Merge branch 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / ar9003_eeprom.c
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
34 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
35 #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
36 #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
37 #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
38
39 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
40 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
41
42 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
43
44 #define EEPROM_DATA_LEN_9485 1088
45
46 static int ar9003_hw_power_interpolate(int32_t x,
47 int32_t *px, int32_t *py, u_int16_t np);
48
49
50 static const struct ar9300_eeprom ar9300_default = {
51 .eepromVersion = 2,
52 .templateVersion = 2,
53 .macAddr = {0, 2, 3, 4, 5, 6},
54 .custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
55 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
56 .baseEepHeader = {
57 .regDmn = { LE16(0), LE16(0x1f) },
58 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
59 .opCapFlags = {
60 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
61 .eepMisc = 0,
62 },
63 .rfSilent = 0,
64 .blueToothOptions = 0,
65 .deviceCap = 0,
66 .deviceType = 5, /* takes lower byte in eeprom location */
67 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
68 .params_for_tuning_caps = {0, 0},
69 .featureEnable = 0x0c,
70 /*
71 * bit0 - enable tx temp comp - disabled
72 * bit1 - enable tx volt comp - disabled
73 * bit2 - enable fastClock - enabled
74 * bit3 - enable doubling - enabled
75 * bit4 - enable internal regulator - disabled
76 * bit5 - enable pa predistortion - disabled
77 */
78 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
79 .eepromWriteEnableGpio = 3,
80 .wlanDisableGpio = 0,
81 .wlanLedGpio = 8,
82 .rxBandSelectGpio = 0xff,
83 .txrxgain = 0,
84 .swreg = 0,
85 },
86 .modalHeader2G = {
87 /* ar9300_modal_eep_header 2g */
88 /* 4 idle,t1,t2,b(4 bits per setting) */
89 .antCtrlCommon = LE32(0x110),
90 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
91 .antCtrlCommon2 = LE32(0x22222),
92
93 /*
94 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
95 * rx1, rx12, b (2 bits each)
96 */
97 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
98
99 /*
100 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
101 * for ar9280 (0xa20c/b20c 5:0)
102 */
103 .xatten1DB = {0, 0, 0},
104
105 /*
106 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
107 * for ar9280 (0xa20c/b20c 16:12
108 */
109 .xatten1Margin = {0, 0, 0},
110 .tempSlope = 36,
111 .voltSlope = 0,
112
113 /*
114 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
115 * channels in usual fbin coding format
116 */
117 .spurChans = {0, 0, 0, 0, 0},
118
119 /*
120 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
121 * if the register is per chain
122 */
123 .noiseFloorThreshCh = {-1, 0, 0},
124 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
125 .quick_drop = 0,
126 .xpaBiasLvl = 0,
127 .txFrameToDataStart = 0x0e,
128 .txFrameToPaOn = 0x0e,
129 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
130 .antennaGain = 0,
131 .switchSettling = 0x2c,
132 .adcDesiredSize = -30,
133 .txEndToXpaOff = 0,
134 .txEndToRxOn = 0x2,
135 .txFrameToXpaOn = 0xe,
136 .thresh62 = 28,
137 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
138 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
139 .futureModal = {
140 0, 0, 0, 0, 0, 0, 0, 0,
141 },
142 },
143 .base_ext1 = {
144 .ant_div_control = 0,
145 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
146 },
147 .calFreqPier2G = {
148 FREQ2FBIN(2412, 1),
149 FREQ2FBIN(2437, 1),
150 FREQ2FBIN(2472, 1),
151 },
152 /* ar9300_cal_data_per_freq_op_loop 2g */
153 .calPierData2G = {
154 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
157 },
158 .calTarget_freqbin_Cck = {
159 FREQ2FBIN(2412, 1),
160 FREQ2FBIN(2484, 1),
161 },
162 .calTarget_freqbin_2G = {
163 FREQ2FBIN(2412, 1),
164 FREQ2FBIN(2437, 1),
165 FREQ2FBIN(2472, 1)
166 },
167 .calTarget_freqbin_2GHT20 = {
168 FREQ2FBIN(2412, 1),
169 FREQ2FBIN(2437, 1),
170 FREQ2FBIN(2472, 1)
171 },
172 .calTarget_freqbin_2GHT40 = {
173 FREQ2FBIN(2412, 1),
174 FREQ2FBIN(2437, 1),
175 FREQ2FBIN(2472, 1)
176 },
177 .calTargetPowerCck = {
178 /* 1L-5L,5S,11L,11S */
179 { {36, 36, 36, 36} },
180 { {36, 36, 36, 36} },
181 },
182 .calTargetPower2G = {
183 /* 6-24,36,48,54 */
184 { {32, 32, 28, 24} },
185 { {32, 32, 28, 24} },
186 { {32, 32, 28, 24} },
187 },
188 .calTargetPower2GHT20 = {
189 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 },
193 .calTargetPower2GHT40 = {
194 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
197 },
198 .ctlIndex_2G = {
199 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
200 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
201 },
202 .ctl_freqbin_2G = {
203 {
204 FREQ2FBIN(2412, 1),
205 FREQ2FBIN(2417, 1),
206 FREQ2FBIN(2457, 1),
207 FREQ2FBIN(2462, 1)
208 },
209 {
210 FREQ2FBIN(2412, 1),
211 FREQ2FBIN(2417, 1),
212 FREQ2FBIN(2462, 1),
213 0xFF,
214 },
215
216 {
217 FREQ2FBIN(2412, 1),
218 FREQ2FBIN(2417, 1),
219 FREQ2FBIN(2462, 1),
220 0xFF,
221 },
222 {
223 FREQ2FBIN(2422, 1),
224 FREQ2FBIN(2427, 1),
225 FREQ2FBIN(2447, 1),
226 FREQ2FBIN(2452, 1)
227 },
228
229 {
230 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
231 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
232 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
233 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
234 },
235
236 {
237 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
238 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
239 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
240 0,
241 },
242
243 {
244 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
245 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
246 FREQ2FBIN(2472, 1),
247 0,
248 },
249
250 {
251 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
252 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
253 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
254 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
255 },
256
257 {
258 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
259 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
260 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 },
262
263 {
264 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
265 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
266 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
267 0
268 },
269
270 {
271 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
272 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
273 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
274 0
275 },
276
277 {
278 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
279 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
280 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
281 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
282 }
283 },
284 .ctlPowerData_2G = {
285 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
287 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
288
289 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
290 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292
293 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
294 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296
297 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
298 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
300 },
301 .modalHeader5G = {
302 /* 4 idle,t1,t2,b (4 bits per setting) */
303 .antCtrlCommon = LE32(0x110),
304 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
305 .antCtrlCommon2 = LE32(0x22222),
306 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
307 .antCtrlChain = {
308 LE16(0x000), LE16(0x000), LE16(0x000),
309 },
310 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
311 .xatten1DB = {0, 0, 0},
312
313 /*
314 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
315 * for merlin (0xa20c/b20c 16:12
316 */
317 .xatten1Margin = {0, 0, 0},
318 .tempSlope = 68,
319 .voltSlope = 0,
320 /* spurChans spur channels in usual fbin coding format */
321 .spurChans = {0, 0, 0, 0, 0},
322 /* noiseFloorThreshCh Check if the register is per chain */
323 .noiseFloorThreshCh = {-1, 0, 0},
324 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
325 .quick_drop = 0,
326 .xpaBiasLvl = 0,
327 .txFrameToDataStart = 0x0e,
328 .txFrameToPaOn = 0x0e,
329 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
330 .antennaGain = 0,
331 .switchSettling = 0x2d,
332 .adcDesiredSize = -30,
333 .txEndToXpaOff = 0,
334 .txEndToRxOn = 0x2,
335 .txFrameToXpaOn = 0xe,
336 .thresh62 = 28,
337 .papdRateMaskHt20 = LE32(0x0c80c080),
338 .papdRateMaskHt40 = LE32(0x0080c080),
339 .futureModal = {
340 0, 0, 0, 0, 0, 0, 0, 0,
341 },
342 },
343 .base_ext2 = {
344 .tempSlopeLow = 0,
345 .tempSlopeHigh = 0,
346 .xatten1DBLow = {0, 0, 0},
347 .xatten1MarginLow = {0, 0, 0},
348 .xatten1DBHigh = {0, 0, 0},
349 .xatten1MarginHigh = {0, 0, 0}
350 },
351 .calFreqPier5G = {
352 FREQ2FBIN(5180, 0),
353 FREQ2FBIN(5220, 0),
354 FREQ2FBIN(5320, 0),
355 FREQ2FBIN(5400, 0),
356 FREQ2FBIN(5500, 0),
357 FREQ2FBIN(5600, 0),
358 FREQ2FBIN(5725, 0),
359 FREQ2FBIN(5825, 0)
360 },
361 .calPierData5G = {
362 {
363 {0, 0, 0, 0, 0},
364 {0, 0, 0, 0, 0},
365 {0, 0, 0, 0, 0},
366 {0, 0, 0, 0, 0},
367 {0, 0, 0, 0, 0},
368 {0, 0, 0, 0, 0},
369 {0, 0, 0, 0, 0},
370 {0, 0, 0, 0, 0},
371 },
372 {
373 {0, 0, 0, 0, 0},
374 {0, 0, 0, 0, 0},
375 {0, 0, 0, 0, 0},
376 {0, 0, 0, 0, 0},
377 {0, 0, 0, 0, 0},
378 {0, 0, 0, 0, 0},
379 {0, 0, 0, 0, 0},
380 {0, 0, 0, 0, 0},
381 },
382 {
383 {0, 0, 0, 0, 0},
384 {0, 0, 0, 0, 0},
385 {0, 0, 0, 0, 0},
386 {0, 0, 0, 0, 0},
387 {0, 0, 0, 0, 0},
388 {0, 0, 0, 0, 0},
389 {0, 0, 0, 0, 0},
390 {0, 0, 0, 0, 0},
391 },
392
393 },
394 .calTarget_freqbin_5G = {
395 FREQ2FBIN(5180, 0),
396 FREQ2FBIN(5220, 0),
397 FREQ2FBIN(5320, 0),
398 FREQ2FBIN(5400, 0),
399 FREQ2FBIN(5500, 0),
400 FREQ2FBIN(5600, 0),
401 FREQ2FBIN(5725, 0),
402 FREQ2FBIN(5825, 0)
403 },
404 .calTarget_freqbin_5GHT20 = {
405 FREQ2FBIN(5180, 0),
406 FREQ2FBIN(5240, 0),
407 FREQ2FBIN(5320, 0),
408 FREQ2FBIN(5500, 0),
409 FREQ2FBIN(5700, 0),
410 FREQ2FBIN(5745, 0),
411 FREQ2FBIN(5725, 0),
412 FREQ2FBIN(5825, 0)
413 },
414 .calTarget_freqbin_5GHT40 = {
415 FREQ2FBIN(5180, 0),
416 FREQ2FBIN(5240, 0),
417 FREQ2FBIN(5320, 0),
418 FREQ2FBIN(5500, 0),
419 FREQ2FBIN(5700, 0),
420 FREQ2FBIN(5745, 0),
421 FREQ2FBIN(5725, 0),
422 FREQ2FBIN(5825, 0)
423 },
424 .calTargetPower5G = {
425 /* 6-24,36,48,54 */
426 { {20, 20, 20, 10} },
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
432 { {20, 20, 20, 10} },
433 { {20, 20, 20, 10} },
434 },
435 .calTargetPower5GHT20 = {
436 /*
437 * 0_8_16,1-3_9-11_17-19,
438 * 4,5,6,7,12,13,14,15,20,21,22,23
439 */
440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 },
449 .calTargetPower5GHT40 = {
450 /*
451 * 0_8_16,1-3_9-11_17-19,
452 * 4,5,6,7,12,13,14,15,20,21,22,23
453 */
454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 },
463 .ctlIndex_5G = {
464 0x10, 0x16, 0x18, 0x40, 0x46,
465 0x48, 0x30, 0x36, 0x38
466 },
467 .ctl_freqbin_5G = {
468 {
469 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 },
478 {
479 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487 },
488
489 {
490 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498 },
499
500 {
501 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
508 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
509 },
510
511 {
512 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
517 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
518 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
519 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
520 },
521
522 {
523 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
530 /* Data[5].ctlEdges[7].bChannel */ 0xFF
531 },
532
533 {
534 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542 },
543
544 {
545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553 },
554
555 {
556 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564 }
565 },
566 .ctlPowerData_5G = {
567 {
568 {
569 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571 }
572 },
573 {
574 {
575 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577 }
578 },
579 {
580 {
581 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583 }
584 },
585 {
586 {
587 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589 }
590 },
591 {
592 {
593 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595 }
596 },
597 {
598 {
599 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601 }
602 },
603 {
604 {
605 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 }
608 },
609 {
610 {
611 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613 }
614 },
615 {
616 {
617 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619 }
620 },
621 }
622 };
623
624 static const struct ar9300_eeprom ar9300_x113 = {
625 .eepromVersion = 2,
626 .templateVersion = 6,
627 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628 .custData = {"x113-023-f0000"},
629 .baseEepHeader = {
630 .regDmn = { LE16(0), LE16(0x1f) },
631 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
632 .opCapFlags = {
633 .opFlags = AR5416_OPFLAGS_11A,
634 .eepMisc = 0,
635 },
636 .rfSilent = 0,
637 .blueToothOptions = 0,
638 .deviceCap = 0,
639 .deviceType = 5, /* takes lower byte in eeprom location */
640 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641 .params_for_tuning_caps = {0, 0},
642 .featureEnable = 0x0d,
643 /*
644 * bit0 - enable tx temp comp - disabled
645 * bit1 - enable tx volt comp - disabled
646 * bit2 - enable fastClock - enabled
647 * bit3 - enable doubling - enabled
648 * bit4 - enable internal regulator - disabled
649 * bit5 - enable pa predistortion - disabled
650 */
651 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
652 .eepromWriteEnableGpio = 6,
653 .wlanDisableGpio = 0,
654 .wlanLedGpio = 8,
655 .rxBandSelectGpio = 0xff,
656 .txrxgain = 0x21,
657 .swreg = 0,
658 },
659 .modalHeader2G = {
660 /* ar9300_modal_eep_header 2g */
661 /* 4 idle,t1,t2,b(4 bits per setting) */
662 .antCtrlCommon = LE32(0x110),
663 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664 .antCtrlCommon2 = LE32(0x44444),
665
666 /*
667 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668 * rx1, rx12, b (2 bits each)
669 */
670 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671
672 /*
673 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
674 * for ar9280 (0xa20c/b20c 5:0)
675 */
676 .xatten1DB = {0, 0, 0},
677
678 /*
679 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680 * for ar9280 (0xa20c/b20c 16:12
681 */
682 .xatten1Margin = {0, 0, 0},
683 .tempSlope = 25,
684 .voltSlope = 0,
685
686 /*
687 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688 * channels in usual fbin coding format
689 */
690 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691
692 /*
693 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694 * if the register is per chain
695 */
696 .noiseFloorThreshCh = {-1, 0, 0},
697 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 .quick_drop = 0,
699 .xpaBiasLvl = 0,
700 .txFrameToDataStart = 0x0e,
701 .txFrameToPaOn = 0x0e,
702 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703 .antennaGain = 0,
704 .switchSettling = 0x2c,
705 .adcDesiredSize = -30,
706 .txEndToXpaOff = 0,
707 .txEndToRxOn = 0x2,
708 .txFrameToXpaOn = 0xe,
709 .thresh62 = 28,
710 .papdRateMaskHt20 = LE32(0x0c80c080),
711 .papdRateMaskHt40 = LE32(0x0080c080),
712 .futureModal = {
713 0, 0, 0, 0, 0, 0, 0, 0,
714 },
715 },
716 .base_ext1 = {
717 .ant_div_control = 0,
718 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
719 },
720 .calFreqPier2G = {
721 FREQ2FBIN(2412, 1),
722 FREQ2FBIN(2437, 1),
723 FREQ2FBIN(2472, 1),
724 },
725 /* ar9300_cal_data_per_freq_op_loop 2g */
726 .calPierData2G = {
727 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 },
731 .calTarget_freqbin_Cck = {
732 FREQ2FBIN(2412, 1),
733 FREQ2FBIN(2472, 1),
734 },
735 .calTarget_freqbin_2G = {
736 FREQ2FBIN(2412, 1),
737 FREQ2FBIN(2437, 1),
738 FREQ2FBIN(2472, 1)
739 },
740 .calTarget_freqbin_2GHT20 = {
741 FREQ2FBIN(2412, 1),
742 FREQ2FBIN(2437, 1),
743 FREQ2FBIN(2472, 1)
744 },
745 .calTarget_freqbin_2GHT40 = {
746 FREQ2FBIN(2412, 1),
747 FREQ2FBIN(2437, 1),
748 FREQ2FBIN(2472, 1)
749 },
750 .calTargetPowerCck = {
751 /* 1L-5L,5S,11L,11S */
752 { {34, 34, 34, 34} },
753 { {34, 34, 34, 34} },
754 },
755 .calTargetPower2G = {
756 /* 6-24,36,48,54 */
757 { {34, 34, 32, 32} },
758 { {34, 34, 32, 32} },
759 { {34, 34, 32, 32} },
760 },
761 .calTargetPower2GHT20 = {
762 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 },
766 .calTargetPower2GHT40 = {
767 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 },
771 .ctlIndex_2G = {
772 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 },
775 .ctl_freqbin_2G = {
776 {
777 FREQ2FBIN(2412, 1),
778 FREQ2FBIN(2417, 1),
779 FREQ2FBIN(2457, 1),
780 FREQ2FBIN(2462, 1)
781 },
782 {
783 FREQ2FBIN(2412, 1),
784 FREQ2FBIN(2417, 1),
785 FREQ2FBIN(2462, 1),
786 0xFF,
787 },
788
789 {
790 FREQ2FBIN(2412, 1),
791 FREQ2FBIN(2417, 1),
792 FREQ2FBIN(2462, 1),
793 0xFF,
794 },
795 {
796 FREQ2FBIN(2422, 1),
797 FREQ2FBIN(2427, 1),
798 FREQ2FBIN(2447, 1),
799 FREQ2FBIN(2452, 1)
800 },
801
802 {
803 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 },
808
809 {
810 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 0,
814 },
815
816 {
817 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 FREQ2FBIN(2472, 1),
820 0,
821 },
822
823 {
824 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 },
829
830 {
831 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 },
835
836 {
837 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 0
841 },
842
843 {
844 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 0
848 },
849
850 {
851 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 }
856 },
857 .ctlPowerData_2G = {
858 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861
862 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865
866 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 },
874 .modalHeader5G = {
875 /* 4 idle,t1,t2,b (4 bits per setting) */
876 .antCtrlCommon = LE32(0x220),
877 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 .antCtrlCommon2 = LE32(0x11111),
879 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 .antCtrlChain = {
881 LE16(0x150), LE16(0x150), LE16(0x150),
882 },
883 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 .xatten1DB = {0, 0, 0},
885
886 /*
887 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 * for merlin (0xa20c/b20c 16:12
889 */
890 .xatten1Margin = {0, 0, 0},
891 .tempSlope = 68,
892 .voltSlope = 0,
893 /* spurChans spur channels in usual fbin coding format */
894 .spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 /* noiseFloorThreshCh Check if the register is per chain */
896 .noiseFloorThreshCh = {-1, 0, 0},
897 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 .quick_drop = 0,
899 .xpaBiasLvl = 0xf,
900 .txFrameToDataStart = 0x0e,
901 .txFrameToPaOn = 0x0e,
902 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 .antennaGain = 0,
904 .switchSettling = 0x2d,
905 .adcDesiredSize = -30,
906 .txEndToXpaOff = 0,
907 .txEndToRxOn = 0x2,
908 .txFrameToXpaOn = 0xe,
909 .thresh62 = 28,
910 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 .futureModal = {
913 0, 0, 0, 0, 0, 0, 0, 0,
914 },
915 },
916 .base_ext2 = {
917 .tempSlopeLow = 72,
918 .tempSlopeHigh = 105,
919 .xatten1DBLow = {0, 0, 0},
920 .xatten1MarginLow = {0, 0, 0},
921 .xatten1DBHigh = {0, 0, 0},
922 .xatten1MarginHigh = {0, 0, 0}
923 },
924 .calFreqPier5G = {
925 FREQ2FBIN(5180, 0),
926 FREQ2FBIN(5240, 0),
927 FREQ2FBIN(5320, 0),
928 FREQ2FBIN(5400, 0),
929 FREQ2FBIN(5500, 0),
930 FREQ2FBIN(5600, 0),
931 FREQ2FBIN(5745, 0),
932 FREQ2FBIN(5785, 0)
933 },
934 .calPierData5G = {
935 {
936 {0, 0, 0, 0, 0},
937 {0, 0, 0, 0, 0},
938 {0, 0, 0, 0, 0},
939 {0, 0, 0, 0, 0},
940 {0, 0, 0, 0, 0},
941 {0, 0, 0, 0, 0},
942 {0, 0, 0, 0, 0},
943 {0, 0, 0, 0, 0},
944 },
945 {
946 {0, 0, 0, 0, 0},
947 {0, 0, 0, 0, 0},
948 {0, 0, 0, 0, 0},
949 {0, 0, 0, 0, 0},
950 {0, 0, 0, 0, 0},
951 {0, 0, 0, 0, 0},
952 {0, 0, 0, 0, 0},
953 {0, 0, 0, 0, 0},
954 },
955 {
956 {0, 0, 0, 0, 0},
957 {0, 0, 0, 0, 0},
958 {0, 0, 0, 0, 0},
959 {0, 0, 0, 0, 0},
960 {0, 0, 0, 0, 0},
961 {0, 0, 0, 0, 0},
962 {0, 0, 0, 0, 0},
963 {0, 0, 0, 0, 0},
964 },
965
966 },
967 .calTarget_freqbin_5G = {
968 FREQ2FBIN(5180, 0),
969 FREQ2FBIN(5220, 0),
970 FREQ2FBIN(5320, 0),
971 FREQ2FBIN(5400, 0),
972 FREQ2FBIN(5500, 0),
973 FREQ2FBIN(5600, 0),
974 FREQ2FBIN(5745, 0),
975 FREQ2FBIN(5785, 0)
976 },
977 .calTarget_freqbin_5GHT20 = {
978 FREQ2FBIN(5180, 0),
979 FREQ2FBIN(5240, 0),
980 FREQ2FBIN(5320, 0),
981 FREQ2FBIN(5400, 0),
982 FREQ2FBIN(5500, 0),
983 FREQ2FBIN(5700, 0),
984 FREQ2FBIN(5745, 0),
985 FREQ2FBIN(5825, 0)
986 },
987 .calTarget_freqbin_5GHT40 = {
988 FREQ2FBIN(5190, 0),
989 FREQ2FBIN(5230, 0),
990 FREQ2FBIN(5320, 0),
991 FREQ2FBIN(5410, 0),
992 FREQ2FBIN(5510, 0),
993 FREQ2FBIN(5670, 0),
994 FREQ2FBIN(5755, 0),
995 FREQ2FBIN(5825, 0)
996 },
997 .calTargetPower5G = {
998 /* 6-24,36,48,54 */
999 { {42, 40, 40, 34} },
1000 { {42, 40, 40, 34} },
1001 { {42, 40, 40, 34} },
1002 { {42, 40, 40, 34} },
1003 { {42, 40, 40, 34} },
1004 { {42, 40, 40, 34} },
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 },
1008 .calTargetPower5GHT20 = {
1009 /*
1010 * 0_8_16,1-3_9-11_17-19,
1011 * 4,5,6,7,12,13,14,15,20,21,22,23
1012 */
1013 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1014 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1020 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1021 },
1022 .calTargetPower5GHT40 = {
1023 /*
1024 * 0_8_16,1-3_9-11_17-19,
1025 * 4,5,6,7,12,13,14,15,20,21,22,23
1026 */
1027 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1028 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1034 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1035 },
1036 .ctlIndex_5G = {
1037 0x10, 0x16, 0x18, 0x40, 0x46,
1038 0x48, 0x30, 0x36, 0x38
1039 },
1040 .ctl_freqbin_5G = {
1041 {
1042 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1043 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1044 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1045 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1046 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1047 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1048 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1049 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1050 },
1051 {
1052 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1053 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1054 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1055 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1056 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1057 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1058 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1059 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1060 },
1061
1062 {
1063 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1064 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1065 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1066 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1067 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1068 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1069 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1070 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1071 },
1072
1073 {
1074 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1075 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1076 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1077 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1078 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1079 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1080 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1081 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1082 },
1083
1084 {
1085 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1086 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1087 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1088 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1089 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1090 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1091 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1092 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1093 },
1094
1095 {
1096 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1097 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1098 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1099 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1100 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1101 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1102 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1103 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1104 },
1105
1106 {
1107 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1108 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1109 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1110 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1111 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1112 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1113 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1114 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1115 },
1116
1117 {
1118 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1119 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1120 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1121 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1122 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1123 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1124 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1125 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1126 },
1127
1128 {
1129 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1130 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1131 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1132 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1133 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1134 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1135 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1136 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1137 }
1138 },
1139 .ctlPowerData_5G = {
1140 {
1141 {
1142 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1143 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1144 }
1145 },
1146 {
1147 {
1148 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 }
1151 },
1152 {
1153 {
1154 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1155 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1156 }
1157 },
1158 {
1159 {
1160 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1161 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1162 }
1163 },
1164 {
1165 {
1166 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 }
1169 },
1170 {
1171 {
1172 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1173 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 }
1175 },
1176 {
1177 {
1178 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 }
1181 },
1182 {
1183 {
1184 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1185 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1186 }
1187 },
1188 {
1189 {
1190 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1191 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1192 }
1193 },
1194 }
1195 };
1196
1197
1198 static const struct ar9300_eeprom ar9300_h112 = {
1199 .eepromVersion = 2,
1200 .templateVersion = 3,
1201 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1202 .custData = {"h112-241-f0000"},
1203 .baseEepHeader = {
1204 .regDmn = { LE16(0), LE16(0x1f) },
1205 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1206 .opCapFlags = {
1207 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1208 .eepMisc = 0,
1209 },
1210 .rfSilent = 0,
1211 .blueToothOptions = 0,
1212 .deviceCap = 0,
1213 .deviceType = 5, /* takes lower byte in eeprom location */
1214 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1215 .params_for_tuning_caps = {0, 0},
1216 .featureEnable = 0x0d,
1217 /*
1218 * bit0 - enable tx temp comp - disabled
1219 * bit1 - enable tx volt comp - disabled
1220 * bit2 - enable fastClock - enabled
1221 * bit3 - enable doubling - enabled
1222 * bit4 - enable internal regulator - disabled
1223 * bit5 - enable pa predistortion - disabled
1224 */
1225 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1226 .eepromWriteEnableGpio = 6,
1227 .wlanDisableGpio = 0,
1228 .wlanLedGpio = 8,
1229 .rxBandSelectGpio = 0xff,
1230 .txrxgain = 0x10,
1231 .swreg = 0,
1232 },
1233 .modalHeader2G = {
1234 /* ar9300_modal_eep_header 2g */
1235 /* 4 idle,t1,t2,b(4 bits per setting) */
1236 .antCtrlCommon = LE32(0x110),
1237 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1238 .antCtrlCommon2 = LE32(0x44444),
1239
1240 /*
1241 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1242 * rx1, rx12, b (2 bits each)
1243 */
1244 .antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1245
1246 /*
1247 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1248 * for ar9280 (0xa20c/b20c 5:0)
1249 */
1250 .xatten1DB = {0, 0, 0},
1251
1252 /*
1253 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1254 * for ar9280 (0xa20c/b20c 16:12
1255 */
1256 .xatten1Margin = {0, 0, 0},
1257 .tempSlope = 25,
1258 .voltSlope = 0,
1259
1260 /*
1261 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1262 * channels in usual fbin coding format
1263 */
1264 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1265
1266 /*
1267 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1268 * if the register is per chain
1269 */
1270 .noiseFloorThreshCh = {-1, 0, 0},
1271 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1272 .quick_drop = 0,
1273 .xpaBiasLvl = 0,
1274 .txFrameToDataStart = 0x0e,
1275 .txFrameToPaOn = 0x0e,
1276 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1277 .antennaGain = 0,
1278 .switchSettling = 0x2c,
1279 .adcDesiredSize = -30,
1280 .txEndToXpaOff = 0,
1281 .txEndToRxOn = 0x2,
1282 .txFrameToXpaOn = 0xe,
1283 .thresh62 = 28,
1284 .papdRateMaskHt20 = LE32(0x0c80c080),
1285 .papdRateMaskHt40 = LE32(0x0080c080),
1286 .futureModal = {
1287 0, 0, 0, 0, 0, 0, 0, 0,
1288 },
1289 },
1290 .base_ext1 = {
1291 .ant_div_control = 0,
1292 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1293 },
1294 .calFreqPier2G = {
1295 FREQ2FBIN(2412, 1),
1296 FREQ2FBIN(2437, 1),
1297 FREQ2FBIN(2462, 1),
1298 },
1299 /* ar9300_cal_data_per_freq_op_loop 2g */
1300 .calPierData2G = {
1301 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1302 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1303 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1304 },
1305 .calTarget_freqbin_Cck = {
1306 FREQ2FBIN(2412, 1),
1307 FREQ2FBIN(2472, 1),
1308 },
1309 .calTarget_freqbin_2G = {
1310 FREQ2FBIN(2412, 1),
1311 FREQ2FBIN(2437, 1),
1312 FREQ2FBIN(2472, 1)
1313 },
1314 .calTarget_freqbin_2GHT20 = {
1315 FREQ2FBIN(2412, 1),
1316 FREQ2FBIN(2437, 1),
1317 FREQ2FBIN(2472, 1)
1318 },
1319 .calTarget_freqbin_2GHT40 = {
1320 FREQ2FBIN(2412, 1),
1321 FREQ2FBIN(2437, 1),
1322 FREQ2FBIN(2472, 1)
1323 },
1324 .calTargetPowerCck = {
1325 /* 1L-5L,5S,11L,11S */
1326 { {34, 34, 34, 34} },
1327 { {34, 34, 34, 34} },
1328 },
1329 .calTargetPower2G = {
1330 /* 6-24,36,48,54 */
1331 { {34, 34, 32, 32} },
1332 { {34, 34, 32, 32} },
1333 { {34, 34, 32, 32} },
1334 },
1335 .calTargetPower2GHT20 = {
1336 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1337 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1338 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1339 },
1340 .calTargetPower2GHT40 = {
1341 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1342 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1343 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1344 },
1345 .ctlIndex_2G = {
1346 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1347 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1348 },
1349 .ctl_freqbin_2G = {
1350 {
1351 FREQ2FBIN(2412, 1),
1352 FREQ2FBIN(2417, 1),
1353 FREQ2FBIN(2457, 1),
1354 FREQ2FBIN(2462, 1)
1355 },
1356 {
1357 FREQ2FBIN(2412, 1),
1358 FREQ2FBIN(2417, 1),
1359 FREQ2FBIN(2462, 1),
1360 0xFF,
1361 },
1362
1363 {
1364 FREQ2FBIN(2412, 1),
1365 FREQ2FBIN(2417, 1),
1366 FREQ2FBIN(2462, 1),
1367 0xFF,
1368 },
1369 {
1370 FREQ2FBIN(2422, 1),
1371 FREQ2FBIN(2427, 1),
1372 FREQ2FBIN(2447, 1),
1373 FREQ2FBIN(2452, 1)
1374 },
1375
1376 {
1377 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1378 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1379 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1380 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1381 },
1382
1383 {
1384 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1385 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1386 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1387 0,
1388 },
1389
1390 {
1391 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1392 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1393 FREQ2FBIN(2472, 1),
1394 0,
1395 },
1396
1397 {
1398 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1399 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1400 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1401 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1402 },
1403
1404 {
1405 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1406 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1407 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1408 },
1409
1410 {
1411 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1412 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1413 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1414 0
1415 },
1416
1417 {
1418 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1419 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1420 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1421 0
1422 },
1423
1424 {
1425 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1426 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1427 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1428 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1429 }
1430 },
1431 .ctlPowerData_2G = {
1432 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1433 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1434 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1435
1436 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1437 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1438 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1439
1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443
1444 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1446 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1447 },
1448 .modalHeader5G = {
1449 /* 4 idle,t1,t2,b (4 bits per setting) */
1450 .antCtrlCommon = LE32(0x220),
1451 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1452 .antCtrlCommon2 = LE32(0x44444),
1453 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1454 .antCtrlChain = {
1455 LE16(0x150), LE16(0x150), LE16(0x150),
1456 },
1457 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1458 .xatten1DB = {0, 0, 0},
1459
1460 /*
1461 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1462 * for merlin (0xa20c/b20c 16:12
1463 */
1464 .xatten1Margin = {0, 0, 0},
1465 .tempSlope = 45,
1466 .voltSlope = 0,
1467 /* spurChans spur channels in usual fbin coding format */
1468 .spurChans = {0, 0, 0, 0, 0},
1469 /* noiseFloorThreshCh Check if the register is per chain */
1470 .noiseFloorThreshCh = {-1, 0, 0},
1471 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1472 .quick_drop = 0,
1473 .xpaBiasLvl = 0,
1474 .txFrameToDataStart = 0x0e,
1475 .txFrameToPaOn = 0x0e,
1476 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1477 .antennaGain = 0,
1478 .switchSettling = 0x2d,
1479 .adcDesiredSize = -30,
1480 .txEndToXpaOff = 0,
1481 .txEndToRxOn = 0x2,
1482 .txFrameToXpaOn = 0xe,
1483 .thresh62 = 28,
1484 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
1485 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
1486 .futureModal = {
1487 0, 0, 0, 0, 0, 0, 0, 0,
1488 },
1489 },
1490 .base_ext2 = {
1491 .tempSlopeLow = 40,
1492 .tempSlopeHigh = 50,
1493 .xatten1DBLow = {0, 0, 0},
1494 .xatten1MarginLow = {0, 0, 0},
1495 .xatten1DBHigh = {0, 0, 0},
1496 .xatten1MarginHigh = {0, 0, 0}
1497 },
1498 .calFreqPier5G = {
1499 FREQ2FBIN(5180, 0),
1500 FREQ2FBIN(5220, 0),
1501 FREQ2FBIN(5320, 0),
1502 FREQ2FBIN(5400, 0),
1503 FREQ2FBIN(5500, 0),
1504 FREQ2FBIN(5600, 0),
1505 FREQ2FBIN(5700, 0),
1506 FREQ2FBIN(5785, 0)
1507 },
1508 .calPierData5G = {
1509 {
1510 {0, 0, 0, 0, 0},
1511 {0, 0, 0, 0, 0},
1512 {0, 0, 0, 0, 0},
1513 {0, 0, 0, 0, 0},
1514 {0, 0, 0, 0, 0},
1515 {0, 0, 0, 0, 0},
1516 {0, 0, 0, 0, 0},
1517 {0, 0, 0, 0, 0},
1518 },
1519 {
1520 {0, 0, 0, 0, 0},
1521 {0, 0, 0, 0, 0},
1522 {0, 0, 0, 0, 0},
1523 {0, 0, 0, 0, 0},
1524 {0, 0, 0, 0, 0},
1525 {0, 0, 0, 0, 0},
1526 {0, 0, 0, 0, 0},
1527 {0, 0, 0, 0, 0},
1528 },
1529 {
1530 {0, 0, 0, 0, 0},
1531 {0, 0, 0, 0, 0},
1532 {0, 0, 0, 0, 0},
1533 {0, 0, 0, 0, 0},
1534 {0, 0, 0, 0, 0},
1535 {0, 0, 0, 0, 0},
1536 {0, 0, 0, 0, 0},
1537 {0, 0, 0, 0, 0},
1538 },
1539
1540 },
1541 .calTarget_freqbin_5G = {
1542 FREQ2FBIN(5180, 0),
1543 FREQ2FBIN(5240, 0),
1544 FREQ2FBIN(5320, 0),
1545 FREQ2FBIN(5400, 0),
1546 FREQ2FBIN(5500, 0),
1547 FREQ2FBIN(5600, 0),
1548 FREQ2FBIN(5700, 0),
1549 FREQ2FBIN(5825, 0)
1550 },
1551 .calTarget_freqbin_5GHT20 = {
1552 FREQ2FBIN(5180, 0),
1553 FREQ2FBIN(5240, 0),
1554 FREQ2FBIN(5320, 0),
1555 FREQ2FBIN(5400, 0),
1556 FREQ2FBIN(5500, 0),
1557 FREQ2FBIN(5700, 0),
1558 FREQ2FBIN(5745, 0),
1559 FREQ2FBIN(5825, 0)
1560 },
1561 .calTarget_freqbin_5GHT40 = {
1562 FREQ2FBIN(5180, 0),
1563 FREQ2FBIN(5240, 0),
1564 FREQ2FBIN(5320, 0),
1565 FREQ2FBIN(5400, 0),
1566 FREQ2FBIN(5500, 0),
1567 FREQ2FBIN(5700, 0),
1568 FREQ2FBIN(5745, 0),
1569 FREQ2FBIN(5825, 0)
1570 },
1571 .calTargetPower5G = {
1572 /* 6-24,36,48,54 */
1573 { {30, 30, 28, 24} },
1574 { {30, 30, 28, 24} },
1575 { {30, 30, 28, 24} },
1576 { {30, 30, 28, 24} },
1577 { {30, 30, 28, 24} },
1578 { {30, 30, 28, 24} },
1579 { {30, 30, 28, 24} },
1580 { {30, 30, 28, 24} },
1581 },
1582 .calTargetPower5GHT20 = {
1583 /*
1584 * 0_8_16,1-3_9-11_17-19,
1585 * 4,5,6,7,12,13,14,15,20,21,22,23
1586 */
1587 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1588 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1589 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1590 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1591 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1592 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1593 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1594 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1595 },
1596 .calTargetPower5GHT40 = {
1597 /*
1598 * 0_8_16,1-3_9-11_17-19,
1599 * 4,5,6,7,12,13,14,15,20,21,22,23
1600 */
1601 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1602 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1603 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1604 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1605 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1606 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1607 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1608 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1609 },
1610 .ctlIndex_5G = {
1611 0x10, 0x16, 0x18, 0x40, 0x46,
1612 0x48, 0x30, 0x36, 0x38
1613 },
1614 .ctl_freqbin_5G = {
1615 {
1616 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1617 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1618 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1619 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1620 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1621 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1622 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1623 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1624 },
1625 {
1626 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1631 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634 },
1635
1636 {
1637 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1638 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1639 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1640 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1641 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1642 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1643 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1644 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1645 },
1646
1647 {
1648 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1649 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1650 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1651 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1652 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1653 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1654 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1655 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1656 },
1657
1658 {
1659 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1661 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1662 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1663 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1664 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1665 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1666 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1667 },
1668
1669 {
1670 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1671 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1672 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1673 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1674 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1675 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1676 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1677 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1678 },
1679
1680 {
1681 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1682 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1683 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1684 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1685 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1686 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1687 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1688 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1689 },
1690
1691 {
1692 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1694 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1695 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1696 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1697 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1698 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1699 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1700 },
1701
1702 {
1703 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1704 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1705 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1706 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1707 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1708 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1709 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1710 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1711 }
1712 },
1713 .ctlPowerData_5G = {
1714 {
1715 {
1716 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1717 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1718 }
1719 },
1720 {
1721 {
1722 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1723 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1724 }
1725 },
1726 {
1727 {
1728 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1729 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1730 }
1731 },
1732 {
1733 {
1734 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1736 }
1737 },
1738 {
1739 {
1740 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1741 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1742 }
1743 },
1744 {
1745 {
1746 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1747 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1748 }
1749 },
1750 {
1751 {
1752 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1753 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1754 }
1755 },
1756 {
1757 {
1758 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1759 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1760 }
1761 },
1762 {
1763 {
1764 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1765 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1766 }
1767 },
1768 }
1769 };
1770
1771
1772 static const struct ar9300_eeprom ar9300_x112 = {
1773 .eepromVersion = 2,
1774 .templateVersion = 5,
1775 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1776 .custData = {"x112-041-f0000"},
1777 .baseEepHeader = {
1778 .regDmn = { LE16(0), LE16(0x1f) },
1779 .txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
1780 .opCapFlags = {
1781 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1782 .eepMisc = 0,
1783 },
1784 .rfSilent = 0,
1785 .blueToothOptions = 0,
1786 .deviceCap = 0,
1787 .deviceType = 5, /* takes lower byte in eeprom location */
1788 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1789 .params_for_tuning_caps = {0, 0},
1790 .featureEnable = 0x0d,
1791 /*
1792 * bit0 - enable tx temp comp - disabled
1793 * bit1 - enable tx volt comp - disabled
1794 * bit2 - enable fastclock - enabled
1795 * bit3 - enable doubling - enabled
1796 * bit4 - enable internal regulator - disabled
1797 * bit5 - enable pa predistortion - disabled
1798 */
1799 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
1800 .eepromWriteEnableGpio = 6,
1801 .wlanDisableGpio = 0,
1802 .wlanLedGpio = 8,
1803 .rxBandSelectGpio = 0xff,
1804 .txrxgain = 0x0,
1805 .swreg = 0,
1806 },
1807 .modalHeader2G = {
1808 /* ar9300_modal_eep_header 2g */
1809 /* 4 idle,t1,t2,b(4 bits per setting) */
1810 .antCtrlCommon = LE32(0x110),
1811 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1812 .antCtrlCommon2 = LE32(0x22222),
1813
1814 /*
1815 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1816 * rx1, rx12, b (2 bits each)
1817 */
1818 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1819
1820 /*
1821 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1822 * for ar9280 (0xa20c/b20c 5:0)
1823 */
1824 .xatten1DB = {0x1b, 0x1b, 0x1b},
1825
1826 /*
1827 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1828 * for ar9280 (0xa20c/b20c 16:12
1829 */
1830 .xatten1Margin = {0x15, 0x15, 0x15},
1831 .tempSlope = 50,
1832 .voltSlope = 0,
1833
1834 /*
1835 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1836 * channels in usual fbin coding format
1837 */
1838 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1839
1840 /*
1841 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1842 * if the register is per chain
1843 */
1844 .noiseFloorThreshCh = {-1, 0, 0},
1845 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1846 .quick_drop = 0,
1847 .xpaBiasLvl = 0,
1848 .txFrameToDataStart = 0x0e,
1849 .txFrameToPaOn = 0x0e,
1850 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1851 .antennaGain = 0,
1852 .switchSettling = 0x2c,
1853 .adcDesiredSize = -30,
1854 .txEndToXpaOff = 0,
1855 .txEndToRxOn = 0x2,
1856 .txFrameToXpaOn = 0xe,
1857 .thresh62 = 28,
1858 .papdRateMaskHt20 = LE32(0x0c80c080),
1859 .papdRateMaskHt40 = LE32(0x0080c080),
1860 .futureModal = {
1861 0, 0, 0, 0, 0, 0, 0, 0,
1862 },
1863 },
1864 .base_ext1 = {
1865 .ant_div_control = 0,
1866 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1867 },
1868 .calFreqPier2G = {
1869 FREQ2FBIN(2412, 1),
1870 FREQ2FBIN(2437, 1),
1871 FREQ2FBIN(2472, 1),
1872 },
1873 /* ar9300_cal_data_per_freq_op_loop 2g */
1874 .calPierData2G = {
1875 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1876 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1877 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1878 },
1879 .calTarget_freqbin_Cck = {
1880 FREQ2FBIN(2412, 1),
1881 FREQ2FBIN(2472, 1),
1882 },
1883 .calTarget_freqbin_2G = {
1884 FREQ2FBIN(2412, 1),
1885 FREQ2FBIN(2437, 1),
1886 FREQ2FBIN(2472, 1)
1887 },
1888 .calTarget_freqbin_2GHT20 = {
1889 FREQ2FBIN(2412, 1),
1890 FREQ2FBIN(2437, 1),
1891 FREQ2FBIN(2472, 1)
1892 },
1893 .calTarget_freqbin_2GHT40 = {
1894 FREQ2FBIN(2412, 1),
1895 FREQ2FBIN(2437, 1),
1896 FREQ2FBIN(2472, 1)
1897 },
1898 .calTargetPowerCck = {
1899 /* 1L-5L,5S,11L,11s */
1900 { {38, 38, 38, 38} },
1901 { {38, 38, 38, 38} },
1902 },
1903 .calTargetPower2G = {
1904 /* 6-24,36,48,54 */
1905 { {38, 38, 36, 34} },
1906 { {38, 38, 36, 34} },
1907 { {38, 38, 34, 32} },
1908 },
1909 .calTargetPower2GHT20 = {
1910 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1911 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1912 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1913 },
1914 .calTargetPower2GHT40 = {
1915 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1916 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1917 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1918 },
1919 .ctlIndex_2G = {
1920 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1921 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1922 },
1923 .ctl_freqbin_2G = {
1924 {
1925 FREQ2FBIN(2412, 1),
1926 FREQ2FBIN(2417, 1),
1927 FREQ2FBIN(2457, 1),
1928 FREQ2FBIN(2462, 1)
1929 },
1930 {
1931 FREQ2FBIN(2412, 1),
1932 FREQ2FBIN(2417, 1),
1933 FREQ2FBIN(2462, 1),
1934 0xFF,
1935 },
1936
1937 {
1938 FREQ2FBIN(2412, 1),
1939 FREQ2FBIN(2417, 1),
1940 FREQ2FBIN(2462, 1),
1941 0xFF,
1942 },
1943 {
1944 FREQ2FBIN(2422, 1),
1945 FREQ2FBIN(2427, 1),
1946 FREQ2FBIN(2447, 1),
1947 FREQ2FBIN(2452, 1)
1948 },
1949
1950 {
1951 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1952 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1953 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1954 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1955 },
1956
1957 {
1958 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1959 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1960 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1961 0,
1962 },
1963
1964 {
1965 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 FREQ2FBIN(2472, 1),
1968 0,
1969 },
1970
1971 {
1972 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1973 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1974 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1975 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1976 },
1977
1978 {
1979 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1982 },
1983
1984 {
1985 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 0
1989 },
1990
1991 {
1992 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995 0
1996 },
1997
1998 {
1999 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2000 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2001 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2002 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2003 }
2004 },
2005 .ctlPowerData_2G = {
2006 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2007 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2008 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2009
2010 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2011 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2012 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013
2014 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2015 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2016 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2017
2018 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2021 },
2022 .modalHeader5G = {
2023 /* 4 idle,t1,t2,b (4 bits per setting) */
2024 .antCtrlCommon = LE32(0x110),
2025 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2026 .antCtrlCommon2 = LE32(0x22222),
2027 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2028 .antCtrlChain = {
2029 LE16(0x0), LE16(0x0), LE16(0x0),
2030 },
2031 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2032 .xatten1DB = {0x13, 0x19, 0x17},
2033
2034 /*
2035 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2036 * for merlin (0xa20c/b20c 16:12
2037 */
2038 .xatten1Margin = {0x19, 0x19, 0x19},
2039 .tempSlope = 70,
2040 .voltSlope = 15,
2041 /* spurChans spur channels in usual fbin coding format */
2042 .spurChans = {0, 0, 0, 0, 0},
2043 /* noiseFloorThreshch check if the register is per chain */
2044 .noiseFloorThreshCh = {-1, 0, 0},
2045 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2046 .quick_drop = 0,
2047 .xpaBiasLvl = 0,
2048 .txFrameToDataStart = 0x0e,
2049 .txFrameToPaOn = 0x0e,
2050 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2051 .antennaGain = 0,
2052 .switchSettling = 0x2d,
2053 .adcDesiredSize = -30,
2054 .txEndToXpaOff = 0,
2055 .txEndToRxOn = 0x2,
2056 .txFrameToXpaOn = 0xe,
2057 .thresh62 = 28,
2058 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2059 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2060 .futureModal = {
2061 0, 0, 0, 0, 0, 0, 0, 0,
2062 },
2063 },
2064 .base_ext2 = {
2065 .tempSlopeLow = 72,
2066 .tempSlopeHigh = 105,
2067 .xatten1DBLow = {0x10, 0x14, 0x10},
2068 .xatten1MarginLow = {0x19, 0x19 , 0x19},
2069 .xatten1DBHigh = {0x1d, 0x20, 0x24},
2070 .xatten1MarginHigh = {0x10, 0x10, 0x10}
2071 },
2072 .calFreqPier5G = {
2073 FREQ2FBIN(5180, 0),
2074 FREQ2FBIN(5220, 0),
2075 FREQ2FBIN(5320, 0),
2076 FREQ2FBIN(5400, 0),
2077 FREQ2FBIN(5500, 0),
2078 FREQ2FBIN(5600, 0),
2079 FREQ2FBIN(5700, 0),
2080 FREQ2FBIN(5785, 0)
2081 },
2082 .calPierData5G = {
2083 {
2084 {0, 0, 0, 0, 0},
2085 {0, 0, 0, 0, 0},
2086 {0, 0, 0, 0, 0},
2087 {0, 0, 0, 0, 0},
2088 {0, 0, 0, 0, 0},
2089 {0, 0, 0, 0, 0},
2090 {0, 0, 0, 0, 0},
2091 {0, 0, 0, 0, 0},
2092 },
2093 {
2094 {0, 0, 0, 0, 0},
2095 {0, 0, 0, 0, 0},
2096 {0, 0, 0, 0, 0},
2097 {0, 0, 0, 0, 0},
2098 {0, 0, 0, 0, 0},
2099 {0, 0, 0, 0, 0},
2100 {0, 0, 0, 0, 0},
2101 {0, 0, 0, 0, 0},
2102 },
2103 {
2104 {0, 0, 0, 0, 0},
2105 {0, 0, 0, 0, 0},
2106 {0, 0, 0, 0, 0},
2107 {0, 0, 0, 0, 0},
2108 {0, 0, 0, 0, 0},
2109 {0, 0, 0, 0, 0},
2110 {0, 0, 0, 0, 0},
2111 {0, 0, 0, 0, 0},
2112 },
2113
2114 },
2115 .calTarget_freqbin_5G = {
2116 FREQ2FBIN(5180, 0),
2117 FREQ2FBIN(5220, 0),
2118 FREQ2FBIN(5320, 0),
2119 FREQ2FBIN(5400, 0),
2120 FREQ2FBIN(5500, 0),
2121 FREQ2FBIN(5600, 0),
2122 FREQ2FBIN(5725, 0),
2123 FREQ2FBIN(5825, 0)
2124 },
2125 .calTarget_freqbin_5GHT20 = {
2126 FREQ2FBIN(5180, 0),
2127 FREQ2FBIN(5220, 0),
2128 FREQ2FBIN(5320, 0),
2129 FREQ2FBIN(5400, 0),
2130 FREQ2FBIN(5500, 0),
2131 FREQ2FBIN(5600, 0),
2132 FREQ2FBIN(5725, 0),
2133 FREQ2FBIN(5825, 0)
2134 },
2135 .calTarget_freqbin_5GHT40 = {
2136 FREQ2FBIN(5180, 0),
2137 FREQ2FBIN(5220, 0),
2138 FREQ2FBIN(5320, 0),
2139 FREQ2FBIN(5400, 0),
2140 FREQ2FBIN(5500, 0),
2141 FREQ2FBIN(5600, 0),
2142 FREQ2FBIN(5725, 0),
2143 FREQ2FBIN(5825, 0)
2144 },
2145 .calTargetPower5G = {
2146 /* 6-24,36,48,54 */
2147 { {32, 32, 28, 26} },
2148 { {32, 32, 28, 26} },
2149 { {32, 32, 28, 26} },
2150 { {32, 32, 26, 24} },
2151 { {32, 32, 26, 24} },
2152 { {32, 32, 24, 22} },
2153 { {30, 30, 24, 22} },
2154 { {30, 30, 24, 22} },
2155 },
2156 .calTargetPower5GHT20 = {
2157 /*
2158 * 0_8_16,1-3_9-11_17-19,
2159 * 4,5,6,7,12,13,14,15,20,21,22,23
2160 */
2161 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2162 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2163 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2164 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2165 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2166 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2167 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2168 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2169 },
2170 .calTargetPower5GHT40 = {
2171 /*
2172 * 0_8_16,1-3_9-11_17-19,
2173 * 4,5,6,7,12,13,14,15,20,21,22,23
2174 */
2175 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2176 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2177 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2178 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2179 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2180 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2181 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2182 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2183 },
2184 .ctlIndex_5G = {
2185 0x10, 0x16, 0x18, 0x40, 0x46,
2186 0x48, 0x30, 0x36, 0x38
2187 },
2188 .ctl_freqbin_5G = {
2189 {
2190 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2191 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2192 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2193 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2194 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2195 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2196 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2197 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2198 },
2199 {
2200 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2201 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2202 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2203 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2204 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2205 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2206 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2207 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2208 },
2209
2210 {
2211 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2212 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2213 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2214 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2215 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2216 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2217 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2218 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2219 },
2220
2221 {
2222 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2223 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2224 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2225 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2226 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2227 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2228 /* Data[3].ctledges[6].bchannel */ 0xFF,
2229 /* Data[3].ctledges[7].bchannel */ 0xFF,
2230 },
2231
2232 {
2233 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2234 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2235 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2236 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2237 /* Data[4].ctledges[4].bchannel */ 0xFF,
2238 /* Data[4].ctledges[5].bchannel */ 0xFF,
2239 /* Data[4].ctledges[6].bchannel */ 0xFF,
2240 /* Data[4].ctledges[7].bchannel */ 0xFF,
2241 },
2242
2243 {
2244 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2245 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2246 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2247 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2248 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2249 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2250 /* Data[5].ctledges[6].bchannel */ 0xFF,
2251 /* Data[5].ctledges[7].bchannel */ 0xFF
2252 },
2253
2254 {
2255 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2256 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2257 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2258 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2259 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2260 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2261 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2262 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2263 },
2264
2265 {
2266 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2267 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2268 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2269 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2270 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2271 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2272 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2273 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2274 },
2275
2276 {
2277 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2278 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2279 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2280 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2281 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2282 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2283 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2284 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2285 }
2286 },
2287 .ctlPowerData_5G = {
2288 {
2289 {
2290 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2291 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2292 }
2293 },
2294 {
2295 {
2296 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2297 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2298 }
2299 },
2300 {
2301 {
2302 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2303 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 }
2305 },
2306 {
2307 {
2308 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2309 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2310 }
2311 },
2312 {
2313 {
2314 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2315 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2316 }
2317 },
2318 {
2319 {
2320 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2321 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2322 }
2323 },
2324 {
2325 {
2326 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2327 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 }
2329 },
2330 {
2331 {
2332 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2333 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2334 }
2335 },
2336 {
2337 {
2338 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2339 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 }
2341 },
2342 }
2343 };
2344
2345 static const struct ar9300_eeprom ar9300_h116 = {
2346 .eepromVersion = 2,
2347 .templateVersion = 4,
2348 .macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2349 .custData = {"h116-041-f0000"},
2350 .baseEepHeader = {
2351 .regDmn = { LE16(0), LE16(0x1f) },
2352 .txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
2353 .opCapFlags = {
2354 .opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2355 .eepMisc = 0,
2356 },
2357 .rfSilent = 0,
2358 .blueToothOptions = 0,
2359 .deviceCap = 0,
2360 .deviceType = 5, /* takes lower byte in eeprom location */
2361 .pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2362 .params_for_tuning_caps = {0, 0},
2363 .featureEnable = 0x0d,
2364 /*
2365 * bit0 - enable tx temp comp - disabled
2366 * bit1 - enable tx volt comp - disabled
2367 * bit2 - enable fastClock - enabled
2368 * bit3 - enable doubling - enabled
2369 * bit4 - enable internal regulator - disabled
2370 * bit5 - enable pa predistortion - disabled
2371 */
2372 .miscConfiguration = 0, /* bit0 - turn down drivestrength */
2373 .eepromWriteEnableGpio = 6,
2374 .wlanDisableGpio = 0,
2375 .wlanLedGpio = 8,
2376 .rxBandSelectGpio = 0xff,
2377 .txrxgain = 0x10,
2378 .swreg = 0,
2379 },
2380 .modalHeader2G = {
2381 /* ar9300_modal_eep_header 2g */
2382 /* 4 idle,t1,t2,b(4 bits per setting) */
2383 .antCtrlCommon = LE32(0x110),
2384 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2385 .antCtrlCommon2 = LE32(0x44444),
2386
2387 /*
2388 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2389 * rx1, rx12, b (2 bits each)
2390 */
2391 .antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2392
2393 /*
2394 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2395 * for ar9280 (0xa20c/b20c 5:0)
2396 */
2397 .xatten1DB = {0x1f, 0x1f, 0x1f},
2398
2399 /*
2400 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2401 * for ar9280 (0xa20c/b20c 16:12
2402 */
2403 .xatten1Margin = {0x12, 0x12, 0x12},
2404 .tempSlope = 25,
2405 .voltSlope = 0,
2406
2407 /*
2408 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2409 * channels in usual fbin coding format
2410 */
2411 .spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2412
2413 /*
2414 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2415 * if the register is per chain
2416 */
2417 .noiseFloorThreshCh = {-1, 0, 0},
2418 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2419 .quick_drop = 0,
2420 .xpaBiasLvl = 0,
2421 .txFrameToDataStart = 0x0e,
2422 .txFrameToPaOn = 0x0e,
2423 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2424 .antennaGain = 0,
2425 .switchSettling = 0x2c,
2426 .adcDesiredSize = -30,
2427 .txEndToXpaOff = 0,
2428 .txEndToRxOn = 0x2,
2429 .txFrameToXpaOn = 0xe,
2430 .thresh62 = 28,
2431 .papdRateMaskHt20 = LE32(0x0c80C080),
2432 .papdRateMaskHt40 = LE32(0x0080C080),
2433 .futureModal = {
2434 0, 0, 0, 0, 0, 0, 0, 0,
2435 },
2436 },
2437 .base_ext1 = {
2438 .ant_div_control = 0,
2439 .future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2440 },
2441 .calFreqPier2G = {
2442 FREQ2FBIN(2412, 1),
2443 FREQ2FBIN(2437, 1),
2444 FREQ2FBIN(2462, 1),
2445 },
2446 /* ar9300_cal_data_per_freq_op_loop 2g */
2447 .calPierData2G = {
2448 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2449 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2450 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2451 },
2452 .calTarget_freqbin_Cck = {
2453 FREQ2FBIN(2412, 1),
2454 FREQ2FBIN(2472, 1),
2455 },
2456 .calTarget_freqbin_2G = {
2457 FREQ2FBIN(2412, 1),
2458 FREQ2FBIN(2437, 1),
2459 FREQ2FBIN(2472, 1)
2460 },
2461 .calTarget_freqbin_2GHT20 = {
2462 FREQ2FBIN(2412, 1),
2463 FREQ2FBIN(2437, 1),
2464 FREQ2FBIN(2472, 1)
2465 },
2466 .calTarget_freqbin_2GHT40 = {
2467 FREQ2FBIN(2412, 1),
2468 FREQ2FBIN(2437, 1),
2469 FREQ2FBIN(2472, 1)
2470 },
2471 .calTargetPowerCck = {
2472 /* 1L-5L,5S,11L,11S */
2473 { {34, 34, 34, 34} },
2474 { {34, 34, 34, 34} },
2475 },
2476 .calTargetPower2G = {
2477 /* 6-24,36,48,54 */
2478 { {34, 34, 32, 32} },
2479 { {34, 34, 32, 32} },
2480 { {34, 34, 32, 32} },
2481 },
2482 .calTargetPower2GHT20 = {
2483 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2484 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2485 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2486 },
2487 .calTargetPower2GHT40 = {
2488 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2489 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2490 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2491 },
2492 .ctlIndex_2G = {
2493 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2494 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2495 },
2496 .ctl_freqbin_2G = {
2497 {
2498 FREQ2FBIN(2412, 1),
2499 FREQ2FBIN(2417, 1),
2500 FREQ2FBIN(2457, 1),
2501 FREQ2FBIN(2462, 1)
2502 },
2503 {
2504 FREQ2FBIN(2412, 1),
2505 FREQ2FBIN(2417, 1),
2506 FREQ2FBIN(2462, 1),
2507 0xFF,
2508 },
2509
2510 {
2511 FREQ2FBIN(2412, 1),
2512 FREQ2FBIN(2417, 1),
2513 FREQ2FBIN(2462, 1),
2514 0xFF,
2515 },
2516 {
2517 FREQ2FBIN(2422, 1),
2518 FREQ2FBIN(2427, 1),
2519 FREQ2FBIN(2447, 1),
2520 FREQ2FBIN(2452, 1)
2521 },
2522
2523 {
2524 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2525 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2526 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2527 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2528 },
2529
2530 {
2531 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2532 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2533 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2534 0,
2535 },
2536
2537 {
2538 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2539 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2540 FREQ2FBIN(2472, 1),
2541 0,
2542 },
2543
2544 {
2545 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2546 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2547 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2548 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2549 },
2550
2551 {
2552 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2553 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2554 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2555 },
2556
2557 {
2558 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2559 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2560 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2561 0
2562 },
2563
2564 {
2565 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2566 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2567 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2568 0
2569 },
2570
2571 {
2572 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2573 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2574 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2575 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2576 }
2577 },
2578 .ctlPowerData_2G = {
2579 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2580 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2581 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2582
2583 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2584 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2585 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2586
2587 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2588 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590
2591 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2592 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2593 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2594 },
2595 .modalHeader5G = {
2596 /* 4 idle,t1,t2,b (4 bits per setting) */
2597 .antCtrlCommon = LE32(0x220),
2598 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2599 .antCtrlCommon2 = LE32(0x44444),
2600 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2601 .antCtrlChain = {
2602 LE16(0x150), LE16(0x150), LE16(0x150),
2603 },
2604 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2605 .xatten1DB = {0x19, 0x19, 0x19},
2606
2607 /*
2608 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2609 * for merlin (0xa20c/b20c 16:12
2610 */
2611 .xatten1Margin = {0x14, 0x14, 0x14},
2612 .tempSlope = 70,
2613 .voltSlope = 0,
2614 /* spurChans spur channels in usual fbin coding format */
2615 .spurChans = {0, 0, 0, 0, 0},
2616 /* noiseFloorThreshCh Check if the register is per chain */
2617 .noiseFloorThreshCh = {-1, 0, 0},
2618 .reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2619 .quick_drop = 0,
2620 .xpaBiasLvl = 0,
2621 .txFrameToDataStart = 0x0e,
2622 .txFrameToPaOn = 0x0e,
2623 .txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2624 .antennaGain = 0,
2625 .switchSettling = 0x2d,
2626 .adcDesiredSize = -30,
2627 .txEndToXpaOff = 0,
2628 .txEndToRxOn = 0x2,
2629 .txFrameToXpaOn = 0xe,
2630 .thresh62 = 28,
2631 .papdRateMaskHt20 = LE32(0x0cf0e0e0),
2632 .papdRateMaskHt40 = LE32(0x6cf0e0e0),
2633 .futureModal = {
2634 0, 0, 0, 0, 0, 0, 0, 0,
2635 },
2636 },
2637 .base_ext2 = {
2638 .tempSlopeLow = 35,
2639 .tempSlopeHigh = 50,
2640 .xatten1DBLow = {0, 0, 0},
2641 .xatten1MarginLow = {0, 0, 0},
2642 .xatten1DBHigh = {0, 0, 0},
2643 .xatten1MarginHigh = {0, 0, 0}
2644 },
2645 .calFreqPier5G = {
2646 FREQ2FBIN(5160, 0),
2647 FREQ2FBIN(5220, 0),
2648 FREQ2FBIN(5320, 0),
2649 FREQ2FBIN(5400, 0),
2650 FREQ2FBIN(5500, 0),
2651 FREQ2FBIN(5600, 0),
2652 FREQ2FBIN(5700, 0),
2653 FREQ2FBIN(5785, 0)
2654 },
2655 .calPierData5G = {
2656 {
2657 {0, 0, 0, 0, 0},
2658 {0, 0, 0, 0, 0},
2659 {0, 0, 0, 0, 0},
2660 {0, 0, 0, 0, 0},
2661 {0, 0, 0, 0, 0},
2662 {0, 0, 0, 0, 0},
2663 {0, 0, 0, 0, 0},
2664 {0, 0, 0, 0, 0},
2665 },
2666 {
2667 {0, 0, 0, 0, 0},
2668 {0, 0, 0, 0, 0},
2669 {0, 0, 0, 0, 0},
2670 {0, 0, 0, 0, 0},
2671 {0, 0, 0, 0, 0},
2672 {0, 0, 0, 0, 0},
2673 {0, 0, 0, 0, 0},
2674 {0, 0, 0, 0, 0},
2675 },
2676 {
2677 {0, 0, 0, 0, 0},
2678 {0, 0, 0, 0, 0},
2679 {0, 0, 0, 0, 0},
2680 {0, 0, 0, 0, 0},
2681 {0, 0, 0, 0, 0},
2682 {0, 0, 0, 0, 0},
2683 {0, 0, 0, 0, 0},
2684 {0, 0, 0, 0, 0},
2685 },
2686
2687 },
2688 .calTarget_freqbin_5G = {
2689 FREQ2FBIN(5180, 0),
2690 FREQ2FBIN(5240, 0),
2691 FREQ2FBIN(5320, 0),
2692 FREQ2FBIN(5400, 0),
2693 FREQ2FBIN(5500, 0),
2694 FREQ2FBIN(5600, 0),
2695 FREQ2FBIN(5700, 0),
2696 FREQ2FBIN(5825, 0)
2697 },
2698 .calTarget_freqbin_5GHT20 = {
2699 FREQ2FBIN(5180, 0),
2700 FREQ2FBIN(5240, 0),
2701 FREQ2FBIN(5320, 0),
2702 FREQ2FBIN(5400, 0),
2703 FREQ2FBIN(5500, 0),
2704 FREQ2FBIN(5700, 0),
2705 FREQ2FBIN(5745, 0),
2706 FREQ2FBIN(5825, 0)
2707 },
2708 .calTarget_freqbin_5GHT40 = {
2709 FREQ2FBIN(5180, 0),
2710 FREQ2FBIN(5240, 0),
2711 FREQ2FBIN(5320, 0),
2712 FREQ2FBIN(5400, 0),
2713 FREQ2FBIN(5500, 0),
2714 FREQ2FBIN(5700, 0),
2715 FREQ2FBIN(5745, 0),
2716 FREQ2FBIN(5825, 0)
2717 },
2718 .calTargetPower5G = {
2719 /* 6-24,36,48,54 */
2720 { {30, 30, 28, 24} },
2721 { {30, 30, 28, 24} },
2722 { {30, 30, 28, 24} },
2723 { {30, 30, 28, 24} },
2724 { {30, 30, 28, 24} },
2725 { {30, 30, 28, 24} },
2726 { {30, 30, 28, 24} },
2727 { {30, 30, 28, 24} },
2728 },
2729 .calTargetPower5GHT20 = {
2730 /*
2731 * 0_8_16,1-3_9-11_17-19,
2732 * 4,5,6,7,12,13,14,15,20,21,22,23
2733 */
2734 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2735 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2736 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2737 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2738 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2739 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2740 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2741 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2742 },
2743 .calTargetPower5GHT40 = {
2744 /*
2745 * 0_8_16,1-3_9-11_17-19,
2746 * 4,5,6,7,12,13,14,15,20,21,22,23
2747 */
2748 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2749 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2750 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2751 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2752 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2753 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2754 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2755 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2756 },
2757 .ctlIndex_5G = {
2758 0x10, 0x16, 0x18, 0x40, 0x46,
2759 0x48, 0x30, 0x36, 0x38
2760 },
2761 .ctl_freqbin_5G = {
2762 {
2763 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2764 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2765 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2766 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2767 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2768 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2769 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2770 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2771 },
2772 {
2773 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2778 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 },
2782
2783 {
2784 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2785 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2786 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2787 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2788 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2789 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2790 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2791 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2792 },
2793
2794 {
2795 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2796 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2797 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2798 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2799 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2800 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2801 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2802 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2803 },
2804
2805 {
2806 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2807 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2808 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2809 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2810 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2811 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2812 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2813 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2814 },
2815
2816 {
2817 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2818 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2819 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2820 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2821 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2822 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2823 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2824 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2825 },
2826
2827 {
2828 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2829 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2830 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2831 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2832 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2833 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2834 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2835 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2836 },
2837
2838 {
2839 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2840 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2841 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2842 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2843 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2844 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2845 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2846 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2847 },
2848
2849 {
2850 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2851 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2852 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2853 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2854 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2855 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2856 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2857 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2858 }
2859 },
2860 .ctlPowerData_5G = {
2861 {
2862 {
2863 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2864 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2865 }
2866 },
2867 {
2868 {
2869 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2870 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2871 }
2872 },
2873 {
2874 {
2875 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2876 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2877 }
2878 },
2879 {
2880 {
2881 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2882 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2883 }
2884 },
2885 {
2886 {
2887 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2888 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2889 }
2890 },
2891 {
2892 {
2893 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2894 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2895 }
2896 },
2897 {
2898 {
2899 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2900 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2901 }
2902 },
2903 {
2904 {
2905 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2906 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2907 }
2908 },
2909 {
2910 {
2911 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2912 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2913 }
2914 },
2915 }
2916 };
2917
2918
2919 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2920 &ar9300_default,
2921 &ar9300_x112,
2922 &ar9300_h116,
2923 &ar9300_h112,
2924 &ar9300_x113,
2925 };
2926
2927 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2928 {
2929 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2930 int it;
2931
2932 for (it = 0; it < N_LOOP; it++)
2933 if (ar9300_eep_templates[it]->templateVersion == id)
2934 return ar9300_eep_templates[it];
2935 return NULL;
2936 #undef N_LOOP
2937 }
2938
2939
2940 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2941 {
2942 if (fbin == AR5416_BCHAN_UNUSED)
2943 return fbin;
2944
2945 return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2946 }
2947
2948 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2949 {
2950 return 0;
2951 }
2952
2953 static int interpolate(int x, int xa, int xb, int ya, int yb)
2954 {
2955 int bf, factor, plus;
2956
2957 bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2958 factor = bf / 2;
2959 plus = bf % 2;
2960 return ya + factor + plus;
2961 }
2962
2963 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2964 enum eeprom_param param)
2965 {
2966 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2967 struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2968
2969 switch (param) {
2970 case EEP_MAC_LSW:
2971 return get_unaligned_be16(eep->macAddr);
2972 case EEP_MAC_MID:
2973 return get_unaligned_be16(eep->macAddr + 2);
2974 case EEP_MAC_MSW:
2975 return get_unaligned_be16(eep->macAddr + 4);
2976 case EEP_REG_0:
2977 return le16_to_cpu(pBase->regDmn[0]);
2978 case EEP_OP_CAP:
2979 return pBase->deviceCap;
2980 case EEP_OP_MODE:
2981 return pBase->opCapFlags.opFlags;
2982 case EEP_RF_SILENT:
2983 return pBase->rfSilent;
2984 case EEP_TX_MASK:
2985 return (pBase->txrxMask >> 4) & 0xf;
2986 case EEP_RX_MASK:
2987 return pBase->txrxMask & 0xf;
2988 case EEP_DRIVE_STRENGTH:
2989 #define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
2990 return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
2991 case EEP_INTERNAL_REGULATOR:
2992 /* Bit 4 is internal regulator flag */
2993 return (pBase->featureEnable & 0x10) >> 4;
2994 case EEP_SWREG:
2995 return le32_to_cpu(pBase->swreg);
2996 case EEP_PAPRD:
2997 return !!(pBase->featureEnable & BIT(5));
2998 case EEP_CHAIN_MASK_REDUCE:
2999 return (pBase->miscConfiguration >> 0x3) & 0x1;
3000 case EEP_ANT_DIV_CTL1:
3001 return eep->base_ext1.ant_div_control;
3002 case EEP_ANTENNA_GAIN_5G:
3003 return eep->modalHeader5G.antennaGain;
3004 case EEP_ANTENNA_GAIN_2G:
3005 return eep->modalHeader2G.antennaGain;
3006 case EEP_QUICK_DROP:
3007 return pBase->miscConfiguration & BIT(1);
3008 default:
3009 return 0;
3010 }
3011 }
3012
3013 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3014 u8 *buffer)
3015 {
3016 u16 val;
3017
3018 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3019 return false;
3020
3021 *buffer = (val >> (8 * (address % 2))) & 0xff;
3022 return true;
3023 }
3024
3025 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3026 u8 *buffer)
3027 {
3028 u16 val;
3029
3030 if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3031 return false;
3032
3033 buffer[0] = val >> 8;
3034 buffer[1] = val & 0xff;
3035
3036 return true;
3037 }
3038
3039 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3040 int count)
3041 {
3042 struct ath_common *common = ath9k_hw_common(ah);
3043 int i;
3044
3045 if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3046 ath_dbg(common, EEPROM, "eeprom address not in range\n");
3047 return false;
3048 }
3049
3050 /*
3051 * Since we're reading the bytes in reverse order from a little-endian
3052 * word stream, an even address means we only use the lower half of
3053 * the 16-bit word at that address
3054 */
3055 if (address % 2 == 0) {
3056 if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3057 goto error;
3058
3059 count--;
3060 }
3061
3062 for (i = 0; i < count / 2; i++) {
3063 if (!ar9300_eeprom_read_word(common, address, buffer))
3064 goto error;
3065
3066 address -= 2;
3067 buffer += 2;
3068 }
3069
3070 if (count % 2)
3071 if (!ar9300_eeprom_read_byte(common, address, buffer))
3072 goto error;
3073
3074 return true;
3075
3076 error:
3077 ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3078 address);
3079 return false;
3080 }
3081
3082 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3083 {
3084 REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3085
3086 if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3087 AR9300_OTP_STATUS_VALID, 1000))
3088 return false;
3089
3090 *data = REG_READ(ah, AR9300_OTP_READ_DATA);
3091 return true;
3092 }
3093
3094 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3095 int count)
3096 {
3097 u32 data;
3098 int i;
3099
3100 for (i = 0; i < count; i++) {
3101 int offset = 8 * ((address - i) % 4);
3102 if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3103 return false;
3104
3105 buffer[i] = (data >> offset) & 0xff;
3106 }
3107
3108 return true;
3109 }
3110
3111
3112 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3113 int *length, int *major, int *minor)
3114 {
3115 unsigned long value[4];
3116
3117 value[0] = best[0];
3118 value[1] = best[1];
3119 value[2] = best[2];
3120 value[3] = best[3];
3121 *code = ((value[0] >> 5) & 0x0007);
3122 *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3123 *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3124 *major = (value[2] & 0x000f);
3125 *minor = (value[3] & 0x00ff);
3126 }
3127
3128 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3129 {
3130 int it, checksum = 0;
3131
3132 for (it = 0; it < dsize; it++) {
3133 checksum += data[it];
3134 checksum &= 0xffff;
3135 }
3136
3137 return checksum;
3138 }
3139
3140 static bool ar9300_uncompress_block(struct ath_hw *ah,
3141 u8 *mptr,
3142 int mdataSize,
3143 u8 *block,
3144 int size)
3145 {
3146 int it;
3147 int spot;
3148 int offset;
3149 int length;
3150 struct ath_common *common = ath9k_hw_common(ah);
3151
3152 spot = 0;
3153
3154 for (it = 0; it < size; it += (length+2)) {
3155 offset = block[it];
3156 offset &= 0xff;
3157 spot += offset;
3158 length = block[it+1];
3159 length &= 0xff;
3160
3161 if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3162 ath_dbg(common, EEPROM,
3163 "Restore at %d: spot=%d offset=%d length=%d\n",
3164 it, spot, offset, length);
3165 memcpy(&mptr[spot], &block[it+2], length);
3166 spot += length;
3167 } else if (length > 0) {
3168 ath_dbg(common, EEPROM,
3169 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3170 it, spot, offset, length);
3171 return false;
3172 }
3173 }
3174 return true;
3175 }
3176
3177 static int ar9300_compress_decision(struct ath_hw *ah,
3178 int it,
3179 int code,
3180 int reference,
3181 u8 *mptr,
3182 u8 *word, int length, int mdata_size)
3183 {
3184 struct ath_common *common = ath9k_hw_common(ah);
3185 const struct ar9300_eeprom *eep = NULL;
3186
3187 switch (code) {
3188 case _CompressNone:
3189 if (length != mdata_size) {
3190 ath_dbg(common, EEPROM,
3191 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3192 mdata_size, length);
3193 return -1;
3194 }
3195 memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3196 ath_dbg(common, EEPROM,
3197 "restored eeprom %d: uncompressed, length %d\n",
3198 it, length);
3199 break;
3200 case _CompressBlock:
3201 if (reference == 0) {
3202 } else {
3203 eep = ar9003_eeprom_struct_find_by_id(reference);
3204 if (eep == NULL) {
3205 ath_dbg(common, EEPROM,
3206 "can't find reference eeprom struct %d\n",
3207 reference);
3208 return -1;
3209 }
3210 memcpy(mptr, eep, mdata_size);
3211 }
3212 ath_dbg(common, EEPROM,
3213 "restore eeprom %d: block, reference %d, length %d\n",
3214 it, reference, length);
3215 ar9300_uncompress_block(ah, mptr, mdata_size,
3216 (u8 *) (word + COMP_HDR_LEN), length);
3217 break;
3218 default:
3219 ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3220 return -1;
3221 }
3222 return 0;
3223 }
3224
3225 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3226 int count);
3227
3228 static bool ar9300_check_header(void *data)
3229 {
3230 u32 *word = data;
3231 return !(*word == 0 || *word == ~0);
3232 }
3233
3234 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3235 int base_addr)
3236 {
3237 u8 header[4];
3238
3239 if (!read(ah, base_addr, header, 4))
3240 return false;
3241
3242 return ar9300_check_header(header);
3243 }
3244
3245 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3246 int mdata_size)
3247 {
3248 struct ath_common *common = ath9k_hw_common(ah);
3249 u16 *data = (u16 *) mptr;
3250 int i;
3251
3252 for (i = 0; i < mdata_size / 2; i++, data++)
3253 ath9k_hw_nvram_read(common, i, data);
3254
3255 return 0;
3256 }
3257 /*
3258 * Read the configuration data from the eeprom.
3259 * The data can be put in any specified memory buffer.
3260 *
3261 * Returns -1 on error.
3262 * Returns address of next memory location on success.
3263 */
3264 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3265 u8 *mptr, int mdata_size)
3266 {
3267 #define MDEFAULT 15
3268 #define MSTATE 100
3269 int cptr;
3270 u8 *word;
3271 int code;
3272 int reference, length, major, minor;
3273 int osize;
3274 int it;
3275 u16 checksum, mchecksum;
3276 struct ath_common *common = ath9k_hw_common(ah);
3277 eeprom_read_op read;
3278
3279 if (ath9k_hw_use_flash(ah))
3280 return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3281
3282 word = kzalloc(2048, GFP_KERNEL);
3283 if (!word)
3284 return -ENOMEM;
3285
3286 memcpy(mptr, &ar9300_default, mdata_size);
3287
3288 read = ar9300_read_eeprom;
3289 if (AR_SREV_9485(ah))
3290 cptr = AR9300_BASE_ADDR_4K;
3291 else if (AR_SREV_9330(ah))
3292 cptr = AR9300_BASE_ADDR_512;
3293 else
3294 cptr = AR9300_BASE_ADDR;
3295 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3296 cptr);
3297 if (ar9300_check_eeprom_header(ah, read, cptr))
3298 goto found;
3299
3300 cptr = AR9300_BASE_ADDR_512;
3301 ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3302 cptr);
3303 if (ar9300_check_eeprom_header(ah, read, cptr))
3304 goto found;
3305
3306 read = ar9300_read_otp;
3307 cptr = AR9300_BASE_ADDR;
3308 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3309 if (ar9300_check_eeprom_header(ah, read, cptr))
3310 goto found;
3311
3312 cptr = AR9300_BASE_ADDR_512;
3313 ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 if (ar9300_check_eeprom_header(ah, read, cptr))
3315 goto found;
3316
3317 goto fail;
3318
3319 found:
3320 ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3321
3322 for (it = 0; it < MSTATE; it++) {
3323 if (!read(ah, cptr, word, COMP_HDR_LEN))
3324 goto fail;
3325
3326 if (!ar9300_check_header(word))
3327 break;
3328
3329 ar9300_comp_hdr_unpack(word, &code, &reference,
3330 &length, &major, &minor);
3331 ath_dbg(common, EEPROM,
3332 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3333 cptr, code, reference, length, major, minor);
3334 if ((!AR_SREV_9485(ah) && length >= 1024) ||
3335 (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3336 ath_dbg(common, EEPROM, "Skipping bad header\n");
3337 cptr -= COMP_HDR_LEN;
3338 continue;
3339 }
3340
3341 osize = length;
3342 read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3343 checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3344 mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3345 ath_dbg(common, EEPROM, "checksum %x %x\n",
3346 checksum, mchecksum);
3347 if (checksum == mchecksum) {
3348 ar9300_compress_decision(ah, it, code, reference, mptr,
3349 word, length, mdata_size);
3350 } else {
3351 ath_dbg(common, EEPROM,
3352 "skipping block with bad checksum\n");
3353 }
3354 cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3355 }
3356
3357 kfree(word);
3358 return cptr;
3359
3360 fail:
3361 kfree(word);
3362 return -1;
3363 }
3364
3365 /*
3366 * Restore the configuration structure by reading the eeprom.
3367 * This function destroys any existing in-memory structure
3368 * content.
3369 */
3370 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3371 {
3372 u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3373
3374 if (ar9300_eeprom_restore_internal(ah, mptr,
3375 sizeof(struct ar9300_eeprom)) < 0)
3376 return false;
3377
3378 return true;
3379 }
3380
3381 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3382 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3383 struct ar9300_modal_eep_header *modal_hdr)
3384 {
3385 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3386 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3387 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3388 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3389 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3390 PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3391 PR_EEP("Switch Settle", modal_hdr->switchSettling);
3392 PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3393 PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3394 PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3395 PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3396 PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3397 PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3398 PR_EEP("Temp Slope", modal_hdr->tempSlope);
3399 PR_EEP("Volt Slope", modal_hdr->voltSlope);
3400 PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3401 PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3402 PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3403 PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3404 PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3405 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3406 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3407 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3408 PR_EEP("Quick Drop", modal_hdr->quick_drop);
3409 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3410 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3411 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3412 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3413 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3414 PR_EEP("txClip", modal_hdr->txClip);
3415 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3416
3417 return len;
3418 }
3419
3420 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3421 u8 *buf, u32 len, u32 size)
3422 {
3423 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3424 struct ar9300_base_eep_hdr *pBase;
3425
3426 if (!dump_base_hdr) {
3427 len += snprintf(buf + len, size - len,
3428 "%20s :\n", "2GHz modal Header");
3429 len += ar9003_dump_modal_eeprom(buf, len, size,
3430 &eep->modalHeader2G);
3431 len += snprintf(buf + len, size - len,
3432 "%20s :\n", "5GHz modal Header");
3433 len += ar9003_dump_modal_eeprom(buf, len, size,
3434 &eep->modalHeader5G);
3435 goto out;
3436 }
3437
3438 pBase = &eep->baseEepHeader;
3439
3440 PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3441 PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3442 PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3443 PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3444 PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3445 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3446 AR5416_OPFLAGS_11A));
3447 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3448 AR5416_OPFLAGS_11G));
3449 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3450 AR5416_OPFLAGS_N_2G_HT20));
3451 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3452 AR5416_OPFLAGS_N_2G_HT40));
3453 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3454 AR5416_OPFLAGS_N_5G_HT20));
3455 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3456 AR5416_OPFLAGS_N_5G_HT40));
3457 PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3458 PR_EEP("RF Silent", pBase->rfSilent);
3459 PR_EEP("BT option", pBase->blueToothOptions);
3460 PR_EEP("Device Cap", pBase->deviceCap);
3461 PR_EEP("Device Type", pBase->deviceType);
3462 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3463 PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3464 PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3465 PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3466 PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3467 PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3468 PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3469 PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3470 PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3471 PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3472 PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3473 PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3474 PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3475 PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3476 PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3477 PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3478 PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3479 PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3480 PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3481
3482 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3483 ah->eeprom.ar9300_eep.macAddr);
3484 out:
3485 if (len > size)
3486 len = size;
3487
3488 return len;
3489 }
3490 #else
3491 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3492 u8 *buf, u32 len, u32 size)
3493 {
3494 return 0;
3495 }
3496 #endif
3497
3498 /* XXX: review hardware docs */
3499 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3500 {
3501 return ah->eeprom.ar9300_eep.eepromVersion;
3502 }
3503
3504 /* XXX: could be read from the eepromVersion, not sure yet */
3505 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3506 {
3507 return 0;
3508 }
3509
3510 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3511 {
3512 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3513
3514 if (is2ghz)
3515 return eep->modalHeader2G.xpaBiasLvl;
3516 else
3517 return eep->modalHeader5G.xpaBiasLvl;
3518 }
3519
3520 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3521 {
3522 int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3523
3524 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3525 REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3526 else if (AR_SREV_9462(ah))
3527 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3528 else {
3529 REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3530 REG_RMW_FIELD(ah, AR_CH0_THERM,
3531 AR_CH0_THERM_XPABIASLVL_MSB,
3532 bias >> 2);
3533 REG_RMW_FIELD(ah, AR_CH0_THERM,
3534 AR_CH0_THERM_XPASHORT2GND, 1);
3535 }
3536 }
3537
3538 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
3539 {
3540 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3541 __le16 val;
3542
3543 if (is_2ghz)
3544 val = eep->modalHeader2G.switchcomspdt;
3545 else
3546 val = eep->modalHeader5G.switchcomspdt;
3547 return le16_to_cpu(val);
3548 }
3549
3550
3551 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3552 {
3553 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3554 __le32 val;
3555
3556 if (is2ghz)
3557 val = eep->modalHeader2G.antCtrlCommon;
3558 else
3559 val = eep->modalHeader5G.antCtrlCommon;
3560 return le32_to_cpu(val);
3561 }
3562
3563 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3564 {
3565 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3566 __le32 val;
3567
3568 if (is2ghz)
3569 val = eep->modalHeader2G.antCtrlCommon2;
3570 else
3571 val = eep->modalHeader5G.antCtrlCommon2;
3572 return le32_to_cpu(val);
3573 }
3574
3575 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3576 int chain,
3577 bool is2ghz)
3578 {
3579 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3580 __le16 val = 0;
3581
3582 if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3583 if (is2ghz)
3584 val = eep->modalHeader2G.antCtrlChain[chain];
3585 else
3586 val = eep->modalHeader5G.antCtrlChain[chain];
3587 }
3588
3589 return le16_to_cpu(val);
3590 }
3591
3592 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3593 {
3594 int chain;
3595 u32 regval;
3596 u32 ant_div_ctl1;
3597 static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3598 AR_PHY_SWITCH_CHAIN_0,
3599 AR_PHY_SWITCH_CHAIN_1,
3600 AR_PHY_SWITCH_CHAIN_2,
3601 };
3602
3603 u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3604
3605 if (AR_SREV_9462(ah)) {
3606 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3607 AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3608 } else
3609 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3610 AR_SWITCH_TABLE_COM_ALL, value);
3611
3612
3613 /*
3614 * AR9462 defines new switch table for BT/WLAN,
3615 * here's new field name in XXX.ref for both 2G and 5G.
3616 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3617 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3618 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3619 *
3620 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3621 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3622 *
3623 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3624 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3625 */
3626 if (AR_SREV_9462_20_OR_LATER(ah)) {
3627 value = ar9003_switch_com_spdt_get(ah, is2ghz);
3628 REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3629 AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3630 }
3631
3632 value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3633 REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3634
3635 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3636 if ((ah->rxchainmask & BIT(chain)) ||
3637 (ah->txchainmask & BIT(chain))) {
3638 value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3639 is2ghz);
3640 REG_RMW_FIELD(ah, switch_chain_reg[chain],
3641 AR_SWITCH_TABLE_ALL, value);
3642 }
3643 }
3644
3645 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3646 value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3647 /*
3648 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3649 * are the fields present
3650 */
3651 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3652 regval &= (~AR_ANT_DIV_CTRL_ALL);
3653 regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3654 /* enable_lnadiv */
3655 regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3656 regval |= ((value >> 6) & 0x1) <<
3657 AR_PHY_9485_ANT_DIV_LNADIV_S;
3658 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3659
3660 /*enable fast_div */
3661 regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3662 regval &= (~AR_FAST_DIV_ENABLE);
3663 regval |= ((value >> 7) & 0x1) <<
3664 AR_FAST_DIV_ENABLE_S;
3665 REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3666 ant_div_ctl1 =
3667 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3668 /* check whether antenna diversity is enabled */
3669 if ((ant_div_ctl1 >> 0x6) == 0x3) {
3670 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3671 /*
3672 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3673 * main_tb, alt_tb
3674 */
3675 regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3676 AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3677 AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3678 AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3679 /* by default use LNA1 for the main antenna */
3680 regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3681 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3682 regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3683 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3684 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3685 }
3686
3687
3688 }
3689
3690 }
3691
3692 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3693 {
3694 int drive_strength;
3695 unsigned long reg;
3696
3697 drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3698
3699 if (!drive_strength)
3700 return;
3701
3702 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3703 reg &= ~0x00ffffc0;
3704 reg |= 0x5 << 21;
3705 reg |= 0x5 << 18;
3706 reg |= 0x5 << 15;
3707 reg |= 0x5 << 12;
3708 reg |= 0x5 << 9;
3709 reg |= 0x5 << 6;
3710 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3711
3712 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3713 reg &= ~0xffffffe0;
3714 reg |= 0x5 << 29;
3715 reg |= 0x5 << 26;
3716 reg |= 0x5 << 23;
3717 reg |= 0x5 << 20;
3718 reg |= 0x5 << 17;
3719 reg |= 0x5 << 14;
3720 reg |= 0x5 << 11;
3721 reg |= 0x5 << 8;
3722 reg |= 0x5 << 5;
3723 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3724
3725 reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3726 reg &= ~0xff800000;
3727 reg |= 0x5 << 29;
3728 reg |= 0x5 << 26;
3729 reg |= 0x5 << 23;
3730 REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3731 }
3732
3733 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3734 struct ath9k_channel *chan)
3735 {
3736 int f[3], t[3];
3737 u16 value;
3738 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3739
3740 if (chain >= 0 && chain < 3) {
3741 if (IS_CHAN_2GHZ(chan))
3742 return eep->modalHeader2G.xatten1DB[chain];
3743 else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3744 t[0] = eep->base_ext2.xatten1DBLow[chain];
3745 f[0] = 5180;
3746 t[1] = eep->modalHeader5G.xatten1DB[chain];
3747 f[1] = 5500;
3748 t[2] = eep->base_ext2.xatten1DBHigh[chain];
3749 f[2] = 5785;
3750 value = ar9003_hw_power_interpolate((s32) chan->channel,
3751 f, t, 3);
3752 return value;
3753 } else
3754 return eep->modalHeader5G.xatten1DB[chain];
3755 }
3756
3757 return 0;
3758 }
3759
3760
3761 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3762 struct ath9k_channel *chan)
3763 {
3764 int f[3], t[3];
3765 u16 value;
3766 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3767
3768 if (chain >= 0 && chain < 3) {
3769 if (IS_CHAN_2GHZ(chan))
3770 return eep->modalHeader2G.xatten1Margin[chain];
3771 else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3772 t[0] = eep->base_ext2.xatten1MarginLow[chain];
3773 f[0] = 5180;
3774 t[1] = eep->modalHeader5G.xatten1Margin[chain];
3775 f[1] = 5500;
3776 t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3777 f[2] = 5785;
3778 value = ar9003_hw_power_interpolate((s32) chan->channel,
3779 f, t, 3);
3780 return value;
3781 } else
3782 return eep->modalHeader5G.xatten1Margin[chain];
3783 }
3784
3785 return 0;
3786 }
3787
3788 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3789 {
3790 int i;
3791 u16 value;
3792 unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3793 AR_PHY_EXT_ATTEN_CTL_1,
3794 AR_PHY_EXT_ATTEN_CTL_2,
3795 };
3796
3797 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3798 for (i = 0; i < 3; i++) {
3799 if (ah->txchainmask & BIT(i)) {
3800 value = ar9003_hw_atten_chain_get(ah, i, chan);
3801 REG_RMW_FIELD(ah, ext_atten_reg[i],
3802 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3803
3804 value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3805 REG_RMW_FIELD(ah, ext_atten_reg[i],
3806 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3807 value);
3808 }
3809 }
3810 }
3811
3812 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3813 {
3814 int timeout = 100;
3815
3816 while (pmu_set != REG_READ(ah, pmu_reg)) {
3817 if (timeout-- == 0)
3818 return false;
3819 REG_WRITE(ah, pmu_reg, pmu_set);
3820 udelay(10);
3821 }
3822
3823 return true;
3824 }
3825
3826 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3827 {
3828 int internal_regulator =
3829 ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3830 u32 reg_val;
3831
3832 if (internal_regulator) {
3833 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3834 int reg_pmu_set;
3835
3836 reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3837 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3838 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3839 return;
3840
3841 if (AR_SREV_9330(ah)) {
3842 if (ah->is_clk_25mhz) {
3843 reg_pmu_set = (3 << 1) | (8 << 4) |
3844 (3 << 8) | (1 << 14) |
3845 (6 << 17) | (1 << 20) |
3846 (3 << 24);
3847 } else {
3848 reg_pmu_set = (4 << 1) | (7 << 4) |
3849 (3 << 8) | (1 << 14) |
3850 (6 << 17) | (1 << 20) |
3851 (3 << 24);
3852 }
3853 } else {
3854 reg_pmu_set = (5 << 1) | (7 << 4) |
3855 (2 << 8) | (2 << 14) |
3856 (6 << 17) | (1 << 20) |
3857 (3 << 24) | (1 << 28);
3858 }
3859
3860 REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3861 if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3862 return;
3863
3864 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3865 | (4 << 26);
3866 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3867 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3868 return;
3869
3870 reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3871 | (1 << 21);
3872 REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3873 if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3874 return;
3875 } else if (AR_SREV_9462(ah)) {
3876 reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3877 REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3878 } else {
3879 /* Internal regulator is ON. Write swreg register. */
3880 reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3881 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3882 REG_READ(ah, AR_RTC_REG_CONTROL1) &
3883 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3884 REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3885 /* Set REG_CONTROL1.SWREG_PROGRAM */
3886 REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3887 REG_READ(ah,
3888 AR_RTC_REG_CONTROL1) |
3889 AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3890 }
3891 } else {
3892 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3893 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3894 while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3895 AR_PHY_PMU2_PGM))
3896 udelay(10);
3897
3898 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3899 while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3900 AR_PHY_PMU1_PWD))
3901 udelay(10);
3902 REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3903 while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3904 AR_PHY_PMU2_PGM))
3905 udelay(10);
3906 } else if (AR_SREV_9462(ah))
3907 REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3908 else {
3909 reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3910 AR_RTC_FORCE_SWREG_PRD;
3911 REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3912 }
3913 }
3914
3915 }
3916
3917 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3918 {
3919 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3920 u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3921
3922 if (eep->baseEepHeader.featureEnable & 0x40) {
3923 tuning_caps_param &= 0x7f;
3924 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3925 tuning_caps_param);
3926 REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3927 tuning_caps_param);
3928 }
3929 }
3930
3931 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3932 {
3933 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3934 int quick_drop = ath9k_hw_ar9300_get_eeprom(ah, EEP_QUICK_DROP);
3935 s32 t[3], f[3] = {5180, 5500, 5785};
3936
3937 if (!quick_drop)
3938 return;
3939
3940 if (freq < 4000)
3941 quick_drop = eep->modalHeader2G.quick_drop;
3942 else {
3943 t[0] = eep->base_ext1.quick_drop_low;
3944 t[1] = eep->modalHeader5G.quick_drop;
3945 t[2] = eep->base_ext1.quick_drop_high;
3946 quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3947 }
3948 REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3949 }
3950
3951 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, u16 freq)
3952 {
3953 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3954 u32 value;
3955
3956 value = (freq < 4000) ? eep->modalHeader2G.txEndToXpaOff :
3957 eep->modalHeader5G.txEndToXpaOff;
3958
3959 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3960 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3961 REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3962 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3963 }
3964
3965 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3966 struct ath9k_channel *chan)
3967 {
3968 ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3969 ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3970 ar9003_hw_drive_strength_apply(ah);
3971 ar9003_hw_atten_apply(ah, chan);
3972 ar9003_hw_quick_drop_apply(ah, chan->channel);
3973 if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3974 ar9003_hw_internal_regulator_apply(ah);
3975 if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3976 ar9003_hw_apply_tuning_caps(ah);
3977 ar9003_hw_txend_to_xpa_off_apply(ah, chan->channel);
3978 }
3979
3980 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3981 struct ath9k_channel *chan)
3982 {
3983 }
3984
3985 /*
3986 * Returns the interpolated y value corresponding to the specified x value
3987 * from the np ordered pairs of data (px,py).
3988 * The pairs do not have to be in any order.
3989 * If the specified x value is less than any of the px,
3990 * the returned y value is equal to the py for the lowest px.
3991 * If the specified x value is greater than any of the px,
3992 * the returned y value is equal to the py for the highest px.
3993 */
3994 static int ar9003_hw_power_interpolate(int32_t x,
3995 int32_t *px, int32_t *py, u_int16_t np)
3996 {
3997 int ip = 0;
3998 int lx = 0, ly = 0, lhave = 0;
3999 int hx = 0, hy = 0, hhave = 0;
4000 int dx = 0;
4001 int y = 0;
4002
4003 lhave = 0;
4004 hhave = 0;
4005
4006 /* identify best lower and higher x calibration measurement */
4007 for (ip = 0; ip < np; ip++) {
4008 dx = x - px[ip];
4009
4010 /* this measurement is higher than our desired x */
4011 if (dx <= 0) {
4012 if (!hhave || dx > (x - hx)) {
4013 /* new best higher x measurement */
4014 hx = px[ip];
4015 hy = py[ip];
4016 hhave = 1;
4017 }
4018 }
4019 /* this measurement is lower than our desired x */
4020 if (dx >= 0) {
4021 if (!lhave || dx < (x - lx)) {
4022 /* new best lower x measurement */
4023 lx = px[ip];
4024 ly = py[ip];
4025 lhave = 1;
4026 }
4027 }
4028 }
4029
4030 /* the low x is good */
4031 if (lhave) {
4032 /* so is the high x */
4033 if (hhave) {
4034 /* they're the same, so just pick one */
4035 if (hx == lx)
4036 y = ly;
4037 else /* interpolate */
4038 y = interpolate(x, lx, hx, ly, hy);
4039 } else /* only low is good, use it */
4040 y = ly;
4041 } else if (hhave) /* only high is good, use it */
4042 y = hy;
4043 else /* nothing is good,this should never happen unless np=0, ???? */
4044 y = -(1 << 30);
4045 return y;
4046 }
4047
4048 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4049 u16 rateIndex, u16 freq, bool is2GHz)
4050 {
4051 u16 numPiers, i;
4052 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4053 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4054 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4055 struct cal_tgt_pow_legacy *pEepromTargetPwr;
4056 u8 *pFreqBin;
4057
4058 if (is2GHz) {
4059 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4060 pEepromTargetPwr = eep->calTargetPower2G;
4061 pFreqBin = eep->calTarget_freqbin_2G;
4062 } else {
4063 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4064 pEepromTargetPwr = eep->calTargetPower5G;
4065 pFreqBin = eep->calTarget_freqbin_5G;
4066 }
4067
4068 /*
4069 * create array of channels and targetpower from
4070 * targetpower piers stored on eeprom
4071 */
4072 for (i = 0; i < numPiers; i++) {
4073 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4074 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4075 }
4076
4077 /* interpolate to get target power for given frequency */
4078 return (u8) ar9003_hw_power_interpolate((s32) freq,
4079 freqArray,
4080 targetPowerArray, numPiers);
4081 }
4082
4083 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4084 u16 rateIndex,
4085 u16 freq, bool is2GHz)
4086 {
4087 u16 numPiers, i;
4088 s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4089 s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4090 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4091 struct cal_tgt_pow_ht *pEepromTargetPwr;
4092 u8 *pFreqBin;
4093
4094 if (is2GHz) {
4095 numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4096 pEepromTargetPwr = eep->calTargetPower2GHT20;
4097 pFreqBin = eep->calTarget_freqbin_2GHT20;
4098 } else {
4099 numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4100 pEepromTargetPwr = eep->calTargetPower5GHT20;
4101 pFreqBin = eep->calTarget_freqbin_5GHT20;
4102 }
4103
4104 /*
4105 * create array of channels and targetpower
4106 * from targetpower piers stored on eeprom
4107 */
4108 for (i = 0; i < numPiers; i++) {
4109 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4110 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4111 }
4112
4113 /* interpolate to get target power for given frequency */
4114 return (u8) ar9003_hw_power_interpolate((s32) freq,
4115 freqArray,
4116 targetPowerArray, numPiers);
4117 }
4118
4119 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4120 u16 rateIndex,
4121 u16 freq, bool is2GHz)
4122 {
4123 u16 numPiers, i;
4124 s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4125 s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4126 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4127 struct cal_tgt_pow_ht *pEepromTargetPwr;
4128 u8 *pFreqBin;
4129
4130 if (is2GHz) {
4131 numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4132 pEepromTargetPwr = eep->calTargetPower2GHT40;
4133 pFreqBin = eep->calTarget_freqbin_2GHT40;
4134 } else {
4135 numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4136 pEepromTargetPwr = eep->calTargetPower5GHT40;
4137 pFreqBin = eep->calTarget_freqbin_5GHT40;
4138 }
4139
4140 /*
4141 * create array of channels and targetpower from
4142 * targetpower piers stored on eeprom
4143 */
4144 for (i = 0; i < numPiers; i++) {
4145 freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4146 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4147 }
4148
4149 /* interpolate to get target power for given frequency */
4150 return (u8) ar9003_hw_power_interpolate((s32) freq,
4151 freqArray,
4152 targetPowerArray, numPiers);
4153 }
4154
4155 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4156 u16 rateIndex, u16 freq)
4157 {
4158 u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4159 s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4160 s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4161 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4162 struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4163 u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4164
4165 /*
4166 * create array of channels and targetpower from
4167 * targetpower piers stored on eeprom
4168 */
4169 for (i = 0; i < numPiers; i++) {
4170 freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4171 targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4172 }
4173
4174 /* interpolate to get target power for given frequency */
4175 return (u8) ar9003_hw_power_interpolate((s32) freq,
4176 freqArray,
4177 targetPowerArray, numPiers);
4178 }
4179
4180 /* Set tx power registers to array of values passed in */
4181 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4182 {
4183 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4184 /* make sure forced gain is not set */
4185 REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4186
4187 /* Write the OFDM power per rate set */
4188
4189 /* 6 (LSB), 9, 12, 18 (MSB) */
4190 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4191 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4192 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4193 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4194 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4195
4196 /* 24 (LSB), 36, 48, 54 (MSB) */
4197 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4198 POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4199 POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4200 POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4201 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4202
4203 /* Write the CCK power per rate set */
4204
4205 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4206 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4207 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4208 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4209 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4210 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4211
4212 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4213 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4214 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4215 POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4216 POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4217 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4218 );
4219
4220 /* Write the power for duplicated frames - HT40 */
4221
4222 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4223 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4224 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4225 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4226 POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4227 POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4228 );
4229
4230 /* Write the HT20 power per rate set */
4231
4232 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4233 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4234 POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4235 POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4236 POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4237 POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4238 );
4239
4240 /* 6 (LSB), 7, 12, 13 (MSB) */
4241 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4242 POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4243 POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4244 POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4245 POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4246 );
4247
4248 /* 14 (LSB), 15, 20, 21 */
4249 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4250 POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4251 POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4252 POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4253 POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4254 );
4255
4256 /* Mixed HT20 and HT40 rates */
4257
4258 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4259 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4260 POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4261 POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4262 POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4263 POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4264 );
4265
4266 /*
4267 * Write the HT40 power per rate set
4268 * correct PAR difference between HT40 and HT20/LEGACY
4269 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4270 */
4271 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4272 POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4273 POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4274 POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4275 POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4276 );
4277
4278 /* 6 (LSB), 7, 12, 13 (MSB) */
4279 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4280 POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4281 POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4282 POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4283 POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4284 );
4285
4286 /* 14 (LSB), 15, 20, 21 */
4287 REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4288 POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4289 POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4290 POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4291 POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4292 );
4293
4294 return 0;
4295 #undef POW_SM
4296 }
4297
4298 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4299 u8 *targetPowerValT2)
4300 {
4301 /* XXX: hard code for now, need to get from eeprom struct */
4302 u8 ht40PowerIncForPdadc = 0;
4303 bool is2GHz = false;
4304 unsigned int i = 0;
4305 struct ath_common *common = ath9k_hw_common(ah);
4306
4307 if (freq < 4000)
4308 is2GHz = true;
4309
4310 targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4311 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4312 is2GHz);
4313 targetPowerValT2[ALL_TARGET_LEGACY_36] =
4314 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4315 is2GHz);
4316 targetPowerValT2[ALL_TARGET_LEGACY_48] =
4317 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4318 is2GHz);
4319 targetPowerValT2[ALL_TARGET_LEGACY_54] =
4320 ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4321 is2GHz);
4322 targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4323 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4324 freq);
4325 targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4326 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4327 targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4328 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4329 targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4330 ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4331 targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4332 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4333 is2GHz);
4334 targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4335 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4336 freq, is2GHz);
4337 targetPowerValT2[ALL_TARGET_HT20_4] =
4338 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4339 is2GHz);
4340 targetPowerValT2[ALL_TARGET_HT20_5] =
4341 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4342 is2GHz);
4343 targetPowerValT2[ALL_TARGET_HT20_6] =
4344 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4345 is2GHz);
4346 targetPowerValT2[ALL_TARGET_HT20_7] =
4347 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4348 is2GHz);
4349 targetPowerValT2[ALL_TARGET_HT20_12] =
4350 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4351 is2GHz);
4352 targetPowerValT2[ALL_TARGET_HT20_13] =
4353 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4354 is2GHz);
4355 targetPowerValT2[ALL_TARGET_HT20_14] =
4356 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4357 is2GHz);
4358 targetPowerValT2[ALL_TARGET_HT20_15] =
4359 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4360 is2GHz);
4361 targetPowerValT2[ALL_TARGET_HT20_20] =
4362 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4363 is2GHz);
4364 targetPowerValT2[ALL_TARGET_HT20_21] =
4365 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4366 is2GHz);
4367 targetPowerValT2[ALL_TARGET_HT20_22] =
4368 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4369 is2GHz);
4370 targetPowerValT2[ALL_TARGET_HT20_23] =
4371 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4372 is2GHz);
4373 targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4374 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4375 is2GHz) + ht40PowerIncForPdadc;
4376 targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4377 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4378 freq,
4379 is2GHz) + ht40PowerIncForPdadc;
4380 targetPowerValT2[ALL_TARGET_HT40_4] =
4381 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4382 is2GHz) + ht40PowerIncForPdadc;
4383 targetPowerValT2[ALL_TARGET_HT40_5] =
4384 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4385 is2GHz) + ht40PowerIncForPdadc;
4386 targetPowerValT2[ALL_TARGET_HT40_6] =
4387 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4388 is2GHz) + ht40PowerIncForPdadc;
4389 targetPowerValT2[ALL_TARGET_HT40_7] =
4390 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4391 is2GHz) + ht40PowerIncForPdadc;
4392 targetPowerValT2[ALL_TARGET_HT40_12] =
4393 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4394 is2GHz) + ht40PowerIncForPdadc;
4395 targetPowerValT2[ALL_TARGET_HT40_13] =
4396 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4397 is2GHz) + ht40PowerIncForPdadc;
4398 targetPowerValT2[ALL_TARGET_HT40_14] =
4399 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4400 is2GHz) + ht40PowerIncForPdadc;
4401 targetPowerValT2[ALL_TARGET_HT40_15] =
4402 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4403 is2GHz) + ht40PowerIncForPdadc;
4404 targetPowerValT2[ALL_TARGET_HT40_20] =
4405 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4406 is2GHz) + ht40PowerIncForPdadc;
4407 targetPowerValT2[ALL_TARGET_HT40_21] =
4408 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4409 is2GHz) + ht40PowerIncForPdadc;
4410 targetPowerValT2[ALL_TARGET_HT40_22] =
4411 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4412 is2GHz) + ht40PowerIncForPdadc;
4413 targetPowerValT2[ALL_TARGET_HT40_23] =
4414 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4415 is2GHz) + ht40PowerIncForPdadc;
4416
4417 for (i = 0; i < ar9300RateSize; i++) {
4418 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4419 i, targetPowerValT2[i]);
4420 }
4421 }
4422
4423 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4424 int mode,
4425 int ipier,
4426 int ichain,
4427 int *pfrequency,
4428 int *pcorrection,
4429 int *ptemperature, int *pvoltage)
4430 {
4431 u8 *pCalPier;
4432 struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4433 int is2GHz;
4434 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4435 struct ath_common *common = ath9k_hw_common(ah);
4436
4437 if (ichain >= AR9300_MAX_CHAINS) {
4438 ath_dbg(common, EEPROM,
4439 "Invalid chain index, must be less than %d\n",
4440 AR9300_MAX_CHAINS);
4441 return -1;
4442 }
4443
4444 if (mode) { /* 5GHz */
4445 if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4446 ath_dbg(common, EEPROM,
4447 "Invalid 5GHz cal pier index, must be less than %d\n",
4448 AR9300_NUM_5G_CAL_PIERS);
4449 return -1;
4450 }
4451 pCalPier = &(eep->calFreqPier5G[ipier]);
4452 pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4453 is2GHz = 0;
4454 } else {
4455 if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4456 ath_dbg(common, EEPROM,
4457 "Invalid 2GHz cal pier index, must be less than %d\n",
4458 AR9300_NUM_2G_CAL_PIERS);
4459 return -1;
4460 }
4461
4462 pCalPier = &(eep->calFreqPier2G[ipier]);
4463 pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4464 is2GHz = 1;
4465 }
4466
4467 *pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4468 *pcorrection = pCalPierStruct->refPower;
4469 *ptemperature = pCalPierStruct->tempMeas;
4470 *pvoltage = pCalPierStruct->voltMeas;
4471
4472 return 0;
4473 }
4474
4475 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4476 int frequency,
4477 int *correction,
4478 int *voltage, int *temperature)
4479 {
4480 int tempSlope = 0;
4481 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4482 int f[3], t[3];
4483
4484 REG_RMW(ah, AR_PHY_TPC_11_B0,
4485 (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4486 AR_PHY_TPC_OLPC_GAIN_DELTA);
4487 if (ah->caps.tx_chainmask & BIT(1))
4488 REG_RMW(ah, AR_PHY_TPC_11_B1,
4489 (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4490 AR_PHY_TPC_OLPC_GAIN_DELTA);
4491 if (ah->caps.tx_chainmask & BIT(2))
4492 REG_RMW(ah, AR_PHY_TPC_11_B2,
4493 (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4494 AR_PHY_TPC_OLPC_GAIN_DELTA);
4495
4496 /* enable open loop power control on chip */
4497 REG_RMW(ah, AR_PHY_TPC_6_B0,
4498 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4499 AR_PHY_TPC_6_ERROR_EST_MODE);
4500 if (ah->caps.tx_chainmask & BIT(1))
4501 REG_RMW(ah, AR_PHY_TPC_6_B1,
4502 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4503 AR_PHY_TPC_6_ERROR_EST_MODE);
4504 if (ah->caps.tx_chainmask & BIT(2))
4505 REG_RMW(ah, AR_PHY_TPC_6_B2,
4506 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4507 AR_PHY_TPC_6_ERROR_EST_MODE);
4508
4509 /*
4510 * enable temperature compensation
4511 * Need to use register names
4512 */
4513 if (frequency < 4000)
4514 tempSlope = eep->modalHeader2G.tempSlope;
4515 else if (eep->base_ext2.tempSlopeLow != 0) {
4516 t[0] = eep->base_ext2.tempSlopeLow;
4517 f[0] = 5180;
4518 t[1] = eep->modalHeader5G.tempSlope;
4519 f[1] = 5500;
4520 t[2] = eep->base_ext2.tempSlopeHigh;
4521 f[2] = 5785;
4522 tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4523 f, t, 3);
4524 } else
4525 tempSlope = eep->modalHeader5G.tempSlope;
4526
4527 REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4528
4529 if (AR_SREV_9462_20(ah))
4530 REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4531 AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4532
4533
4534 REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4535 temperature[0]);
4536
4537 return 0;
4538 }
4539
4540 /* Apply the recorded correction values. */
4541 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4542 {
4543 int ichain, ipier, npier;
4544 int mode;
4545 int lfrequency[AR9300_MAX_CHAINS],
4546 lcorrection[AR9300_MAX_CHAINS],
4547 ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4548 int hfrequency[AR9300_MAX_CHAINS],
4549 hcorrection[AR9300_MAX_CHAINS],
4550 htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4551 int fdiff;
4552 int correction[AR9300_MAX_CHAINS],
4553 voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4554 int pfrequency, pcorrection, ptemperature, pvoltage;
4555 struct ath_common *common = ath9k_hw_common(ah);
4556
4557 mode = (frequency >= 4000);
4558 if (mode)
4559 npier = AR9300_NUM_5G_CAL_PIERS;
4560 else
4561 npier = AR9300_NUM_2G_CAL_PIERS;
4562
4563 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4564 lfrequency[ichain] = 0;
4565 hfrequency[ichain] = 100000;
4566 }
4567 /* identify best lower and higher frequency calibration measurement */
4568 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4569 for (ipier = 0; ipier < npier; ipier++) {
4570 if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4571 &pfrequency, &pcorrection,
4572 &ptemperature, &pvoltage)) {
4573 fdiff = frequency - pfrequency;
4574
4575 /*
4576 * this measurement is higher than
4577 * our desired frequency
4578 */
4579 if (fdiff <= 0) {
4580 if (hfrequency[ichain] <= 0 ||
4581 hfrequency[ichain] >= 100000 ||
4582 fdiff >
4583 (frequency - hfrequency[ichain])) {
4584 /*
4585 * new best higher
4586 * frequency measurement
4587 */
4588 hfrequency[ichain] = pfrequency;
4589 hcorrection[ichain] =
4590 pcorrection;
4591 htemperature[ichain] =
4592 ptemperature;
4593 hvoltage[ichain] = pvoltage;
4594 }
4595 }
4596 if (fdiff >= 0) {
4597 if (lfrequency[ichain] <= 0
4598 || fdiff <
4599 (frequency - lfrequency[ichain])) {
4600 /*
4601 * new best lower
4602 * frequency measurement
4603 */
4604 lfrequency[ichain] = pfrequency;
4605 lcorrection[ichain] =
4606 pcorrection;
4607 ltemperature[ichain] =
4608 ptemperature;
4609 lvoltage[ichain] = pvoltage;
4610 }
4611 }
4612 }
4613 }
4614 }
4615
4616 /* interpolate */
4617 for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4618 ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4619 ichain, frequency, lfrequency[ichain],
4620 lcorrection[ichain], hfrequency[ichain],
4621 hcorrection[ichain]);
4622 /* they're the same, so just pick one */
4623 if (hfrequency[ichain] == lfrequency[ichain]) {
4624 correction[ichain] = lcorrection[ichain];
4625 voltage[ichain] = lvoltage[ichain];
4626 temperature[ichain] = ltemperature[ichain];
4627 }
4628 /* the low frequency is good */
4629 else if (frequency - lfrequency[ichain] < 1000) {
4630 /* so is the high frequency, interpolate */
4631 if (hfrequency[ichain] - frequency < 1000) {
4632
4633 correction[ichain] = interpolate(frequency,
4634 lfrequency[ichain],
4635 hfrequency[ichain],
4636 lcorrection[ichain],
4637 hcorrection[ichain]);
4638
4639 temperature[ichain] = interpolate(frequency,
4640 lfrequency[ichain],
4641 hfrequency[ichain],
4642 ltemperature[ichain],
4643 htemperature[ichain]);
4644
4645 voltage[ichain] = interpolate(frequency,
4646 lfrequency[ichain],
4647 hfrequency[ichain],
4648 lvoltage[ichain],
4649 hvoltage[ichain]);
4650 }
4651 /* only low is good, use it */
4652 else {
4653 correction[ichain] = lcorrection[ichain];
4654 temperature[ichain] = ltemperature[ichain];
4655 voltage[ichain] = lvoltage[ichain];
4656 }
4657 }
4658 /* only high is good, use it */
4659 else if (hfrequency[ichain] - frequency < 1000) {
4660 correction[ichain] = hcorrection[ichain];
4661 temperature[ichain] = htemperature[ichain];
4662 voltage[ichain] = hvoltage[ichain];
4663 } else { /* nothing is good, presume 0???? */
4664 correction[ichain] = 0;
4665 temperature[ichain] = 0;
4666 voltage[ichain] = 0;
4667 }
4668 }
4669
4670 ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4671 temperature);
4672
4673 ath_dbg(common, EEPROM,
4674 "for frequency=%d, calibration correction = %d %d %d\n",
4675 frequency, correction[0], correction[1], correction[2]);
4676
4677 return 0;
4678 }
4679
4680 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4681 int idx,
4682 int edge,
4683 bool is2GHz)
4684 {
4685 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4686 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4687
4688 if (is2GHz)
4689 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4690 else
4691 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4692 }
4693
4694 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4695 int idx,
4696 unsigned int edge,
4697 u16 freq,
4698 bool is2GHz)
4699 {
4700 struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4701 struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4702
4703 u8 *ctl_freqbin = is2GHz ?
4704 &eep->ctl_freqbin_2G[idx][0] :
4705 &eep->ctl_freqbin_5G[idx][0];
4706
4707 if (is2GHz) {
4708 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4709 CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4710 return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4711 } else {
4712 if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4713 CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4714 return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4715 }
4716
4717 return MAX_RATE_POWER;
4718 }
4719
4720 /*
4721 * Find the maximum conformance test limit for the given channel and CTL info
4722 */
4723 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4724 u16 freq, int idx, bool is2GHz)
4725 {
4726 u16 twiceMaxEdgePower = MAX_RATE_POWER;
4727 u8 *ctl_freqbin = is2GHz ?
4728 &eep->ctl_freqbin_2G[idx][0] :
4729 &eep->ctl_freqbin_5G[idx][0];
4730 u16 num_edges = is2GHz ?
4731 AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4732 unsigned int edge;
4733
4734 /* Get the edge power */
4735 for (edge = 0;
4736 (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4737 edge++) {
4738 /*
4739 * If there's an exact channel match or an inband flag set
4740 * on the lower channel use the given rdEdgePower
4741 */
4742 if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4743 twiceMaxEdgePower =
4744 ar9003_hw_get_direct_edge_power(eep, idx,
4745 edge, is2GHz);
4746 break;
4747 } else if ((edge > 0) &&
4748 (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4749 is2GHz))) {
4750 twiceMaxEdgePower =
4751 ar9003_hw_get_indirect_edge_power(eep, idx,
4752 edge, freq,
4753 is2GHz);
4754 /*
4755 * Leave loop - no more affecting edges possible in
4756 * this monotonic increasing list
4757 */
4758 break;
4759 }
4760 }
4761 return twiceMaxEdgePower;
4762 }
4763
4764 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4765 struct ath9k_channel *chan,
4766 u8 *pPwrArray, u16 cfgCtl,
4767 u8 antenna_reduction,
4768 u16 powerLimit)
4769 {
4770 struct ath_common *common = ath9k_hw_common(ah);
4771 struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4772 u16 twiceMaxEdgePower;
4773 int i;
4774 u16 scaledPower = 0, minCtlPower;
4775 static const u16 ctlModesFor11a[] = {
4776 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4777 };
4778 static const u16 ctlModesFor11g[] = {
4779 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4780 CTL_11G_EXT, CTL_2GHT40
4781 };
4782 u16 numCtlModes;
4783 const u16 *pCtlMode;
4784 u16 ctlMode, freq;
4785 struct chan_centers centers;
4786 u8 *ctlIndex;
4787 u8 ctlNum;
4788 u16 twiceMinEdgePower;
4789 bool is2ghz = IS_CHAN_2GHZ(chan);
4790
4791 ath9k_hw_get_channel_centers(ah, chan, &centers);
4792 scaledPower = powerLimit - antenna_reduction;
4793
4794 /*
4795 * Reduce scaled Power by number of chains active to get
4796 * to per chain tx power level
4797 */
4798 switch (ar5416_get_ntxchains(ah->txchainmask)) {
4799 case 1:
4800 break;
4801 case 2:
4802 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4803 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4804 else
4805 scaledPower = 0;
4806 break;
4807 case 3:
4808 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4809 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4810 else
4811 scaledPower = 0;
4812 break;
4813 }
4814
4815 scaledPower = max((u16)0, scaledPower);
4816
4817 /*
4818 * Get target powers from EEPROM - our baseline for TX Power
4819 */
4820 if (is2ghz) {
4821 /* Setup for CTL modes */
4822 /* CTL_11B, CTL_11G, CTL_2GHT20 */
4823 numCtlModes =
4824 ARRAY_SIZE(ctlModesFor11g) -
4825 SUB_NUM_CTL_MODES_AT_2G_40;
4826 pCtlMode = ctlModesFor11g;
4827 if (IS_CHAN_HT40(chan))
4828 /* All 2G CTL's */
4829 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4830 } else {
4831 /* Setup for CTL modes */
4832 /* CTL_11A, CTL_5GHT20 */
4833 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4834 SUB_NUM_CTL_MODES_AT_5G_40;
4835 pCtlMode = ctlModesFor11a;
4836 if (IS_CHAN_HT40(chan))
4837 /* All 5G CTL's */
4838 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4839 }
4840
4841 /*
4842 * For MIMO, need to apply regulatory caps individually across
4843 * dynamically running modes: CCK, OFDM, HT20, HT40
4844 *
4845 * The outer loop walks through each possible applicable runtime mode.
4846 * The inner loop walks through each ctlIndex entry in EEPROM.
4847 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4848 */
4849 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4850 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4851 (pCtlMode[ctlMode] == CTL_2GHT40);
4852 if (isHt40CtlMode)
4853 freq = centers.synth_center;
4854 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4855 freq = centers.ext_center;
4856 else
4857 freq = centers.ctl_center;
4858
4859 ath_dbg(common, REGULATORY,
4860 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4861 ctlMode, numCtlModes, isHt40CtlMode,
4862 (pCtlMode[ctlMode] & EXT_ADDITIVE));
4863
4864 /* walk through each CTL index stored in EEPROM */
4865 if (is2ghz) {
4866 ctlIndex = pEepData->ctlIndex_2G;
4867 ctlNum = AR9300_NUM_CTLS_2G;
4868 } else {
4869 ctlIndex = pEepData->ctlIndex_5G;
4870 ctlNum = AR9300_NUM_CTLS_5G;
4871 }
4872
4873 twiceMaxEdgePower = MAX_RATE_POWER;
4874 for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4875 ath_dbg(common, REGULATORY,
4876 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4877 i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4878 chan->channel);
4879
4880 /*
4881 * compare test group from regulatory
4882 * channel list with test mode from pCtlMode
4883 * list
4884 */
4885 if ((((cfgCtl & ~CTL_MODE_M) |
4886 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4887 ctlIndex[i]) ||
4888 (((cfgCtl & ~CTL_MODE_M) |
4889 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4890 ((ctlIndex[i] & CTL_MODE_M) |
4891 SD_NO_CTL))) {
4892 twiceMinEdgePower =
4893 ar9003_hw_get_max_edge_power(pEepData,
4894 freq, i,
4895 is2ghz);
4896
4897 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4898 /*
4899 * Find the minimum of all CTL
4900 * edge powers that apply to
4901 * this channel
4902 */
4903 twiceMaxEdgePower =
4904 min(twiceMaxEdgePower,
4905 twiceMinEdgePower);
4906 else {
4907 /* specific */
4908 twiceMaxEdgePower =
4909 twiceMinEdgePower;
4910 break;
4911 }
4912 }
4913 }
4914
4915 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4916
4917 ath_dbg(common, REGULATORY,
4918 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4919 ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4920 scaledPower, minCtlPower);
4921
4922 /* Apply ctl mode to correct target power set */
4923 switch (pCtlMode[ctlMode]) {
4924 case CTL_11B:
4925 for (i = ALL_TARGET_LEGACY_1L_5L;
4926 i <= ALL_TARGET_LEGACY_11S; i++)
4927 pPwrArray[i] =
4928 (u8)min((u16)pPwrArray[i],
4929 minCtlPower);
4930 break;
4931 case CTL_11A:
4932 case CTL_11G:
4933 for (i = ALL_TARGET_LEGACY_6_24;
4934 i <= ALL_TARGET_LEGACY_54; i++)
4935 pPwrArray[i] =
4936 (u8)min((u16)pPwrArray[i],
4937 minCtlPower);
4938 break;
4939 case CTL_5GHT20:
4940 case CTL_2GHT20:
4941 for (i = ALL_TARGET_HT20_0_8_16;
4942 i <= ALL_TARGET_HT20_21; i++)
4943 pPwrArray[i] =
4944 (u8)min((u16)pPwrArray[i],
4945 minCtlPower);
4946 pPwrArray[ALL_TARGET_HT20_22] =
4947 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4948 minCtlPower);
4949 pPwrArray[ALL_TARGET_HT20_23] =
4950 (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4951 minCtlPower);
4952 break;
4953 case CTL_5GHT40:
4954 case CTL_2GHT40:
4955 for (i = ALL_TARGET_HT40_0_8_16;
4956 i <= ALL_TARGET_HT40_23; i++)
4957 pPwrArray[i] =
4958 (u8)min((u16)pPwrArray[i],
4959 minCtlPower);
4960 break;
4961 default:
4962 break;
4963 }
4964 } /* end ctl mode checking */
4965 }
4966
4967 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4968 {
4969 u8 mod_idx = mcs_idx % 8;
4970
4971 if (mod_idx <= 3)
4972 return mod_idx ? (base_pwridx + 1) : base_pwridx;
4973 else
4974 return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4975 }
4976
4977 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4978 struct ath9k_channel *chan, u16 cfgCtl,
4979 u8 twiceAntennaReduction,
4980 u8 powerLimit, bool test)
4981 {
4982 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4983 struct ath_common *common = ath9k_hw_common(ah);
4984 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4985 struct ar9300_modal_eep_header *modal_hdr;
4986 u8 targetPowerValT2[ar9300RateSize];
4987 u8 target_power_val_t2_eep[ar9300RateSize];
4988 unsigned int i = 0, paprd_scale_factor = 0;
4989 u8 pwr_idx, min_pwridx = 0;
4990
4991 ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4992
4993 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4994 if (IS_CHAN_2GHZ(chan))
4995 modal_hdr = &eep->modalHeader2G;
4996 else
4997 modal_hdr = &eep->modalHeader5G;
4998
4999 ah->paprd_ratemask =
5000 le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5001 AR9300_PAPRD_RATE_MASK;
5002
5003 ah->paprd_ratemask_ht40 =
5004 le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5005 AR9300_PAPRD_RATE_MASK;
5006
5007 paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5008 min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5009 ALL_TARGET_HT20_0_8_16;
5010
5011 if (!ah->paprd_table_write_done) {
5012 memcpy(target_power_val_t2_eep, targetPowerValT2,
5013 sizeof(targetPowerValT2));
5014 for (i = 0; i < 24; i++) {
5015 pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5016 if (ah->paprd_ratemask & (1 << i)) {
5017 if (targetPowerValT2[pwr_idx] &&
5018 targetPowerValT2[pwr_idx] ==
5019 target_power_val_t2_eep[pwr_idx])
5020 targetPowerValT2[pwr_idx] -=
5021 paprd_scale_factor;
5022 }
5023 }
5024 }
5025 memcpy(target_power_val_t2_eep, targetPowerValT2,
5026 sizeof(targetPowerValT2));
5027 }
5028
5029 ar9003_hw_set_power_per_rate_table(ah, chan,
5030 targetPowerValT2, cfgCtl,
5031 twiceAntennaReduction,
5032 powerLimit);
5033
5034 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5035 for (i = 0; i < ar9300RateSize; i++) {
5036 if ((ah->paprd_ratemask & (1 << i)) &&
5037 (abs(targetPowerValT2[i] -
5038 target_power_val_t2_eep[i]) >
5039 paprd_scale_factor)) {
5040 ah->paprd_ratemask &= ~(1 << i);
5041 ath_dbg(common, EEPROM,
5042 "paprd disabled for mcs %d\n", i);
5043 }
5044 }
5045 }
5046
5047 regulatory->max_power_level = 0;
5048 for (i = 0; i < ar9300RateSize; i++) {
5049 if (targetPowerValT2[i] > regulatory->max_power_level)
5050 regulatory->max_power_level = targetPowerValT2[i];
5051 }
5052
5053 ath9k_hw_update_regulatory_maxpower(ah);
5054
5055 if (test)
5056 return;
5057
5058 for (i = 0; i < ar9300RateSize; i++) {
5059 ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5060 i, targetPowerValT2[i]);
5061 }
5062
5063 ah->txpower_limit = regulatory->max_power_level;
5064
5065 /* Write target power array to registers */
5066 ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5067 ar9003_hw_calibration_apply(ah, chan->channel);
5068
5069 if (IS_CHAN_2GHZ(chan)) {
5070 if (IS_CHAN_HT40(chan))
5071 i = ALL_TARGET_HT40_0_8_16;
5072 else
5073 i = ALL_TARGET_HT20_0_8_16;
5074 } else {
5075 if (IS_CHAN_HT40(chan))
5076 i = ALL_TARGET_HT40_7;
5077 else
5078 i = ALL_TARGET_HT20_7;
5079 }
5080 ah->paprd_target_power = targetPowerValT2[i];
5081 }
5082
5083 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5084 u16 i, bool is2GHz)
5085 {
5086 return AR_NO_SPUR;
5087 }
5088
5089 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5090 {
5091 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5092
5093 return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5094 }
5095
5096 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5097 {
5098 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5099
5100 return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5101 }
5102
5103 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
5104 {
5105 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5106
5107 if (is_2ghz)
5108 return eep->modalHeader2G.spurChans;
5109 else
5110 return eep->modalHeader5G.spurChans;
5111 }
5112
5113 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5114 struct ath9k_channel *chan)
5115 {
5116 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5117
5118 if (IS_CHAN_2GHZ(chan))
5119 return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5120 AR9300_PAPRD_SCALE_1);
5121 else {
5122 if (chan->channel >= 5700)
5123 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5124 AR9300_PAPRD_SCALE_1);
5125 else if (chan->channel >= 5400)
5126 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5127 AR9300_PAPRD_SCALE_2);
5128 else
5129 return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5130 AR9300_PAPRD_SCALE_1);
5131 }
5132 }
5133
5134 const struct eeprom_ops eep_ar9300_ops = {
5135 .check_eeprom = ath9k_hw_ar9300_check_eeprom,
5136 .get_eeprom = ath9k_hw_ar9300_get_eeprom,
5137 .fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5138 .dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5139 .get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5140 .get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5141 .set_board_values = ath9k_hw_ar9300_set_board_values,
5142 .set_addac = ath9k_hw_ar9300_set_addac,
5143 .set_txpower = ath9k_hw_ar9300_set_txpower,
5144 .get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5145 };
This page took 0.264986 seconds and 5 git commands to generate.