ath9k: use get_unaligned_{b16, le16, le32} where possible
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 struct ath_common *common = ath9k_hw_common(ah);
36 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 int addr, eep_start_loc = 64;
38
39 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 ath_dbg(common, ATH_DBG_EEPROM,
42 "Unable to read eeprom region\n");
43 return false;
44 }
45 eep_data++;
46 }
47
48 return true;
49 }
50
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54
55 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56
57 return true;
58 }
59
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62 struct ath_common *common = ath9k_hw_common(ah);
63
64 if (!ath9k_hw_use_flash(ah)) {
65 ath_dbg(common, ATH_DBG_EEPROM,
66 "Reading from EEPROM, not flash\n");
67 }
68
69 if (common->bus_ops->ath_bus_type == ATH_USB)
70 return __ath9k_hw_usb_4k_fill_eeprom(ah);
71 else
72 return __ath9k_hw_4k_fill_eeprom(ah);
73 }
74
75 #undef SIZE_EEPROM_4K
76
77 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
78 {
79 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
80 struct ath_common *common = ath9k_hw_common(ah);
81 struct ar5416_eeprom_4k *eep =
82 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
83 u16 *eepdata, temp, magic, magic2;
84 u32 sum = 0, el;
85 bool need_swap = false;
86 int i, addr;
87
88
89 if (!ath9k_hw_use_flash(ah)) {
90 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
91 &magic)) {
92 ath_err(common, "Reading Magic # failed\n");
93 return false;
94 }
95
96 ath_dbg(common, ATH_DBG_EEPROM,
97 "Read Magic = 0x%04X\n", magic);
98
99 if (magic != AR5416_EEPROM_MAGIC) {
100 magic2 = swab16(magic);
101
102 if (magic2 == AR5416_EEPROM_MAGIC) {
103 need_swap = true;
104 eepdata = (u16 *) (&ah->eeprom);
105
106 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
107 temp = swab16(*eepdata);
108 *eepdata = temp;
109 eepdata++;
110 }
111 } else {
112 ath_err(common,
113 "Invalid EEPROM Magic. Endianness mismatch.\n");
114 return -EINVAL;
115 }
116 }
117 }
118
119 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
120 need_swap ? "True" : "False");
121
122 if (need_swap)
123 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
124 else
125 el = ah->eeprom.map4k.baseEepHeader.length;
126
127 if (el > sizeof(struct ar5416_eeprom_4k))
128 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
129 else
130 el = el / sizeof(u16);
131
132 eepdata = (u16 *)(&ah->eeprom);
133
134 for (i = 0; i < el; i++)
135 sum ^= *eepdata++;
136
137 if (need_swap) {
138 u32 integer;
139 u16 word;
140
141 ath_dbg(common, ATH_DBG_EEPROM,
142 "EEPROM Endianness is not native.. Changing\n");
143
144 word = swab16(eep->baseEepHeader.length);
145 eep->baseEepHeader.length = word;
146
147 word = swab16(eep->baseEepHeader.checksum);
148 eep->baseEepHeader.checksum = word;
149
150 word = swab16(eep->baseEepHeader.version);
151 eep->baseEepHeader.version = word;
152
153 word = swab16(eep->baseEepHeader.regDmn[0]);
154 eep->baseEepHeader.regDmn[0] = word;
155
156 word = swab16(eep->baseEepHeader.regDmn[1]);
157 eep->baseEepHeader.regDmn[1] = word;
158
159 word = swab16(eep->baseEepHeader.rfSilent);
160 eep->baseEepHeader.rfSilent = word;
161
162 word = swab16(eep->baseEepHeader.blueToothOptions);
163 eep->baseEepHeader.blueToothOptions = word;
164
165 word = swab16(eep->baseEepHeader.deviceCap);
166 eep->baseEepHeader.deviceCap = word;
167
168 integer = swab32(eep->modalHeader.antCtrlCommon);
169 eep->modalHeader.antCtrlCommon = integer;
170
171 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
172 integer = swab32(eep->modalHeader.antCtrlChain[i]);
173 eep->modalHeader.antCtrlChain[i] = integer;
174 }
175
176 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
177 word = swab16(eep->modalHeader.spurChans[i].spurChan);
178 eep->modalHeader.spurChans[i].spurChan = word;
179 }
180 }
181
182 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
183 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
184 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
185 sum, ah->eep_ops->get_eeprom_ver(ah));
186 return -EINVAL;
187 }
188
189 return 0;
190 #undef EEPROM_4K_SIZE
191 }
192
193 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
194 enum eeprom_param param)
195 {
196 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
197 struct modal_eep_4k_header *pModal = &eep->modalHeader;
198 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
199 u16 ver_minor;
200
201 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
202
203 switch (param) {
204 case EEP_NFTHRESH_2:
205 return pModal->noiseFloorThreshCh[0];
206 case EEP_MAC_LSW:
207 return get_unaligned_be16(pBase->macAddr);
208 case EEP_MAC_MID:
209 return get_unaligned_be16(pBase->macAddr + 2);
210 case EEP_MAC_MSW:
211 return get_unaligned_be16(pBase->macAddr + 4);
212 case EEP_REG_0:
213 return pBase->regDmn[0];
214 case EEP_REG_1:
215 return pBase->regDmn[1];
216 case EEP_OP_CAP:
217 return pBase->deviceCap;
218 case EEP_OP_MODE:
219 return pBase->opCapFlags;
220 case EEP_RF_SILENT:
221 return pBase->rfSilent;
222 case EEP_OB_2:
223 return pModal->ob_0;
224 case EEP_DB_2:
225 return pModal->db1_1;
226 case EEP_MINOR_REV:
227 return ver_minor;
228 case EEP_TX_MASK:
229 return pBase->txMask;
230 case EEP_RX_MASK:
231 return pBase->rxMask;
232 case EEP_FRAC_N_5G:
233 return 0;
234 case EEP_PWR_TABLE_OFFSET:
235 return AR5416_PWR_TABLE_OFFSET_DB;
236 case EEP_MODAL_VER:
237 return pModal->version;
238 case EEP_ANT_DIV_CTL1:
239 return pModal->antdiv_ctl1;
240 case EEP_TXGAIN_TYPE:
241 if (ver_minor >= AR5416_EEP_MINOR_VER_19)
242 return pBase->txGainType;
243 else
244 return AR5416_EEP_TXGAIN_ORIGINAL;
245 default:
246 return 0;
247 }
248 }
249
250 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
251 struct ath9k_channel *chan,
252 int16_t *pTxPowerIndexOffset)
253 {
254 struct ath_common *common = ath9k_hw_common(ah);
255 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
256 struct cal_data_per_freq_4k *pRawDataset;
257 u8 *pCalBChans = NULL;
258 u16 pdGainOverlap_t2;
259 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
260 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
261 u16 numPiers, i, j;
262 u16 numXpdGain, xpdMask;
263 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
264 u32 reg32, regOffset, regChainOffset;
265
266 xpdMask = pEepData->modalHeader.xpdGain;
267
268 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
269 AR5416_EEP_MINOR_VER_2) {
270 pdGainOverlap_t2 =
271 pEepData->modalHeader.pdGainOverlap;
272 } else {
273 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
274 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
275 }
276
277 pCalBChans = pEepData->calFreqPier2G;
278 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
279
280 numXpdGain = 0;
281
282 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
283 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
284 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
285 break;
286 xpdGainValues[numXpdGain] =
287 (u16)(AR5416_PD_GAINS_IN_MASK - i);
288 numXpdGain++;
289 }
290 }
291
292 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
293 (numXpdGain - 1) & 0x3);
294 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
295 xpdGainValues[0]);
296 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
297 xpdGainValues[1]);
298 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
299
300 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
301 if (AR_SREV_5416_20_OR_LATER(ah) &&
302 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
303 (i != 0)) {
304 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
305 } else
306 regChainOffset = i * 0x1000;
307
308 if (pEepData->baseEepHeader.txMask & (1 << i)) {
309 pRawDataset = pEepData->calPierData2G[i];
310
311 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
312 pRawDataset, pCalBChans,
313 numPiers, pdGainOverlap_t2,
314 gainBoundaries,
315 pdadcValues, numXpdGain);
316
317 ENABLE_REGWRITE_BUFFER(ah);
318
319 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
320 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
321 SM(pdGainOverlap_t2,
322 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
323 | SM(gainBoundaries[0],
324 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
325 | SM(gainBoundaries[1],
326 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
327 | SM(gainBoundaries[2],
328 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
329 | SM(gainBoundaries[3],
330 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
331 }
332
333 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
334 for (j = 0; j < 32; j++) {
335 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
336 REG_WRITE(ah, regOffset, reg32);
337
338 ath_dbg(common, ATH_DBG_EEPROM,
339 "PDADC (%d,%4x): %4.4x %8.8x\n",
340 i, regChainOffset, regOffset,
341 reg32);
342 ath_dbg(common, ATH_DBG_EEPROM,
343 "PDADC: Chain %d | "
344 "PDADC %3d Value %3d | "
345 "PDADC %3d Value %3d | "
346 "PDADC %3d Value %3d | "
347 "PDADC %3d Value %3d |\n",
348 i, 4 * j, pdadcValues[4 * j],
349 4 * j + 1, pdadcValues[4 * j + 1],
350 4 * j + 2, pdadcValues[4 * j + 2],
351 4 * j + 3, pdadcValues[4 * j + 3]);
352
353 regOffset += 4;
354 }
355
356 REGWRITE_BUFFER_FLUSH(ah);
357 }
358 }
359
360 *pTxPowerIndexOffset = 0;
361 }
362
363 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
364 struct ath9k_channel *chan,
365 int16_t *ratesArray,
366 u16 cfgCtl,
367 u16 AntennaReduction,
368 u16 twiceMaxRegulatoryPower,
369 u16 powerLimit)
370 {
371 #define CMP_TEST_GRP \
372 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
373 pEepData->ctlIndex[i]) \
374 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
375 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
376
377 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
378 int i;
379 int16_t twiceLargestAntenna;
380 u16 twiceMinEdgePower;
381 u16 twiceMaxEdgePower = MAX_RATE_POWER;
382 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
383 u16 numCtlModes;
384 const u16 *pCtlMode;
385 u16 ctlMode, freq;
386 struct chan_centers centers;
387 struct cal_ctl_data_4k *rep;
388 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
389 static const u16 tpScaleReductionTable[5] =
390 { 0, 3, 6, 9, MAX_RATE_POWER };
391 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
392 0, { 0, 0, 0, 0}
393 };
394 struct cal_target_power_leg targetPowerOfdmExt = {
395 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
396 0, { 0, 0, 0, 0 }
397 };
398 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
399 0, {0, 0, 0, 0}
400 };
401 static const u16 ctlModesFor11g[] = {
402 CTL_11B, CTL_11G, CTL_2GHT20,
403 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
404 };
405
406 ath9k_hw_get_channel_centers(ah, chan, &centers);
407
408 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
409 twiceLargestAntenna = (int16_t)min(AntennaReduction -
410 twiceLargestAntenna, 0);
411
412 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
413 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
414 maxRegAllowedPower -=
415 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
416 }
417
418 scaledPower = min(powerLimit, maxRegAllowedPower);
419 scaledPower = max((u16)0, scaledPower);
420
421 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
422 pCtlMode = ctlModesFor11g;
423
424 ath9k_hw_get_legacy_target_powers(ah, chan,
425 pEepData->calTargetPowerCck,
426 AR5416_NUM_2G_CCK_TARGET_POWERS,
427 &targetPowerCck, 4, false);
428 ath9k_hw_get_legacy_target_powers(ah, chan,
429 pEepData->calTargetPower2G,
430 AR5416_NUM_2G_20_TARGET_POWERS,
431 &targetPowerOfdm, 4, false);
432 ath9k_hw_get_target_powers(ah, chan,
433 pEepData->calTargetPower2GHT20,
434 AR5416_NUM_2G_20_TARGET_POWERS,
435 &targetPowerHt20, 8, false);
436
437 if (IS_CHAN_HT40(chan)) {
438 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
439 ath9k_hw_get_target_powers(ah, chan,
440 pEepData->calTargetPower2GHT40,
441 AR5416_NUM_2G_40_TARGET_POWERS,
442 &targetPowerHt40, 8, true);
443 ath9k_hw_get_legacy_target_powers(ah, chan,
444 pEepData->calTargetPowerCck,
445 AR5416_NUM_2G_CCK_TARGET_POWERS,
446 &targetPowerCckExt, 4, true);
447 ath9k_hw_get_legacy_target_powers(ah, chan,
448 pEepData->calTargetPower2G,
449 AR5416_NUM_2G_20_TARGET_POWERS,
450 &targetPowerOfdmExt, 4, true);
451 }
452
453 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
454 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
455 (pCtlMode[ctlMode] == CTL_2GHT40);
456
457 if (isHt40CtlMode)
458 freq = centers.synth_center;
459 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
460 freq = centers.ext_center;
461 else
462 freq = centers.ctl_center;
463
464 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
465 ah->eep_ops->get_eeprom_rev(ah) <= 2)
466 twiceMaxEdgePower = MAX_RATE_POWER;
467
468 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
469 pEepData->ctlIndex[i]; i++) {
470
471 if (CMP_TEST_GRP) {
472 rep = &(pEepData->ctlData[i]);
473
474 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
475 freq,
476 rep->ctlEdges[
477 ar5416_get_ntxchains(ah->txchainmask) - 1],
478 IS_CHAN_2GHZ(chan),
479 AR5416_EEP4K_NUM_BAND_EDGES);
480
481 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
482 twiceMaxEdgePower =
483 min(twiceMaxEdgePower,
484 twiceMinEdgePower);
485 } else {
486 twiceMaxEdgePower = twiceMinEdgePower;
487 break;
488 }
489 }
490 }
491
492 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
493
494 switch (pCtlMode[ctlMode]) {
495 case CTL_11B:
496 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
497 targetPowerCck.tPow2x[i] =
498 min((u16)targetPowerCck.tPow2x[i],
499 minCtlPower);
500 }
501 break;
502 case CTL_11G:
503 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
504 targetPowerOfdm.tPow2x[i] =
505 min((u16)targetPowerOfdm.tPow2x[i],
506 minCtlPower);
507 }
508 break;
509 case CTL_2GHT20:
510 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
511 targetPowerHt20.tPow2x[i] =
512 min((u16)targetPowerHt20.tPow2x[i],
513 minCtlPower);
514 }
515 break;
516 case CTL_11B_EXT:
517 targetPowerCckExt.tPow2x[0] =
518 min((u16)targetPowerCckExt.tPow2x[0],
519 minCtlPower);
520 break;
521 case CTL_11G_EXT:
522 targetPowerOfdmExt.tPow2x[0] =
523 min((u16)targetPowerOfdmExt.tPow2x[0],
524 minCtlPower);
525 break;
526 case CTL_2GHT40:
527 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
528 targetPowerHt40.tPow2x[i] =
529 min((u16)targetPowerHt40.tPow2x[i],
530 minCtlPower);
531 }
532 break;
533 default:
534 break;
535 }
536 }
537
538 ratesArray[rate6mb] =
539 ratesArray[rate9mb] =
540 ratesArray[rate12mb] =
541 ratesArray[rate18mb] =
542 ratesArray[rate24mb] =
543 targetPowerOfdm.tPow2x[0];
544
545 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
546 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
547 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
548 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
549
550 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
551 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
552
553 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
554 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
555 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
556 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
557
558 if (IS_CHAN_HT40(chan)) {
559 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
560 ratesArray[rateHt40_0 + i] =
561 targetPowerHt40.tPow2x[i];
562 }
563 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
564 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
565 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
566 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
567 }
568
569 #undef CMP_TEST_GRP
570 }
571
572 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
573 struct ath9k_channel *chan,
574 u16 cfgCtl,
575 u8 twiceAntennaReduction,
576 u8 twiceMaxRegulatoryPower,
577 u8 powerLimit, bool test)
578 {
579 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
580 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
581 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
582 int16_t ratesArray[Ar5416RateSize];
583 int16_t txPowerIndexOffset = 0;
584 u8 ht40PowerIncForPdadc = 2;
585 int i;
586
587 memset(ratesArray, 0, sizeof(ratesArray));
588
589 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
590 AR5416_EEP_MINOR_VER_2) {
591 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
592 }
593
594 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
595 &ratesArray[0], cfgCtl,
596 twiceAntennaReduction,
597 twiceMaxRegulatoryPower,
598 powerLimit);
599
600 ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
601
602 regulatory->max_power_level = 0;
603 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
604 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
605 if (ratesArray[i] > MAX_RATE_POWER)
606 ratesArray[i] = MAX_RATE_POWER;
607
608 if (ratesArray[i] > regulatory->max_power_level)
609 regulatory->max_power_level = ratesArray[i];
610 }
611
612 if (test)
613 return;
614
615 /* Update regulatory */
616 i = rate6mb;
617 if (IS_CHAN_HT40(chan))
618 i = rateHt40_0;
619 else if (IS_CHAN_HT20(chan))
620 i = rateHt20_0;
621
622 regulatory->max_power_level = ratesArray[i];
623
624 if (AR_SREV_9280_20_OR_LATER(ah)) {
625 for (i = 0; i < Ar5416RateSize; i++)
626 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
627 }
628
629 ENABLE_REGWRITE_BUFFER(ah);
630
631 /* OFDM power per rate */
632 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
633 ATH9K_POW_SM(ratesArray[rate18mb], 24)
634 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
635 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
636 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
637 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
638 ATH9K_POW_SM(ratesArray[rate54mb], 24)
639 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
640 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
641 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
642
643 /* CCK power per rate */
644 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
645 ATH9K_POW_SM(ratesArray[rate2s], 24)
646 | ATH9K_POW_SM(ratesArray[rate2l], 16)
647 | ATH9K_POW_SM(ratesArray[rateXr], 8)
648 | ATH9K_POW_SM(ratesArray[rate1l], 0));
649 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
650 ATH9K_POW_SM(ratesArray[rate11s], 24)
651 | ATH9K_POW_SM(ratesArray[rate11l], 16)
652 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
653 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
654
655 /* HT20 power per rate */
656 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
657 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
658 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
659 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
660 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
661 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
662 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
663 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
664 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
665 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
666
667 /* HT40 power per rate */
668 if (IS_CHAN_HT40(chan)) {
669 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
670 ATH9K_POW_SM(ratesArray[rateHt40_3] +
671 ht40PowerIncForPdadc, 24)
672 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
673 ht40PowerIncForPdadc, 16)
674 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
675 ht40PowerIncForPdadc, 8)
676 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
677 ht40PowerIncForPdadc, 0));
678 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
679 ATH9K_POW_SM(ratesArray[rateHt40_7] +
680 ht40PowerIncForPdadc, 24)
681 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
682 ht40PowerIncForPdadc, 16)
683 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
684 ht40PowerIncForPdadc, 8)
685 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
686 ht40PowerIncForPdadc, 0));
687 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
688 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
689 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
690 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
691 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
692 }
693
694 REGWRITE_BUFFER_FLUSH(ah);
695 }
696
697 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
698 struct ath9k_channel *chan)
699 {
700 struct modal_eep_4k_header *pModal;
701 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
702 u8 biaslevel;
703
704 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
705 return;
706
707 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
708 return;
709
710 pModal = &eep->modalHeader;
711
712 if (pModal->xpaBiasLvl != 0xff) {
713 biaslevel = pModal->xpaBiasLvl;
714 INI_RA(&ah->iniAddac, 7, 1) =
715 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
716 }
717 }
718
719 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
720 struct modal_eep_4k_header *pModal,
721 struct ar5416_eeprom_4k *eep,
722 u8 txRxAttenLocal)
723 {
724 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
725 pModal->antCtrlChain[0]);
726
727 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
728 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
729 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
730 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
731 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
732 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
733
734 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
735 AR5416_EEP_MINOR_VER_3) {
736 txRxAttenLocal = pModal->txRxAttenCh[0];
737
738 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
739 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
740 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
741 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
742 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
744 pModal->xatten2Margin[0]);
745 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
746 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
747
748 /* Set the block 1 value to block 0 value */
749 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
750 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
751 pModal->bswMargin[0]);
752 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
753 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
754 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
755 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
756 pModal->xatten2Margin[0]);
757 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
758 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
759 pModal->xatten2Db[0]);
760 }
761
762 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
763 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
764 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
765 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
766
767 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
768 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
769 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
770 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
771 }
772
773 /*
774 * Read EEPROM header info and program the device for correct operation
775 * given the channel value.
776 */
777 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
778 struct ath9k_channel *chan)
779 {
780 struct modal_eep_4k_header *pModal;
781 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
782 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
783 u8 txRxAttenLocal;
784 u8 ob[5], db1[5], db2[5];
785 u8 ant_div_control1, ant_div_control2;
786 u32 regVal;
787
788 pModal = &eep->modalHeader;
789 txRxAttenLocal = 23;
790
791 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
792
793 /* Single chain for 4K EEPROM*/
794 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
795
796 /* Initialize Ant Diversity settings from EEPROM */
797 if (pModal->version >= 3) {
798 ant_div_control1 = pModal->antdiv_ctl1;
799 ant_div_control2 = pModal->antdiv_ctl2;
800
801 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
802 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
803
804 regVal |= SM(ant_div_control1,
805 AR_PHY_9285_ANT_DIV_CTL);
806 regVal |= SM(ant_div_control2,
807 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
808 regVal |= SM((ant_div_control2 >> 2),
809 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
810 regVal |= SM((ant_div_control1 >> 1),
811 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
812 regVal |= SM((ant_div_control1 >> 2),
813 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
814
815
816 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
817 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
818 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
819 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
820 regVal |= SM((ant_div_control1 >> 3),
821 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
822
823 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
824 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
825 }
826
827 if (pModal->version >= 2) {
828 ob[0] = pModal->ob_0;
829 ob[1] = pModal->ob_1;
830 ob[2] = pModal->ob_2;
831 ob[3] = pModal->ob_3;
832 ob[4] = pModal->ob_4;
833
834 db1[0] = pModal->db1_0;
835 db1[1] = pModal->db1_1;
836 db1[2] = pModal->db1_2;
837 db1[3] = pModal->db1_3;
838 db1[4] = pModal->db1_4;
839
840 db2[0] = pModal->db2_0;
841 db2[1] = pModal->db2_1;
842 db2[2] = pModal->db2_2;
843 db2[3] = pModal->db2_3;
844 db2[4] = pModal->db2_4;
845 } else if (pModal->version == 1) {
846 ob[0] = pModal->ob_0;
847 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
848 db1[0] = pModal->db1_0;
849 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
850 db2[0] = pModal->db2_0;
851 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
852 } else {
853 int i;
854
855 for (i = 0; i < 5; i++) {
856 ob[i] = pModal->ob_0;
857 db1[i] = pModal->db1_0;
858 db2[i] = pModal->db1_0;
859 }
860 }
861
862 if (AR_SREV_9271(ah)) {
863 ath9k_hw_analog_shift_rmw(ah,
864 AR9285_AN_RF2G3,
865 AR9271_AN_RF2G3_OB_cck,
866 AR9271_AN_RF2G3_OB_cck_S,
867 ob[0]);
868 ath9k_hw_analog_shift_rmw(ah,
869 AR9285_AN_RF2G3,
870 AR9271_AN_RF2G3_OB_psk,
871 AR9271_AN_RF2G3_OB_psk_S,
872 ob[1]);
873 ath9k_hw_analog_shift_rmw(ah,
874 AR9285_AN_RF2G3,
875 AR9271_AN_RF2G3_OB_qam,
876 AR9271_AN_RF2G3_OB_qam_S,
877 ob[2]);
878 ath9k_hw_analog_shift_rmw(ah,
879 AR9285_AN_RF2G3,
880 AR9271_AN_RF2G3_DB_1,
881 AR9271_AN_RF2G3_DB_1_S,
882 db1[0]);
883 ath9k_hw_analog_shift_rmw(ah,
884 AR9285_AN_RF2G4,
885 AR9271_AN_RF2G4_DB_2,
886 AR9271_AN_RF2G4_DB_2_S,
887 db2[0]);
888 } else {
889 ath9k_hw_analog_shift_rmw(ah,
890 AR9285_AN_RF2G3,
891 AR9285_AN_RF2G3_OB_0,
892 AR9285_AN_RF2G3_OB_0_S,
893 ob[0]);
894 ath9k_hw_analog_shift_rmw(ah,
895 AR9285_AN_RF2G3,
896 AR9285_AN_RF2G3_OB_1,
897 AR9285_AN_RF2G3_OB_1_S,
898 ob[1]);
899 ath9k_hw_analog_shift_rmw(ah,
900 AR9285_AN_RF2G3,
901 AR9285_AN_RF2G3_OB_2,
902 AR9285_AN_RF2G3_OB_2_S,
903 ob[2]);
904 ath9k_hw_analog_shift_rmw(ah,
905 AR9285_AN_RF2G3,
906 AR9285_AN_RF2G3_OB_3,
907 AR9285_AN_RF2G3_OB_3_S,
908 ob[3]);
909 ath9k_hw_analog_shift_rmw(ah,
910 AR9285_AN_RF2G3,
911 AR9285_AN_RF2G3_OB_4,
912 AR9285_AN_RF2G3_OB_4_S,
913 ob[4]);
914
915 ath9k_hw_analog_shift_rmw(ah,
916 AR9285_AN_RF2G3,
917 AR9285_AN_RF2G3_DB1_0,
918 AR9285_AN_RF2G3_DB1_0_S,
919 db1[0]);
920 ath9k_hw_analog_shift_rmw(ah,
921 AR9285_AN_RF2G3,
922 AR9285_AN_RF2G3_DB1_1,
923 AR9285_AN_RF2G3_DB1_1_S,
924 db1[1]);
925 ath9k_hw_analog_shift_rmw(ah,
926 AR9285_AN_RF2G3,
927 AR9285_AN_RF2G3_DB1_2,
928 AR9285_AN_RF2G3_DB1_2_S,
929 db1[2]);
930 ath9k_hw_analog_shift_rmw(ah,
931 AR9285_AN_RF2G4,
932 AR9285_AN_RF2G4_DB1_3,
933 AR9285_AN_RF2G4_DB1_3_S,
934 db1[3]);
935 ath9k_hw_analog_shift_rmw(ah,
936 AR9285_AN_RF2G4,
937 AR9285_AN_RF2G4_DB1_4,
938 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
939
940 ath9k_hw_analog_shift_rmw(ah,
941 AR9285_AN_RF2G4,
942 AR9285_AN_RF2G4_DB2_0,
943 AR9285_AN_RF2G4_DB2_0_S,
944 db2[0]);
945 ath9k_hw_analog_shift_rmw(ah,
946 AR9285_AN_RF2G4,
947 AR9285_AN_RF2G4_DB2_1,
948 AR9285_AN_RF2G4_DB2_1_S,
949 db2[1]);
950 ath9k_hw_analog_shift_rmw(ah,
951 AR9285_AN_RF2G4,
952 AR9285_AN_RF2G4_DB2_2,
953 AR9285_AN_RF2G4_DB2_2_S,
954 db2[2]);
955 ath9k_hw_analog_shift_rmw(ah,
956 AR9285_AN_RF2G4,
957 AR9285_AN_RF2G4_DB2_3,
958 AR9285_AN_RF2G4_DB2_3_S,
959 db2[3]);
960 ath9k_hw_analog_shift_rmw(ah,
961 AR9285_AN_RF2G4,
962 AR9285_AN_RF2G4_DB2_4,
963 AR9285_AN_RF2G4_DB2_4_S,
964 db2[4]);
965 }
966
967
968 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
969 pModal->switchSettling);
970 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
971 pModal->adcDesiredSize);
972
973 REG_WRITE(ah, AR_PHY_RF_CTL4,
974 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
975 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
976 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
977 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
978
979 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
980 pModal->txEndToRxOn);
981
982 if (AR_SREV_9271_10(ah))
983 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
984 pModal->txEndToRxOn);
985 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
986 pModal->thresh62);
987 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
988 pModal->thresh62);
989
990 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
991 AR5416_EEP_MINOR_VER_2) {
992 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
993 pModal->txFrameToDataStart);
994 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
995 pModal->txFrameToPaOn);
996 }
997
998 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
999 AR5416_EEP_MINOR_VER_3) {
1000 if (IS_CHAN_HT40(chan))
1001 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1002 AR_PHY_SETTLING_SWITCH,
1003 pModal->swSettleHt40);
1004 }
1005 if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
1006 u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1007 EEP_4K_BB_DESIRED_SCALE_MASK);
1008 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1009 u32 pwrctrl, mask, clr;
1010
1011 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1012 pwrctrl = mask * bb_desired_scale;
1013 clr = mask * 0x1f;
1014 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1015 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1016 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1017
1018 mask = BIT(0)|BIT(5)|BIT(15);
1019 pwrctrl = mask * bb_desired_scale;
1020 clr = mask * 0x1f;
1021 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1022
1023 mask = BIT(0)|BIT(5);
1024 pwrctrl = mask * bb_desired_scale;
1025 clr = mask * 0x1f;
1026 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1027 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1028 }
1029 }
1030 }
1031
1032 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1033 {
1034 #define EEP_MAP4K_SPURCHAN \
1035 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1036 struct ath_common *common = ath9k_hw_common(ah);
1037
1038 u16 spur_val = AR_NO_SPUR;
1039
1040 ath_dbg(common, ATH_DBG_ANI,
1041 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1042 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1043
1044 switch (ah->config.spurmode) {
1045 case SPUR_DISABLE:
1046 break;
1047 case SPUR_ENABLE_IOCTL:
1048 spur_val = ah->config.spurchans[i][is2GHz];
1049 ath_dbg(common, ATH_DBG_ANI,
1050 "Getting spur val from new loc. %d\n", spur_val);
1051 break;
1052 case SPUR_ENABLE_EEPROM:
1053 spur_val = EEP_MAP4K_SPURCHAN;
1054 break;
1055 }
1056
1057 return spur_val;
1058
1059 #undef EEP_MAP4K_SPURCHAN
1060 }
1061
1062 const struct eeprom_ops eep_4k_ops = {
1063 .check_eeprom = ath9k_hw_4k_check_eeprom,
1064 .get_eeprom = ath9k_hw_4k_get_eeprom,
1065 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1066 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1067 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1068 .set_board_values = ath9k_hw_4k_set_board_values,
1069 .set_addac = ath9k_hw_4k_set_addac,
1070 .set_txpower = ath9k_hw_4k_set_txpower,
1071 .get_spur_channel = ath9k_hw_4k_get_spur_channel
1072 };
This page took 0.082266 seconds and 5 git commands to generate.