Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
30
31 ath9k_hw_get_channel_centers(ah, chan, &centers);
32
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
36
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 }
48
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
52
53 *pcdacIdx = i;
54 }
55
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
60 {
61 u32 i;
62 u32 offset;
63
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
78 }
79
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83 }
84
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 {
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88 }
89
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 {
94 struct ath_common *common = ath9k_hw_common(ah);
95 u16 *eep_data = (u16 *)&ah->eeprom.def;
96 int addr, ar5416_eep_start_loc = 0x100;
97
98 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 eep_data)) {
101 ath_err(ath9k_hw_common(ah),
102 "Unable to read eeprom region\n");
103 return false;
104 }
105 eep_data++;
106 }
107 return true;
108 }
109
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
111 {
112 u16 *eep_data = (u16 *)&ah->eeprom.def;
113
114 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 0x100, SIZE_EEPROM_DEF);
116 return true;
117 }
118
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
120 {
121 struct ath_common *common = ath9k_hw_common(ah);
122
123 if (!ath9k_hw_use_flash(ah)) {
124 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
125 }
126
127 if (common->bus_ops->ath_bus_type == ATH_USB)
128 return __ath9k_hw_usb_def_fill_eeprom(ah);
129 else
130 return __ath9k_hw_def_fill_eeprom(ah);
131 }
132
133 #undef SIZE_EEPROM_DEF
134
135 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
136 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
137 struct modal_eep_header *modal_hdr)
138 {
139 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
140 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
141 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
142 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
143 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
144 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
145 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
146 PR_EEP("Switch Settle", modal_hdr->switchSettling);
147 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
148 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
149 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
150 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
151 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
152 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
153 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
154 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
155 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
156 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
157 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
158 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
159 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
160 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
161 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
162 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
163 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
164 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
165 PR_EEP("xpdGain", modal_hdr->xpdGain);
166 PR_EEP("External PD", modal_hdr->xpd);
167 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
168 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
169 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
170 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
171 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
172 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
173 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
174 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
175 PR_EEP("Chain0 DriverBias", modal_hdr->db);
176 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
177 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
178 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
179 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
180 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
181 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
182 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
183 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
184 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
185 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
186 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
187 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
188 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
189 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
190 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
191 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
192 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
193 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
194 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
195 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
196 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
197 PR_EEP("LNA Control", modal_hdr->lna_ctl);
198 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
199 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
200 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
201
202 return len;
203 }
204
205 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
206 u8 *buf, u32 len, u32 size)
207 {
208 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
209 struct base_eep_header *pBase = &eep->baseEepHeader;
210
211 if (!dump_base_hdr) {
212 len += snprintf(buf + len, size - len,
213 "%20s :\n", "2GHz modal Header");
214 len += ath9k_def_dump_modal_eeprom(buf, len, size,
215 &eep->modalHeader[0]);
216 len += snprintf(buf + len, size - len,
217 "%20s :\n", "5GHz modal Header");
218 len += ath9k_def_dump_modal_eeprom(buf, len, size,
219 &eep->modalHeader[1]);
220 goto out;
221 }
222
223 PR_EEP("Major Version", pBase->version >> 12);
224 PR_EEP("Minor Version", pBase->version & 0xFFF);
225 PR_EEP("Checksum", pBase->checksum);
226 PR_EEP("Length", pBase->length);
227 PR_EEP("RegDomain1", pBase->regDmn[0]);
228 PR_EEP("RegDomain2", pBase->regDmn[1]);
229 PR_EEP("TX Mask", pBase->txMask);
230 PR_EEP("RX Mask", pBase->rxMask);
231 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
232 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
233 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_2G_HT20));
235 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
236 AR5416_OPFLAGS_N_2G_HT40));
237 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
238 AR5416_OPFLAGS_N_5G_HT20));
239 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
240 AR5416_OPFLAGS_N_5G_HT40));
241 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
242 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
243 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
244 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
245 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
246
247 len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
248 pBase->macAddr);
249
250 out:
251 if (len > size)
252 len = size;
253
254 return len;
255 }
256 #else
257 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
258 u8 *buf, u32 len, u32 size)
259 {
260 return 0;
261 }
262 #endif
263
264
265 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
266 {
267 struct ar5416_eeprom_def *eep =
268 (struct ar5416_eeprom_def *) &ah->eeprom.def;
269 struct ath_common *common = ath9k_hw_common(ah);
270 u16 *eepdata, temp, magic, magic2;
271 u32 sum = 0, el;
272 bool need_swap = false;
273 int i, addr, size;
274
275 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
276 ath_err(common, "Reading Magic # failed\n");
277 return false;
278 }
279
280 if (!ath9k_hw_use_flash(ah)) {
281 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
282
283 if (magic != AR5416_EEPROM_MAGIC) {
284 magic2 = swab16(magic);
285
286 if (magic2 == AR5416_EEPROM_MAGIC) {
287 size = sizeof(struct ar5416_eeprom_def);
288 need_swap = true;
289 eepdata = (u16 *) (&ah->eeprom);
290
291 for (addr = 0; addr < size / sizeof(u16); addr++) {
292 temp = swab16(*eepdata);
293 *eepdata = temp;
294 eepdata++;
295 }
296 } else {
297 ath_err(common,
298 "Invalid EEPROM Magic. Endianness mismatch.\n");
299 return -EINVAL;
300 }
301 }
302 }
303
304 ath_dbg(common, EEPROM, "need_swap = %s\n",
305 need_swap ? "True" : "False");
306
307 if (need_swap)
308 el = swab16(ah->eeprom.def.baseEepHeader.length);
309 else
310 el = ah->eeprom.def.baseEepHeader.length;
311
312 if (el > sizeof(struct ar5416_eeprom_def))
313 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
314 else
315 el = el / sizeof(u16);
316
317 eepdata = (u16 *)(&ah->eeprom);
318
319 for (i = 0; i < el; i++)
320 sum ^= *eepdata++;
321
322 if (need_swap) {
323 u32 integer, j;
324 u16 word;
325
326 ath_dbg(common, EEPROM,
327 "EEPROM Endianness is not native.. Changing.\n");
328
329 word = swab16(eep->baseEepHeader.length);
330 eep->baseEepHeader.length = word;
331
332 word = swab16(eep->baseEepHeader.checksum);
333 eep->baseEepHeader.checksum = word;
334
335 word = swab16(eep->baseEepHeader.version);
336 eep->baseEepHeader.version = word;
337
338 word = swab16(eep->baseEepHeader.regDmn[0]);
339 eep->baseEepHeader.regDmn[0] = word;
340
341 word = swab16(eep->baseEepHeader.regDmn[1]);
342 eep->baseEepHeader.regDmn[1] = word;
343
344 word = swab16(eep->baseEepHeader.rfSilent);
345 eep->baseEepHeader.rfSilent = word;
346
347 word = swab16(eep->baseEepHeader.blueToothOptions);
348 eep->baseEepHeader.blueToothOptions = word;
349
350 word = swab16(eep->baseEepHeader.deviceCap);
351 eep->baseEepHeader.deviceCap = word;
352
353 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
354 struct modal_eep_header *pModal =
355 &eep->modalHeader[j];
356 integer = swab32(pModal->antCtrlCommon);
357 pModal->antCtrlCommon = integer;
358
359 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
360 integer = swab32(pModal->antCtrlChain[i]);
361 pModal->antCtrlChain[i] = integer;
362 }
363 for (i = 0; i < 3; i++) {
364 word = swab16(pModal->xpaBiasLvlFreq[i]);
365 pModal->xpaBiasLvlFreq[i] = word;
366 }
367
368 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
369 word = swab16(pModal->spurChans[i].spurChan);
370 pModal->spurChans[i].spurChan = word;
371 }
372 }
373 }
374
375 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
376 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
377 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
378 sum, ah->eep_ops->get_eeprom_ver(ah));
379 return -EINVAL;
380 }
381
382 /* Enable fixup for AR_AN_TOP2 if necessary */
383 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
384 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
385 (eep->baseEepHeader.pwdclkind == 0))
386 ah->need_an_top2_fixup = true;
387
388 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
389 (AR_SREV_9280(ah)))
390 eep->modalHeader[0].xpaBiasLvl = 0;
391
392 return 0;
393 }
394
395 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
396 enum eeprom_param param)
397 {
398 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
399 struct modal_eep_header *pModal = eep->modalHeader;
400 struct base_eep_header *pBase = &eep->baseEepHeader;
401 int band = 0;
402
403 switch (param) {
404 case EEP_NFTHRESH_5:
405 return pModal[0].noiseFloorThreshCh[0];
406 case EEP_NFTHRESH_2:
407 return pModal[1].noiseFloorThreshCh[0];
408 case EEP_MAC_LSW:
409 return get_unaligned_be16(pBase->macAddr);
410 case EEP_MAC_MID:
411 return get_unaligned_be16(pBase->macAddr + 2);
412 case EEP_MAC_MSW:
413 return get_unaligned_be16(pBase->macAddr + 4);
414 case EEP_REG_0:
415 return pBase->regDmn[0];
416 case EEP_OP_CAP:
417 return pBase->deviceCap;
418 case EEP_OP_MODE:
419 return pBase->opCapFlags;
420 case EEP_RF_SILENT:
421 return pBase->rfSilent;
422 case EEP_OB_5:
423 return pModal[0].ob;
424 case EEP_DB_5:
425 return pModal[0].db;
426 case EEP_OB_2:
427 return pModal[1].ob;
428 case EEP_DB_2:
429 return pModal[1].db;
430 case EEP_MINOR_REV:
431 return AR5416_VER_MASK;
432 case EEP_TX_MASK:
433 return pBase->txMask;
434 case EEP_RX_MASK:
435 return pBase->rxMask;
436 case EEP_FSTCLK_5G:
437 return pBase->fastClk5g;
438 case EEP_RXGAIN_TYPE:
439 return pBase->rxGainType;
440 case EEP_TXGAIN_TYPE:
441 return pBase->txGainType;
442 case EEP_OL_PWRCTRL:
443 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444 return pBase->openLoopPwrCntl ? true : false;
445 else
446 return false;
447 case EEP_RC_CHAIN_MASK:
448 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
449 return pBase->rcChainMask;
450 else
451 return 0;
452 case EEP_DAC_HPWR_5G:
453 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
454 return pBase->dacHiPwrMode_5G;
455 else
456 return 0;
457 case EEP_FRAC_N_5G:
458 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
459 return pBase->frac_n_5g;
460 else
461 return 0;
462 case EEP_PWR_TABLE_OFFSET:
463 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
464 return pBase->pwr_table_offset;
465 else
466 return AR5416_PWR_TABLE_OFFSET_DB;
467 case EEP_ANTENNA_GAIN_2G:
468 band = 1;
469 /* fall through */
470 case EEP_ANTENNA_GAIN_5G:
471 return max_t(u8, max_t(u8,
472 pModal[band].antennaGainCh[0],
473 pModal[band].antennaGainCh[1]),
474 pModal[band].antennaGainCh[2]);
475 default:
476 return 0;
477 }
478 }
479
480 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
481 struct modal_eep_header *pModal,
482 struct ar5416_eeprom_def *eep,
483 u8 txRxAttenLocal, int regChainOffset, int i)
484 {
485 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
486 txRxAttenLocal = pModal->txRxAttenCh[i];
487
488 if (AR_SREV_9280_20_OR_LATER(ah)) {
489 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
490 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
491 pModal->bswMargin[i]);
492 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
493 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
494 pModal->bswAtten[i]);
495 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
496 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
497 pModal->xatten2Margin[i]);
498 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
499 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
500 pModal->xatten2Db[i]);
501 } else {
502 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
505 | SM(pModal-> bswMargin[i],
506 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
507 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
508 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
509 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
510 | SM(pModal->bswAtten[i],
511 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
512 }
513 }
514
515 if (AR_SREV_9280_20_OR_LATER(ah)) {
516 REG_RMW_FIELD(ah,
517 AR_PHY_RXGAIN + regChainOffset,
518 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
519 REG_RMW_FIELD(ah,
520 AR_PHY_RXGAIN + regChainOffset,
521 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
522 } else {
523 REG_WRITE(ah,
524 AR_PHY_RXGAIN + regChainOffset,
525 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
526 ~AR_PHY_RXGAIN_TXRX_ATTEN)
527 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
528 REG_WRITE(ah,
529 AR_PHY_GAIN_2GHZ + regChainOffset,
530 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
531 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
532 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
533 }
534 }
535
536 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
537 struct ath9k_channel *chan)
538 {
539 struct modal_eep_header *pModal;
540 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
541 int i, regChainOffset;
542 u8 txRxAttenLocal;
543
544 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
545 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
546
547 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
548
549 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
550 if (AR_SREV_9280(ah)) {
551 if (i >= 2)
552 break;
553 }
554
555 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
556 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
557 else
558 regChainOffset = i * 0x1000;
559
560 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
561 pModal->antCtrlChain[i]);
562
563 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
564 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
565 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
566 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
567 SM(pModal->iqCalICh[i],
568 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
569 SM(pModal->iqCalQCh[i],
570 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
571
572 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
573 regChainOffset, i);
574 }
575
576 if (AR_SREV_9280_20_OR_LATER(ah)) {
577 if (IS_CHAN_2GHZ(chan)) {
578 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
579 AR_AN_RF2G1_CH0_OB,
580 AR_AN_RF2G1_CH0_OB_S,
581 pModal->ob);
582 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
583 AR_AN_RF2G1_CH0_DB,
584 AR_AN_RF2G1_CH0_DB_S,
585 pModal->db);
586 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
587 AR_AN_RF2G1_CH1_OB,
588 AR_AN_RF2G1_CH1_OB_S,
589 pModal->ob_ch1);
590 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
591 AR_AN_RF2G1_CH1_DB,
592 AR_AN_RF2G1_CH1_DB_S,
593 pModal->db_ch1);
594 } else {
595 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
596 AR_AN_RF5G1_CH0_OB5,
597 AR_AN_RF5G1_CH0_OB5_S,
598 pModal->ob);
599 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
600 AR_AN_RF5G1_CH0_DB5,
601 AR_AN_RF5G1_CH0_DB5_S,
602 pModal->db);
603 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
604 AR_AN_RF5G1_CH1_OB5,
605 AR_AN_RF5G1_CH1_OB5_S,
606 pModal->ob_ch1);
607 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
608 AR_AN_RF5G1_CH1_DB5,
609 AR_AN_RF5G1_CH1_DB5_S,
610 pModal->db_ch1);
611 }
612 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
613 AR_AN_TOP2_XPABIAS_LVL,
614 AR_AN_TOP2_XPABIAS_LVL_S,
615 pModal->xpaBiasLvl);
616 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
617 AR_AN_TOP2_LOCALBIAS,
618 AR_AN_TOP2_LOCALBIAS_S,
619 !!(pModal->lna_ctl &
620 LNA_CTL_LOCAL_BIAS));
621 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
622 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
623 }
624
625 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
626 pModal->switchSettling);
627 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
628 pModal->adcDesiredSize);
629
630 if (!AR_SREV_9280_20_OR_LATER(ah))
631 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
632 AR_PHY_DESIRED_SZ_PGA,
633 pModal->pgaDesiredSize);
634
635 REG_WRITE(ah, AR_PHY_RF_CTL4,
636 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
637 | SM(pModal->txEndToXpaOff,
638 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
639 | SM(pModal->txFrameToXpaOn,
640 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
641 | SM(pModal->txFrameToXpaOn,
642 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
643
644 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
645 pModal->txEndToRxOn);
646
647 if (AR_SREV_9280_20_OR_LATER(ah)) {
648 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
649 pModal->thresh62);
650 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
651 AR_PHY_EXT_CCA0_THRESH62,
652 pModal->thresh62);
653 } else {
654 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
655 pModal->thresh62);
656 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
657 AR_PHY_EXT_CCA_THRESH62,
658 pModal->thresh62);
659 }
660
661 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
662 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
663 AR_PHY_TX_END_DATA_START,
664 pModal->txFrameToDataStart);
665 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
666 pModal->txFrameToPaOn);
667 }
668
669 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
670 if (IS_CHAN_HT40(chan))
671 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
672 AR_PHY_SETTLING_SWITCH,
673 pModal->swSettleHt40);
674 }
675
676 if (AR_SREV_9280_20_OR_LATER(ah) &&
677 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
678 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
679 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
680 pModal->miscBits);
681
682
683 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
684 if (IS_CHAN_2GHZ(chan))
685 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686 eep->baseEepHeader.dacLpMode);
687 else if (eep->baseEepHeader.dacHiPwrMode_5G)
688 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
689 else
690 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
691 eep->baseEepHeader.dacLpMode);
692
693 udelay(100);
694
695 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
696 pModal->miscBits >> 2);
697
698 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
699 AR_PHY_TX_DESIRED_SCALE_CCK,
700 eep->baseEepHeader.desiredScaleCCK);
701 }
702 }
703
704 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
705 struct ath9k_channel *chan)
706 {
707 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
708 struct modal_eep_header *pModal;
709 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
710 u8 biaslevel;
711
712 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
713 return;
714
715 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
716 return;
717
718 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
719
720 if (pModal->xpaBiasLvl != 0xff) {
721 biaslevel = pModal->xpaBiasLvl;
722 } else {
723 u16 resetFreqBin, freqBin, freqCount = 0;
724 struct chan_centers centers;
725
726 ath9k_hw_get_channel_centers(ah, chan, &centers);
727
728 resetFreqBin = FREQ2FBIN(centers.synth_center,
729 IS_CHAN_2GHZ(chan));
730 freqBin = XPA_LVL_FREQ(0) & 0xff;
731 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
732
733 freqCount++;
734
735 while (freqCount < 3) {
736 if (XPA_LVL_FREQ(freqCount) == 0x0)
737 break;
738
739 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
740 if (resetFreqBin >= freqBin)
741 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
742 else
743 break;
744 freqCount++;
745 }
746 }
747
748 if (IS_CHAN_2GHZ(chan)) {
749 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
750 7, 1) & (~0x18)) | biaslevel << 3;
751 } else {
752 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
753 6, 1) & (~0xc0)) | biaslevel << 6;
754 }
755 #undef XPA_LVL_FREQ
756 }
757
758 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
759 u16 *gb,
760 u16 numXpdGain,
761 u16 pdGainOverlap_t2,
762 int8_t pwr_table_offset,
763 int16_t *diff)
764
765 {
766 u16 k;
767
768 /* Prior to writing the boundaries or the pdadc vs. power table
769 * into the chip registers the default starting point on the pdadc
770 * vs. power table needs to be checked and the curve boundaries
771 * adjusted accordingly
772 */
773 if (AR_SREV_9280_20_OR_LATER(ah)) {
774 u16 gb_limit;
775
776 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
777 /* get the difference in dB */
778 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
779 /* get the number of half dB steps */
780 *diff *= 2;
781 /* change the original gain boundary settings
782 * by the number of half dB steps
783 */
784 for (k = 0; k < numXpdGain; k++)
785 gb[k] = (u16)(gb[k] - *diff);
786 }
787 /* Because of a hardware limitation, ensure the gain boundary
788 * is not larger than (63 - overlap)
789 */
790 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
791
792 for (k = 0; k < numXpdGain; k++)
793 gb[k] = (u16)min(gb_limit, gb[k]);
794 }
795
796 return *diff;
797 }
798
799 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
800 int8_t pwr_table_offset,
801 int16_t diff,
802 u8 *pdadcValues)
803 {
804 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
805 u16 k;
806
807 /* If this is a board that has a pwrTableOffset that differs from
808 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
809 * pdadc vs pwr table needs to be adjusted prior to writing to the
810 * chip.
811 */
812 if (AR_SREV_9280_20_OR_LATER(ah)) {
813 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
814 /* shift the table to start at the new offset */
815 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
816 pdadcValues[k] = pdadcValues[k + diff];
817 }
818
819 /* fill the back of the table */
820 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
821 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
822 }
823 }
824 }
825 #undef NUM_PDADC
826 }
827
828 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
829 struct ath9k_channel *chan)
830 {
831 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
832 #define SM_PDGAIN_B(x, y) \
833 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
834 struct ath_common *common = ath9k_hw_common(ah);
835 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
836 struct cal_data_per_freq *pRawDataset;
837 u8 *pCalBChans = NULL;
838 u16 pdGainOverlap_t2;
839 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
840 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
841 u16 numPiers, i, j;
842 int16_t diff = 0;
843 u16 numXpdGain, xpdMask;
844 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
845 u32 reg32, regOffset, regChainOffset;
846 int16_t modalIdx;
847 int8_t pwr_table_offset;
848
849 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
850 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
851
852 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
853
854 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
855 AR5416_EEP_MINOR_VER_2) {
856 pdGainOverlap_t2 =
857 pEepData->modalHeader[modalIdx].pdGainOverlap;
858 } else {
859 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
860 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
861 }
862
863 if (IS_CHAN_2GHZ(chan)) {
864 pCalBChans = pEepData->calFreqPier2G;
865 numPiers = AR5416_NUM_2G_CAL_PIERS;
866 } else {
867 pCalBChans = pEepData->calFreqPier5G;
868 numPiers = AR5416_NUM_5G_CAL_PIERS;
869 }
870
871 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
872 pRawDataset = pEepData->calPierData2G[0];
873 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
874 pRawDataset)->vpdPdg[0][0];
875 }
876
877 numXpdGain = 0;
878
879 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
880 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
881 if (numXpdGain >= AR5416_NUM_PD_GAINS)
882 break;
883 xpdGainValues[numXpdGain] =
884 (u16)(AR5416_PD_GAINS_IN_MASK - i);
885 numXpdGain++;
886 }
887 }
888
889 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
890 (numXpdGain - 1) & 0x3);
891 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
892 xpdGainValues[0]);
893 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
894 xpdGainValues[1]);
895 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
896 xpdGainValues[2]);
897
898 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
899 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
900 (i != 0)) {
901 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
902 } else
903 regChainOffset = i * 0x1000;
904
905 if (pEepData->baseEepHeader.txMask & (1 << i)) {
906 if (IS_CHAN_2GHZ(chan))
907 pRawDataset = pEepData->calPierData2G[i];
908 else
909 pRawDataset = pEepData->calPierData5G[i];
910
911
912 if (OLC_FOR_AR9280_20_LATER) {
913 u8 pcdacIdx;
914 u8 txPower;
915
916 ath9k_get_txgain_index(ah, chan,
917 (struct calDataPerFreqOpLoop *)pRawDataset,
918 pCalBChans, numPiers, &txPower, &pcdacIdx);
919 ath9k_olc_get_pdadcs(ah, pcdacIdx,
920 txPower/2, pdadcValues);
921 } else {
922 ath9k_hw_get_gain_boundaries_pdadcs(ah,
923 chan, pRawDataset,
924 pCalBChans, numPiers,
925 pdGainOverlap_t2,
926 gainBoundaries,
927 pdadcValues,
928 numXpdGain);
929 }
930
931 diff = ath9k_change_gain_boundary_setting(ah,
932 gainBoundaries,
933 numXpdGain,
934 pdGainOverlap_t2,
935 pwr_table_offset,
936 &diff);
937
938 ENABLE_REGWRITE_BUFFER(ah);
939
940 if (OLC_FOR_AR9280_20_LATER) {
941 REG_WRITE(ah,
942 AR_PHY_TPCRG5 + regChainOffset,
943 SM(0x6,
944 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
945 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
946 SM_PD_GAIN(3) | SM_PD_GAIN(4));
947 } else {
948 REG_WRITE(ah,
949 AR_PHY_TPCRG5 + regChainOffset,
950 SM(pdGainOverlap_t2,
951 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
952 SM_PDGAIN_B(0, 1) |
953 SM_PDGAIN_B(1, 2) |
954 SM_PDGAIN_B(2, 3) |
955 SM_PDGAIN_B(3, 4));
956 }
957
958 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
959 diff, pdadcValues);
960
961 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
962 for (j = 0; j < 32; j++) {
963 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
964 REG_WRITE(ah, regOffset, reg32);
965
966 ath_dbg(common, EEPROM,
967 "PDADC (%d,%4x): %4.4x %8.8x\n",
968 i, regChainOffset, regOffset,
969 reg32);
970 ath_dbg(common, EEPROM,
971 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
972 i, 4 * j, pdadcValues[4 * j],
973 4 * j + 1, pdadcValues[4 * j + 1],
974 4 * j + 2, pdadcValues[4 * j + 2],
975 4 * j + 3, pdadcValues[4 * j + 3]);
976
977 regOffset += 4;
978 }
979 REGWRITE_BUFFER_FLUSH(ah);
980 }
981 }
982
983 #undef SM_PD_GAIN
984 #undef SM_PDGAIN_B
985 }
986
987 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
988 struct ath9k_channel *chan,
989 int16_t *ratesArray,
990 u16 cfgCtl,
991 u16 antenna_reduction,
992 u16 powerLimit)
993 {
994 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
995 u16 twiceMaxEdgePower;
996 int i;
997 struct cal_ctl_data *rep;
998 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
999 0, { 0, 0, 0, 0}
1000 };
1001 struct cal_target_power_leg targetPowerOfdmExt = {
1002 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1003 0, { 0, 0, 0, 0 }
1004 };
1005 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1006 0, {0, 0, 0, 0}
1007 };
1008 u16 scaledPower = 0, minCtlPower;
1009 static const u16 ctlModesFor11a[] = {
1010 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1011 };
1012 static const u16 ctlModesFor11g[] = {
1013 CTL_11B, CTL_11G, CTL_2GHT20,
1014 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1015 };
1016 u16 numCtlModes;
1017 const u16 *pCtlMode;
1018 u16 ctlMode, freq;
1019 struct chan_centers centers;
1020 int tx_chainmask;
1021 u16 twiceMinEdgePower;
1022
1023 tx_chainmask = ah->txchainmask;
1024
1025 ath9k_hw_get_channel_centers(ah, chan, &centers);
1026
1027 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1028 antenna_reduction);
1029
1030 if (IS_CHAN_2GHZ(chan)) {
1031 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1032 SUB_NUM_CTL_MODES_AT_2G_40;
1033 pCtlMode = ctlModesFor11g;
1034
1035 ath9k_hw_get_legacy_target_powers(ah, chan,
1036 pEepData->calTargetPowerCck,
1037 AR5416_NUM_2G_CCK_TARGET_POWERS,
1038 &targetPowerCck, 4, false);
1039 ath9k_hw_get_legacy_target_powers(ah, chan,
1040 pEepData->calTargetPower2G,
1041 AR5416_NUM_2G_20_TARGET_POWERS,
1042 &targetPowerOfdm, 4, false);
1043 ath9k_hw_get_target_powers(ah, chan,
1044 pEepData->calTargetPower2GHT20,
1045 AR5416_NUM_2G_20_TARGET_POWERS,
1046 &targetPowerHt20, 8, false);
1047
1048 if (IS_CHAN_HT40(chan)) {
1049 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1050 ath9k_hw_get_target_powers(ah, chan,
1051 pEepData->calTargetPower2GHT40,
1052 AR5416_NUM_2G_40_TARGET_POWERS,
1053 &targetPowerHt40, 8, true);
1054 ath9k_hw_get_legacy_target_powers(ah, chan,
1055 pEepData->calTargetPowerCck,
1056 AR5416_NUM_2G_CCK_TARGET_POWERS,
1057 &targetPowerCckExt, 4, true);
1058 ath9k_hw_get_legacy_target_powers(ah, chan,
1059 pEepData->calTargetPower2G,
1060 AR5416_NUM_2G_20_TARGET_POWERS,
1061 &targetPowerOfdmExt, 4, true);
1062 }
1063 } else {
1064 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1065 SUB_NUM_CTL_MODES_AT_5G_40;
1066 pCtlMode = ctlModesFor11a;
1067
1068 ath9k_hw_get_legacy_target_powers(ah, chan,
1069 pEepData->calTargetPower5G,
1070 AR5416_NUM_5G_20_TARGET_POWERS,
1071 &targetPowerOfdm, 4, false);
1072 ath9k_hw_get_target_powers(ah, chan,
1073 pEepData->calTargetPower5GHT20,
1074 AR5416_NUM_5G_20_TARGET_POWERS,
1075 &targetPowerHt20, 8, false);
1076
1077 if (IS_CHAN_HT40(chan)) {
1078 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1079 ath9k_hw_get_target_powers(ah, chan,
1080 pEepData->calTargetPower5GHT40,
1081 AR5416_NUM_5G_40_TARGET_POWERS,
1082 &targetPowerHt40, 8, true);
1083 ath9k_hw_get_legacy_target_powers(ah, chan,
1084 pEepData->calTargetPower5G,
1085 AR5416_NUM_5G_20_TARGET_POWERS,
1086 &targetPowerOfdmExt, 4, true);
1087 }
1088 }
1089
1090 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1091 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1092 (pCtlMode[ctlMode] == CTL_2GHT40);
1093 if (isHt40CtlMode)
1094 freq = centers.synth_center;
1095 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1096 freq = centers.ext_center;
1097 else
1098 freq = centers.ctl_center;
1099
1100 twiceMaxEdgePower = MAX_RATE_POWER;
1101
1102 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1103 if ((((cfgCtl & ~CTL_MODE_M) |
1104 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1105 pEepData->ctlIndex[i]) ||
1106 (((cfgCtl & ~CTL_MODE_M) |
1107 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1108 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1109 rep = &(pEepData->ctlData[i]);
1110
1111 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1112 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1113 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1114
1115 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1116 twiceMaxEdgePower = min(twiceMaxEdgePower,
1117 twiceMinEdgePower);
1118 } else {
1119 twiceMaxEdgePower = twiceMinEdgePower;
1120 break;
1121 }
1122 }
1123 }
1124
1125 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1126
1127 switch (pCtlMode[ctlMode]) {
1128 case CTL_11B:
1129 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1130 targetPowerCck.tPow2x[i] =
1131 min((u16)targetPowerCck.tPow2x[i],
1132 minCtlPower);
1133 }
1134 break;
1135 case CTL_11A:
1136 case CTL_11G:
1137 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1138 targetPowerOfdm.tPow2x[i] =
1139 min((u16)targetPowerOfdm.tPow2x[i],
1140 minCtlPower);
1141 }
1142 break;
1143 case CTL_5GHT20:
1144 case CTL_2GHT20:
1145 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1146 targetPowerHt20.tPow2x[i] =
1147 min((u16)targetPowerHt20.tPow2x[i],
1148 minCtlPower);
1149 }
1150 break;
1151 case CTL_11B_EXT:
1152 targetPowerCckExt.tPow2x[0] = min((u16)
1153 targetPowerCckExt.tPow2x[0],
1154 minCtlPower);
1155 break;
1156 case CTL_11A_EXT:
1157 case CTL_11G_EXT:
1158 targetPowerOfdmExt.tPow2x[0] = min((u16)
1159 targetPowerOfdmExt.tPow2x[0],
1160 minCtlPower);
1161 break;
1162 case CTL_5GHT40:
1163 case CTL_2GHT40:
1164 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1165 targetPowerHt40.tPow2x[i] =
1166 min((u16)targetPowerHt40.tPow2x[i],
1167 minCtlPower);
1168 }
1169 break;
1170 default:
1171 break;
1172 }
1173 }
1174
1175 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1176 ratesArray[rate18mb] = ratesArray[rate24mb] =
1177 targetPowerOfdm.tPow2x[0];
1178 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1179 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1180 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1181 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1182
1183 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1184 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1185
1186 if (IS_CHAN_2GHZ(chan)) {
1187 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1188 ratesArray[rate2s] = ratesArray[rate2l] =
1189 targetPowerCck.tPow2x[1];
1190 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1191 targetPowerCck.tPow2x[2];
1192 ratesArray[rate11s] = ratesArray[rate11l] =
1193 targetPowerCck.tPow2x[3];
1194 }
1195 if (IS_CHAN_HT40(chan)) {
1196 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1197 ratesArray[rateHt40_0 + i] =
1198 targetPowerHt40.tPow2x[i];
1199 }
1200 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1201 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1202 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1203 if (IS_CHAN_2GHZ(chan)) {
1204 ratesArray[rateExtCck] =
1205 targetPowerCckExt.tPow2x[0];
1206 }
1207 }
1208 }
1209
1210 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1211 struct ath9k_channel *chan,
1212 u16 cfgCtl,
1213 u8 twiceAntennaReduction,
1214 u8 powerLimit, bool test)
1215 {
1216 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1217 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1218 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1219 struct modal_eep_header *pModal =
1220 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1221 int16_t ratesArray[Ar5416RateSize];
1222 u8 ht40PowerIncForPdadc = 2;
1223 int i, cck_ofdm_delta = 0;
1224
1225 memset(ratesArray, 0, sizeof(ratesArray));
1226
1227 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1228 AR5416_EEP_MINOR_VER_2) {
1229 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1230 }
1231
1232 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1233 &ratesArray[0], cfgCtl,
1234 twiceAntennaReduction,
1235 powerLimit);
1236
1237 ath9k_hw_set_def_power_cal_table(ah, chan);
1238
1239 regulatory->max_power_level = 0;
1240 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1241 if (ratesArray[i] > MAX_RATE_POWER)
1242 ratesArray[i] = MAX_RATE_POWER;
1243 if (ratesArray[i] > regulatory->max_power_level)
1244 regulatory->max_power_level = ratesArray[i];
1245 }
1246
1247 ath9k_hw_update_regulatory_maxpower(ah);
1248
1249 if (test)
1250 return;
1251
1252 if (AR_SREV_9280_20_OR_LATER(ah)) {
1253 for (i = 0; i < Ar5416RateSize; i++) {
1254 int8_t pwr_table_offset;
1255
1256 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1257 EEP_PWR_TABLE_OFFSET);
1258 ratesArray[i] -= pwr_table_offset * 2;
1259 }
1260 }
1261
1262 ENABLE_REGWRITE_BUFFER(ah);
1263
1264 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1265 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1266 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1267 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1268 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1269 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1270 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1271 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1272 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1273 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1274
1275 if (IS_CHAN_2GHZ(chan)) {
1276 if (OLC_FOR_AR9280_20_LATER) {
1277 cck_ofdm_delta = 2;
1278 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1279 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1280 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1281 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1282 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1283 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1284 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1285 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1286 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1287 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1288 } else {
1289 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1290 ATH9K_POW_SM(ratesArray[rate2s], 24)
1291 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1292 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1293 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1294 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1295 ATH9K_POW_SM(ratesArray[rate11s], 24)
1296 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1297 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1298 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1299 }
1300 }
1301
1302 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1303 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1304 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1305 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1306 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1307 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1308 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1309 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1310 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1311 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1312
1313 if (IS_CHAN_HT40(chan)) {
1314 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1315 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1316 ht40PowerIncForPdadc, 24)
1317 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1318 ht40PowerIncForPdadc, 16)
1319 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1320 ht40PowerIncForPdadc, 8)
1321 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1322 ht40PowerIncForPdadc, 0));
1323 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1324 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1325 ht40PowerIncForPdadc, 24)
1326 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1327 ht40PowerIncForPdadc, 16)
1328 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1329 ht40PowerIncForPdadc, 8)
1330 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1331 ht40PowerIncForPdadc, 0));
1332 if (OLC_FOR_AR9280_20_LATER) {
1333 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1334 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1335 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1336 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1337 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1338 } else {
1339 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1340 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1341 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1342 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1343 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1344 }
1345 }
1346
1347 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1348 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1349 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1350
1351 REGWRITE_BUFFER_FLUSH(ah);
1352 }
1353
1354 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1355 {
1356 #define EEP_DEF_SPURCHAN \
1357 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1358 struct ath_common *common = ath9k_hw_common(ah);
1359
1360 u16 spur_val = AR_NO_SPUR;
1361
1362 ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1363 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1364
1365 switch (ah->config.spurmode) {
1366 case SPUR_DISABLE:
1367 break;
1368 case SPUR_ENABLE_IOCTL:
1369 spur_val = ah->config.spurchans[i][is2GHz];
1370 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1371 spur_val);
1372 break;
1373 case SPUR_ENABLE_EEPROM:
1374 spur_val = EEP_DEF_SPURCHAN;
1375 break;
1376 }
1377
1378 return spur_val;
1379
1380 #undef EEP_DEF_SPURCHAN
1381 }
1382
1383 const struct eeprom_ops eep_def_ops = {
1384 .check_eeprom = ath9k_hw_def_check_eeprom,
1385 .get_eeprom = ath9k_hw_def_get_eeprom,
1386 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1387 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1388 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1389 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1390 .set_board_values = ath9k_hw_def_set_board_values,
1391 .set_addac = ath9k_hw_def_set_addac,
1392 .set_txpower = ath9k_hw_def_set_txpower,
1393 .get_spur_channel = ath9k_hw_def_get_spur_channel
1394 };
This page took 0.063323 seconds and 5 git commands to generate.