354 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2355 }
2356 },
2357 }
2358 };
2359
2360 static const struct ar9300_eeprom ar9300_h116 = {
2361 .eepromVersion = 2,
2362 .templateVersion = 4,
2363 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2364 .custData = {"h116-041-f0000"},
2365 .baseEepHeader = {
2366 .regDmn = { LE16(0), LE16(0x1f) },
2367 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2368 .opCapFlags = {
2369 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2370 .eepMisc = 0,
2371 },
2372 .rfSilent = 0,
2373 .blueToothOptions = 0,
2374 .deviceCap = 0,
2375 .deviceType = 5, /* takes lower byte in eeprom location */
2376 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2377 .params_for_tuning_caps = {0, 0},
2378 .featureEnable = 0x0d,
2379 /*
2380 * bit0 - enable tx temp comp - disabled
2381 * bit1 - enable tx volt comp - disabled
2382 * bit2 - enable fastClock - enabled
2383 * bit3 - enable doubling - enabled
2384 * bit4 - enable internal regulator - disabled
2385 * bit5 - enable pa predistortion - disabled
2386 */
2387 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2388 .eepromWriteEnableGpio = 6,
2389 .wlanDisableGpio = 0,
2390 .wlanLedGpio = 8,
2391 .rxBandSelectGpio = 0xff,
2392 .txrxgain = 0x10,
2393 .swreg = 0,
2394 },
2395 .modalHeader2G = {
2396 /* ar9300_modal_eep_header 2g */
2397 /* 4 idle,t1,t2,b(4 bits per setting) */
2398 .antCtrlCommon = LE32(0x110),
2399 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2400 .antCtrlCommon2 = LE32(0x44444),
2401
2402 /*
2403 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2404 * rx1, rx12, b (2 bits each)
2405 */
2406 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2407
2408 /*
2409 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2410 * for ar9280 (0xa20c/b20c 5:0)
2411 */
2412 .xatten1DB = {0x1f, 0x1f, 0x1f},
2413
2414 /*
2415 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2416 * for ar9280 (0xa20c/b20c 16:12
2417 */
2418 .xatten1Margin = {0x12, 0x12, 0x12},
2419 .tempSlope = 25,
2420 .voltSlope = 0,
2421
2422 /*
2423 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2424 * channels in usual fbin coding format
2425 */
2426 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2427
2428 /*
2429 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2430 * if the register is per chain
2431 */
2432 .noiseFloorThreshCh = {-1, 0, 0},
2433 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2434 .quick_drop = 0,
2435 .xpaBiasLvl = 0,
2436 .txFrameToDataStart = 0x0e,
2437 .txFrameToPaOn = 0x0e,
2438 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2439 .antennaGain = 0,
2440 .switchSettling = 0x2c,
2441 .adcDesiredSize = -30,
2442 .txEndToXpaOff = 0,
2443 .txEndToRxOn = 0x2,
2444 .txFrameToXpaOn = 0xe,
2445 .thresh62 = 28,
2446 .papdRateMaskHt20 = LE32(0x0c80C080),
2447 .papdRateMaskHt40 = LE32(0x0080C080),
2448 .switchcomspdt = 0,
2449 .xlna_bias_strength = 0,
2450 .futureModal = {
2451 0, 0, 0, 0, 0, 0, 0,
2452 },
2453 },
2454 .base_ext1 = {
2455 .ant_div_control = 0,
2456 .future = {0, 0},
2457 .tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2458 },
2459 .calFreqPier2G = {
2460 FREQ2FBIN(2412, 1),
2461 FREQ2FBIN(2437, 1),
2462 FREQ2FBIN(2462, 1),
2463 },
2464 /* ar9300_cal_data_per_freq_op_loop 2g */
2465 .calPierData2G = {
2466 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2467 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 },
2470 .calTarget_freqbin_Cck = {
2471 FREQ2FBIN(2412, 1),
2472 FREQ2FBIN(2472, 1),
2473 },
2474 .calTarget_freqbin_2G = {
2475 FREQ2FBIN(2412, 1),
2476 FREQ2FBIN(2437, 1),
2477 FREQ2FBIN(2472, 1)
2478 },
2479 .calTarget_freqbin_2GHT20 = {
2480 FREQ2FBIN(2412, 1),
2481 FREQ2FBIN(2437, 1),
2482 FREQ2FBIN(2472, 1)
2483 },
2484 .calTarget_freqbin_2GHT40 = {
2485 FREQ2FBIN(2412, 1),
2486 FREQ2FBIN(2437, 1),
2487 FREQ2FBIN(2472, 1)
2488 },
2489 .calTargetPowerCck = {
2490 /* 1L-5L,5S,11L,11S */
2491 { {34, 34, 34, 34} },
2492 { {34, 34, 34, 34} },
2493 },
2494 .calTargetPower2G = {
2495 /* 6-24,36,48,54 */
2496 { {34, 34, 32, 32} },
2497 { {34, 34, 32, 32} },
2498 { {34, 34, 32, 32} },
2499 },
2500 .calTargetPower2GHT20 = {
2501 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2502 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 },
2505 .calTargetPower2GHT40 = {
2506 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2507 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 },
2510 .ctlIndex_2G = {
2511 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2512 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2513 },
2514 .ctl_freqbin_2G = {
2515 {
2516 FREQ2FBIN(2412, 1),
2517 FREQ2FBIN(2417, 1),
2518 FREQ2FBIN(2457, 1),
2519 FREQ2FBIN(2462, 1)
2520 },
2521 {
2522 FREQ2FBIN(2412, 1),
2523 FREQ2FBIN(2417, 1),
2524 FREQ2FBIN(2462, 1),
2525 0xFF,
2526 },
2527
2528 {
2529 FREQ2FBIN(2412, 1),
2530 FREQ2FBIN(2417, 1),
2531 FREQ2FBIN(2462, 1),
2532 0xFF,
2533 },
2534 {
2535 FREQ2FBIN(2422, 1),
2536 FREQ2FBIN(2427, 1),
2537 FREQ2FBIN(2447, 1),
2538 FREQ2FBIN(2452, 1)
2539 },
2540
2541 {
2542 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2543 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2544 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2545 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2546 },
2547
2548 {
2549 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2550 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2551 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2552 0,
2553 },
2554
2555 {
2556 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2557 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2558 FREQ2FBIN(2472, 1),
2559 0,
2560 },
2561
2562 {
2563 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2564 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2565 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2566 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2567 },
2568
2569 {
2570 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2571 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2572 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2573 },
2574
2575 {
2576 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2577 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2578 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2579 0
2580 },
2581
2582 {
2583 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2584 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2585 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2586 0
2587 },
2588
2589 {
2590 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2591 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2592 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2593 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2594 }
2595 },
2596 .ctlPowerData_2G = {
2597 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2600
2601 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2602 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2603 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604
2605 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2606 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2607 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608
2609 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2610 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2611 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 },
2613 .modalHeader5G = {
2614 /* 4 idle,t1,t2,b (4 bits per setting) */
2615 .antCtrlCommon = LE32(0x220),
2616 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2617 .antCtrlCommon2 = LE32(0x44444),
2618 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2619 .antCtrlChain = {
2620 LE16(0x150), LE16(0x150), LE16(0x150),
2621 },
2622 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2623 .xatten1DB = {0x19, 0x19, 0x19},
2624
2625 /*
2626 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2627 * for merlin (0xa20c/b20c 16:12
2628 */
2629 .xatten1Margin = {0x14, 0x14, 0x14},
2630 .tempSlope = 70,
2631 .voltSlope = 0,
2632 /* spurChans spur channels in usual fbin coding format */
2633 .spurChans = {0, 0, 0, 0, 0},
2634 /* noiseFloorThreshCh Check if the register is per chain */
2635 .noiseFloorThreshCh = {-1, 0, 0},
2636 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2637 .quick_drop = 0,
2638 .xpaBiasLvl = 0,
2639 .txFrameToDataStart = 0x0e,
2640 .txFrameToPaOn = 0x0e,
2641 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2642 .antennaGain = 0,
2643 .switchSettling = 0x2d,
2644 .adcDesiredSize = -30,
2645 .txEndToXpaOff = 0,
2646 .txEndToRxOn = 0x2,
2647 .txFrameToXpaOn = 0xe,
2648 .thresh62 = 28,
2649 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2650 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2651 .switchcomspdt = 0,
2652 .xlna_bias_strength = 0,
2653 .futureModal = {
2654 0, 0, 0, 0, 0, 0, 0,
2655 },
2656 },
2657 .base_ext2 = {
2658 .tempSlopeLow = 35,
2659 .tempSlopeHigh = 50,
2660 .xatten1DBLow = {0, 0, 0},
2661 .xatten1MarginLow = {0, 0, 0},
2662 .xatten1DBHigh = {0, 0, 0},
2663 .xatten1MarginHigh = {0, 0, 0}
2664 },
2665 .calFreqPier5G = {
2666 FREQ2FBIN(5160, 0),
2667 FREQ2FBIN(5220, 0),
2668 FREQ2FBIN(5320, 0),
2669 FREQ2FBIN(5400, 0),
2670 FREQ2FBIN(5500, 0),
2671 FREQ2FBIN(5600, 0),
2672 FREQ2FBIN(5700, 0),
2673 FREQ2FBIN(5785, 0)
2674 },
2675 .calPierData5G = {
2676 {
2677 {0, 0, 0, 0, 0},
2678 {0, 0, 0, 0, 0},
2679 {0, 0, 0, 0, 0},
2680 {0, 0, 0, 0, 0},
2681 {0, 0, 0, 0, 0},
2682 {0, 0, 0, 0, 0},
2683 {0, 0, 0, 0, 0},
2684 {0, 0, 0, 0, 0},
2685 },
2686 {
2687 {0, 0, 0, 0, 0},
2688 {0, 0, 0, 0, 0},
2689 {0, 0, 0, 0, 0},
2690 {0, 0, 0, 0, 0},
2691 {0, 0, 0, 0, 0},
2692 {0, 0, 0, 0, 0},
2693 {0, 0, 0, 0, 0},
2694 {0, 0, 0, 0, 0},
2695 },
2696 {
2697 {0, 0, 0, 0, 0},
2698 {0, 0, 0, 0, 0},
2699 {0, 0, 0, 0, 0},
2700 {0, 0, 0, 0, 0},
2701 {0, 0, 0, 0, 0},
2702 {0, 0, 0, 0, 0},
2703 {0, 0, 0, 0, 0},
2704 {0, 0, 0, 0, 0},
2705 },
2706
2707 },
2708 .calTarget_freqbin_5G = {
2709 FREQ2FBIN(5180, 0),
2710 FREQ2FBIN(5240, 0),
2711 FREQ2FBIN(5320, 0),
2712 FREQ2FBIN(5400, 0),
2713 FREQ2FBIN(5500, 0),
2714 FREQ2FBIN(5600, 0),
2715 FREQ2FBIN(5700, 0),
2716 FREQ2FBIN(5825, 0)
2717 },
2718 .calTarget_freqbin_5GHT20 = {
2719 FREQ2FBIN(5180, 0),
2720 FREQ2FBIN(5240, 0),
2721 FREQ2FBIN(5320, 0),
2722 FREQ2FBIN(5400, 0),
2723 FREQ2FBIN(5500, 0),
2724 FREQ2FBIN(5700, 0),
2725 FREQ2FBIN(5745, 0),
2726 FREQ2FBIN(5825, 0)
2727 },
2728 .calTarget_freqbin_5GHT40 = {
2729 FREQ2FBIN(5180, 0),
2730 FREQ2FBIN(5240, 0),
2731 FREQ2FBIN(5320, 0),
2732 FREQ2FBIN(5400, 0),
2733 FREQ2FBIN(5500, 0),
2734 FREQ2FBIN(5700, 0),
2735 FREQ2FBIN(5745, 0),
2736 FREQ2FBIN(5825, 0)
2737 },
2738 .calTargetPower5G = {
2739 /* 6-24,36,48,54 */
2740 { {30, 30, 28, 24} },
2741 { {30, 30, 28, 24} },
2742 { {30, 30, 28, 24} },
2743 { {30, 30, 28, 24} },
2744 { {30, 30, 28, 24} },
2745 { {30, 30, 28, 24} },
2746 { {30, 30, 28, 24} },
2747 { {30, 30, 28, 24} },
2748 },
2749 .calTargetPower5GHT20 = {
2750 /*
2751 * 0_8_16,1-3_9-11_17-19,
2752 * 4,5,6,7,12,13,14,15,20,21,22,23
2753 */
2754 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2755 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2757 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2759 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2761 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 },
2763 .calTargetPower5GHT40 = {
2764 /*
2765 * 0_8_16,1-3_9-11_17-19,
2766 * 4,5,6,7,12,13,14,15,20,21,22,23
2767 */
2768 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2769 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2771 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2773 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2775 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 },
2777 .ctlIndex_5G = {
2778 0x10, 0x16, 0x18, 0x40, 0x46,
2779 0x48, 0x30, 0x36, 0x38
2780 },
2781 .ctl_freqbin_5G = {
2782 {
2783 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2788 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 },
2792 {
2793 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2794 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2795 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2796 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2797 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2798 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2799 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2800 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2801 },
2802
2803 {
2804 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2805 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2806 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2807 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2808 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2809 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2810 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2811 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2812 },
2813
2814 {
2815 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2816 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2817 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2818 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2819 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2820 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2821 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2822 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2823 },
2824
2825 {
2826 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2827 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2828 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2829 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2830 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2831 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2832 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2833 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2834 },
2835
2836 {
2837 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2838 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2839 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2840 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2841 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2842 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2843 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2844 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2845 },
2846
2847 {
2848 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2849 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2850 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2851 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2852 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2853 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2854 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2855 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2856 },
2857
2858 {
2859 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2860 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2861 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2862 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2863 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2864 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2865 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2866 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2867 },
2868
2869 {
2870 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2871 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2872 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2873 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2874 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2875 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2876 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2877 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2878 }
2879 },
2880 .ctlPowerData_5G = {
2881 {
2882 {
2883 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2884 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2885 }
2886 },
2887 {
2888 {
2889 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2890 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2891 }
2892 },
2893 {
2894 {
2895 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2896 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2897 }
2898 },
2899 {
2900 {
2901 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2902 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2903 }
2904 },
2905 {
2906 {
2907 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2908 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2909 }
2910 },
2911 {
2912 {
2913 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2914 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2915 }
2916 },
2917 {
2918 {
2919 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2920 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 }
2922 },
2923 {
2924 {
2925 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2926 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927 }
2928 },
2929 {
2930 {
2931 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2932 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2933 }
2934 },
2935 }
2936 };
2937
2938
2939 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2940 &ar9300_default,
2941 &ar9300_x112,
2942 &ar9300_h116,
2943 &ar9300_h112,
2944 &ar9300_x113,
2945 };
2946
2947 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2948 {
2949 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2950 int it;
2951
2952 for (it = 0; it < N_LOOP; it++)
2953 if (ar9300_eep_templates[it]->templateVersion == id)
2954 return ar9300_eep_templates[it];
2955 return NULL;
2956 #undef N_LOOP
2957 }
2958
2959 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2960 {
2961 return 0;
2962 }
2963
2964 static int interpolate(int x, int xa, int xb, int ya, int yb)
2965 {
2966 int bf, factor, plus;
2967
2968 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2969 factor = bf / 2;
2970 plus = bf % 2;
2971 return ya + factor + plus;
2972 }
2973
2974 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2975 enum eeprom_param param)
2976 {
2977 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2978 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2979
2980 switch (param) {
2981 case EEP_MAC_LSW:
2982 return get_unaligned_be16(eep->macAddr);
2983 case EEP_MAC_MID:
2984 return get_unaligned_be16(eep->macAddr + 2);
2985 case EEP_MAC_MSW:
2986 return get_unaligned_be16(eep->macAddr + 4);
2987 case EEP_REG_0:
2988 return le16_to_cpu(pBase->regDmn[0]);
2989 case EEP_OP_CAP:
2990 return pBase->deviceCap;
2991 case EEP_OP_MODE:
2992 return pBase->opCapFlags.opFlags;
2993 case EEP_RF_SILENT:
2994 return pBase->rfSilent;
2995 case EEP_TX_MASK:
2996 return (pBase->txrxMask >> 4) & 0xf;
2997 case EEP_RX_MASK:
2998 return pBase->txrxMask & 0xf;
2999 case EEP_PAPRD:
3000 return !!(pBase->featureEnable & BIT(5));
3001 case EEP_CHAIN_MASK_REDUCE:
3002 return (pBase->miscConfiguration >> 0x3) & 0x1;
3003 case EEP_ANT_DIV_CTL1:
3004 if (AR_SREV_9565(ah))
3005 return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3006 else
3007 return eep->base_ext1.ant_div_control;
3008 case EEP_ANTENNA_GAIN_5G:
3009 return eep->modalHeader5G.antennaGain;
3010 case EEP_ANTENNA_GAIN_2G:
3011 return eep->modalHeader2G.antennaGain;
3012 default:
3013 return 0;
3014 }
3015 }
3016
3017 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3018 u8 *buffer)
3019 {
3020 u16 val;
3021
3022 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3023 return false;
3024
3025 *buffer = (val >> (8 * (address % 2))) & 0xff;
3026 return true;
3027 }
3028
3029 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3030 u8 *buffer)
3031 {
3032 u16 val;
3033
3034 if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3035 return false;
3036
3037 buffer[0] = val >> 8;
3038 buffer[1] = val & 0xff;
3039
3040 return true;
3041 }
3042
3043 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3044 int count)
3045 {
3046 struct ath_common *common = ath9k_hw_common(ah);
3047 int i;
3048
3049 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3050 ath_dbg(common, EEPROM, "eeprom address not in range\n");
3051 return false;
3052 }
3053
3054 /*
3055 * Since we're reading the bytes in reverse order from a little-endian
3056 * word stream, an even address means we only use the lower half of
3057 * the 16-bit word at that address
3058 */
3059 if (address % 2 == 0) {
3060 if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3061 goto error;
3062
3063 count--;
3064 }
3065
3066 for (i = 0; i < count / 2; i++) {
3067 if (!ar9300_eeprom_read_word(ah, address, buffer))
3068 goto error;
3069
3070 address -= 2;
3071 buffer += 2;
3072 }
3073
3074 if (count % 2)
3075 if (!ar9300_eeprom_read_byte(ah, address, buffer))
3076 goto error;
3077
3078 return true;
3079
3080 error:
3081 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3082 address);
3083 return false;
3084 }
3085
3086 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3087 {
3088 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3089
3090 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3091 AR9300_OTP_STATUS_VALID, 1000))
3092 return false;
3093
3094 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3095 return true;
3096 }
3097
3098 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3099 int count)
3100 {
3101 u32 data;
3102 int i;
3103
3104 for (i = 0; i < count; i++) {
3105 int offset = 8 * ((address - i) % 4);
3106 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3107 return false;
3108
3109 buffer[i] = (data >> offset) & 0xff;
3110 }
3111
3112 return true;
3113 }
3114
3115
3116 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3117 int *length, int *major, int *minor)
3118 {
3119 unsigned long value[4];
3120
3121 value[0] = best[0];
3122 value[1] = best[1];
3123 value[2] = best[2];
3124 value[3] = best[3];
3125 *code = ((value[0] >> 5) & 0x0007);
3126 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3127 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3128 *major = (value[2] & 0x000f);
3129 *minor = (value[3] & 0x00ff);
3130 }
3131
3132 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3133 {
3134 int it, checksum = 0;
3135
3136 for (it = 0; it < dsize; it++) {
3137 checksum += data[it];
3138 checksum &= 0xffff;
3139 }
3140
3141 return checksum;
3142 }
3143
3144 static bool ar9300_uncompress_block(struct ath_hw *ah,
3145 u8 *mptr,
3146 int mdataSize,
3147 u8 *block,
3148 int size)
3149 {
3150 int it;
3151 int spot;
3152 int offset;
3153 int length;
3154 struct ath_common *common = ath9k_hw_common(ah);
3155
3156 spot = 0;
3157
3158 for (it = 0; it < size; it += (length+2)) {
3159 offset = block[it];
3160 offset &= 0xff;
3161 spot += offset;
3162 length = block[it+1];
3163 length &= 0xff;
3164
3165 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3166 ath_dbg(common, EEPROM,
3167 "Restore at %d: spot=%d offset=%d length=%d\n",
3168 it, spot, offset, length);
3169 memcpy(&mptr[spot], &block[it+2], length);
3170 spot += length;
3171 } else if (length > 0) {
3172 ath_dbg(common, EEPROM,
3173 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3174 it, spot, offset, length);
3175 return false;
3176 }
3177 }
3178 return true;
3179 }
3180
3181 static int ar9300_compress_decision(struct ath_hw *ah,
3182 int it,
3183 int code,
3184 int reference,
3185 u8 *mptr,
3186 u8 *word, int length, int mdata_size)
3187 {
3188 struct ath_common *common = ath9k_hw_common(ah);
3189 const struct ar9300_eeprom *eep = NULL;
3190
3191 switch (code) {
3192 case _CompressNone:
3193 if (length != mdata_size) {
3194 ath_dbg(common, EEPROM,
3195 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3196 mdata_size, length);
3197 return -1;
3198 }
3199 memcpy(mptr, word + COMP_HDR_LEN, length);
3200 ath_dbg(common, EEPROM,
3201 "restored eeprom %d: uncompressed, length %d\n",
3202 it, length);
3203 break;
3204 case _CompressBlock:
3205 if (reference == 0) {
3206 } else {
3207 eep = ar9003_eeprom_struct_find_by_id(reference);
3208 if (eep == NULL) {
3209 ath_dbg(common, EEPROM,
3210 "can't find reference eeprom struct %d\n",
3211 reference);
3212 return -1;
3213 }
3214 memcpy(mptr, eep, mdata_size);
3215 }
3216 ath_dbg(common, EEPROM,
3217 "restore eeprom %d: block, reference %d, length %d\n",
3218 it, reference, length);
3219 ar9300_uncompress_block(ah, mptr, mdata_size,
3220 (word + COMP_HDR_LEN), length);
3221 break;
3222 default:
3223 ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3224 return -1;
3225 }
3226 return 0;
3227 }
3228
3229 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3230 int count);
3231
3232 static bool ar9300_check_header(void *data)
3233 {
3234 u32 *word = data;
3235 return !(*word == 0 || *word == ~0);
3236 }
3237
3238 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3239 int base_addr)
3240 {
3241 u8 header[4];
3242
3243 if (!read(ah, base_addr, header, 4))
3244 return false;
3245
3246 return ar9300_check_header(header);
3247 }
3248
3249 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3250 int mdata_size)
3251 {
3252 u16 *data = (u16 *) mptr;
3253 int i;
3254
3255 for (i = 0; i < mdata_size / 2; i++, data++)
3256 ath9k_hw_nvram_read(ah, i, data);
3257
3258 return 0;
3259 }
3260 /*
3261 * Read the configuration data from the eeprom.
3262 * The data can be put in any specified memory buffer.
3263 *
3264 * Returns -1 on error.
3265 * Returns address of next memory location on success.
3266 */
3267 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3268 u8 *mptr, int mdata_size)
3269 {
3270 #define MDEFAULT 15
3271 #define MSTATE 100
3272 int cptr;
3273 u8 *word;
3274 int code;
3275 int reference, length, major, minor;
3276 int osize;
3277 int it;
3278 u16 checksum, mchecksum;
3279 struct ath_common *common = ath9k_hw_common(ah);
3280 struct ar9300_eeprom *eep;
3281 eeprom_read_op read;
3282
3283 if (ath9k_hw_use_flash(ah)) {
3284 u8 txrx;
3285
3286 ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3287
3288 /* check if eeprom contains valid data */
3289 eep = (struct ar9300_eeprom *) mptr;
3290 txrx = eep->baseEepHeader.txrxMask;
3291 if (txrx != 0 && txrx != 0xff)
3292 return 0;
3293 }
3294
3295 word = kzalloc(2048, GFP_KERNEL);
3296 if (!word)
3297 return -ENOMEM;
3298
3299 memcpy(mptr, &ar9300_default, mdata_size);
3300
3301 read = ar9300_read_eeprom;
3302 if (AR_SREV_9485(ah))
3303 cptr = AR9300_BASE_ADDR_4K;
3304 else if (AR_SREV_9330(ah))
3305 cptr = AR9300_BASE_ADDR_512;
3306 else
3307 cptr = AR9300_BASE_ADDR;
3308 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309 cptr);
3310 if (ar9300_check_eeprom_header(ah, read, cptr))
3311 goto found;
3312
3313 cptr = AR9300_BASE_ADDR_512;
3314 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315 cptr);
3316 if (ar9300_check_eeprom_header(ah, read, cptr))
3317 goto found;
3318
3319 read = ar9300_read_otp;
3320 cptr = AR9300_BASE_ADDR;
3321 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3322 if (ar9300_check_eeprom_header(ah, read, cptr))
3323 goto found;
3324
3325 cptr = AR9300_BASE_ADDR_512;
3326 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3327 if (ar9300_check_eeprom_header(ah, read, cptr))
3328 goto found;
3329
3330 goto fail;
3331
3332 found:
3333 ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3334
3335 for (it = 0; it < MSTATE; it++) {
3336 if (!read(ah, cptr, word, COMP_HDR_LEN))
3337 goto fail;
3338
3339 if (!ar9300_check_header(word))
3340 break;
3341
3342 ar9300_comp_hdr_unpack(word, &code, &reference,
3343 &length, &major, &minor);
3344 ath_dbg(common, EEPROM,
3345 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3346 cptr, code, reference, length, major, minor);
3347 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3348 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3349 ath_dbg(common, EEPROM, "Skipping bad header\n");
3350 cptr -= COMP_HDR_LEN;
3351 continue;
3352 }
3353
3354 osize = length;
3355 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3356 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3357 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3358 ath_dbg(common, EEPROM, "checksum %x %x\n",
3359 checksum, mchecksum);
3360 if (checksum == mchecksum) {
3361 ar9300_compress_decision(ah, it, code, reference, mptr,
3362 word, length, mdata_size);
3363 } else {
3364 ath_dbg(common, EEPROM,
3365 "skipping block with bad checksum\n");
3366 }
3367 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3368 }
3369
3370 kfree(word);
3371 return cptr;
3372
3373 fail:
3374 kfree(word);
3375 return -1;
3376 }
3377
3378 /*
3379 * Restore the configuration structure by reading the eeprom.
3380 * This function destroys any existing in-memory structure
3381 * content.
3382 */
3383 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3384 {
3385 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3386
3387 if (ar9300_eeprom_restore_internal(ah, mptr,
3388 sizeof(struct ar9300_eeprom)) < 0)
3389 return false;
3390
3391 return true;
3392 }
3393
3394 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3395 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3396 struct ar9300_modal_eep_header *modal_hdr)
3397 {
3398 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3399 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3400 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3401 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3402 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3403 PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3404 PR_EEP("Switch Settle", modal_hdr->switchSettling);
3405 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3406 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3407 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3408 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3409 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3410 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3411 PR_EEP("Temp Slope", modal_hdr->tempSlope);
3412 PR_EEP("Volt Slope", modal_hdr->voltSlope);
3413 PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3414 PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3415 PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3416 PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3417 PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3418 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3419 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3420 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3421 PR_EEP("Quick Drop", modal_hdr->quick_drop);
3422 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3423 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3424 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3425 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3426 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3427 PR_EEP("txClip", modal_hdr->txClip);
3428 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3429
3430 return len;
3431 }
3432
3433 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3434 u8 *buf, u32 len, u32 size)
3435 {
3436 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3437 struct ar9300_base_eep_hdr *pBase;
3438
3439 if (!dump_base_hdr) {
3440 len += scnprintf(buf + len, size - len,
3441 "%20s :\n", "2GHz modal Header");
3442 len = ar9003_dump_modal_eeprom(buf, len, size,
3443 &eep->modalHeader2G);
3444 len += scnprintf(buf + len, size - len,
3445 "%20s :\n", "5GHz modal Header");
3446 len = ar9003_dump_modal_eeprom(buf, len, size,
3447 &eep->modalHeader5G);
3448 goto out;
3449 }
3450
3451 pBase = &eep->baseEepHeader;
3452
3453 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3454 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3455 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3456 PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3457 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3458 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3459 AR5416_OPFLAGS_11A));
3460 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3461 AR5416_OPFLAGS_11G));
3462 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3463 AR5416_OPFLAGS_N_2G_HT20));
3464 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3465 AR5416_OPFLAGS_N_2G_HT40));
3466 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3467 AR5416_OPFLAGS_N_5G_HT20));
3468 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3469 AR5416_OPFLAGS_N_5G_HT40));
3470 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3471 PR_EEP("RF Silent", pBase->rfSilent);
3472 PR_EEP("BT option", pBase->blueToothOptions);
3473 PR_EEP("Device Cap", pBase->deviceCap);
3474 PR_EEP("Device Type", pBase->deviceType);
3475 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3476 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3477 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3478 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3479 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3480 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3481 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3482 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3483 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3484 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3485 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3486 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3487 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3488 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3489 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3490 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3491 PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3492 PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3493 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3494
3495 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3496 ah->eeprom.ar9300_eep.macAddr);
3497 out:
3498 if (len > size)
3499 len = size;
3500
3501 return len;
3502 }
3503 #else
3504 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3505 u8 *buf, u32 len, u32 size)
3506 {
3507 return 0;
3508 }
3509 #endif
3510
3511 /* XXX: review hardware docs */
3512 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3513 {
3514 return ah->eeprom.ar9300_eep.eepromVersion;
3515 }
3516
3517 /* XXX: could be read from the eepromVersion, not sure yet */
3518 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3519 {
3520 return 0;
3521 }
3522
3523 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3524 bool is2ghz)
3525 {
3526 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3527
3528 if (is2ghz)
3529 return &eep->modalHeader2G;
3530 else
3531 return &eep->modalHeader5G;
3532 }
3533
3534 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3535 {
3536 int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3537
3538 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
3539 AR_SREV_9531(ah))
3540 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3541 else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3542 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3543 else {
3544 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3545 REG_RMW_FIELD(ah, AR_CH0_THERM,
3546 AR_CH0_THERM_XPABIASLVL_MSB,
3547 bias >> 2);
3548 REG_RMW_FIELD(ah, AR_CH0_THERM,
3549 AR_CH0_THERM_XPASHORT2GND, 1);
3550 }
3551 }
3552
3553 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3554 {
3555 return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3556 }
3557
3558 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3559 {
3560 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3561 }
3562
3563 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3564 {
3565 return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3566 }
3567
3568 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3569 bool is2ghz)
3570 {
3571 __le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3572 return le16_to_cpu(val);
3573 }
3574
3575 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3576 {
3577 struct ath_common *common = ath9k_hw_common(ah);
3578 struct ath9k_hw_capabilities *pCap = &ah->caps;
3579 int chain;
3580 u32 regval, value, gpio;
3581 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3582 AR_PHY_SWITCH_CHAIN_0,
3583 AR_PHY_SWITCH_CHAIN_1,
3584 AR_PHY_SWITCH_CHAIN_2,
3585 };
3586
3587 if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3588 if (ah->config.xlna_gpio)
3589 gpio = ah->config.xlna_gpio;
3590 else
3591 gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3592
3593 ath9k_hw_cfg_output(ah, gpio,
3594 AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3595 }
3596
3597 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3598
3599 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3600 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3601 AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3602 } else if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
3603 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3604 AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3605 } else
3606 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3607 AR_SWITCH_TABLE_COM_ALL, value);
3608
3609
3610 /*
3611 * AR9462 defines new switch table for BT/WLAN,
3612 * here's new field name in XXX.ref for both 2G and 5G.
3613 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3614 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3615 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3616 *
3617 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3618 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3619 *
3620 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3621 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3622 */
3623 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3624 value = ar9003_switch_com_spdt_get(ah, is2ghz);
3625 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3626 AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3627 REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3628 }
3629
3630 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3631 if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3632 value &= ~AR_SWITCH_TABLE_COM2_ALL;
3633 value |= ah->config.ant_ctrl_comm2g_switch_enable;
3634
3635 }
3636 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3637
3638 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3639 value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3640 REG_RMW_FIELD(ah, switch_chain_reg[0],
3641 AR_SWITCH_TABLE_ALL, value);
3642 }
3643
3644 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3645 if ((ah->rxchainmask & BIT(chain)) ||
3646 (ah->txchainmask & BIT(chain))) {
3647 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3648 is2ghz);
3649 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3650 AR_SWITCH_TABLE_ALL, value);
3651 }
3652 }
3653
3654 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3655 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3656 /*
3657 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3658 * are the fields present
3659 */
3660 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3661 regval &= (~AR_ANT_DIV_CTRL_ALL);
3662 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3663 /* enable_lnadiv */
3664 regval &= (~AR_PHY_ANT_DIV_LNADIV);
3665 regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3666
3667 if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3668 regval |= AR_ANT_DIV_ENABLE;
3669
3670 if (AR_SREV_9565(ah)) {
3671 if (common->bt_ant_diversity) {
3672 regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3673
3674 REG_SET_BIT(ah, AR_PHY_RESTART,
3675 AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3676
3677 /* Force WLAN LNA diversity ON */
3678 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3679 AR_BTCOEX_WL_LNADIV_FORCE_ON);
3680 } else {
3681 regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3682 regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3683
3684 REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3685 (1 << AR_PHY_ANT_SW_RX_PROT_S));
3686
3687 /* Force WLAN LNA diversity OFF */
3688 REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3689 AR_BTCOEX_WL_LNADIV_FORCE_ON);
3690 }
3691 }
3692
3693 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3694
3695 /* enable fast_div */
3696 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3697 regval &= (~AR_FAST_DIV_ENABLE);
3698 regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3699
3700 if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3701 && common->bt_ant_diversity)
3702 regval |= AR_FAST_DIV_ENABLE;
3703
3704 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3705
3706 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3707 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3708 /*
3709 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3710 * main_tb, alt_tb
3711 */
3712 regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3713 AR_PHY_ANT_DIV_ALT_LNACONF |
3714 AR_PHY_ANT_DIV_ALT_GAINTB |
3715 AR_PHY_ANT_DIV_MAIN_GAINTB));
3716 /* by default use LNA1 for the main antenna */
3717 regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3718 AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3719 regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3720 AR_PHY_ANT_DIV_ALT_LNACONF_S);
3721 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3722 }
3723 }
3724 }
3725
3726 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3727 {
3728 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3729 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3730 int drive_strength;
3731 unsigned long reg;
3732
3733 drive_strength = pBase->miscConfiguration & BIT(0);
3734 if (!drive_strength)
3735 return;
3736
3737 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3738 reg &= ~0x00ffffc0;
3739 reg |= 0x5 << 21;
3740 reg |= 0x5 << 18;
3741 reg |= 0x5 << 15;
3742 reg |= 0x5 << 12;
3743 reg |= 0x5 << 9;
3744 reg |= 0x5 << 6;
3745 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3746
3747 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3748 reg &= ~0xffffffe0;
3749 reg |= 0x5 << 29;
3750 reg |= 0x5 << 26;
3751 reg |= 0x5 << 23;
3752 reg |= 0x5 << 20;
3753 reg |= 0x5 << 17;
3754 reg |= 0x5 << 14;
3755 reg |= 0x5 << 11;
3756 reg |= 0x5 << 8;
3757 reg |= 0x5 << 5;
3758 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3759
3760 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3761 reg &= ~0xff800000;
3762 reg |= 0x5 << 29;
3763 reg |= 0x5 << 26;
3764 reg |= 0x5 << 23;
3765 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3766 }
3767
3768 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3769 struct ath9k_channel *chan)
3770 {
3771 int f[3], t[3];
3772 u16 value;
3773 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3774
3775 if (chain >= 0 && chain < 3) {
3776 if (IS_CHAN_2GHZ(chan))
3777 return eep->modalHeader2G.xatten1DB[chain];
3778 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3779 t[0] = eep->base_ext2.xatten1DBLow[chain];
3780 f[0] = 5180;
3781 t[1] = eep->modalHeader5G.xatten1DB[chain];
3782 f[1] = 5500;
3783 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3784 f[2] = 5785;
3785 value = ar9003_hw_power_interpolate((s32) chan->channel,
3786 f, t, 3);
3787 return value;
3788 } else
3789 return eep->modalHeader5G.xatten1DB[chain];
3790 }
3791
3792 return 0;
3793 }
3794
3795
3796 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3797 struct ath9k_channel *chan)
3798 {
3799 int f[3], t[3];
3800 u16 value;
3801 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3802
3803 if (chain >= 0 && chain < 3) {
3804 if (IS_CHAN_2GHZ(chan))
3805 return eep->modalHeader2G.xatten1Margin[chain];
3806 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3807 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3808 f[0] = 5180;
3809 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3810 f[1] = 5500;
3811 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3812 f[2] = 5785;
3813 value = ar9003_hw_power_interpolate((s32) chan->channel,
3814 f, t, 3);
3815 return value;
3816 } else
3817 return eep->modalHeader5G.xatten1Margin[chain];
3818 }
3819
3820 return 0;
3821 }
3822
3823 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3824 {
3825 int i;
3826 u16 value;
3827 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3828 AR_PHY_EXT_ATTEN_CTL_1,
3829 AR_PHY_EXT_ATTEN_CTL_2,
3830 };
3831
3832 if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3833 value = ar9003_hw_atten_chain_get(ah, 1, chan);
3834 REG_RMW_FIELD(ah, ext_atten_reg[0],
3835 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3836
3837 value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3838 REG_RMW_FIELD(ah, ext_atten_reg[0],
3839 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3840 value);
3841 }
3842
3843 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3844 for (i = 0; i < 3; i++) {
3845 if (ah->txchainmask & BIT(i)) {
3846 value = ar9003_hw_atten_chain_get(ah, i, chan);
3847 REG_RMW_FIELD(ah, ext_atten_reg[i],
3848 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3849
3850 if (AR_SREV_9485(ah) &&
3851 (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3852 ah->config.xatten_margin_cfg)
3853 value = 5;
3854 else
3855 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3856
3857 if (ah->config.alt_mingainidx)
3858 REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3859 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3860 value);
3861
3862 REG_RMW_FIELD(ah, ext_atten_reg[i],
3863 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3864 value);
3865 }
3866 }
3867 }
3868
3869 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3870 {
3871 int timeout = 100;
3872
3873 while (pmu_set != REG_READ(ah, pmu_reg)) {
3874 if (timeout-- == 0)
3875 return false;
3876 REG_WRITE(ah, pmu_reg, pmu_set);
3877 udelay(10);
3878 }
3879
3880 return true;
3881 }
3882
3883 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3884 {
3885 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3886 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3887 u32 reg_val;
3888
3889 if (pBase->featureEnable & BIT(4)) {
3890 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3891 int reg_pmu_set;
3892
3893 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3894 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3895 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3896 return;
3897
3898 if (AR_SREV_9330(ah)) {
3899 if (ah->is_clk_25mhz) {
3900 reg_pmu_set = (3 << 1) | (8 << 4) |
3901 (3 << 8) | (1 << 14) |
3902 (6 << 17) | (1 << 20) |
3903 (3 << 24);
3904 } else {
3905 reg_pmu_set = (4 << 1) | (7 << 4) |
3906 (3 << 8) | (1 << 14) |
3907 (6 << 17) | (1 << 20) |
3908 (3 << 24);
3909 }
3910 } else {
3911 reg_pmu_set = (5 << 1) | (7 << 4) |
3912 (2 << 8) | (2 << 14) |
3913 (6 << 17) | (1 << 20) |
3914 (3 << 24) | (1 << 28);
3915 }
3916
3917 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3918 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3919 return;
3920
3921 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3922 | (4 << 26);
3923 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3924 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3925 return;
3926
3927 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3928 | (1 << 21);
3929 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3930 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3931 return;
3932 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3933 reg_val = le32_to_cpu(pBase->swreg);
3934 REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3935 } else {
3936 /* Internal regulator is ON. Write swreg register. */
3937 reg_val = le32_to_cpu(pBase->swreg);
3938 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3939 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3940 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3941 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3942 /* Set REG_CONTROL1.SWREG_PROGRAM */
3943 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3944 REG_READ(ah,
3945 AR_RTC_REG_CONTROL1) |
3946 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3947 }
3948 } else {
3949 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3950 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3951 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3952 AR_PHY_PMU2_PGM))
3953 udelay(10);
3954
3955 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3956 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3957 AR_PHY_PMU1_PWD))
3958 udelay(10);
3959 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3960 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3961 AR_PHY_PMU2_PGM))
3962 udelay(10);
3963 } else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3964 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3965 else {
3966 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3967 AR_RTC_FORCE_SWREG_PRD;
3968 REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3969 }
3970 }
3971
3972 }
3973
3974 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3975 {
3976 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3977 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3978
3979 if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
3980 return;
3981
3982 if (eep->baseEepHeader.featureEnable & 0x40) {
3983 tuning_caps_param &= 0x7f;
3984 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3985 tuning_caps_param);
3986 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3987 tuning_caps_param);
3988 }
3989 }
3990
3991 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3992 {
3993 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3994 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3995 int quick_drop;
3996 s32 t[3], f[3] = {5180, 5500, 5785};
3997
3998 if (!(pBase->miscConfiguration & BIT(4)))
3999 return;
4000
4001 if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4002 if (freq < 4000) {
4003 quick_drop = eep->modalHeader2G.quick_drop;
4004 } else {
4005 t[0] = eep->base_ext1.quick_drop_low;
4006 t[1] = eep->modalHeader5G.quick_drop;
4007 t[2] = eep->base_ext1.quick_drop_high;
4008 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4009 }
4010 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4011 }
4012 }
4013
4014 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4015 {
4016 u32 value;
4017
4018 value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4019
4020 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4021 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4022 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4023 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4024 }
4025
4026 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4027 {
4028 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4029 u8 xpa_ctl;
4030
4031 if (!(eep->baseEepHeader.featureEnable & 0x80))
4032 return;
4033
4034 if (!AR_SREV_9300(ah) &&
4035 !AR_SREV_9340(ah) &&
4036 !AR_SREV_9580(ah) &&
4037 !AR_SREV_9531(ah))
4038 return;
4039
4040 xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4041 if (is2ghz)
4042 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4043 AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4044 else
4045 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4046 AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4047 }
4048
4049 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4050 {
4051 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4052 u8 bias;
4053
4054 if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4055 return;
4056
4057 if (!AR_SREV_9300(ah))
4058 return;
4059
4060 bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4061 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4062 bias & 0x3);
4063 bias >>= 2;
4064 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4065 bias & 0x3);
4066 bias >>= 2;
4067 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4068 bias & 0x3);
4069 }
4070
4071 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4072 {
4073 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4074 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4075 int thermometer = (pBase->miscConfiguration >> 1) & 0x3;
4076
4077 return --thermometer;
4078 }
4079
4080 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4081 {
4082 struct ath9k_hw_capabilities *pCap = &ah->caps;
4083 int thermometer = ar9003_hw_get_thermometer(ah);
4084 u8 therm_on = (thermometer < 0) ? 0 : 1;
4085
4086 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4087 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4088 if (pCap->chip_chainmask & BIT(1))
4089 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4090 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4091 if (pCap->chip_chainmask & BIT(2))
4092 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4093 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4094
4095 therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4096 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4097 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4098 if (pCap->chip_chainmask & BIT(1)) {
4099 therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4100 REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4101 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4102 }
4103 if (pCap->chip_chainmask & BIT(2)) {
4104 therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4105 REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4106 AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4107 }
4108 }
4109
4110 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4111 {
4112 u32 data, ko, kg;
4113
4114 if (!AR_SREV_9462_20_OR_LATER(ah))
4115 return;
4116
4117 ar9300_otp_read_word(ah, 1, &data);
4118 ko = data & 0xff;
4119 kg = (data >> 8) & 0xff;
4120 if (ko || kg) {
4121 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4122 AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4123 REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4124 AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4125 kg + 256);
4126 }
4127 }
4128
4129 static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4130 bool is2ghz)
4131 {
4132 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4133 const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4134 AR_PHY_CCA_CTRL_0,
4135 AR_PHY_CCA_CTRL_1,
4136 AR_PHY_CCA_CTRL_2,
4137 };
4138 int chain;
4139 u32 val;
4140
4141 if (is2ghz) {
4142 if (!(eep->base_ext1.misc_enable & BIT(2)))
4143 return;
4144 } else {
4145 if (!(eep->base_ext1.misc_enable & BIT(3)))
4146 return;
4147 }
4148
4149 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4150 if (!(ah->caps.tx_chainmask & BIT(chain)))
4151 continue;
4152
4153 val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4154 REG_RMW_FIELD(ah, cca_ctrl[chain],
4155 AR_PHY_EXT_CCA0_THRESH62_1, val);
4156 }
4157
4158 }
4159
4160 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4161 struct ath9k_channel *chan)
4162 {
4163 bool is2ghz = IS_CHAN_2GHZ(chan);
4164 ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4165 ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4166 ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4167 ar9003_hw_drive_strength_apply(ah);
4168 ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4169 ar9003_hw_atten_apply(ah, chan);
4170 ar9003_hw_quick_drop_apply(ah, chan->channel);
4171 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4172 ar9003_hw_internal_regulator_apply(ah);
4173 ar9003_hw_apply_tuning_caps(ah);
4174 ar9003_hw_apply_minccapwr_thresh(ah, chan);
4175 ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4176 ar9003_hw_thermometer_apply(ah);
4177 ar9003_hw_thermo_cal_apply(ah);
4178 }
4179
4180 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4181 struct ath9k_channel *chan)
4182 {
4183 }
4184
4185 /*
4186 * Returns the interpolated y value corresponding to the specified x value
4187 * from the np ordered pairs of data (px,py).
4188 * The pairs do not have to be in any order.
4189 * If the specified x value is less than any of the px,
4190 * the returned y value is equal to the py for the lowest px.
4191 * If the specified x value is greater than any of the px,
4192 * the returned y value is equal to the py for the highest px.
4193 */
4194 static int ar9003_hw_power_interpolate(int32_t x,
4195 int32_t *px, int32_t *py, u_int16_t np)
4196 {
4197 int ip = 0;
4198 int lx = 0, ly = 0, lhave = 0;
4199 int hx = 0, hy = 0, hhave = 0;
4200 int dx = 0;
4201 int y = 0;
4202
4203 lhave = 0;
4204 hhave = 0;
4205
4206 /* identify best lower and higher x calibration measurement */
4207 for (ip = 0; ip < np; ip++) {
4208 dx = x - px[ip];
4209
4210 /* this measurement is higher than our desired x */
4211 if (dx <= 0) {
4212 if (!hhave || dx > (x - hx)) {
4213 /* new best higher x measurement */
4214 hx = px[ip];
4215 hy = py[ip];
4216 hhave = 1;
4217 }
4218 }
4219 /* this measurement is lower than our desired x */
4220 if (dx >= 0) {
4221 if (!lhave || dx < (x - lx)) {
4222 /* new best lower x measurement */
4223 lx = px[ip];
4224 ly = py[ip];
4225 lhave = 1;
4226 }
4227 }
4228 }
4229
4230 /* the low x is good */
4231 if (lhave) {
4232 /* so is the high x */
4233 if (hhave) {
4234 /* they're the same, so just pick one */
4235 if (hx == lx)
4236 y = ly;
4237 else /* interpolate */
4238 y = interpolate(x, lx, hx, ly, hy);
4239 } else /* only low is good, use it */
4240 y = ly;
4241 } else if (hhave) /* only high is good, use it */
4242 y = hy;
4243 else /* nothing is good,this should never happen unless np=0, ???? */
4244 y = -(1 << 30);
4245 return y;
4246 }
4247
4248 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4249 u16 rateIndex, u16 freq, bool is2GHz)
4250 {
4251 u16 numPiers, i;
4252 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4253 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4254 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4255 struct cal_tgt_pow_legacy *pEepromTargetPwr;
4256 u8 *pFreqBin;
4257
4258 if (is2GHz) {
4259 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4260 pEepromTargetPwr = eep->calTargetPower2G;
4261 pFreqBin = eep->calTarget_freqbin_2G;
4262 } else {
4263 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4264 pEepromTargetPwr = eep->calTargetPower5G;
4265 pFreqBin = eep->calTarget_freqbin_5G;
4266 }
4267
4268 /*
4269 * create array of channels and targetpower from
4270 * targetpower piers stored on eeprom
4271 */
4272 for (i = 0; i < numPiers; i++) {
4273 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4274 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4275 }
4276
4277 /* interpolate to get target power for given frequency */
4278 return (u8) ar9003_hw_power_interpolate((s32) freq,
4279 freqArray,
4280 targetPowerArray, numPiers);
4281 }
4282
4283 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4284 u16 rateIndex,
4285 u16 freq, bool is2GHz)
4286 {
4287 u16 numPiers, i;
4288 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4289 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4290 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4291 struct cal_tgt_pow_ht *pEepromTargetPwr;
4292 u8 *pFreqBin;
4293
4294 if (is2GHz) {
4295 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4296 pEepromTargetPwr = eep->calTargetPower2GHT20;
4297 pFreqBin = eep->calTarget_freqbin_2GHT20;
4298 } else {
4299 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4300 pEepromTargetPwr = eep->calTargetPower5GHT20;
4301 pFreqBin = eep->calTarget_freqbin_5GHT20;
4302 }
4303
4304 /*
4305 * create array of channels and targetpower
4306 * from targetpower piers stored on eeprom
4307 */
4308 for (i = 0; i < numPiers; i++) {
4309 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4310 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4311 }
4312
4313 /* interpolate to get target power for given frequency */
4314 return (u8) ar9003_hw_power_interpolate((s32) freq,
4315 freqArray,
4316 targetPowerArray, numPiers);
4317 }
4318
4319 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4320 u16 rateIndex,
4321 u16 freq, bool is2GHz)
4322 {
4323 u16 numPiers, i;
4324 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4325 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4326 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4327 struct cal_tgt_pow_ht *pEepromTargetPwr;
4328 u8 *pFreqBin;
4329
4330 if (is2GHz) {
4331 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4332 pEepromTargetPwr = eep->calTargetPower2GHT40;
4333 pFreqBin = eep->calTarget_freqbin_2GHT40;
4334 } else {
4335 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4336 pEepromTargetPwr = eep->calTargetPower5GHT40;
4337 pFreqBin = eep->calTarget_freqbin_5GHT40;
4338 }
4339
4340 /*
4341 * create array of channels and targetpower from
4342 * targetpower piers stored on eeprom
4343 */
4344 for (i = 0; i < numPiers; i++) {
4345 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4346 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4347 }
4348
4349 /* interpolate to get target power for given frequency */
4350 return (u8) ar9003_hw_power_interpolate((s32) freq,
4351 freqArray,
4352 targetPowerArray, numPiers);
4353 }
4354
4355 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4356 u16 rateIndex, u16 freq)
4357 {
4358 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4359 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4360 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4361 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4362 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4363 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4364
4365 /*
4366 * create array of channels and targetpower from
4367 * targetpower piers stored on eeprom
4368 */
4369 for (i = 0; i < numPiers; i++) {
4370 freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4371 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4372 }
4373
4374 /* interpolate to get target power for given frequency */
4375 return (u8) ar9003_hw_power_interpolate((s32) freq,
4376 freqArray,
4377 targetPowerArray, numPiers);
4378 }
4379
4380 static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
4381 struct ath9k_channel *chan,
4382 u8 *pwr_array)
4383 {
4384 u32 val;
4385
4386 /* target power values for self generated frames (ACK,RTS/CTS) */
4387 if (IS_CHAN_2GHZ(chan)) {
4388 val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
4389 SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
4390 SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4391 } else {
4392 val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
4393 SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
4394 SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4395 }
4396 REG_WRITE(ah, AR_TPC, val);
4397 }
4398
4399 /* Set tx power registers to array of values passed in */
4400 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4401 {
4402 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4403 /* make sure forced gain is not set */
4404 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4405
4406 /* Write the OFDM power per rate set */
4407
4408 /* 6 (LSB), 9, 12, 18 (MSB) */
4409 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4410 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4411 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4412 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4413 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4414
4415 /* 24 (LSB), 36, 48, 54 (MSB) */
4416 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4417 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4418 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4419 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4420 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4421
4422 /* Write the CCK power per rate set */
4423
4424 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4425 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4426 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4427 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4428 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4429 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4430
4431 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4432 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4433 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4434 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4435 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4436 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4437 );
4438
4439 /* Write the power for duplicated frames - HT40 */
4440
4441 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4442 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4443 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4444 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4445 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4446 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4447 );
4448
4449 /* Write the HT20 power per rate set */
4450
4451 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4452 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4453 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4454 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4455 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4456 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4457 );
4458
4459 /* 6 (LSB), 7, 12, 13 (MSB) */
4460 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4461 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4462 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4463 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4464 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4465 );
4466
4467 /* 14 (LSB), 15, 20, 21 */
4468 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4469 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4470 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4471 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4472 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4473 );
4474
4475 /* Mixed HT20 and HT40 rates */
4476
4477 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4478 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4479 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4480 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4481 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4482 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4483 );
4484
4485 /*
4486 * Write the HT40 power per rate set
4487 * correct PAR difference between HT40 and HT20/LEGACY
4488 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4489 */
4490 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4491 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4492 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4493 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4494 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4495 );
4496
4497 /* 6 (LSB), 7, 12, 13 (MSB) */
4498 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4499 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4500 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4501 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4502 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4503 );
4504
4505 /* 14 (LSB), 15, 20, 21 */
4506 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4507 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4508 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4509 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4510 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4511 );
4512
4513 return 0;
4514 #undef POW_SM
4515 }
4516
4517 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4518 u8 *targetPowerValT2,
4519 bool is2GHz)
4520 {
4521 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4522 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4523 is2GHz);
4524 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4525 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4526 is2GHz);
4527 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4528 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4529 is2GHz);
4530 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4531 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4532 is2GHz);
4533 }
4534
4535 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4536 u8 *targetPowerValT2)
4537 {
4538 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4539 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4540 freq);
4541 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4542 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4543 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4544 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4545 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4546 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4547 }
4548
4549 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4550 u8 *targetPowerValT2, bool is2GHz)
4551 {
4552 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4553 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4554 is2GHz);
4555 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4556 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4557 freq, is2GHz);
4558 targetPowerValT2[ALL_TARGET_HT20_4] =
4559 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4560 is2GHz);
4561 targetPowerValT2[ALL_TARGET_HT20_5] =
4562 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4563 is2GHz);
4564 targetPowerValT2[ALL_TARGET_HT20_6] =
4565 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4566 is2GHz);
4567 targetPowerValT2[ALL_TARGET_HT20_7] =
4568 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4569 is2GHz);
4570 targetPowerValT2[ALL_TARGET_HT20_12] =
4571 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4572 is2GHz);
4573 targetPowerValT2[ALL_TARGET_HT20_13] =
4574 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4575 is2GHz);
4576 targetPowerValT2[ALL_TARGET_HT20_14] =
4577 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4578 is2GHz);
4579 targetPowerValT2[ALL_TARGET_HT20_15] =
4580 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4581 is2GHz);
4582 targetPowerValT2[ALL_TARGET_HT20_20] =
4583 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4584 is2GHz);
4585 targetPowerValT2[ALL_TARGET_HT20_21] =
4586 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4587 is2GHz);
4588 targetPowerValT2[ALL_TARGET_HT20_22] =
4589 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4590 is2GHz);
4591 targetPowerValT2[ALL_TARGET_HT20_23] =
4592 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4593 is2GHz);
4594 }
4595
4596 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4597 u16 freq,
4598 u8 *targetPowerValT2,
4599 bool is2GHz)
4600 {
4601 /* XXX: hard code for now, need to get from eeprom struct */
4602 u8 ht40PowerIncForPdadc = 0;
4603
4604 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4605 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4606 is2GHz) + ht40PowerIncForPdadc;
4607 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4608 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4609 freq,
4610 is2GHz) + ht40PowerIncForPdadc;
4611 targetPowerValT2[ALL_TARGET_HT40_4] =
4612 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4613 is2GHz) + ht40PowerIncForPdadc;
4614 targetPowerValT2[ALL_TARGET_HT40_5] =
4615 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4616 is2GHz) + ht40PowerIncForPdadc;
4617 targetPowerValT2[ALL_TARGET_HT40_6] =
4618 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4619 is2GHz) + ht40PowerIncForPdadc;
4620 targetPowerValT2[ALL_TARGET_HT40_7] =
4621 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4622 is2GHz) + ht40PowerIncForPdadc;
4623 targetPowerValT2[ALL_TARGET_HT40_12] =
4624 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4625 is2GHz) + ht40PowerIncForPdadc;
4626 targetPowerValT2[ALL_TARGET_HT40_13] =
4627 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4628 is2GHz) + ht40PowerIncForPdadc;
4629 targetPowerValT2[ALL_TARGET_HT40_14] =
4630 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4631 is2GHz) + ht40PowerIncForPdadc;
4632 targetPowerValT2[ALL_TARGET_HT40_15] =
4633 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4634 is2GHz) + ht40PowerIncForPdadc;
4635 targetPowerValT2[ALL_TARGET_HT40_20] =
4636 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4637 is2GHz) + ht40PowerIncForPdadc;
4638 targetPowerValT2[ALL_TARGET_HT40_21] =
4639 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4640 is2GHz) + ht40PowerIncForPdadc;
4641 targetPowerValT2[ALL_TARGET_HT40_22] =
4642 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4643 is2GHz) + ht40PowerIncForPdadc;
4644 targetPowerValT2[ALL_TARGET_HT40_23] =
4645 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4646 is2GHz) + ht40PowerIncForPdadc;
4647 }
4648
4649 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4650 struct ath9k_channel *chan,
4651 u8 *targetPowerValT2)
4652 {
4653 bool is2GHz = IS_CHAN_2GHZ(chan);
4654 unsigned int i = 0;
4655 struct ath_common *common = ath9k_hw_common(ah);
4656 u16 freq = chan->channel;
4657
4658 if (is2GHz)
4659 ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4660
4661 ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4662 ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4663
4664 if (IS_CHAN_HT40(chan))
4665 ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4666 is2GHz);
4667
4668 for (i = 0; i < ar9300RateSize; i++) {
4669 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4670 i, targetPowerValT2[i]);
4671 }
4672 }
4673
4674 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4675 int mode,
4676 int ipier,
4677 int ichain,
4678 int *pfrequency,
4679 int *pcorrection,
4680 int *ptemperature, int *pvoltage)
4681 {
4682 u8 *pCalPier;
4683 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4684 int is2GHz;
4685 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4686 struct ath_common *common = ath9k_hw_common(ah);
4687
4688 if (ichain >= AR9300_MAX_CHAINS) {
4689 ath_dbg(common, EEPROM,
4690 "Invalid chain index, must be less than %d\n",
4691 AR9300_MAX_CHAINS);
4692 return -1;
4693 }
4694
4695 if (mode) { /* 5GHz */
4696 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4697 ath_dbg(common, EEPROM,
4698 "Invalid 5GHz cal pier index, must be less than %d\n",
4699 AR9300_NUM_5G_CAL_PIERS);
4700 return -1;
4701 }
4702 pCalPier = &(eep->calFreqPier5G[ipier]);
4703 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4704 is2GHz = 0;
4705 } else {
4706 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4707 ath_dbg(common, EEPROM,
4708 "Invalid 2GHz cal pier index, must be less than %d\n",
4709 AR9300_NUM_2G_CAL_PIERS);
4710 return -1;
4711 }
4712
4713 pCalPier = &(eep->calFreqPier2G[ipier]);
4714 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4715 is2GHz = 1;
4716 }
4717
4718 *pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4719 *pcorrection = pCalPierStruct->refPower;
4720 *ptemperature = pCalPierStruct->tempMeas;
4721 *pvoltage = pCalPierStruct->voltMeas;
4722
4723 return 0;
4724 }
4725
4726 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4727 int frequency,
4728 int *correction,
4729 int *voltage, int *temperature)
4730 {
4731 int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4732 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4733 int f[8], t[8], t1[3], t2[3], i;
4734
4735 REG_RMW(ah, AR_PHY_TPC_11_B0,
4736 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4737 AR_PHY_TPC_OLPC_GAIN_DELTA);
4738 if (ah->caps.tx_chainmask & BIT(1))
4739 REG_RMW(ah, AR_PHY_TPC_11_B1,
4740 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4741 AR_PHY_TPC_OLPC_GAIN_DELTA);
4742 if (ah->caps.tx_chainmask & BIT(2))
4743 REG_RMW(ah, AR_PHY_TPC_11_B2,
4744 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4745 AR_PHY_TPC_OLPC_GAIN_DELTA);
4746
4747 /* enable open loop power control on chip */
4748 REG_RMW(ah, AR_PHY_TPC_6_B0,
4749 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4750 AR_PHY_TPC_6_ERROR_EST_MODE);
4751 if (ah->caps.tx_chainmask & BIT(1))
4752 REG_RMW(ah, AR_PHY_TPC_6_B1,
4753 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4754 AR_PHY_TPC_6_ERROR_EST_MODE);
4755 if (ah->caps.tx_chainmask & BIT(2))
4756 REG_RMW(ah, AR_PHY_TPC_6_B2,
4757 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4758 AR_PHY_TPC_6_ERROR_EST_MODE);
4759
4760 /*
4761 * enable temperature compensation
4762 * Need to use register names
4763 */
4764 if (frequency < 4000) {
4765 temp_slope = eep->modalHeader2G.tempSlope;
4766 } else {
4767 if (AR_SREV_9550(ah)) {
4768 t[0] = eep->base_ext1.tempslopextension[2];
4769 t1[0] = eep->base_ext1.tempslopextension[3];
4770 t2[0] = eep->base_ext1.tempslopextension[4];
4771 f[0] = 5180;
4772
4773 t[1] = eep->modalHeader5G.tempSlope;
4774 t1[1] = eep->base_ext1.tempslopextension[0];
4775 t2[1] = eep->base_ext1.tempslopextension[1];
4776 f[1] = 5500;
4777
4778 t[2] = eep->base_ext1.tempslopextension[5];
4779 t1[2] = eep->base_ext1.tempslopextension[6];
4780 t2[2] = eep->base_ext1.tempslopextension[7];
4781 f[2] = 5785;
4782
4783 temp_slope = ar9003_hw_power_interpolate(frequency,
4784 f, t, 3);
4785 temp_slope1 = ar9003_hw_power_interpolate(frequency,
4786 f, t1, 3);
4787 temp_slope2 = ar9003_hw_power_interpolate(frequency,
4788 f, t2, 3);
4789
4790 goto tempslope;
4791 }
4792
4793 if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4794 for (i = 0; i < 8; i++) {
4795 t[i] = eep->base_ext1.tempslopextension[i];
4796 f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4797 }
4798 temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4799 f, t, 8);
4800 } else if (eep->base_ext2.tempSlopeLow != 0) {
4801 t[0] = eep->base_ext2.tempSlopeLow;
4802 f[0] = 5180;
4803 t[1] = eep->modalHeader5G.tempSlope;
4804 f[1] = 5500;
4805 t[2] = eep->base_ext2.tempSlopeHigh;
4806 f[2] = 5785;
4807 temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4808 f, t, 3);
4809 } else {
4810 temp_slope = eep->modalHeader5G.tempSlope;
4811 }
4812 }
4813
4814 tempslope:
4815 if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
4816 u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
4817
4818 /*
4819 * AR955x has tempSlope register for each chain.
4820 * Check whether temp_compensation feature is enabled or not.
4821 */
4822 if (eep->baseEepHeader.featureEnable & 0x1) {
4823 if (frequency < 4000) {
4824 if (txmask & BIT(0))
4825 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4826 AR_PHY_TPC_19_ALPHA_THERM,
4827 eep->base_ext2.tempSlopeLow);
4828 if (txmask & BIT(1))
4829 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4830 AR_PHY_TPC_19_ALPHA_THERM,
4831 temp_slope);
4832 if (txmask & BIT(2))
4833 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4834 AR_PHY_TPC_19_ALPHA_THERM,
4835 eep->base_ext2.tempSlopeHigh);
4836 } else {
4837 if (txmask & BIT(0))
4838 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4839 AR_PHY_TPC_19_ALPHA_THERM,
4840 temp_slope);
4841 if (txmask & BIT(1))
4842 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4843 AR_PHY_TPC_19_ALPHA_THERM,
4844 temp_slope1);
4845 if (txmask & BIT(2))
4846 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4847 AR_PHY_TPC_19_ALPHA_THERM,
4848 temp_slope2);
4849 }
4850 } else {
4851 /*
4852 * If temp compensation is not enabled,
4853 * set all registers to 0.
4854 */
4855 if (txmask & BIT(0))
4856 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4857 AR_PHY_TPC_19_ALPHA_THERM, 0);
4858 if (txmask & BIT(1))
4859 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4860 AR_PHY_TPC_19_ALPHA_THERM, 0);
4861 if (txmask & BIT(2))
4862 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4863 AR_PHY_TPC_19_ALPHA_THERM, 0);
4864 }
4865 } else {
4866 REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4867 AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4868 }
4869
4870 if (AR_SREV_9462_20_OR_LATER(ah))
4871 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4872 AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4873
4874
4875 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4876 temperature[0]);
4877 }
4878
4879 /* Apply the recorded correction values. */
4880 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4881 {
4882 int ichain, ipier, npier;
4883 int mode;
4884 int lfrequency[AR9300_MAX_CHAINS],
4885 lcorrection[AR9300_MAX_CHAINS],
4886 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4887 int hfrequency[AR9300_MAX_CHAINS],
4888 hcorrection[AR9300_MAX_CHAINS],
4889 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4890 int fdiff;
4891 int correction[AR9300_MAX_CHAINS],
4892 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4893 int pfrequency, pcorrection, ptemperature, pvoltage;
4894 struct ath_common *common = ath9k_hw_common(ah);
4895
4896 mode = (frequency >= 4000);
4897 if (mode)
4898 npier = AR9300_NUM_5G_CAL_PIERS;
4899 else
4900 npier = AR9300_NUM_2G_CAL_PIERS;
4901
4902 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4903 lfrequency[ichain] = 0;
4904 hfrequency[ichain] = 100000;
4905 }
4906 /* identify best lower and higher frequency calibration measurement */
4907 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4908 for (ipier = 0; ipier < npier; ipier++) {
4909 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4910 &pfrequency, &pcorrection,
4911 &ptemperature, &pvoltage)) {
4912 fdiff = frequency - pfrequency;
4913
4914 /*
4915 * this measurement is higher than
4916 * our desired frequency
4917 */
4918 if (fdiff <= 0) {
4919 if (hfrequency[ichain] <= 0 ||
4920 hfrequency[ichain] >= 100000 ||
4921 fdiff >
4922 (frequency - hfrequency[ichain])) {
4923 /*
4924 * new best higher
4925 * frequency measurement
4926 */
4927 hfrequency[ichain] = pfrequency;
4928 hcorrection[ichain] =
4929 pcorrection;
4930 htemperature[ichain] =
4931 ptemperature;
4932 hvoltage[ichain] = pvoltage;
4933 }
4934 }
4935 if (fdiff >= 0) {
4936 if (lfrequency[ichain] <= 0
4937 || fdiff <
4938 (frequency - lfrequency[ichain])) {
4939 /*
4940 * new best lower
4941 * frequency measurement
4942 */
4943 lfrequency[ichain] = pfrequency;
4944 lcorrection[ichain] =
4945 pcorrection;
4946 ltemperature[ichain] =
4947 ptemperature;
4948 lvoltage[ichain] = pvoltage;
4949 }
4950 }
4951 }
4952 }
4953 }
4954
4955 /* interpolate */
4956 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4957 ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4958 ichain, frequency, lfrequency[ichain],
4959 lcorrection[ichain], hfrequency[ichain],
4960 hcorrection[ichain]);
4961 /* they're the same, so just pick one */
4962 if (hfrequency[ichain] == lfrequency[ichain]) {
4963 correction[ichain] = lcorrection[ichain];
4964 voltage[ichain] = lvoltage[ichain];
4965 temperature[ichain] = ltemperature[ichain];
4966 }
4967 /* the low frequency is good */
4968 else if (frequency - lfrequency[ichain] < 1000) {
4969 /* so is the high frequency, interpolate */
4970 if (hfrequency[ichain] - frequency < 1000) {
4971
4972 correction[ichain] = interpolate(frequency,
4973 lfrequency[ichain],
4974 hfrequency[ichain],
4975 lcorrection[ichain],
4976 hcorrection[ichain]);
4977
4978 temperature[ichain] = interpolate(frequency,
4979 lfrequency[ichain],
4980 hfrequency[ichain],
4981 ltemperature[ichain],
4982 htemperature[ichain]);
4983
4984 voltage[ichain] = interpolate(frequency,
4985 lfrequency[ichain],
4986 hfrequency[ichain],
4987 lvoltage[ichain],
4988 hvoltage[ichain]);
4989 }
4990 /* only low is good, use it */
4991 else {
4992 correction[ichain] = lcorrection[ichain];
4993 temperature[ichain] = ltemperature[ichain];
4994 voltage[ichain] = lvoltage[ichain];
4995 }
4996 }
4997 /* only high is good, use it */
4998 else if (hfrequency[ichain] - frequency < 1000) {
4999 correction[ichain] = hcorrection[ichain];
5000 temperature[ichain] = htemperature[ichain];
5001 voltage[ichain] = hvoltage[ichain];
5002 } else { /* nothing is good, presume 0???? */
5003 correction[ichain] = 0;
5004 temperature[ichain] = 0;
5005 voltage[ichain] = 0;
5006 }
5007 }
5008
5009 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
5010 temperature);
5011
5012 ath_dbg(common, EEPROM,
5013 "for frequency=%d, calibration correction = %d %d %d\n",
5014 frequency, correction[0], correction[1], correction[2]);
5015
5016 return 0;
5017 }
5018
5019 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
5020 int idx,
5021 int edge,
5022 bool is2GHz)
5023 {
5024 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5025 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5026
5027 if (is2GHz)
5028 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
5029 else
5030 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
5031 }
5032
5033 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5034 int idx,
5035 unsigned int edge,
5036 u16 freq,
5037 bool is2GHz)
5038 {
5039 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5040 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5041
5042 u8 *ctl_freqbin = is2GHz ?
5043 &eep->ctl_freqbin_2G[idx][0] :
5044 &eep->ctl_freqbin_5G[idx][0];
5045
5046 if (is2GHz) {
5047 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5048 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5049 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5050 } else {
5051 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5052 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5053 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5054 }
5055
5056 return MAX_RATE_POWER;
5057 }
5058
5059 /*
5060 * Find the maximum conformance test limit for the given channel and CTL info
5061 */
5062 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5063 u16 freq, int idx, bool is2GHz)
5064 {
5065 u16 twiceMaxEdgePower = MAX_RATE_POWER;
5066 u8 *ctl_freqbin = is2GHz ?
5067 &eep->ctl_freqbin_2G[idx][0] :
5068 &eep->ctl_freqbin_5G[idx][0];
5069 u16 num_edges = is2GHz ?
5070 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5071 unsigned int edge;
5072
5073 /* Get the edge power */
5074 for (edge = 0;
5075 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5076 edge++) {
5077 /*
5078 * If there's an exact channel match or an inband flag set
5079 * on the lower channel use the given rdEdgePower
5080 */
5081 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5082 twiceMaxEdgePower =
5083 ar9003_hw_get_direct_edge_power(eep, idx,
5084 edge, is2GHz);
5085 break;
5086 } else if ((edge > 0) &&
5087 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5088 is2GHz))) {
5089 twiceMaxEdgePower =
5090 ar9003_hw_get_indirect_edge_power(eep, idx,
5091 edge, freq,
5092 is2GHz);
5093 /*
5094 * Leave loop - no more affecting edges possible in
5095 * this monotonic increasing list
5096 */
5097 break;
5098 }
5099 }
5100
5101 if (is2GHz && !twiceMaxEdgePower)
5102 twiceMaxEdgePower = 60;
5103
5104 return twiceMaxEdgePower;
5105 }
5106
5107 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5108 struct ath9k_channel *chan,
5109 u8 *pPwrArray, u16 cfgCtl,
5110 u8 antenna_reduction,
5111 u16 powerLimit)
5112 {
5113 struct ath_common *common = ath9k_hw_common(ah);
5114 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5115 u16 twiceMaxEdgePower;
5116 int i;
5117 u16 scaledPower = 0, minCtlPower;
5118 static const u16 ctlModesFor11a[] = {
5119 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5120 };
5121 static const u16 ctlModesFor11g[] = {
5122 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5123 CTL_11G_EXT, CTL_2GHT40
5124 };
5125 u16 numCtlModes;
5126 const u16 *pCtlMode;
5127 u16 ctlMode, freq;
5128 struct chan_centers centers;
5129 u8 *ctlIndex;
5130 u8 ctlNum;
5131 u16 twiceMinEdgePower;
5132 bool is2ghz = IS_CHAN_2GHZ(chan);
5133
5134 ath9k_hw_get_channel_centers(ah, chan, &centers);
5135 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5136 antenna_reduction);
5137
5138 if (is2ghz) {
5139 /* Setup for CTL modes */
5140 /* CTL_11B, CTL_11G, CTL_2GHT20 */
5141 numCtlModes =
5142 ARRAY_SIZE(ctlModesFor11g) -
5143 SUB_NUM_CTL_MODES_AT_2G_40;
5144 pCtlMode = ctlModesFor11g;
5145 if (IS_CHAN_HT40(chan))
5146 /* All 2G CTL's */
5147 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5148 } else {
5149 /* Setup for CTL modes */
5150 /* CTL_11A, CTL_5GHT20 */
5151 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5152 SUB_NUM_CTL_MODES_AT_5G_40;
5153 pCtlMode = ctlModesFor11a;
5154 if (IS_CHAN_HT40(chan))
5155 /* All 5G CTL's */
5156 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5157 }
5158
5159 /*
5160 * For MIMO, need to apply regulatory caps individually across
5161 * dynamically running modes: CCK, OFDM, HT20, HT40
5162 *
5163 * The outer loop walks through each possible applicable runtime mode.
5164 * The inner loop walks through each ctlIndex entry in EEPROM.
5165 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5166 */
5167 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5168 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5169 (pCtlMode[ctlMode] == CTL_2GHT40);
5170 if (isHt40CtlMode)
5171 freq = centers.synth_center;
5172 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5173 freq = centers.ext_center;
5174 else
5175 freq = centers.ctl_center;
5176
5177 ath_dbg(common, REGULATORY,
5178 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5179 ctlMode, numCtlModes, isHt40CtlMode,
5180 (pCtlMode[ctlMode] & EXT_ADDITIVE));
5181
5182 /* walk through each CTL index stored in EEPROM */
5183 if (is2ghz) {
5184 ctlIndex = pEepData->ctlIndex_2G;
5185 ctlNum = AR9300_NUM_CTLS_2G;
5186 } else {
5187 ctlIndex = pEepData->ctlIndex_5G;
5188 ctlNum = AR9300_NUM_CTLS_5G;
5189 }
5190
5191 twiceMaxEdgePower = MAX_RATE_POWER;
5192 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5193 ath_dbg(common, REGULATORY,
5194 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5195 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5196 chan->channel);
5197
5198 /*
5199 * compare test group from regulatory
5200 * channel list with test mode from pCtlMode
5201 * list
5202 */
5203 if ((((cfgCtl & ~CTL_MODE_M) |
5204 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5205 ctlIndex[i]) ||
5206 (((cfgCtl & ~CTL_MODE_M) |
5207 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5208 ((ctlIndex[i] & CTL_MODE_M) |
5209 SD_NO_CTL))) {
5210 twiceMinEdgePower =
5211 ar9003_hw_get_max_edge_power(pEepData,
5212 freq, i,
5213 is2ghz);
5214
5215 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5216 /*
5217 * Find the minimum of all CTL
5218 * edge powers that apply to
5219 * this channel
5220 */
5221 twiceMaxEdgePower =
5222 min(twiceMaxEdgePower,
5223 twiceMinEdgePower);
5224 else {
5225 /* specific */
5226 twiceMaxEdgePower = twiceMinEdgePower;
5227 break;
5228 }
5229 }
5230 }
5231
5232 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5233
5234 ath_dbg(common, REGULATORY,
5235 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5236 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5237 scaledPower, minCtlPower);
5238
5239 /* Apply ctl mode to correct target power set */
5240 switch (pCtlMode[ctlMode]) {
5241 case CTL_11B:
5242 for (i = ALL_TARGET_LEGACY_1L_5L;
5243 i <= ALL_TARGET_LEGACY_11S; i++)
5244 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5245 minCtlPower);
5246 break;
5247 case CTL_11A:
5248 case CTL_11G:
5249 for (i = ALL_TARGET_LEGACY_6_24;
5250 i <= ALL_TARGET_LEGACY_54; i++)
5251 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5252 minCtlPower);
5253 break;
5254 case CTL_5GHT20:
5255 case CTL_2GHT20:
5256 for (i = ALL_TARGET_HT20_0_8_16;
5257 i <= ALL_TARGET_HT20_23; i++) {
5258 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5259 minCtlPower);
5260 if (ath9k_hw_mci_is_enabled(ah))
5261 pPwrArray[i] =
5262 (u8)min((u16)pPwrArray[i],
5263 ar9003_mci_get_max_txpower(ah,
5264 pCtlMode[ctlMode]));
5265 }
5266 break;
5267 case CTL_5GHT40:
5268 case CTL_2GHT40:
5269 for (i = ALL_TARGET_HT40_0_8_16;
5270 i <= ALL_TARGET_HT40_23; i++) {
5271 pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5272 minCtlPower);
5273 if (ath9k_hw_mci_is_enabled(ah))
5274 pPwrArray[i] =
5275 (u8)min((u16)pPwrArray[i],
5276 ar9003_mci_get_max_txpower(ah,
5277 pCtlMode[ctlMode]));
5278 }
5279 break;
5280 default:
5281 break;
5282 }
5283 } /* end ctl mode checking */
5284 }
5285
5286 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5287 {
5288 u8 mod_idx = mcs_idx % 8;
5289
5290 if (mod_idx <= 3)
5291 return mod_idx ? (base_pwridx + 1) : base_pwridx;
5292 else
5293 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5294 }
5295
5296 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5297 struct ath9k_channel *chan,
5298 u8 *targetPowerValT2)
5299 {
5300 int i;
5301
5302 if (!ar9003_is_paprd_enabled(ah))
5303 return;
5304
5305 if (IS_CHAN_HT40(chan))
5306 i = ALL_TARGET_HT40_7;
5307 else
5308 i = ALL_TARGET_HT20_7;
5309
5310 if (IS_CHAN_2GHZ(chan)) {
5311 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5312 !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5313 if (IS_CHAN_HT40(chan))
5314 i = ALL_TARGET_HT40_0_8_16;
5315 else
5316 i = ALL_TARGET_HT20_0_8_16;
5317 }
5318 }
5319
5320 ah->paprd_target_power = targetPowerValT2[i];
5321 }
5322
5323 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5324 struct ath9k_channel *chan, u16 cfgCtl,
5325 u8 twiceAntennaReduction,
5326 u8 powerLimit, bool test)
5327 {
5328 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5329 struct ath_common *common = ath9k_hw_common(ah);
5330 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5331 struct ar9300_modal_eep_header *modal_hdr;
5332 u8 targetPowerValT2[ar9300RateSize];
5333 u8 target_power_val_t2_eep[ar9300RateSize];
5334 u8 targetPowerValT2_tpc[ar9300RateSize];
5335 unsigned int i = 0, paprd_scale_factor = 0;
5336 u8 pwr_idx, min_pwridx = 0;
5337
5338 memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5339
5340 /*
5341 * Get target powers from EEPROM - our baseline for TX Power
5342 */
5343 ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5344
5345 if (ar9003_is_paprd_enabled(ah)) {
5346 if (IS_CHAN_2GHZ(chan))
5347 modal_hdr = &eep->modalHeader2G;
5348 else
5349 modal_hdr = &eep->modalHeader5G;
5350
5351 ah->paprd_ratemask =
5352 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5353 AR9300_PAPRD_RATE_MASK;
5354
5355 ah->paprd_ratemask_ht40 =
5356 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5357 AR9300_PAPRD_RATE_MASK;
5358
5359 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5360 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5361 ALL_TARGET_HT20_0_8_16;
5362
5363 if (!ah->paprd_table_write_done) {
5364 memcpy(target_power_val_t2_eep, targetPowerValT2,
5365 sizeof(targetPowerValT2));
5366 for (i = 0; i < 24; i++) {
5367 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5368 if (ah->paprd_ratemask & (1 << i)) {
5369 if (targetPowerValT2[pwr_idx] &&
5370 targetPowerValT2[pwr_idx] ==
5371 target_power_val_t2_eep[pwr_idx])
5372 targetPowerValT2[pwr_idx] -=
5373 paprd_scale_factor;
5374 }
5375 }
5376 }
5377 memcpy(target_power_val_t2_eep, targetPowerValT2,
5378 sizeof(targetPowerValT2));
5379 }
5380
5381 ar9003_hw_set_power_per_rate_table(ah, chan,
5382 targetPowerValT2, cfgCtl,
5383 twiceAntennaReduction,
5384 powerLimit);
5385
5386 memcpy(targetPowerValT2_tpc, targetPowerValT2,
5387 sizeof(targetPowerValT2));
5388
5389 if (ar9003_is_paprd_enabled(ah)) {
5390 for (i = 0; i < ar9300RateSize; i++) {
5391 if ((ah->paprd_ratemask & (1 << i)) &&
5392 (abs(targetPowerValT2[i] -
5393 target_power_val_t2_eep[i]) >
5394 paprd_scale_factor)) {
5395 ah->paprd_ratemask &= ~(1 << i);
5396 ath_dbg(common, EEPROM,
5397 "paprd disabled for mcs %d\n", i);
5398 }
5399 }
5400 }
5401
5402 regulatory->max_power_level = 0;
5403 for (i = 0; i < ar9300RateSize; i++) {
5404 if (targetPowerValT2[i] > regulatory->max_power_level)
5405 regulatory->max_power_level = targetPowerValT2[i];
5406 }
5407
5408 ath9k_hw_update_regulatory_maxpower(ah);
5409
5410 if (test)
5411 return;
5412
5413 for (i = 0; i < ar9300RateSize; i++) {
5414 ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5415 i, targetPowerValT2[i]);
5416 }
5417
5418 /* Write target power array to registers */
5419 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5420 ar9003_hw_calibration_apply(ah, chan->channel);
5421 ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5422
5423 ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
5424
5425 /* TPC initializations */
5426 if (ah->tpc_enabled) {
5427 u32 val;
5428
5429 ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
5430
5431 /* Enable TPC */
5432 REG_WRITE(ah, AR_PHY_PWRTX_MAX,
5433 AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
5434 /* Disable per chain power reduction */
5435 val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
5436 if (AR_SREV_9340(ah))
5437 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5438 val & 0xFFFFFFC0);
5439 else
5440 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5441 val & 0xFFFFF000);
5442 } else {
5443 /* Disable TPC */
5444 REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
5445 }
5446 }
5447
5448 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5449 u16 i, bool is2GHz)
5450 {
5451 return AR_NO_SPUR;
5452 }
5453
5454 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5455 {
5456 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5457
5458 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5459 }
5460
5461 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5462 {
5463 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5464
5465 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5466 }
5467
5468 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5469 {
5470 return ar9003_modal_header(ah, is2ghz)->spurChans;
5471 }
5472
5473 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5474 struct ath9k_channel *chan)
5475 {
5476 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5477
5478 if (IS_CHAN_2GHZ(chan))
5479 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5480 AR9300_PAPRD_SCALE_1);
5481 else {
5482 if (chan->channel >= 5700)
5483 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5484 AR9300_PAPRD_SCALE_1);
5485 else if (chan->channel >= 5400)
5486 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5487 AR9300_PAPRD_SCALE_2);
5488 else
5489 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5490 AR9300_PAPRD_SCALE_1);
5491 }
5492 }
5493
5494 const struct eeprom_ops eep_ar9300_ops = {
5495 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5496 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5497 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5498 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5499 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5500 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5501 .set_board_values = ath9k_hw_ar9300_set_board_values,
5502 .set_addac = ath9k_hw_ar9300_set_addac,
5503 .set_txpower = ath9k_hw_ar9300_set_txpower,
5504 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5505 };
This page took 0.333527 seconds and 5 git commands to generate.