Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / ar9003_paprd.c
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/export.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20
21 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
22 {
23 struct ath9k_channel *chan = ah->curchan;
24 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
25
26 /*
27 * 3 bits for modalHeader5G.papdRateMaskHt20
28 * is used for sub-band disabling of PAPRD.
29 * 5G band is divided into 3 sub-bands -- upper,
30 * middle, lower.
31 * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
32 * -- disable PAPRD for upper band 5GHz
33 * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
34 * -- disable PAPRD for middle band 5GHz
35 * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
36 * -- disable PAPRD for lower band 5GHz
37 */
38
39 if (IS_CHAN_5GHZ(chan)) {
40 if (chan->channel >= UPPER_5G_SUB_BAND_START) {
41 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
42 & BIT(30))
43 val = false;
44 } else if (chan->channel >= MID_5G_SUB_BAND_START) {
45 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
46 & BIT(29))
47 val = false;
48 } else {
49 if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
50 & BIT(28))
51 val = false;
52 }
53 }
54
55 if (val) {
56 ah->paprd_table_write_done = true;
57 ath9k_hw_apply_txpower(ah, chan, false);
58 }
59
60 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
61 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
62 if (ah->caps.tx_chainmask & BIT(1))
63 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
64 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
65 if (ah->caps.tx_chainmask & BIT(2))
66 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
67 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
68 }
69 EXPORT_SYMBOL(ar9003_paprd_enable);
70
71 static int ar9003_get_training_power_2g(struct ath_hw *ah)
72 {
73 struct ath9k_channel *chan = ah->curchan;
74 unsigned int power, scale, delta;
75
76 scale = ar9003_get_paprd_scale_factor(ah, chan);
77 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
78 AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
79
80 delta = abs((int) ah->paprd_target_power - (int) power);
81 if (delta > scale)
82 return -1;
83
84 if (delta < 4)
85 power -= 4 - delta;
86
87 return power;
88 }
89
90 static int ar9003_get_training_power_5g(struct ath_hw *ah)
91 {
92 struct ath_common *common = ath9k_hw_common(ah);
93 struct ath9k_channel *chan = ah->curchan;
94 unsigned int power, scale, delta;
95
96 scale = ar9003_get_paprd_scale_factor(ah, chan);
97
98 if (IS_CHAN_HT40(chan))
99 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
100 AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
101 else
102 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
103 AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
104
105 power += scale;
106 delta = abs((int) ah->paprd_target_power - (int) power);
107 if (delta > scale)
108 return -1;
109
110 switch (get_streams(ah->txchainmask)) {
111 case 1:
112 delta = 6;
113 break;
114 case 2:
115 delta = 4;
116 break;
117 case 3:
118 delta = 2;
119 break;
120 default:
121 delta = 0;
122 ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
123 ah->txchainmask);
124 }
125
126 power += delta;
127 return power;
128 }
129
130 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
131 {
132 struct ath_common *common = ath9k_hw_common(ah);
133 static const u32 ctrl0[3] = {
134 AR_PHY_PAPRD_CTRL0_B0,
135 AR_PHY_PAPRD_CTRL0_B1,
136 AR_PHY_PAPRD_CTRL0_B2
137 };
138 static const u32 ctrl1[3] = {
139 AR_PHY_PAPRD_CTRL1_B0,
140 AR_PHY_PAPRD_CTRL1_B1,
141 AR_PHY_PAPRD_CTRL1_B2
142 };
143 int training_power;
144 int i, val;
145 u32 am2pm_mask = ah->paprd_ratemask;
146
147 if (IS_CHAN_2GHZ(ah->curchan))
148 training_power = ar9003_get_training_power_2g(ah);
149 else
150 training_power = ar9003_get_training_power_5g(ah);
151
152 ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
153 training_power, ah->paprd_target_power);
154
155 if (training_power < 0) {
156 ath_dbg(common, CALIBRATE,
157 "PAPRD target power delta out of range\n");
158 return -ERANGE;
159 }
160 ah->paprd_training_power = training_power;
161
162 if (AR_SREV_9330(ah))
163 am2pm_mask = 0;
164
165 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
166 ah->paprd_ratemask);
167 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
168 am2pm_mask);
169 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
170 ah->paprd_ratemask_ht40);
171
172 for (i = 0; i < ah->caps.max_txchains; i++) {
173 REG_RMW_FIELD(ah, ctrl0[i],
174 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
175 REG_RMW_FIELD(ah, ctrl1[i],
176 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
177 REG_RMW_FIELD(ah, ctrl1[i],
178 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
179 REG_RMW_FIELD(ah, ctrl1[i],
180 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
181 REG_RMW_FIELD(ah, ctrl1[i],
182 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
183 REG_RMW_FIELD(ah, ctrl1[i],
184 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
185 REG_RMW_FIELD(ah, ctrl1[i],
186 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
187 REG_RMW_FIELD(ah, ctrl0[i],
188 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
189 }
190
191 ar9003_paprd_enable(ah, false);
192
193 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
194 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
195 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
196 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
197 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
198 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
199 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
200 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
201 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
202 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
203 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
204 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
205 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
206 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
207 val = AR_SREV_9462(ah) ? 0x91 : 147;
208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
209 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
211 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
213 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
215 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
217 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
218 if (AR_SREV_9485(ah) || AR_SREV_9462(ah) || AR_SREV_9550(ah))
219 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
220 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
221 -3);
222 else
223 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
224 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
225 -6);
226 val = AR_SREV_9462(ah) ? -10 : -15;
227 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
228 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
229 val);
230 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
231 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
232 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
233 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
234 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
235 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
236 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
237 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
238 100);
239 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
240 AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
241 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
242 AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
243 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
244 AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
245 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
246 AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
247 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
248 AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
249 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
250 AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
251 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
252 AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
253 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
254 AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
255 return 0;
256 }
257
258 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
259 {
260 u32 *entry = ah->paprd_gain_table_entries;
261 u8 *index = ah->paprd_gain_table_index;
262 u32 reg = AR_PHY_TXGAIN_TABLE;
263 int i;
264
265 memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
266 memset(index, 0, sizeof(ah->paprd_gain_table_index));
267
268 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
269 entry[i] = REG_READ(ah, reg);
270 index[i] = (entry[i] >> 24) & 0xff;
271 reg += 4;
272 }
273 }
274
275 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
276 int target_power)
277 {
278 int olpc_gain_delta = 0, cl_gain_mod;
279 int alpha_therm, alpha_volt;
280 int therm_cal_value, volt_cal_value;
281 int therm_value, volt_value;
282 int thermal_gain_corr, voltage_gain_corr;
283 int desired_scale, desired_gain = 0;
284 u32 reg_olpc = 0, reg_cl_gain = 0;
285
286 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
287 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
288 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
289 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
290 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
291 AR_PHY_TPC_19_ALPHA_THERM);
292 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
293 AR_PHY_TPC_19_ALPHA_VOLT);
294 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
295 AR_PHY_TPC_18_THERM_CAL_VALUE);
296 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
297 AR_PHY_TPC_18_VOLT_CAL_VALUE);
298 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
299 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
300 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
301 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
302
303 switch (chain) {
304 case 0:
305 reg_olpc = AR_PHY_TPC_11_B0;
306 reg_cl_gain = AR_PHY_CL_TAB_0;
307 break;
308 case 1:
309 reg_olpc = AR_PHY_TPC_11_B1;
310 reg_cl_gain = AR_PHY_CL_TAB_1;
311 break;
312 case 2:
313 reg_olpc = AR_PHY_TPC_11_B2;
314 reg_cl_gain = AR_PHY_CL_TAB_2;
315 break;
316 default:
317 ath_dbg(ath9k_hw_common(ah), CALIBRATE,
318 "Invalid chainmask: %d\n", chain);
319 break;
320 }
321
322 olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
323 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
324 cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
325 AR_PHY_CL_TAB_CL_GAIN_MOD);
326
327 if (olpc_gain_delta >= 128)
328 olpc_gain_delta = olpc_gain_delta - 256;
329
330 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
331 (256 / 2)) / 256;
332 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
333 (128 / 2)) / 128;
334 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
335 voltage_gain_corr + desired_scale + cl_gain_mod;
336
337 return desired_gain;
338 }
339
340 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
341 {
342 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
343 int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
344 u32 *gain_table_entries = ah->paprd_gain_table_entries;
345
346 selected_gain_entry = gain_table_entries[gain_index];
347 txbb1dbgain = selected_gain_entry & 0x7;
348 txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
349 txmxrgain = (selected_gain_entry >> 5) & 0xf;
350 padrvgnA = (selected_gain_entry >> 9) & 0xf;
351 padrvgnB = (selected_gain_entry >> 13) & 0xf;
352 padrvgnC = (selected_gain_entry >> 17) & 0xf;
353 padrvgnD = (selected_gain_entry >> 21) & 0x3;
354
355 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
356 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
357 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
358 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
359 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
360 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
361 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
362 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
363 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
364 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
365 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
366 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
367 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
368 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
369 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
370 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
371 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
372 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
373 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
374 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
375 }
376
377 static inline int find_expn(int num)
378 {
379 return fls(num) - 1;
380 }
381
382 static inline int find_proper_scale(int expn, int N)
383 {
384 return (expn > N) ? expn - 10 : 0;
385 }
386
387 #define NUM_BIN 23
388
389 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
390 {
391 unsigned int thresh_accum_cnt;
392 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
393 int PA_in[NUM_BIN + 1];
394 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
395 unsigned int B1_abs_max, B2_abs_max;
396 int max_index, scale_factor;
397 int y_est[NUM_BIN + 1];
398 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
399 unsigned int x_tilde_abs;
400 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
401 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
402 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
403 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
404 int y5, y3, tmp;
405 int theta_low_bin = 0;
406 int i;
407
408 /* disregard any bin that contains <= 16 samples */
409 thresh_accum_cnt = 16;
410 scale_factor = 5;
411 max_index = 0;
412 memset(theta, 0, sizeof(theta));
413 memset(x_est, 0, sizeof(x_est));
414 memset(Y, 0, sizeof(Y));
415 memset(y_est, 0, sizeof(y_est));
416 memset(x_tilde, 0, sizeof(x_tilde));
417
418 for (i = 0; i < NUM_BIN; i++) {
419 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
420
421 /* number of samples */
422 accum_cnt = data_L[i] & 0xffff;
423
424 if (accum_cnt <= thresh_accum_cnt)
425 continue;
426
427 /* sum(tx amplitude) */
428 accum_tx = ((data_L[i] >> 16) & 0xffff) |
429 ((data_U[i] & 0x7ff) << 16);
430
431 /* sum(rx amplitude distance to lower bin edge) */
432 accum_rx = ((data_U[i] >> 11) & 0x1f) |
433 ((data_L[i + 23] & 0xffff) << 5);
434
435 /* sum(angles) */
436 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
437 ((data_U[i + 23] & 0x7ff) << 16);
438
439 accum_tx <<= scale_factor;
440 accum_rx <<= scale_factor;
441 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
442 scale_factor;
443
444 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
445 scale_factor) +
446 (1 << scale_factor) * max_index + 16;
447
448 if (accum_ang >= (1 << 26))
449 accum_ang -= 1 << 27;
450
451 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
452 accum_cnt;
453
454 max_index++;
455 }
456
457 /*
458 * Find average theta of first 5 bin and all of those to same value.
459 * Curve is linear at that range.
460 */
461 for (i = 1; i < 6; i++)
462 theta_low_bin += theta[i];
463
464 theta_low_bin = theta_low_bin / 5;
465 for (i = 1; i < 6; i++)
466 theta[i] = theta_low_bin;
467
468 /* Set values at origin */
469 theta[0] = theta_low_bin;
470 for (i = 0; i <= max_index; i++)
471 theta[i] -= theta_low_bin;
472
473 x_est[0] = 0;
474 Y[0] = 0;
475 scale_factor = 8;
476
477 /* low signal gain */
478 if (x_est[6] == x_est[3])
479 return false;
480
481 G_fxp =
482 (((Y[6] - Y[3]) * 1 << scale_factor) +
483 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
484
485 /* prevent division by zero */
486 if (G_fxp == 0)
487 return false;
488
489 Y_intercept =
490 (G_fxp * (x_est[0] - x_est[3]) +
491 (1 << scale_factor)) / (1 << scale_factor) + Y[3];
492
493 for (i = 0; i <= max_index; i++)
494 y_est[i] = Y[i] - Y_intercept;
495
496 for (i = 0; i <= 3; i++) {
497 y_est[i] = i * 32;
498 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
499 }
500
501 if (y_est[max_index] == 0)
502 return false;
503
504 x_est_fxp1_nonlin =
505 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
506 G_fxp) / G_fxp;
507
508 order_x_by_y =
509 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
510
511 if (order_x_by_y == 0)
512 M = 10;
513 else if (order_x_by_y == 1)
514 M = 9;
515 else
516 M = 8;
517
518 I = (max_index > 15) ? 7 : max_index >> 1;
519 L = max_index - I;
520 scale_factor = 8;
521 sum_y_sqr = 0;
522 sum_y_quad = 0;
523 x_tilde_abs = 0;
524
525 for (i = 0; i <= L; i++) {
526 unsigned int y_sqr;
527 unsigned int y_quad;
528 unsigned int tmp_abs;
529
530 /* prevent division by zero */
531 if (y_est[i + I] == 0)
532 return false;
533
534 x_est_fxp1_nonlin =
535 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
536 G_fxp) / G_fxp;
537
538 x_tilde[i] =
539 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
540 I];
541 x_tilde[i] =
542 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
543 x_tilde[i] =
544 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
545 y_sqr =
546 (y_est[i + I] * y_est[i + I] +
547 (scale_factor * scale_factor)) / (scale_factor *
548 scale_factor);
549 tmp_abs = abs(x_tilde[i]);
550 if (tmp_abs > x_tilde_abs)
551 x_tilde_abs = tmp_abs;
552
553 y_quad = y_sqr * y_sqr;
554 sum_y_sqr = sum_y_sqr + y_sqr;
555 sum_y_quad = sum_y_quad + y_quad;
556 B1_tmp[i] = y_sqr * (L + 1);
557 B2_tmp[i] = y_sqr;
558 }
559
560 B1_abs_max = 0;
561 B2_abs_max = 0;
562 for (i = 0; i <= L; i++) {
563 int abs_val;
564
565 B1_tmp[i] -= sum_y_sqr;
566 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
567
568 abs_val = abs(B1_tmp[i]);
569 if (abs_val > B1_abs_max)
570 B1_abs_max = abs_val;
571
572 abs_val = abs(B2_tmp[i]);
573 if (abs_val > B2_abs_max)
574 B2_abs_max = abs_val;
575 }
576
577 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
578 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
579 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
580
581 beta_raw = 0;
582 alpha_raw = 0;
583 for (i = 0; i <= L; i++) {
584 x_tilde[i] = x_tilde[i] / (1 << Q_x);
585 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
586 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
587 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
588 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
589 }
590
591 scale_B =
592 ((sum_y_quad / scale_factor) * (L + 1) -
593 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
594
595 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
596 scale_B = scale_B / (1 << Q_scale_B);
597 if (scale_B == 0)
598 return false;
599 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
600 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
601 beta_raw = beta_raw / (1 << Q_beta);
602 alpha_raw = alpha_raw / (1 << Q_alpha);
603 alpha = (alpha_raw << 10) / scale_B;
604 beta = (beta_raw << 10) / scale_B;
605 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
606 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
607 order1_5x = order_1 / 5;
608 order2_3x = order_2 / 3;
609 order1_5x_rem = order_1 - 5 * order1_5x;
610 order2_3x_rem = order_2 - 3 * order2_3x;
611
612 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
613 tmp = i * 32;
614 y5 = ((beta * tmp) >> 6) >> order1_5x;
615 y5 = (y5 * tmp) >> order1_5x;
616 y5 = (y5 * tmp) >> order1_5x;
617 y5 = (y5 * tmp) >> order1_5x;
618 y5 = (y5 * tmp) >> order1_5x;
619 y5 = y5 >> order1_5x_rem;
620 y3 = (alpha * tmp) >> order2_3x;
621 y3 = (y3 * tmp) >> order2_3x;
622 y3 = (y3 * tmp) >> order2_3x;
623 y3 = y3 >> order2_3x_rem;
624 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
625
626 if (i >= 2) {
627 tmp = PA_in[i] - PA_in[i - 1];
628 if (tmp < 0)
629 PA_in[i] =
630 PA_in[i - 1] + (PA_in[i - 1] -
631 PA_in[i - 2]);
632 }
633
634 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
635 }
636
637 beta_raw = 0;
638 alpha_raw = 0;
639
640 for (i = 0; i <= L; i++) {
641 int theta_tilde =
642 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
643 theta_tilde =
644 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
645 theta_tilde =
646 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
647 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
648 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
649 }
650
651 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
652 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
653 beta_raw = beta_raw / (1 << Q_beta);
654 alpha_raw = alpha_raw / (1 << Q_alpha);
655
656 alpha = (alpha_raw << 10) / scale_B;
657 beta = (beta_raw << 10) / scale_B;
658 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
659 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
660 order1_5x = order_1 / 5;
661 order2_3x = order_2 / 3;
662 order1_5x_rem = order_1 - 5 * order1_5x;
663 order2_3x_rem = order_2 - 3 * order2_3x;
664
665 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
666 int PA_angle;
667
668 /* pa_table[4] is calculated from PA_angle for i=5 */
669 if (i == 4)
670 continue;
671
672 tmp = i * 32;
673 if (beta > 0)
674 y5 = (((beta * tmp - 64) >> 6) -
675 (1 << order1_5x)) / (1 << order1_5x);
676 else
677 y5 = ((((beta * tmp - 64) >> 6) +
678 (1 << order1_5x)) / (1 << order1_5x));
679
680 y5 = (y5 * tmp) / (1 << order1_5x);
681 y5 = (y5 * tmp) / (1 << order1_5x);
682 y5 = (y5 * tmp) / (1 << order1_5x);
683 y5 = (y5 * tmp) / (1 << order1_5x);
684 y5 = y5 / (1 << order1_5x_rem);
685
686 if (beta > 0)
687 y3 = (alpha * tmp -
688 (1 << order2_3x)) / (1 << order2_3x);
689 else
690 y3 = (alpha * tmp +
691 (1 << order2_3x)) / (1 << order2_3x);
692 y3 = (y3 * tmp) / (1 << order2_3x);
693 y3 = (y3 * tmp) / (1 << order2_3x);
694 y3 = y3 / (1 << order2_3x_rem);
695
696 if (i < 4) {
697 PA_angle = 0;
698 } else {
699 PA_angle = y5 + y3;
700 if (PA_angle < -150)
701 PA_angle = -150;
702 else if (PA_angle > 150)
703 PA_angle = 150;
704 }
705
706 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
707 if (i == 5) {
708 PA_angle = (PA_angle + 2) >> 1;
709 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
710 (PA_angle & 0x7ff);
711 }
712 }
713
714 *gain = G_fxp;
715 return true;
716 }
717
718 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
719 struct ath9k_hw_cal_data *caldata,
720 int chain)
721 {
722 u32 *paprd_table_val = caldata->pa_table[chain];
723 u32 small_signal_gain = caldata->small_signal_gain[chain];
724 u32 training_power = ah->paprd_training_power;
725 u32 reg = 0;
726 int i;
727
728 if (chain == 0)
729 reg = AR_PHY_PAPRD_MEM_TAB_B0;
730 else if (chain == 1)
731 reg = AR_PHY_PAPRD_MEM_TAB_B1;
732 else if (chain == 2)
733 reg = AR_PHY_PAPRD_MEM_TAB_B2;
734
735 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
736 REG_WRITE(ah, reg, paprd_table_val[i]);
737 reg = reg + 4;
738 }
739
740 if (chain == 0)
741 reg = AR_PHY_PA_GAIN123_B0;
742 else if (chain == 1)
743 reg = AR_PHY_PA_GAIN123_B1;
744 else
745 reg = AR_PHY_PA_GAIN123_B2;
746
747 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
748
749 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
750 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
751 training_power);
752
753 if (ah->caps.tx_chainmask & BIT(1))
754 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
755 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
756 training_power);
757
758 if (ah->caps.tx_chainmask & BIT(2))
759 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
760 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
761 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
762 training_power);
763 }
764 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
765
766 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
767 {
768 unsigned int i, desired_gain, gain_index;
769 unsigned int train_power = ah->paprd_training_power;
770
771 desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
772
773 gain_index = 0;
774 for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
775 if (ah->paprd_gain_table_index[i] >= desired_gain)
776 break;
777 gain_index++;
778 }
779
780 ar9003_tx_force_gain(ah, gain_index);
781
782 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
783 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
784
785 return 0;
786 }
787 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
788
789 static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
790 struct ath9k_hw_cal_data *caldata,
791 int chain)
792 {
793 u32 *pa_in = caldata->pa_table[chain];
794 int capdiv_offset, quick_drop_offset;
795 int capdiv2g, quick_drop;
796 int count = 0;
797 int i;
798
799 if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
800 return false;
801
802 capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
803 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
804
805 quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
806 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
807
808 if (quick_drop)
809 quick_drop -= 0x40;
810
811 for (i = 0; i < NUM_BIN + 1; i++) {
812 if (pa_in[i] == 1400)
813 count++;
814 }
815
816 if (AR_SREV_9485(ah)) {
817 if (pa_in[23] < 800) {
818 capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
819 capdiv2g += capdiv_offset;
820 if (capdiv2g > 7) {
821 capdiv2g = 7;
822 if (pa_in[23] < 600) {
823 quick_drop++;
824 if (quick_drop > 0)
825 quick_drop = 0;
826 }
827 }
828 } else if (pa_in[23] == 1400) {
829 quick_drop_offset = min_t(int, count / 3, 2);
830 quick_drop += quick_drop_offset;
831 capdiv2g += quick_drop_offset / 2;
832
833 if (capdiv2g > 7)
834 capdiv2g = 7;
835
836 if (quick_drop > 0) {
837 quick_drop = 0;
838 capdiv2g -= quick_drop_offset;
839 if (capdiv2g < 0)
840 capdiv2g = 0;
841 }
842 } else {
843 return false;
844 }
845 } else if (AR_SREV_9330(ah)) {
846 if (pa_in[23] < 1000) {
847 capdiv_offset = (1000 - pa_in[23]) / 100;
848 capdiv2g += capdiv_offset;
849 if (capdiv_offset > 3) {
850 capdiv_offset = 1;
851 quick_drop--;
852 }
853
854 capdiv2g += capdiv_offset;
855 if (capdiv2g > 6)
856 capdiv2g = 6;
857 if (quick_drop < -4)
858 quick_drop = -4;
859 } else if (pa_in[23] == 1400) {
860 if (count > 3) {
861 quick_drop++;
862 capdiv2g -= count / 4;
863 if (quick_drop > -2)
864 quick_drop = -2;
865 } else {
866 capdiv2g--;
867 }
868
869 if (capdiv2g < 0)
870 capdiv2g = 0;
871 } else {
872 return false;
873 }
874 }
875
876 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
877 AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
878 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
879 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
880 quick_drop);
881
882 return true;
883 }
884
885 int ar9003_paprd_create_curve(struct ath_hw *ah,
886 struct ath9k_hw_cal_data *caldata, int chain)
887 {
888 u16 *small_signal_gain = &caldata->small_signal_gain[chain];
889 u32 *pa_table = caldata->pa_table[chain];
890 u32 *data_L, *data_U;
891 int i, status = 0;
892 u32 *buf;
893 u32 reg;
894
895 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
896
897 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
898 if (!buf)
899 return -ENOMEM;
900
901 data_L = &buf[0];
902 data_U = &buf[48];
903
904 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
905 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
906
907 reg = AR_PHY_CHAN_INFO_TAB_0;
908 for (i = 0; i < 48; i++)
909 data_L[i] = REG_READ(ah, reg + (i << 2));
910
911 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
912 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
913
914 for (i = 0; i < 48; i++)
915 data_U[i] = REG_READ(ah, reg + (i << 2));
916
917 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
918 status = -2;
919
920 if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
921 status = -EINPROGRESS;
922
923 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
924 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
925
926 kfree(buf);
927
928 return status;
929 }
930 EXPORT_SYMBOL(ar9003_paprd_create_curve);
931
932 int ar9003_paprd_init_table(struct ath_hw *ah)
933 {
934 int ret;
935
936 ret = ar9003_paprd_setup_single_table(ah);
937 if (ret < 0)
938 return ret;
939
940 ar9003_paprd_get_gain_table(ah);
941 return 0;
942 }
943 EXPORT_SYMBOL(ar9003_paprd_init_table);
944
945 bool ar9003_paprd_is_done(struct ath_hw *ah)
946 {
947 int paprd_done, agc2_pwr;
948 paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
949 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
950
951 if (paprd_done == 0x1) {
952 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
953 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
954
955 ath_dbg(ath9k_hw_common(ah), CALIBRATE,
956 "AGC2_PWR = 0x%x training done = 0x%x\n",
957 agc2_pwr, paprd_done);
958 /*
959 * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
960 * when the training is completely done, otherwise retraining is
961 * done to make sure the value is in ideal range
962 */
963 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
964 paprd_done = 0;
965 }
966
967 return !!paprd_done;
968 }
969 EXPORT_SYMBOL(ar9003_paprd_is_done);
This page took 0.069402 seconds and 5 git commands to generate.