Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_9287.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 {
25 return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26 }
27
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29 {
30 return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31 }
32
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34 {
35 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 struct ath_common *common = ath9k_hw_common(ah);
37 u16 *eep_data;
38 int addr, eep_start_loc = AR9287_EEP_START_LOC;
39 eep_data = (u16 *)eep;
40
41 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
42 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
43 eep_data)) {
44 ath_dbg(common, EEPROM,
45 "Unable to read eeprom region\n");
46 return false;
47 }
48 eep_data++;
49 }
50
51 return true;
52 }
53
54 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
55 {
56 u16 *eep_data = (u16 *)&ah->eeprom.map9287;
57
58 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
59 AR9287_HTC_EEP_START_LOC,
60 SIZE_EEPROM_AR9287);
61 return true;
62 }
63
64 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
65 {
66 struct ath_common *common = ath9k_hw_common(ah);
67
68 if (!ath9k_hw_use_flash(ah)) {
69 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
70 }
71
72 if (common->bus_ops->ath_bus_type == ATH_USB)
73 return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 else
75 return __ath9k_hw_ar9287_fill_eeprom(ah);
76 }
77
78 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
79 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
80 struct modal_eep_ar9287_header *modal_hdr)
81 {
82 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
83 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
84 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
85 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
86 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
87 PR_EEP("Switch Settle", modal_hdr->switchSettling);
88 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
89 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
90 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
91 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
92 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
93 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
94 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
95 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
96 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
97 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
98 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
99 PR_EEP("xpdGain", modal_hdr->xpdGain);
100 PR_EEP("External PD", modal_hdr->xpd);
101 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
102 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
103 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
104 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
105 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
106 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
107 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
108 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
109 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
110 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
111 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
112 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
113 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
114 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
115 PR_EEP("AR92x7 Version", modal_hdr->version);
116 PR_EEP("DriverBias1", modal_hdr->db1);
117 PR_EEP("DriverBias2", modal_hdr->db1);
118 PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
119 PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
120 PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
121 PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
122
123 return len;
124 }
125
126 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
127 u8 *buf, u32 len, u32 size)
128 {
129 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
130 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
131
132 if (!dump_base_hdr) {
133 len += snprintf(buf + len, size - len,
134 "%20s :\n", "2GHz modal Header");
135 len += ar9287_dump_modal_eeprom(buf, len, size,
136 &eep->modalHeader);
137 goto out;
138 }
139
140 PR_EEP("Major Version", pBase->version >> 12);
141 PR_EEP("Minor Version", pBase->version & 0xFFF);
142 PR_EEP("Checksum", pBase->checksum);
143 PR_EEP("Length", pBase->length);
144 PR_EEP("RegDomain1", pBase->regDmn[0]);
145 PR_EEP("RegDomain2", pBase->regDmn[1]);
146 PR_EEP("TX Mask", pBase->txMask);
147 PR_EEP("RX Mask", pBase->rxMask);
148 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
149 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
150 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
151 AR5416_OPFLAGS_N_2G_HT20));
152 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
153 AR5416_OPFLAGS_N_2G_HT40));
154 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
155 AR5416_OPFLAGS_N_5G_HT20));
156 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
157 AR5416_OPFLAGS_N_5G_HT40));
158 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
159 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
160 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
161 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
162 PR_EEP("Power Table Offset", pBase->pwrTableOffset);
163 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
164
165 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
166 pBase->macAddr);
167
168 out:
169 if (len > size)
170 len = size;
171
172 return len;
173 }
174 #else
175 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
176 u8 *buf, u32 len, u32 size)
177 {
178 return 0;
179 }
180 #endif
181
182
183 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
184 {
185 u32 sum = 0, el, integer;
186 u16 temp, word, magic, magic2, *eepdata;
187 int i, addr;
188 bool need_swap = false;
189 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
190 struct ath_common *common = ath9k_hw_common(ah);
191
192 if (!ath9k_hw_use_flash(ah)) {
193 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
194 &magic)) {
195 ath_err(common, "Reading Magic # failed\n");
196 return false;
197 }
198
199 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
200
201 if (magic != AR5416_EEPROM_MAGIC) {
202 magic2 = swab16(magic);
203
204 if (magic2 == AR5416_EEPROM_MAGIC) {
205 need_swap = true;
206 eepdata = (u16 *)(&ah->eeprom);
207
208 for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
209 temp = swab16(*eepdata);
210 *eepdata = temp;
211 eepdata++;
212 }
213 } else {
214 ath_err(common,
215 "Invalid EEPROM Magic. Endianness mismatch.\n");
216 return -EINVAL;
217 }
218 }
219 }
220
221 ath_dbg(common, EEPROM, "need_swap = %s\n",
222 need_swap ? "True" : "False");
223
224 if (need_swap)
225 el = swab16(ah->eeprom.map9287.baseEepHeader.length);
226 else
227 el = ah->eeprom.map9287.baseEepHeader.length;
228
229 if (el > sizeof(struct ar9287_eeprom))
230 el = sizeof(struct ar9287_eeprom) / sizeof(u16);
231 else
232 el = el / sizeof(u16);
233
234 eepdata = (u16 *)(&ah->eeprom);
235
236 for (i = 0; i < el; i++)
237 sum ^= *eepdata++;
238
239 if (need_swap) {
240 word = swab16(eep->baseEepHeader.length);
241 eep->baseEepHeader.length = word;
242
243 word = swab16(eep->baseEepHeader.checksum);
244 eep->baseEepHeader.checksum = word;
245
246 word = swab16(eep->baseEepHeader.version);
247 eep->baseEepHeader.version = word;
248
249 word = swab16(eep->baseEepHeader.regDmn[0]);
250 eep->baseEepHeader.regDmn[0] = word;
251
252 word = swab16(eep->baseEepHeader.regDmn[1]);
253 eep->baseEepHeader.regDmn[1] = word;
254
255 word = swab16(eep->baseEepHeader.rfSilent);
256 eep->baseEepHeader.rfSilent = word;
257
258 word = swab16(eep->baseEepHeader.blueToothOptions);
259 eep->baseEepHeader.blueToothOptions = word;
260
261 word = swab16(eep->baseEepHeader.deviceCap);
262 eep->baseEepHeader.deviceCap = word;
263
264 integer = swab32(eep->modalHeader.antCtrlCommon);
265 eep->modalHeader.antCtrlCommon = integer;
266
267 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
268 integer = swab32(eep->modalHeader.antCtrlChain[i]);
269 eep->modalHeader.antCtrlChain[i] = integer;
270 }
271
272 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
273 word = swab16(eep->modalHeader.spurChans[i].spurChan);
274 eep->modalHeader.spurChans[i].spurChan = word;
275 }
276 }
277
278 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
279 || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
280 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
281 sum, ah->eep_ops->get_eeprom_ver(ah));
282 return -EINVAL;
283 }
284
285 return 0;
286 }
287
288 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
289 enum eeprom_param param)
290 {
291 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
292 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
293 struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
294 u16 ver_minor;
295
296 ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
297
298 switch (param) {
299 case EEP_NFTHRESH_2:
300 return pModal->noiseFloorThreshCh[0];
301 case EEP_MAC_LSW:
302 return get_unaligned_be16(pBase->macAddr);
303 case EEP_MAC_MID:
304 return get_unaligned_be16(pBase->macAddr + 2);
305 case EEP_MAC_MSW:
306 return get_unaligned_be16(pBase->macAddr + 4);
307 case EEP_REG_0:
308 return pBase->regDmn[0];
309 case EEP_OP_CAP:
310 return pBase->deviceCap;
311 case EEP_OP_MODE:
312 return pBase->opCapFlags;
313 case EEP_RF_SILENT:
314 return pBase->rfSilent;
315 case EEP_MINOR_REV:
316 return ver_minor;
317 case EEP_TX_MASK:
318 return pBase->txMask;
319 case EEP_RX_MASK:
320 return pBase->rxMask;
321 case EEP_DEV_TYPE:
322 return pBase->deviceType;
323 case EEP_OL_PWRCTRL:
324 return pBase->openLoopPwrCntl;
325 case EEP_TEMPSENSE_SLOPE:
326 if (ver_minor >= AR9287_EEP_MINOR_VER_2)
327 return pBase->tempSensSlope;
328 else
329 return 0;
330 case EEP_TEMPSENSE_SLOPE_PAL_ON:
331 if (ver_minor >= AR9287_EEP_MINOR_VER_3)
332 return pBase->tempSensSlopePalOn;
333 else
334 return 0;
335 case EEP_ANTENNA_GAIN_2G:
336 return max_t(u8, pModal->antennaGainCh[0],
337 pModal->antennaGainCh[1]);
338 default:
339 return 0;
340 }
341 }
342
343 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
344 struct ath9k_channel *chan,
345 struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
346 u8 *pCalChans, u16 availPiers, int8_t *pPwr)
347 {
348 u16 idxL = 0, idxR = 0, numPiers;
349 bool match;
350 struct chan_centers centers;
351
352 ath9k_hw_get_channel_centers(ah, chan, &centers);
353
354 for (numPiers = 0; numPiers < availPiers; numPiers++) {
355 if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
356 break;
357 }
358
359 match = ath9k_hw_get_lower_upper_index(
360 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
361 pCalChans, numPiers, &idxL, &idxR);
362
363 if (match) {
364 *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
365 } else {
366 *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
367 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
368 }
369
370 }
371
372 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
373 int32_t txPower, u16 chain)
374 {
375 u32 tmpVal;
376 u32 a;
377
378 /* Enable OLPC for chain 0 */
379
380 tmpVal = REG_READ(ah, 0xa270);
381 tmpVal = tmpVal & 0xFCFFFFFF;
382 tmpVal = tmpVal | (0x3 << 24);
383 REG_WRITE(ah, 0xa270, tmpVal);
384
385 /* Enable OLPC for chain 1 */
386
387 tmpVal = REG_READ(ah, 0xb270);
388 tmpVal = tmpVal & 0xFCFFFFFF;
389 tmpVal = tmpVal | (0x3 << 24);
390 REG_WRITE(ah, 0xb270, tmpVal);
391
392 /* Write the OLPC ref power for chain 0 */
393
394 if (chain == 0) {
395 tmpVal = REG_READ(ah, 0xa398);
396 tmpVal = tmpVal & 0xff00ffff;
397 a = (txPower)&0xff;
398 tmpVal = tmpVal | (a << 16);
399 REG_WRITE(ah, 0xa398, tmpVal);
400 }
401
402 /* Write the OLPC ref power for chain 1 */
403
404 if (chain == 1) {
405 tmpVal = REG_READ(ah, 0xb398);
406 tmpVal = tmpVal & 0xff00ffff;
407 a = (txPower)&0xff;
408 tmpVal = tmpVal | (a << 16);
409 REG_WRITE(ah, 0xb398, tmpVal);
410 }
411 }
412
413 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
414 struct ath9k_channel *chan)
415 {
416 struct cal_data_per_freq_ar9287 *pRawDataset;
417 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
418 u8 *pCalBChans = NULL;
419 u16 pdGainOverlap_t2;
420 u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
421 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
422 u16 numPiers = 0, i, j;
423 u16 numXpdGain, xpdMask;
424 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
425 u32 reg32, regOffset, regChainOffset, regval;
426 int16_t diff = 0;
427 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
428
429 xpdMask = pEepData->modalHeader.xpdGain;
430
431 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
432 AR9287_EEP_MINOR_VER_2)
433 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
434 else
435 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
436 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
437
438 if (IS_CHAN_2GHZ(chan)) {
439 pCalBChans = pEepData->calFreqPier2G;
440 numPiers = AR9287_NUM_2G_CAL_PIERS;
441 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
442 pRawDatasetOpenLoop =
443 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
444 ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
445 }
446 }
447
448 numXpdGain = 0;
449
450 /* Calculate the value of xpdgains from the xpdGain Mask */
451 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
452 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
453 if (numXpdGain >= AR5416_NUM_PD_GAINS)
454 break;
455 xpdGainValues[numXpdGain] =
456 (u16)(AR5416_PD_GAINS_IN_MASK-i);
457 numXpdGain++;
458 }
459 }
460
461 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
462 (numXpdGain - 1) & 0x3);
463 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
464 xpdGainValues[0]);
465 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
466 xpdGainValues[1]);
467 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
468 xpdGainValues[2]);
469
470 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
471 regChainOffset = i * 0x1000;
472
473 if (pEepData->baseEepHeader.txMask & (1 << i)) {
474 pRawDatasetOpenLoop =
475 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
476
477 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
478 int8_t txPower;
479 ar9287_eeprom_get_tx_gain_index(ah, chan,
480 pRawDatasetOpenLoop,
481 pCalBChans, numPiers,
482 &txPower);
483 ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
484 } else {
485 pRawDataset =
486 (struct cal_data_per_freq_ar9287 *)
487 pEepData->calPierData2G[i];
488
489 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
490 pRawDataset,
491 pCalBChans, numPiers,
492 pdGainOverlap_t2,
493 gainBoundaries,
494 pdadcValues,
495 numXpdGain);
496 }
497
498 ENABLE_REGWRITE_BUFFER(ah);
499
500 if (i == 0) {
501 if (!ath9k_hw_ar9287_get_eeprom(ah,
502 EEP_OL_PWRCTRL)) {
503
504 regval = SM(pdGainOverlap_t2,
505 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
506 | SM(gainBoundaries[0],
507 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
508 | SM(gainBoundaries[1],
509 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
510 | SM(gainBoundaries[2],
511 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
512 | SM(gainBoundaries[3],
513 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
514
515 REG_WRITE(ah,
516 AR_PHY_TPCRG5 + regChainOffset,
517 regval);
518 }
519 }
520
521 if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
522 pEepData->baseEepHeader.pwrTableOffset) {
523 diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
524 (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
525 diff *= 2;
526
527 for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
528 pdadcValues[j] = pdadcValues[j+diff];
529
530 for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
531 j < AR5416_NUM_PDADC_VALUES; j++)
532 pdadcValues[j] =
533 pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
534 }
535
536 if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
537 regOffset = AR_PHY_BASE +
538 (672 << 2) + regChainOffset;
539
540 for (j = 0; j < 32; j++) {
541 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
542
543 REG_WRITE(ah, regOffset, reg32);
544 regOffset += 4;
545 }
546 }
547 REGWRITE_BUFFER_FLUSH(ah);
548 }
549 }
550 }
551
552 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
553 struct ath9k_channel *chan,
554 int16_t *ratesArray,
555 u16 cfgCtl,
556 u16 antenna_reduction,
557 u16 powerLimit)
558 {
559 #define CMP_CTL \
560 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
561 pEepData->ctlIndex[i])
562
563 #define CMP_NO_CTL \
564 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
565 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
566
567 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
568 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
569
570 u16 twiceMaxEdgePower;
571 int i;
572 struct cal_ctl_data_ar9287 *rep;
573 struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
574 targetPowerCck = {0, {0, 0, 0, 0} };
575 struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
576 targetPowerCckExt = {0, {0, 0, 0, 0} };
577 struct cal_target_power_ht targetPowerHt20,
578 targetPowerHt40 = {0, {0, 0, 0, 0} };
579 u16 scaledPower = 0, minCtlPower;
580 static const u16 ctlModesFor11g[] = {
581 CTL_11B, CTL_11G, CTL_2GHT20,
582 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
583 };
584 u16 numCtlModes = 0;
585 const u16 *pCtlMode = NULL;
586 u16 ctlMode, freq;
587 struct chan_centers centers;
588 int tx_chainmask;
589 u16 twiceMinEdgePower;
590 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
591 tx_chainmask = ah->txchainmask;
592
593 ath9k_hw_get_channel_centers(ah, chan, &centers);
594 scaledPower = powerLimit - antenna_reduction;
595
596 /*
597 * Reduce scaled Power by number of chains active
598 * to get the per chain tx power level.
599 */
600 switch (ar5416_get_ntxchains(tx_chainmask)) {
601 case 1:
602 break;
603 case 2:
604 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
605 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
606 else
607 scaledPower = 0;
608 break;
609 case 3:
610 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
611 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
612 else
613 scaledPower = 0;
614 break;
615 }
616 scaledPower = max((u16)0, scaledPower);
617
618 /*
619 * Get TX power from EEPROM.
620 */
621 if (IS_CHAN_2GHZ(chan)) {
622 /* CTL_11B, CTL_11G, CTL_2GHT20 */
623 numCtlModes =
624 ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
625
626 pCtlMode = ctlModesFor11g;
627
628 ath9k_hw_get_legacy_target_powers(ah, chan,
629 pEepData->calTargetPowerCck,
630 AR9287_NUM_2G_CCK_TARGET_POWERS,
631 &targetPowerCck, 4, false);
632 ath9k_hw_get_legacy_target_powers(ah, chan,
633 pEepData->calTargetPower2G,
634 AR9287_NUM_2G_20_TARGET_POWERS,
635 &targetPowerOfdm, 4, false);
636 ath9k_hw_get_target_powers(ah, chan,
637 pEepData->calTargetPower2GHT20,
638 AR9287_NUM_2G_20_TARGET_POWERS,
639 &targetPowerHt20, 8, false);
640
641 if (IS_CHAN_HT40(chan)) {
642 /* All 2G CTLs */
643 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
644 ath9k_hw_get_target_powers(ah, chan,
645 pEepData->calTargetPower2GHT40,
646 AR9287_NUM_2G_40_TARGET_POWERS,
647 &targetPowerHt40, 8, true);
648 ath9k_hw_get_legacy_target_powers(ah, chan,
649 pEepData->calTargetPowerCck,
650 AR9287_NUM_2G_CCK_TARGET_POWERS,
651 &targetPowerCckExt, 4, true);
652 ath9k_hw_get_legacy_target_powers(ah, chan,
653 pEepData->calTargetPower2G,
654 AR9287_NUM_2G_20_TARGET_POWERS,
655 &targetPowerOfdmExt, 4, true);
656 }
657 }
658
659 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
660 bool isHt40CtlMode =
661 (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
662
663 if (isHt40CtlMode)
664 freq = centers.synth_center;
665 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
666 freq = centers.ext_center;
667 else
668 freq = centers.ctl_center;
669
670 twiceMaxEdgePower = MAX_RATE_POWER;
671 /* Walk through the CTL indices stored in EEPROM */
672 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
673 struct cal_ctl_edges *pRdEdgesPower;
674
675 /*
676 * Compare test group from regulatory channel list
677 * with test mode from pCtlMode list
678 */
679 if (CMP_CTL || CMP_NO_CTL) {
680 rep = &(pEepData->ctlData[i]);
681 pRdEdgesPower =
682 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
683
684 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
685 pRdEdgesPower,
686 IS_CHAN_2GHZ(chan),
687 AR5416_NUM_BAND_EDGES);
688
689 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
690 twiceMaxEdgePower = min(twiceMaxEdgePower,
691 twiceMinEdgePower);
692 } else {
693 twiceMaxEdgePower = twiceMinEdgePower;
694 break;
695 }
696 }
697 }
698
699 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
700
701 /* Apply ctl mode to correct target power set */
702 switch (pCtlMode[ctlMode]) {
703 case CTL_11B:
704 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
705 targetPowerCck.tPow2x[i] =
706 (u8)min((u16)targetPowerCck.tPow2x[i],
707 minCtlPower);
708 }
709 break;
710 case CTL_11A:
711 case CTL_11G:
712 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
713 targetPowerOfdm.tPow2x[i] =
714 (u8)min((u16)targetPowerOfdm.tPow2x[i],
715 minCtlPower);
716 }
717 break;
718 case CTL_5GHT20:
719 case CTL_2GHT20:
720 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
721 targetPowerHt20.tPow2x[i] =
722 (u8)min((u16)targetPowerHt20.tPow2x[i],
723 minCtlPower);
724 }
725 break;
726 case CTL_11B_EXT:
727 targetPowerCckExt.tPow2x[0] =
728 (u8)min((u16)targetPowerCckExt.tPow2x[0],
729 minCtlPower);
730 break;
731 case CTL_11A_EXT:
732 case CTL_11G_EXT:
733 targetPowerOfdmExt.tPow2x[0] =
734 (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
735 minCtlPower);
736 break;
737 case CTL_5GHT40:
738 case CTL_2GHT40:
739 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
740 targetPowerHt40.tPow2x[i] =
741 (u8)min((u16)targetPowerHt40.tPow2x[i],
742 minCtlPower);
743 }
744 break;
745 default:
746 break;
747 }
748 }
749
750 /* Now set the rates array */
751
752 ratesArray[rate6mb] =
753 ratesArray[rate9mb] =
754 ratesArray[rate12mb] =
755 ratesArray[rate18mb] =
756 ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
757
758 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
759 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
760 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
761 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
762
763 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
764 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
765
766 if (IS_CHAN_2GHZ(chan)) {
767 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
768 ratesArray[rate2s] =
769 ratesArray[rate2l] = targetPowerCck.tPow2x[1];
770 ratesArray[rate5_5s] =
771 ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
772 ratesArray[rate11s] =
773 ratesArray[rate11l] = targetPowerCck.tPow2x[3];
774 }
775 if (IS_CHAN_HT40(chan)) {
776 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
777 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
778
779 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
780 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
781 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
782
783 if (IS_CHAN_2GHZ(chan))
784 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
785 }
786
787 #undef CMP_CTL
788 #undef CMP_NO_CTL
789 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
790 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
791 }
792
793 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
794 struct ath9k_channel *chan, u16 cfgCtl,
795 u8 twiceAntennaReduction,
796 u8 powerLimit, bool test)
797 {
798 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
799 struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
800 struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
801 int16_t ratesArray[Ar5416RateSize];
802 u8 ht40PowerIncForPdadc = 2;
803 int i;
804
805 memset(ratesArray, 0, sizeof(ratesArray));
806
807 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
808 AR9287_EEP_MINOR_VER_2)
809 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
810
811 ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
812 &ratesArray[0], cfgCtl,
813 twiceAntennaReduction,
814 powerLimit);
815
816 ath9k_hw_set_ar9287_power_cal_table(ah, chan);
817
818 regulatory->max_power_level = 0;
819 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
820 if (ratesArray[i] > MAX_RATE_POWER)
821 ratesArray[i] = MAX_RATE_POWER;
822
823 if (ratesArray[i] > regulatory->max_power_level)
824 regulatory->max_power_level = ratesArray[i];
825 }
826
827 if (test)
828 return;
829
830 for (i = 0; i < Ar5416RateSize; i++)
831 ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
832
833 ENABLE_REGWRITE_BUFFER(ah);
834
835 /* OFDM power per rate */
836 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
837 ATH9K_POW_SM(ratesArray[rate18mb], 24)
838 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
839 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
840 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
841
842 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
843 ATH9K_POW_SM(ratesArray[rate54mb], 24)
844 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
845 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
846 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
847
848 /* CCK power per rate */
849 if (IS_CHAN_2GHZ(chan)) {
850 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
851 ATH9K_POW_SM(ratesArray[rate2s], 24)
852 | ATH9K_POW_SM(ratesArray[rate2l], 16)
853 | ATH9K_POW_SM(ratesArray[rateXr], 8)
854 | ATH9K_POW_SM(ratesArray[rate1l], 0));
855 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
856 ATH9K_POW_SM(ratesArray[rate11s], 24)
857 | ATH9K_POW_SM(ratesArray[rate11l], 16)
858 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
859 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
860 }
861
862 /* HT20 power per rate */
863 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
864 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
865 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
866 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
867 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
868
869 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
870 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
871 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
872 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
873 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
874
875 /* HT40 power per rate */
876 if (IS_CHAN_HT40(chan)) {
877 if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
878 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
879 ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
880 | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
881 | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
882 | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
883
884 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
885 ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
886 | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
887 | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
888 | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
889 } else {
890 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
891 ATH9K_POW_SM(ratesArray[rateHt40_3] +
892 ht40PowerIncForPdadc, 24)
893 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
894 ht40PowerIncForPdadc, 16)
895 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
896 ht40PowerIncForPdadc, 8)
897 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
898 ht40PowerIncForPdadc, 0));
899
900 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
901 ATH9K_POW_SM(ratesArray[rateHt40_7] +
902 ht40PowerIncForPdadc, 24)
903 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
904 ht40PowerIncForPdadc, 16)
905 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
906 ht40PowerIncForPdadc, 8)
907 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
908 ht40PowerIncForPdadc, 0));
909 }
910
911 /* Dup/Ext power per rate */
912 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
913 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
914 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
915 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
916 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
917 }
918 REGWRITE_BUFFER_FLUSH(ah);
919 }
920
921 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
922 struct ath9k_channel *chan)
923 {
924 struct ar9287_eeprom *eep = &ah->eeprom.map9287;
925 struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
926 u32 regChainOffset, regval;
927 u8 txRxAttenLocal;
928 int i;
929
930 pModal = &eep->modalHeader;
931
932 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
933
934 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
935 regChainOffset = i * 0x1000;
936
937 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
938 pModal->antCtrlChain[i]);
939
940 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
941 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
942 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
943 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
944 SM(pModal->iqCalICh[i],
945 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
946 SM(pModal->iqCalQCh[i],
947 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
948
949 txRxAttenLocal = pModal->txRxAttenCh[i];
950
951 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
952 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
953 pModal->bswMargin[i]);
954 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
955 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
956 pModal->bswAtten[i]);
957 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
958 AR9280_PHY_RXGAIN_TXRX_ATTEN,
959 txRxAttenLocal);
960 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
961 AR9280_PHY_RXGAIN_TXRX_MARGIN,
962 pModal->rxTxMarginCh[i]);
963 }
964
965
966 if (IS_CHAN_HT40(chan))
967 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
968 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
969 else
970 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
971 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
972
973 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
974 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
975
976 REG_WRITE(ah, AR_PHY_RF_CTL4,
977 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
978 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
979 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
980 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
981
982 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
983 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
984
985 REG_RMW_FIELD(ah, AR_PHY_CCA,
986 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
987 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
988 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
989
990 regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
991 regval &= ~(AR9287_AN_RF2G3_DB1 |
992 AR9287_AN_RF2G3_DB2 |
993 AR9287_AN_RF2G3_OB_CCK |
994 AR9287_AN_RF2G3_OB_PSK |
995 AR9287_AN_RF2G3_OB_QAM |
996 AR9287_AN_RF2G3_OB_PAL_OFF);
997 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
998 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
999 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1000 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1001 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1002 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1003
1004 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
1005
1006 regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
1007 regval &= ~(AR9287_AN_RF2G3_DB1 |
1008 AR9287_AN_RF2G3_DB2 |
1009 AR9287_AN_RF2G3_OB_CCK |
1010 AR9287_AN_RF2G3_OB_PSK |
1011 AR9287_AN_RF2G3_OB_QAM |
1012 AR9287_AN_RF2G3_OB_PAL_OFF);
1013 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1014 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1015 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1016 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1017 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1018 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1019
1020 ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1021
1022 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1023 AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1024 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1025 AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1026
1027 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1028 AR9287_AN_TOP2_XPABIAS_LVL,
1029 AR9287_AN_TOP2_XPABIAS_LVL_S,
1030 pModal->xpaBiasLvl);
1031 }
1032
1033 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1034 u16 i, bool is2GHz)
1035 {
1036 #define EEP_MAP9287_SPURCHAN \
1037 (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
1038
1039 struct ath_common *common = ath9k_hw_common(ah);
1040 u16 spur_val = AR_NO_SPUR;
1041
1042 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1043 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1044
1045 switch (ah->config.spurmode) {
1046 case SPUR_DISABLE:
1047 break;
1048 case SPUR_ENABLE_IOCTL:
1049 spur_val = ah->config.spurchans[i][is2GHz];
1050 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1051 spur_val);
1052 break;
1053 case SPUR_ENABLE_EEPROM:
1054 spur_val = EEP_MAP9287_SPURCHAN;
1055 break;
1056 }
1057
1058 return spur_val;
1059
1060 #undef EEP_MAP9287_SPURCHAN
1061 }
1062
1063 const struct eeprom_ops eep_ar9287_ops = {
1064 .check_eeprom = ath9k_hw_ar9287_check_eeprom,
1065 .get_eeprom = ath9k_hw_ar9287_get_eeprom,
1066 .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
1067 .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
1068 .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
1069 .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
1070 .set_board_values = ath9k_hw_ar9287_set_board_values,
1071 .set_txpower = ath9k_hw_ar9287_set_txpower,
1072 .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
1073 };
This page took 0.166585 seconds and 5 git commands to generate.