Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "debug.h"
28 #include "ath9k.h"
29
30 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
31
32 MODULE_AUTHOR("Atheros Communications");
33 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
34 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
35 MODULE_LICENSE("Dual BSD/GPL");
36
37 static int __init ath9k_init(void)
38 {
39 return 0;
40 }
41 module_init(ath9k_init);
42
43 static void __exit ath9k_exit(void)
44 {
45 return;
46 }
47 module_exit(ath9k_exit);
48
49 /* Private hardware callbacks */
50
51 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
52 {
53 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
54 }
55
56 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
57 {
58 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
59 }
60
61 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
62 struct ath9k_channel *chan)
63 {
64 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
65 }
66
67 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
68 {
69 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
70 return;
71
72 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
73 }
74
75 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
76 {
77 /* You will not have this callback if using the old ANI */
78 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
79 return;
80
81 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
82 }
83
84 /********************/
85 /* Helper Functions */
86 /********************/
87
88 #ifdef CONFIG_ATH9K_DEBUGFS
89
90 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
91 {
92 struct ath_softc *sc = common->priv;
93 if (sync_cause)
94 sc->debug.stats.istats.sync_cause_all++;
95 if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
96 sc->debug.stats.istats.sync_rtc_irq++;
97 if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
98 sc->debug.stats.istats.sync_mac_irq++;
99 if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
100 sc->debug.stats.istats.eeprom_illegal_access++;
101 if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
102 sc->debug.stats.istats.apb_timeout++;
103 if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
104 sc->debug.stats.istats.pci_mode_conflict++;
105 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
106 sc->debug.stats.istats.host1_fatal++;
107 if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
108 sc->debug.stats.istats.host1_perr++;
109 if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
110 sc->debug.stats.istats.trcv_fifo_perr++;
111 if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
112 sc->debug.stats.istats.radm_cpl_ep++;
113 if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
114 sc->debug.stats.istats.radm_cpl_dllp_abort++;
115 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
116 sc->debug.stats.istats.radm_cpl_tlp_abort++;
117 if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
118 sc->debug.stats.istats.radm_cpl_ecrc_err++;
119 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
120 sc->debug.stats.istats.radm_cpl_timeout++;
121 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
122 sc->debug.stats.istats.local_timeout++;
123 if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
124 sc->debug.stats.istats.pm_access++;
125 if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
126 sc->debug.stats.istats.mac_awake++;
127 if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
128 sc->debug.stats.istats.mac_asleep++;
129 if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
130 sc->debug.stats.istats.mac_sleep_access++;
131 }
132 #endif
133
134
135 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
136 {
137 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
138 struct ath_common *common = ath9k_hw_common(ah);
139 unsigned int clockrate;
140
141 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
142 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
143 clockrate = 117;
144 else if (!ah->curchan) /* should really check for CCK instead */
145 clockrate = ATH9K_CLOCK_RATE_CCK;
146 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
147 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
148 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
149 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
150 else
151 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
152
153 if (conf_is_ht40(conf))
154 clockrate *= 2;
155
156 if (ah->curchan) {
157 if (IS_CHAN_HALF_RATE(ah->curchan))
158 clockrate /= 2;
159 if (IS_CHAN_QUARTER_RATE(ah->curchan))
160 clockrate /= 4;
161 }
162
163 common->clockrate = clockrate;
164 }
165
166 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
167 {
168 struct ath_common *common = ath9k_hw_common(ah);
169
170 return usecs * common->clockrate;
171 }
172
173 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
174 {
175 int i;
176
177 BUG_ON(timeout < AH_TIME_QUANTUM);
178
179 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
180 if ((REG_READ(ah, reg) & mask) == val)
181 return true;
182
183 udelay(AH_TIME_QUANTUM);
184 }
185
186 ath_dbg(ath9k_hw_common(ah), ANY,
187 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
188 timeout, reg, REG_READ(ah, reg), mask, val);
189
190 return false;
191 }
192 EXPORT_SYMBOL(ath9k_hw_wait);
193
194 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
195 int hw_delay)
196 {
197 if (IS_CHAN_B(chan))
198 hw_delay = (4 * hw_delay) / 22;
199 else
200 hw_delay /= 10;
201
202 if (IS_CHAN_HALF_RATE(chan))
203 hw_delay *= 2;
204 else if (IS_CHAN_QUARTER_RATE(chan))
205 hw_delay *= 4;
206
207 udelay(hw_delay + BASE_ACTIVATE_DELAY);
208 }
209
210 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
211 int column, unsigned int *writecnt)
212 {
213 int r;
214
215 ENABLE_REGWRITE_BUFFER(ah);
216 for (r = 0; r < array->ia_rows; r++) {
217 REG_WRITE(ah, INI_RA(array, r, 0),
218 INI_RA(array, r, column));
219 DO_DELAY(*writecnt);
220 }
221 REGWRITE_BUFFER_FLUSH(ah);
222 }
223
224 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
225 {
226 u32 retval;
227 int i;
228
229 for (i = 0, retval = 0; i < n; i++) {
230 retval = (retval << 1) | (val & 1);
231 val >>= 1;
232 }
233 return retval;
234 }
235
236 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
237 u8 phy, int kbps,
238 u32 frameLen, u16 rateix,
239 bool shortPreamble)
240 {
241 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
242
243 if (kbps == 0)
244 return 0;
245
246 switch (phy) {
247 case WLAN_RC_PHY_CCK:
248 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
249 if (shortPreamble)
250 phyTime >>= 1;
251 numBits = frameLen << 3;
252 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
253 break;
254 case WLAN_RC_PHY_OFDM:
255 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
256 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
257 numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 txTime = OFDM_SIFS_TIME_QUARTER
260 + OFDM_PREAMBLE_TIME_QUARTER
261 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
262 } else if (ah->curchan &&
263 IS_CHAN_HALF_RATE(ah->curchan)) {
264 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
265 numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 txTime = OFDM_SIFS_TIME_HALF +
268 OFDM_PREAMBLE_TIME_HALF
269 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
270 } else {
271 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
272 numBits = OFDM_PLCP_BITS + (frameLen << 3);
273 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
274 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
275 + (numSymbols * OFDM_SYMBOL_TIME);
276 }
277 break;
278 default:
279 ath_err(ath9k_hw_common(ah),
280 "Unknown phy %u (rate ix %u)\n", phy, rateix);
281 txTime = 0;
282 break;
283 }
284
285 return txTime;
286 }
287 EXPORT_SYMBOL(ath9k_hw_computetxtime);
288
289 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
290 struct ath9k_channel *chan,
291 struct chan_centers *centers)
292 {
293 int8_t extoff;
294
295 if (!IS_CHAN_HT40(chan)) {
296 centers->ctl_center = centers->ext_center =
297 centers->synth_center = chan->channel;
298 return;
299 }
300
301 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
302 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
303 centers->synth_center =
304 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
305 extoff = 1;
306 } else {
307 centers->synth_center =
308 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
309 extoff = -1;
310 }
311
312 centers->ctl_center =
313 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
314 /* 25 MHz spacing is supported by hw but not on upper layers */
315 centers->ext_center =
316 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
317 }
318
319 /******************/
320 /* Chip Revisions */
321 /******************/
322
323 static void ath9k_hw_read_revisions(struct ath_hw *ah)
324 {
325 u32 val;
326
327 switch (ah->hw_version.devid) {
328 case AR5416_AR9100_DEVID:
329 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
330 break;
331 case AR9300_DEVID_AR9330:
332 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
333 if (ah->get_mac_revision) {
334 ah->hw_version.macRev = ah->get_mac_revision();
335 } else {
336 val = REG_READ(ah, AR_SREV);
337 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
338 }
339 return;
340 case AR9300_DEVID_AR9340:
341 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
342 val = REG_READ(ah, AR_SREV);
343 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
344 return;
345 case AR9300_DEVID_QCA955X:
346 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
347 return;
348 }
349
350 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
351
352 if (val == 0xFF) {
353 val = REG_READ(ah, AR_SREV);
354 ah->hw_version.macVersion =
355 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
356 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
357
358 if (AR_SREV_9462(ah))
359 ah->is_pciexpress = true;
360 else
361 ah->is_pciexpress = (val &
362 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
363 } else {
364 if (!AR_SREV_9100(ah))
365 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
366
367 ah->hw_version.macRev = val & AR_SREV_REVISION;
368
369 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
370 ah->is_pciexpress = true;
371 }
372 }
373
374 /************************************/
375 /* HW Attach, Detach, Init Routines */
376 /************************************/
377
378 static void ath9k_hw_disablepcie(struct ath_hw *ah)
379 {
380 if (!AR_SREV_5416(ah))
381 return;
382
383 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
384 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
385 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
386 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
387 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
388 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
389 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
390 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
391 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
392
393 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
394 }
395
396 /* This should work for all families including legacy */
397 static bool ath9k_hw_chip_test(struct ath_hw *ah)
398 {
399 struct ath_common *common = ath9k_hw_common(ah);
400 u32 regAddr[2] = { AR_STA_ID0 };
401 u32 regHold[2];
402 static const u32 patternData[4] = {
403 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
404 };
405 int i, j, loop_max;
406
407 if (!AR_SREV_9300_20_OR_LATER(ah)) {
408 loop_max = 2;
409 regAddr[1] = AR_PHY_BASE + (8 << 2);
410 } else
411 loop_max = 1;
412
413 for (i = 0; i < loop_max; i++) {
414 u32 addr = regAddr[i];
415 u32 wrData, rdData;
416
417 regHold[i] = REG_READ(ah, addr);
418 for (j = 0; j < 0x100; j++) {
419 wrData = (j << 16) | j;
420 REG_WRITE(ah, addr, wrData);
421 rdData = REG_READ(ah, addr);
422 if (rdData != wrData) {
423 ath_err(common,
424 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
425 addr, wrData, rdData);
426 return false;
427 }
428 }
429 for (j = 0; j < 4; j++) {
430 wrData = patternData[j];
431 REG_WRITE(ah, addr, wrData);
432 rdData = REG_READ(ah, addr);
433 if (wrData != rdData) {
434 ath_err(common,
435 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
436 addr, wrData, rdData);
437 return false;
438 }
439 }
440 REG_WRITE(ah, regAddr[i], regHold[i]);
441 }
442 udelay(100);
443
444 return true;
445 }
446
447 static void ath9k_hw_init_config(struct ath_hw *ah)
448 {
449 int i;
450
451 ah->config.dma_beacon_response_time = 1;
452 ah->config.sw_beacon_response_time = 6;
453 ah->config.additional_swba_backoff = 0;
454 ah->config.ack_6mb = 0x0;
455 ah->config.cwm_ignore_extcca = 0;
456 ah->config.pcie_clock_req = 0;
457 ah->config.pcie_waen = 0;
458 ah->config.analog_shiftreg = 1;
459 ah->config.enable_ani = true;
460
461 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
462 ah->config.spurchans[i][0] = AR_NO_SPUR;
463 ah->config.spurchans[i][1] = AR_NO_SPUR;
464 }
465
466 ah->config.rx_intr_mitigation = true;
467 ah->config.pcieSerDesWrite = true;
468
469 /*
470 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
471 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
472 * This means we use it for all AR5416 devices, and the few
473 * minor PCI AR9280 devices out there.
474 *
475 * Serialization is required because these devices do not handle
476 * well the case of two concurrent reads/writes due to the latency
477 * involved. During one read/write another read/write can be issued
478 * on another CPU while the previous read/write may still be working
479 * on our hardware, if we hit this case the hardware poops in a loop.
480 * We prevent this by serializing reads and writes.
481 *
482 * This issue is not present on PCI-Express devices or pre-AR5416
483 * devices (legacy, 802.11abg).
484 */
485 if (num_possible_cpus() > 1)
486 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
487 }
488
489 static void ath9k_hw_init_defaults(struct ath_hw *ah)
490 {
491 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
492
493 regulatory->country_code = CTRY_DEFAULT;
494 regulatory->power_limit = MAX_RATE_POWER;
495
496 ah->hw_version.magic = AR5416_MAGIC;
497 ah->hw_version.subvendorid = 0;
498
499 ah->atim_window = 0;
500 ah->sta_id1_defaults =
501 AR_STA_ID1_CRPT_MIC_ENABLE |
502 AR_STA_ID1_MCAST_KSRCH;
503 if (AR_SREV_9100(ah))
504 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
505 ah->slottime = ATH9K_SLOT_TIME_9;
506 ah->globaltxtimeout = (u32) -1;
507 ah->power_mode = ATH9K_PM_UNDEFINED;
508 ah->htc_reset_init = true;
509 }
510
511 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
512 {
513 struct ath_common *common = ath9k_hw_common(ah);
514 u32 sum;
515 int i;
516 u16 eeval;
517 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
518
519 sum = 0;
520 for (i = 0; i < 3; i++) {
521 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
522 sum += eeval;
523 common->macaddr[2 * i] = eeval >> 8;
524 common->macaddr[2 * i + 1] = eeval & 0xff;
525 }
526 if (sum == 0 || sum == 0xffff * 3)
527 return -EADDRNOTAVAIL;
528
529 return 0;
530 }
531
532 static int ath9k_hw_post_init(struct ath_hw *ah)
533 {
534 struct ath_common *common = ath9k_hw_common(ah);
535 int ecode;
536
537 if (common->bus_ops->ath_bus_type != ATH_USB) {
538 if (!ath9k_hw_chip_test(ah))
539 return -ENODEV;
540 }
541
542 if (!AR_SREV_9300_20_OR_LATER(ah)) {
543 ecode = ar9002_hw_rf_claim(ah);
544 if (ecode != 0)
545 return ecode;
546 }
547
548 ecode = ath9k_hw_eeprom_init(ah);
549 if (ecode != 0)
550 return ecode;
551
552 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
553 ah->eep_ops->get_eeprom_ver(ah),
554 ah->eep_ops->get_eeprom_rev(ah));
555
556 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
557 if (ecode) {
558 ath_err(ath9k_hw_common(ah),
559 "Failed allocating banks for external radio\n");
560 ath9k_hw_rf_free_ext_banks(ah);
561 return ecode;
562 }
563
564 if (ah->config.enable_ani) {
565 ath9k_hw_ani_setup(ah);
566 ath9k_hw_ani_init(ah);
567 }
568
569 return 0;
570 }
571
572 static void ath9k_hw_attach_ops(struct ath_hw *ah)
573 {
574 if (AR_SREV_9300_20_OR_LATER(ah))
575 ar9003_hw_attach_ops(ah);
576 else
577 ar9002_hw_attach_ops(ah);
578 }
579
580 /* Called for all hardware families */
581 static int __ath9k_hw_init(struct ath_hw *ah)
582 {
583 struct ath_common *common = ath9k_hw_common(ah);
584 int r = 0;
585
586 ath9k_hw_read_revisions(ah);
587
588 /*
589 * Read back AR_WA into a permanent copy and set bits 14 and 17.
590 * We need to do this to avoid RMW of this register. We cannot
591 * read the reg when chip is asleep.
592 */
593 ah->WARegVal = REG_READ(ah, AR_WA);
594 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
595 AR_WA_ASPM_TIMER_BASED_DISABLE);
596
597 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
598 ath_err(common, "Couldn't reset chip\n");
599 return -EIO;
600 }
601
602 if (AR_SREV_9462(ah))
603 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
604
605 ath9k_hw_init_defaults(ah);
606 ath9k_hw_init_config(ah);
607
608 ath9k_hw_attach_ops(ah);
609
610 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
611 ath_err(common, "Couldn't wakeup chip\n");
612 return -EIO;
613 }
614
615 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
616 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
617 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
618 !ah->is_pciexpress)) {
619 ah->config.serialize_regmode =
620 SER_REG_MODE_ON;
621 } else {
622 ah->config.serialize_regmode =
623 SER_REG_MODE_OFF;
624 }
625 }
626
627 ath_dbg(common, RESET, "serialize_regmode is %d\n",
628 ah->config.serialize_regmode);
629
630 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
631 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
632 else
633 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
634
635 switch (ah->hw_version.macVersion) {
636 case AR_SREV_VERSION_5416_PCI:
637 case AR_SREV_VERSION_5416_PCIE:
638 case AR_SREV_VERSION_9160:
639 case AR_SREV_VERSION_9100:
640 case AR_SREV_VERSION_9280:
641 case AR_SREV_VERSION_9285:
642 case AR_SREV_VERSION_9287:
643 case AR_SREV_VERSION_9271:
644 case AR_SREV_VERSION_9300:
645 case AR_SREV_VERSION_9330:
646 case AR_SREV_VERSION_9485:
647 case AR_SREV_VERSION_9340:
648 case AR_SREV_VERSION_9462:
649 case AR_SREV_VERSION_9550:
650 break;
651 default:
652 ath_err(common,
653 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
654 ah->hw_version.macVersion, ah->hw_version.macRev);
655 return -EOPNOTSUPP;
656 }
657
658 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
659 AR_SREV_9330(ah) || AR_SREV_9550(ah))
660 ah->is_pciexpress = false;
661
662 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
663 ath9k_hw_init_cal_settings(ah);
664
665 ah->ani_function = ATH9K_ANI_ALL;
666 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
667 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
668 if (!AR_SREV_9300_20_OR_LATER(ah))
669 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
670
671 ath9k_hw_init_mode_regs(ah);
672
673 if (!ah->is_pciexpress)
674 ath9k_hw_disablepcie(ah);
675
676 r = ath9k_hw_post_init(ah);
677 if (r)
678 return r;
679
680 ath9k_hw_init_mode_gain_regs(ah);
681 r = ath9k_hw_fill_cap_info(ah);
682 if (r)
683 return r;
684
685 r = ath9k_hw_init_macaddr(ah);
686 if (r) {
687 ath_err(common, "Failed to initialize MAC address\n");
688 return r;
689 }
690
691 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
692 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
693 else
694 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
695
696 if (AR_SREV_9330(ah))
697 ah->bb_watchdog_timeout_ms = 85;
698 else
699 ah->bb_watchdog_timeout_ms = 25;
700
701 common->state = ATH_HW_INITIALIZED;
702
703 return 0;
704 }
705
706 int ath9k_hw_init(struct ath_hw *ah)
707 {
708 int ret;
709 struct ath_common *common = ath9k_hw_common(ah);
710
711 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
712 switch (ah->hw_version.devid) {
713 case AR5416_DEVID_PCI:
714 case AR5416_DEVID_PCIE:
715 case AR5416_AR9100_DEVID:
716 case AR9160_DEVID_PCI:
717 case AR9280_DEVID_PCI:
718 case AR9280_DEVID_PCIE:
719 case AR9285_DEVID_PCIE:
720 case AR9287_DEVID_PCI:
721 case AR9287_DEVID_PCIE:
722 case AR2427_DEVID_PCIE:
723 case AR9300_DEVID_PCIE:
724 case AR9300_DEVID_AR9485_PCIE:
725 case AR9300_DEVID_AR9330:
726 case AR9300_DEVID_AR9340:
727 case AR9300_DEVID_QCA955X:
728 case AR9300_DEVID_AR9580:
729 case AR9300_DEVID_AR9462:
730 case AR9485_DEVID_AR1111:
731 break;
732 default:
733 if (common->bus_ops->ath_bus_type == ATH_USB)
734 break;
735 ath_err(common, "Hardware device ID 0x%04x not supported\n",
736 ah->hw_version.devid);
737 return -EOPNOTSUPP;
738 }
739
740 ret = __ath9k_hw_init(ah);
741 if (ret) {
742 ath_err(common,
743 "Unable to initialize hardware; initialization status: %d\n",
744 ret);
745 return ret;
746 }
747
748 return 0;
749 }
750 EXPORT_SYMBOL(ath9k_hw_init);
751
752 static void ath9k_hw_init_qos(struct ath_hw *ah)
753 {
754 ENABLE_REGWRITE_BUFFER(ah);
755
756 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
757 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
758
759 REG_WRITE(ah, AR_QOS_NO_ACK,
760 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
761 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
762 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
763
764 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
765 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
766 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
767 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
768 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
769
770 REGWRITE_BUFFER_FLUSH(ah);
771 }
772
773 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
774 {
775 struct ath_common *common = ath9k_hw_common(ah);
776 int i = 0;
777
778 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
779 udelay(100);
780 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
781
782 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
783
784 udelay(100);
785
786 if (WARN_ON_ONCE(i >= 100)) {
787 ath_err(common, "PLL4 meaurement not done\n");
788 break;
789 }
790
791 i++;
792 }
793
794 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
795 }
796 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
797
798 static void ath9k_hw_init_pll(struct ath_hw *ah,
799 struct ath9k_channel *chan)
800 {
801 u32 pll;
802
803 if (AR_SREV_9485(ah)) {
804
805 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
806 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
807 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
808 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
809 AR_CH0_DPLL2_KD, 0x40);
810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
811 AR_CH0_DPLL2_KI, 0x4);
812
813 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
814 AR_CH0_BB_DPLL1_REFDIV, 0x5);
815 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
816 AR_CH0_BB_DPLL1_NINI, 0x58);
817 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
818 AR_CH0_BB_DPLL1_NFRAC, 0x0);
819
820 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
821 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
822 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
823 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
824 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
826
827 /* program BB PLL phase_shift to 0x6 */
828 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
829 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
830
831 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
832 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
833 udelay(1000);
834 } else if (AR_SREV_9330(ah)) {
835 u32 ddr_dpll2, pll_control2, kd;
836
837 if (ah->is_clk_25mhz) {
838 ddr_dpll2 = 0x18e82f01;
839 pll_control2 = 0xe04a3d;
840 kd = 0x1d;
841 } else {
842 ddr_dpll2 = 0x19e82f01;
843 pll_control2 = 0x886666;
844 kd = 0x3d;
845 }
846
847 /* program DDR PLL ki and kd value */
848 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
849
850 /* program DDR PLL phase_shift */
851 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
852 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
853
854 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
855 udelay(1000);
856
857 /* program refdiv, nint, frac to RTC register */
858 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
859
860 /* program BB PLL kd and ki value */
861 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
862 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
863
864 /* program BB PLL phase_shift */
865 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
866 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
867 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
868 u32 regval, pll2_divint, pll2_divfrac, refdiv;
869
870 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
871 udelay(1000);
872
873 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
874 udelay(100);
875
876 if (ah->is_clk_25mhz) {
877 pll2_divint = 0x54;
878 pll2_divfrac = 0x1eb85;
879 refdiv = 3;
880 } else {
881 if (AR_SREV_9340(ah)) {
882 pll2_divint = 88;
883 pll2_divfrac = 0;
884 refdiv = 5;
885 } else {
886 pll2_divint = 0x11;
887 pll2_divfrac = 0x26666;
888 refdiv = 1;
889 }
890 }
891
892 regval = REG_READ(ah, AR_PHY_PLL_MODE);
893 regval |= (0x1 << 16);
894 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
895 udelay(100);
896
897 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
898 (pll2_divint << 18) | pll2_divfrac);
899 udelay(100);
900
901 regval = REG_READ(ah, AR_PHY_PLL_MODE);
902 if (AR_SREV_9340(ah))
903 regval = (regval & 0x80071fff) | (0x1 << 30) |
904 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
905 else
906 regval = (regval & 0x80071fff) | (0x3 << 30) |
907 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
908 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
909 REG_WRITE(ah, AR_PHY_PLL_MODE,
910 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
911 udelay(1000);
912 }
913
914 pll = ath9k_hw_compute_pll_control(ah, chan);
915
916 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
917
918 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
919 AR_SREV_9550(ah))
920 udelay(1000);
921
922 /* Switch the core clock for ar9271 to 117Mhz */
923 if (AR_SREV_9271(ah)) {
924 udelay(500);
925 REG_WRITE(ah, 0x50040, 0x304);
926 }
927
928 udelay(RTC_PLL_SETTLE_DELAY);
929
930 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
931
932 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
933 if (ah->is_clk_25mhz) {
934 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
935 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
936 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
937 } else {
938 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
939 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
940 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
941 }
942 udelay(100);
943 }
944 }
945
946 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
947 enum nl80211_iftype opmode)
948 {
949 u32 sync_default = AR_INTR_SYNC_DEFAULT;
950 u32 imr_reg = AR_IMR_TXERR |
951 AR_IMR_TXURN |
952 AR_IMR_RXERR |
953 AR_IMR_RXORN |
954 AR_IMR_BCNMISC;
955
956 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
957 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
958
959 if (AR_SREV_9300_20_OR_LATER(ah)) {
960 imr_reg |= AR_IMR_RXOK_HP;
961 if (ah->config.rx_intr_mitigation)
962 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
963 else
964 imr_reg |= AR_IMR_RXOK_LP;
965
966 } else {
967 if (ah->config.rx_intr_mitigation)
968 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
969 else
970 imr_reg |= AR_IMR_RXOK;
971 }
972
973 if (ah->config.tx_intr_mitigation)
974 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
975 else
976 imr_reg |= AR_IMR_TXOK;
977
978 ENABLE_REGWRITE_BUFFER(ah);
979
980 REG_WRITE(ah, AR_IMR, imr_reg);
981 ah->imrs2_reg |= AR_IMR_S2_GTT;
982 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
983
984 if (!AR_SREV_9100(ah)) {
985 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
986 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
987 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
988 }
989
990 REGWRITE_BUFFER_FLUSH(ah);
991
992 if (AR_SREV_9300_20_OR_LATER(ah)) {
993 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
994 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
995 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
996 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
997 }
998 }
999
1000 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1001 {
1002 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1003 val = min(val, (u32) 0xFFFF);
1004 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1005 }
1006
1007 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1008 {
1009 u32 val = ath9k_hw_mac_to_clks(ah, us);
1010 val = min(val, (u32) 0xFFFF);
1011 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1012 }
1013
1014 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1015 {
1016 u32 val = ath9k_hw_mac_to_clks(ah, us);
1017 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1018 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1019 }
1020
1021 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1022 {
1023 u32 val = ath9k_hw_mac_to_clks(ah, us);
1024 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1025 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1026 }
1027
1028 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1029 {
1030 if (tu > 0xFFFF) {
1031 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1032 tu);
1033 ah->globaltxtimeout = (u32) -1;
1034 return false;
1035 } else {
1036 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1037 ah->globaltxtimeout = tu;
1038 return true;
1039 }
1040 }
1041
1042 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1043 {
1044 struct ath_common *common = ath9k_hw_common(ah);
1045 struct ieee80211_conf *conf = &common->hw->conf;
1046 const struct ath9k_channel *chan = ah->curchan;
1047 int acktimeout, ctstimeout, ack_offset = 0;
1048 int slottime;
1049 int sifstime;
1050 int rx_lat = 0, tx_lat = 0, eifs = 0;
1051 u32 reg;
1052
1053 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1054 ah->misc_mode);
1055
1056 if (!chan)
1057 return;
1058
1059 if (ah->misc_mode != 0)
1060 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1061
1062 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1063 rx_lat = 41;
1064 else
1065 rx_lat = 37;
1066 tx_lat = 54;
1067
1068 if (IS_CHAN_5GHZ(chan))
1069 sifstime = 16;
1070 else
1071 sifstime = 10;
1072
1073 if (IS_CHAN_HALF_RATE(chan)) {
1074 eifs = 175;
1075 rx_lat *= 2;
1076 tx_lat *= 2;
1077 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1078 tx_lat += 11;
1079
1080 sifstime *= 2;
1081 ack_offset = 16;
1082 slottime = 13;
1083 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1084 eifs = 340;
1085 rx_lat = (rx_lat * 4) - 1;
1086 tx_lat *= 4;
1087 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1088 tx_lat += 22;
1089
1090 sifstime *= 4;
1091 ack_offset = 32;
1092 slottime = 21;
1093 } else {
1094 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1095 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1096 reg = AR_USEC_ASYNC_FIFO;
1097 } else {
1098 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1099 common->clockrate;
1100 reg = REG_READ(ah, AR_USEC);
1101 }
1102 rx_lat = MS(reg, AR_USEC_RX_LAT);
1103 tx_lat = MS(reg, AR_USEC_TX_LAT);
1104
1105 slottime = ah->slottime;
1106 }
1107
1108 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1109 acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1110 ctstimeout = acktimeout;
1111
1112 /*
1113 * Workaround for early ACK timeouts, add an offset to match the
1114 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1115 * This was initially only meant to work around an issue with delayed
1116 * BA frames in some implementations, but it has been found to fix ACK
1117 * timeout issues in other cases as well.
1118 */
1119 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1120 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1121 acktimeout += 64 - sifstime - ah->slottime;
1122 ctstimeout += 48 - sifstime - ah->slottime;
1123 }
1124
1125
1126 ath9k_hw_set_sifs_time(ah, sifstime);
1127 ath9k_hw_setslottime(ah, slottime);
1128 ath9k_hw_set_ack_timeout(ah, acktimeout);
1129 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1130 if (ah->globaltxtimeout != (u32) -1)
1131 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1132
1133 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1134 REG_RMW(ah, AR_USEC,
1135 (common->clockrate - 1) |
1136 SM(rx_lat, AR_USEC_RX_LAT) |
1137 SM(tx_lat, AR_USEC_TX_LAT),
1138 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1139
1140 }
1141 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1142
1143 void ath9k_hw_deinit(struct ath_hw *ah)
1144 {
1145 struct ath_common *common = ath9k_hw_common(ah);
1146
1147 if (common->state < ATH_HW_INITIALIZED)
1148 goto free_hw;
1149
1150 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1151
1152 free_hw:
1153 ath9k_hw_rf_free_ext_banks(ah);
1154 }
1155 EXPORT_SYMBOL(ath9k_hw_deinit);
1156
1157 /*******/
1158 /* INI */
1159 /*******/
1160
1161 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1162 {
1163 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1164
1165 if (IS_CHAN_B(chan))
1166 ctl |= CTL_11B;
1167 else if (IS_CHAN_G(chan))
1168 ctl |= CTL_11G;
1169 else
1170 ctl |= CTL_11A;
1171
1172 return ctl;
1173 }
1174
1175 /****************************************/
1176 /* Reset and Channel Switching Routines */
1177 /****************************************/
1178
1179 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1180 {
1181 struct ath_common *common = ath9k_hw_common(ah);
1182
1183 ENABLE_REGWRITE_BUFFER(ah);
1184
1185 /*
1186 * set AHB_MODE not to do cacheline prefetches
1187 */
1188 if (!AR_SREV_9300_20_OR_LATER(ah))
1189 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1190
1191 /*
1192 * let mac dma reads be in 128 byte chunks
1193 */
1194 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1195
1196 REGWRITE_BUFFER_FLUSH(ah);
1197
1198 /*
1199 * Restore TX Trigger Level to its pre-reset value.
1200 * The initial value depends on whether aggregation is enabled, and is
1201 * adjusted whenever underruns are detected.
1202 */
1203 if (!AR_SREV_9300_20_OR_LATER(ah))
1204 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1205
1206 ENABLE_REGWRITE_BUFFER(ah);
1207
1208 /*
1209 * let mac dma writes be in 128 byte chunks
1210 */
1211 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1212
1213 /*
1214 * Setup receive FIFO threshold to hold off TX activities
1215 */
1216 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1217
1218 if (AR_SREV_9300_20_OR_LATER(ah)) {
1219 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1220 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1221
1222 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1223 ah->caps.rx_status_len);
1224 }
1225
1226 /*
1227 * reduce the number of usable entries in PCU TXBUF to avoid
1228 * wrap around issues.
1229 */
1230 if (AR_SREV_9285(ah)) {
1231 /* For AR9285 the number of Fifos are reduced to half.
1232 * So set the usable tx buf size also to half to
1233 * avoid data/delimiter underruns
1234 */
1235 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1236 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1237 } else if (!AR_SREV_9271(ah)) {
1238 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1239 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1240 }
1241
1242 REGWRITE_BUFFER_FLUSH(ah);
1243
1244 if (AR_SREV_9300_20_OR_LATER(ah))
1245 ath9k_hw_reset_txstatus_ring(ah);
1246 }
1247
1248 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1249 {
1250 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1251 u32 set = AR_STA_ID1_KSRCH_MODE;
1252
1253 switch (opmode) {
1254 case NL80211_IFTYPE_ADHOC:
1255 case NL80211_IFTYPE_MESH_POINT:
1256 set |= AR_STA_ID1_ADHOC;
1257 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1258 break;
1259 case NL80211_IFTYPE_AP:
1260 set |= AR_STA_ID1_STA_AP;
1261 /* fall through */
1262 case NL80211_IFTYPE_STATION:
1263 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1264 break;
1265 default:
1266 if (!ah->is_monitoring)
1267 set = 0;
1268 break;
1269 }
1270 REG_RMW(ah, AR_STA_ID1, set, mask);
1271 }
1272
1273 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1274 u32 *coef_mantissa, u32 *coef_exponent)
1275 {
1276 u32 coef_exp, coef_man;
1277
1278 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1279 if ((coef_scaled >> coef_exp) & 0x1)
1280 break;
1281
1282 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1283
1284 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1285
1286 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1287 *coef_exponent = coef_exp - 16;
1288 }
1289
1290 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1291 {
1292 u32 rst_flags;
1293 u32 tmpReg;
1294
1295 if (AR_SREV_9100(ah)) {
1296 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1297 AR_RTC_DERIVED_CLK_PERIOD, 1);
1298 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1299 }
1300
1301 ENABLE_REGWRITE_BUFFER(ah);
1302
1303 if (AR_SREV_9300_20_OR_LATER(ah)) {
1304 REG_WRITE(ah, AR_WA, ah->WARegVal);
1305 udelay(10);
1306 }
1307
1308 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1309 AR_RTC_FORCE_WAKE_ON_INT);
1310
1311 if (AR_SREV_9100(ah)) {
1312 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1313 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1314 } else {
1315 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1316 if (tmpReg &
1317 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1318 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1319 u32 val;
1320 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1321
1322 val = AR_RC_HOSTIF;
1323 if (!AR_SREV_9300_20_OR_LATER(ah))
1324 val |= AR_RC_AHB;
1325 REG_WRITE(ah, AR_RC, val);
1326
1327 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1328 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329
1330 rst_flags = AR_RTC_RC_MAC_WARM;
1331 if (type == ATH9K_RESET_COLD)
1332 rst_flags |= AR_RTC_RC_MAC_COLD;
1333 }
1334
1335 if (AR_SREV_9330(ah)) {
1336 int npend = 0;
1337 int i;
1338
1339 /* AR9330 WAR:
1340 * call external reset function to reset WMAC if:
1341 * - doing a cold reset
1342 * - we have pending frames in the TX queues
1343 */
1344
1345 for (i = 0; i < AR_NUM_QCU; i++) {
1346 npend = ath9k_hw_numtxpending(ah, i);
1347 if (npend)
1348 break;
1349 }
1350
1351 if (ah->external_reset &&
1352 (npend || type == ATH9K_RESET_COLD)) {
1353 int reset_err = 0;
1354
1355 ath_dbg(ath9k_hw_common(ah), RESET,
1356 "reset MAC via external reset\n");
1357
1358 reset_err = ah->external_reset();
1359 if (reset_err) {
1360 ath_err(ath9k_hw_common(ah),
1361 "External reset failed, err=%d\n",
1362 reset_err);
1363 return false;
1364 }
1365
1366 REG_WRITE(ah, AR_RTC_RESET, 1);
1367 }
1368 }
1369
1370 if (ath9k_hw_mci_is_enabled(ah))
1371 ar9003_mci_check_gpm_offset(ah);
1372
1373 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1374
1375 REGWRITE_BUFFER_FLUSH(ah);
1376
1377 udelay(50);
1378
1379 REG_WRITE(ah, AR_RTC_RC, 0);
1380 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1381 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1382 return false;
1383 }
1384
1385 if (!AR_SREV_9100(ah))
1386 REG_WRITE(ah, AR_RC, 0);
1387
1388 if (AR_SREV_9100(ah))
1389 udelay(50);
1390
1391 return true;
1392 }
1393
1394 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1395 {
1396 ENABLE_REGWRITE_BUFFER(ah);
1397
1398 if (AR_SREV_9300_20_OR_LATER(ah)) {
1399 REG_WRITE(ah, AR_WA, ah->WARegVal);
1400 udelay(10);
1401 }
1402
1403 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1404 AR_RTC_FORCE_WAKE_ON_INT);
1405
1406 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1407 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1408
1409 REG_WRITE(ah, AR_RTC_RESET, 0);
1410
1411 REGWRITE_BUFFER_FLUSH(ah);
1412
1413 if (!AR_SREV_9300_20_OR_LATER(ah))
1414 udelay(2);
1415
1416 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1417 REG_WRITE(ah, AR_RC, 0);
1418
1419 REG_WRITE(ah, AR_RTC_RESET, 1);
1420
1421 if (!ath9k_hw_wait(ah,
1422 AR_RTC_STATUS,
1423 AR_RTC_STATUS_M,
1424 AR_RTC_STATUS_ON,
1425 AH_WAIT_TIMEOUT)) {
1426 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1427 return false;
1428 }
1429
1430 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1431 }
1432
1433 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1434 {
1435 bool ret = false;
1436
1437 if (AR_SREV_9300_20_OR_LATER(ah)) {
1438 REG_WRITE(ah, AR_WA, ah->WARegVal);
1439 udelay(10);
1440 }
1441
1442 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1443 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1444
1445 switch (type) {
1446 case ATH9K_RESET_POWER_ON:
1447 ret = ath9k_hw_set_reset_power_on(ah);
1448 break;
1449 case ATH9K_RESET_WARM:
1450 case ATH9K_RESET_COLD:
1451 ret = ath9k_hw_set_reset(ah, type);
1452 break;
1453 default:
1454 break;
1455 }
1456
1457 return ret;
1458 }
1459
1460 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1461 struct ath9k_channel *chan)
1462 {
1463 int reset_type = ATH9K_RESET_WARM;
1464
1465 if (AR_SREV_9280(ah)) {
1466 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1467 reset_type = ATH9K_RESET_POWER_ON;
1468 else
1469 reset_type = ATH9K_RESET_COLD;
1470 }
1471
1472 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1473 return false;
1474
1475 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1476 return false;
1477
1478 ah->chip_fullsleep = false;
1479
1480 if (AR_SREV_9330(ah))
1481 ar9003_hw_internal_regulator_apply(ah);
1482 ath9k_hw_init_pll(ah, chan);
1483 ath9k_hw_set_rfmode(ah, chan);
1484
1485 return true;
1486 }
1487
1488 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1489 struct ath9k_channel *chan)
1490 {
1491 struct ath_common *common = ath9k_hw_common(ah);
1492 u32 qnum;
1493 int r;
1494 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1495 bool band_switch, mode_diff;
1496 u8 ini_reloaded;
1497
1498 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1499 (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1500 CHANNEL_5GHZ));
1501 mode_diff = (chan->chanmode != ah->curchan->chanmode);
1502
1503 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1504 if (ath9k_hw_numtxpending(ah, qnum)) {
1505 ath_dbg(common, QUEUE,
1506 "Transmit frames pending on queue %d\n", qnum);
1507 return false;
1508 }
1509 }
1510
1511 if (!ath9k_hw_rfbus_req(ah)) {
1512 ath_err(common, "Could not kill baseband RX\n");
1513 return false;
1514 }
1515
1516 if (edma && (band_switch || mode_diff)) {
1517 ath9k_hw_mark_phy_inactive(ah);
1518 udelay(5);
1519
1520 ath9k_hw_init_pll(ah, NULL);
1521
1522 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1523 ath_err(common, "Failed to do fast channel change\n");
1524 return false;
1525 }
1526 }
1527
1528 ath9k_hw_set_channel_regs(ah, chan);
1529
1530 r = ath9k_hw_rf_set_freq(ah, chan);
1531 if (r) {
1532 ath_err(common, "Failed to set channel\n");
1533 return false;
1534 }
1535 ath9k_hw_set_clockrate(ah);
1536 ath9k_hw_apply_txpower(ah, chan, false);
1537 ath9k_hw_rfbus_done(ah);
1538
1539 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1540 ath9k_hw_set_delta_slope(ah, chan);
1541
1542 ath9k_hw_spur_mitigate_freq(ah, chan);
1543
1544 if (edma && (band_switch || mode_diff)) {
1545 ah->ah_flags |= AH_FASTCC;
1546 if (band_switch || ini_reloaded)
1547 ah->eep_ops->set_board_values(ah, chan);
1548
1549 ath9k_hw_init_bb(ah, chan);
1550
1551 if (band_switch || ini_reloaded)
1552 ath9k_hw_init_cal(ah, chan);
1553 ah->ah_flags &= ~AH_FASTCC;
1554 }
1555
1556 return true;
1557 }
1558
1559 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1560 {
1561 u32 gpio_mask = ah->gpio_mask;
1562 int i;
1563
1564 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1565 if (!(gpio_mask & 1))
1566 continue;
1567
1568 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1569 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1570 }
1571 }
1572
1573 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1574 int *hang_state, int *hang_pos)
1575 {
1576 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1577 u32 chain_state, dcs_pos, i;
1578
1579 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1580 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1581 for (i = 0; i < 3; i++) {
1582 if (chain_state == dcu_chain_state[i]) {
1583 *hang_state = chain_state;
1584 *hang_pos = dcs_pos;
1585 return true;
1586 }
1587 }
1588 }
1589 return false;
1590 }
1591
1592 #define DCU_COMPLETE_STATE 1
1593 #define DCU_COMPLETE_STATE_MASK 0x3
1594 #define NUM_STATUS_READS 50
1595 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1596 {
1597 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1598 u32 i, hang_pos, hang_state, num_state = 6;
1599
1600 comp_state = REG_READ(ah, AR_DMADBG_6);
1601
1602 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1603 ath_dbg(ath9k_hw_common(ah), RESET,
1604 "MAC Hang signature not found at DCU complete\n");
1605 return false;
1606 }
1607
1608 chain_state = REG_READ(ah, dcs_reg);
1609 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1610 goto hang_check_iter;
1611
1612 dcs_reg = AR_DMADBG_5;
1613 num_state = 4;
1614 chain_state = REG_READ(ah, dcs_reg);
1615 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1616 goto hang_check_iter;
1617
1618 ath_dbg(ath9k_hw_common(ah), RESET,
1619 "MAC Hang signature 1 not found\n");
1620 return false;
1621
1622 hang_check_iter:
1623 ath_dbg(ath9k_hw_common(ah), RESET,
1624 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1625 chain_state, comp_state, hang_state, hang_pos);
1626
1627 for (i = 0; i < NUM_STATUS_READS; i++) {
1628 chain_state = REG_READ(ah, dcs_reg);
1629 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1630 comp_state = REG_READ(ah, AR_DMADBG_6);
1631
1632 if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1633 DCU_COMPLETE_STATE) ||
1634 (chain_state != hang_state))
1635 return false;
1636 }
1637
1638 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1639
1640 return true;
1641 }
1642
1643 bool ath9k_hw_check_alive(struct ath_hw *ah)
1644 {
1645 int count = 50;
1646 u32 reg;
1647
1648 if (AR_SREV_9300(ah))
1649 return !ath9k_hw_detect_mac_hang(ah);
1650
1651 if (AR_SREV_9285_12_OR_LATER(ah))
1652 return true;
1653
1654 do {
1655 reg = REG_READ(ah, AR_OBS_BUS_1);
1656
1657 if ((reg & 0x7E7FFFEF) == 0x00702400)
1658 continue;
1659
1660 switch (reg & 0x7E000B00) {
1661 case 0x1E000000:
1662 case 0x52000B00:
1663 case 0x18000B00:
1664 continue;
1665 default:
1666 return true;
1667 }
1668 } while (count-- > 0);
1669
1670 return false;
1671 }
1672 EXPORT_SYMBOL(ath9k_hw_check_alive);
1673
1674 /*
1675 * Fast channel change:
1676 * (Change synthesizer based on channel freq without resetting chip)
1677 *
1678 * Don't do FCC when
1679 * - Flag is not set
1680 * - Chip is just coming out of full sleep
1681 * - Channel to be set is same as current channel
1682 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1683 */
1684 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1685 {
1686 struct ath_common *common = ath9k_hw_common(ah);
1687 int ret;
1688
1689 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1690 goto fail;
1691
1692 if (ah->chip_fullsleep)
1693 goto fail;
1694
1695 if (!ah->curchan)
1696 goto fail;
1697
1698 if (chan->channel == ah->curchan->channel)
1699 goto fail;
1700
1701 if ((ah->curchan->channelFlags | chan->channelFlags) &
1702 (CHANNEL_HALF | CHANNEL_QUARTER))
1703 goto fail;
1704
1705 if ((chan->channelFlags & CHANNEL_ALL) !=
1706 (ah->curchan->channelFlags & CHANNEL_ALL))
1707 goto fail;
1708
1709 if (!ath9k_hw_check_alive(ah))
1710 goto fail;
1711
1712 /*
1713 * For AR9462, make sure that calibration data for
1714 * re-using are present.
1715 */
1716 if (AR_SREV_9462(ah) && (ah->caldata &&
1717 (!ah->caldata->done_txiqcal_once ||
1718 !ah->caldata->done_txclcal_once ||
1719 !ah->caldata->rtt_done)))
1720 goto fail;
1721
1722 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1723 ah->curchan->channel, chan->channel);
1724
1725 ret = ath9k_hw_channel_change(ah, chan);
1726 if (!ret)
1727 goto fail;
1728
1729 ath9k_hw_loadnf(ah, ah->curchan);
1730 ath9k_hw_start_nfcal(ah, true);
1731
1732 if (ath9k_hw_mci_is_enabled(ah))
1733 ar9003_mci_2g5g_switch(ah, false);
1734
1735 if (AR_SREV_9271(ah))
1736 ar9002_hw_load_ani_reg(ah, chan);
1737
1738 return 0;
1739 fail:
1740 return -EINVAL;
1741 }
1742
1743 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1744 struct ath9k_hw_cal_data *caldata, bool fastcc)
1745 {
1746 struct ath_common *common = ath9k_hw_common(ah);
1747 u32 saveLedState;
1748 u32 saveDefAntenna;
1749 u32 macStaId1;
1750 u64 tsf = 0;
1751 int i, r;
1752 bool start_mci_reset = false;
1753 bool save_fullsleep = ah->chip_fullsleep;
1754
1755 if (ath9k_hw_mci_is_enabled(ah)) {
1756 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1757 if (start_mci_reset)
1758 return 0;
1759 }
1760
1761 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1762 return -EIO;
1763
1764 if (ah->curchan && !ah->chip_fullsleep)
1765 ath9k_hw_getnf(ah, ah->curchan);
1766
1767 ah->caldata = caldata;
1768 if (caldata &&
1769 (chan->channel != caldata->channel ||
1770 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1771 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1772 /* Operating channel changed, reset channel calibration data */
1773 memset(caldata, 0, sizeof(*caldata));
1774 ath9k_init_nfcal_hist_buffer(ah, chan);
1775 } else if (caldata) {
1776 caldata->paprd_packet_sent = false;
1777 }
1778 ah->noise = ath9k_hw_getchan_noise(ah, chan);
1779
1780 if (fastcc) {
1781 r = ath9k_hw_do_fastcc(ah, chan);
1782 if (!r)
1783 return r;
1784 }
1785
1786 if (ath9k_hw_mci_is_enabled(ah))
1787 ar9003_mci_stop_bt(ah, save_fullsleep);
1788
1789 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1790 if (saveDefAntenna == 0)
1791 saveDefAntenna = 1;
1792
1793 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1794
1795 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1796 if (AR_SREV_9100(ah) ||
1797 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1798 tsf = ath9k_hw_gettsf64(ah);
1799
1800 saveLedState = REG_READ(ah, AR_CFG_LED) &
1801 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1802 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1803
1804 ath9k_hw_mark_phy_inactive(ah);
1805
1806 ah->paprd_table_write_done = false;
1807
1808 /* Only required on the first reset */
1809 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1810 REG_WRITE(ah,
1811 AR9271_RESET_POWER_DOWN_CONTROL,
1812 AR9271_RADIO_RF_RST);
1813 udelay(50);
1814 }
1815
1816 if (!ath9k_hw_chip_reset(ah, chan)) {
1817 ath_err(common, "Chip reset failed\n");
1818 return -EINVAL;
1819 }
1820
1821 /* Only required on the first reset */
1822 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1823 ah->htc_reset_init = false;
1824 REG_WRITE(ah,
1825 AR9271_RESET_POWER_DOWN_CONTROL,
1826 AR9271_GATE_MAC_CTL);
1827 udelay(50);
1828 }
1829
1830 /* Restore TSF */
1831 if (tsf)
1832 ath9k_hw_settsf64(ah, tsf);
1833
1834 if (AR_SREV_9280_20_OR_LATER(ah))
1835 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1836
1837 if (!AR_SREV_9300_20_OR_LATER(ah))
1838 ar9002_hw_enable_async_fifo(ah);
1839
1840 r = ath9k_hw_process_ini(ah, chan);
1841 if (r)
1842 return r;
1843
1844 if (ath9k_hw_mci_is_enabled(ah))
1845 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1846
1847 /*
1848 * Some AR91xx SoC devices frequently fail to accept TSF writes
1849 * right after the chip reset. When that happens, write a new
1850 * value after the initvals have been applied, with an offset
1851 * based on measured time difference
1852 */
1853 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1854 tsf += 1500;
1855 ath9k_hw_settsf64(ah, tsf);
1856 }
1857
1858 /* Setup MFP options for CCMP */
1859 if (AR_SREV_9280_20_OR_LATER(ah)) {
1860 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1861 * frames when constructing CCMP AAD. */
1862 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1863 0xc7ff);
1864 ah->sw_mgmt_crypto = false;
1865 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1866 /* Disable hardware crypto for management frames */
1867 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1868 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1869 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1870 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1871 ah->sw_mgmt_crypto = true;
1872 } else
1873 ah->sw_mgmt_crypto = true;
1874
1875 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1876 ath9k_hw_set_delta_slope(ah, chan);
1877
1878 ath9k_hw_spur_mitigate_freq(ah, chan);
1879 ah->eep_ops->set_board_values(ah, chan);
1880
1881 ENABLE_REGWRITE_BUFFER(ah);
1882
1883 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1884 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1885 | macStaId1
1886 | AR_STA_ID1_RTS_USE_DEF
1887 | (ah->config.
1888 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1889 | ah->sta_id1_defaults);
1890 ath_hw_setbssidmask(common);
1891 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1892 ath9k_hw_write_associd(ah);
1893 REG_WRITE(ah, AR_ISR, ~0);
1894 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1895
1896 REGWRITE_BUFFER_FLUSH(ah);
1897
1898 ath9k_hw_set_operating_mode(ah, ah->opmode);
1899
1900 r = ath9k_hw_rf_set_freq(ah, chan);
1901 if (r)
1902 return r;
1903
1904 ath9k_hw_set_clockrate(ah);
1905
1906 ENABLE_REGWRITE_BUFFER(ah);
1907
1908 for (i = 0; i < AR_NUM_DCU; i++)
1909 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1910
1911 REGWRITE_BUFFER_FLUSH(ah);
1912
1913 ah->intr_txqs = 0;
1914 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1915 ath9k_hw_resettxqueue(ah, i);
1916
1917 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1918 ath9k_hw_ani_cache_ini_regs(ah);
1919 ath9k_hw_init_qos(ah);
1920
1921 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1922 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1923
1924 ath9k_hw_init_global_settings(ah);
1925
1926 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1927 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1928 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1929 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1930 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1931 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1932 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1933 }
1934
1935 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1936
1937 ath9k_hw_set_dma(ah);
1938
1939 if (!ath9k_hw_mci_is_enabled(ah))
1940 REG_WRITE(ah, AR_OBS, 8);
1941
1942 if (ah->config.rx_intr_mitigation) {
1943 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1944 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1945 }
1946
1947 if (ah->config.tx_intr_mitigation) {
1948 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1949 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1950 }
1951
1952 ath9k_hw_init_bb(ah, chan);
1953
1954 if (caldata) {
1955 caldata->done_txiqcal_once = false;
1956 caldata->done_txclcal_once = false;
1957 }
1958 if (!ath9k_hw_init_cal(ah, chan))
1959 return -EIO;
1960
1961 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1962 return -EIO;
1963
1964 ENABLE_REGWRITE_BUFFER(ah);
1965
1966 ath9k_hw_restore_chainmask(ah);
1967 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1968
1969 REGWRITE_BUFFER_FLUSH(ah);
1970
1971 /*
1972 * For big endian systems turn on swapping for descriptors
1973 */
1974 if (AR_SREV_9100(ah)) {
1975 u32 mask;
1976 mask = REG_READ(ah, AR_CFG);
1977 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1978 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1979 mask);
1980 } else {
1981 mask =
1982 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1983 REG_WRITE(ah, AR_CFG, mask);
1984 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1985 REG_READ(ah, AR_CFG));
1986 }
1987 } else {
1988 if (common->bus_ops->ath_bus_type == ATH_USB) {
1989 /* Configure AR9271 target WLAN */
1990 if (AR_SREV_9271(ah))
1991 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1992 else
1993 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1994 }
1995 #ifdef __BIG_ENDIAN
1996 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1997 AR_SREV_9550(ah))
1998 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1999 else
2000 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2001 #endif
2002 }
2003
2004 if (ath9k_hw_btcoex_is_enabled(ah))
2005 ath9k_hw_btcoex_enable(ah);
2006
2007 if (ath9k_hw_mci_is_enabled(ah))
2008 ar9003_mci_check_bt(ah);
2009
2010 ath9k_hw_loadnf(ah, chan);
2011 ath9k_hw_start_nfcal(ah, true);
2012
2013 if (AR_SREV_9300_20_OR_LATER(ah)) {
2014 ar9003_hw_bb_watchdog_config(ah);
2015
2016 ar9003_hw_disable_phy_restart(ah);
2017 }
2018
2019 ath9k_hw_apply_gpio_override(ah);
2020
2021 return 0;
2022 }
2023 EXPORT_SYMBOL(ath9k_hw_reset);
2024
2025 /******************************/
2026 /* Power Management (Chipset) */
2027 /******************************/
2028
2029 /*
2030 * Notify Power Mgt is disabled in self-generated frames.
2031 * If requested, force chip to sleep.
2032 */
2033 static void ath9k_set_power_sleep(struct ath_hw *ah)
2034 {
2035 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2036
2037 if (AR_SREV_9462(ah)) {
2038 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2039 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2040 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2041 /* xxx Required for WLAN only case ? */
2042 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2043 udelay(100);
2044 }
2045
2046 /*
2047 * Clear the RTC force wake bit to allow the
2048 * mac to go to sleep.
2049 */
2050 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2051
2052 if (ath9k_hw_mci_is_enabled(ah))
2053 udelay(100);
2054
2055 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2056 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2057
2058 /* Shutdown chip. Active low */
2059 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2060 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2061 udelay(2);
2062 }
2063
2064 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2065 if (AR_SREV_9300_20_OR_LATER(ah))
2066 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2067 }
2068
2069 /*
2070 * Notify Power Management is enabled in self-generating
2071 * frames. If request, set power mode of chip to
2072 * auto/normal. Duration in units of 128us (1/8 TU).
2073 */
2074 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2075 {
2076 struct ath9k_hw_capabilities *pCap = &ah->caps;
2077
2078 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2079
2080 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2081 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2082 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2083 AR_RTC_FORCE_WAKE_ON_INT);
2084 } else {
2085
2086 /* When chip goes into network sleep, it could be waken
2087 * up by MCI_INT interrupt caused by BT's HW messages
2088 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2089 * rate (~100us). This will cause chip to leave and
2090 * re-enter network sleep mode frequently, which in
2091 * consequence will have WLAN MCI HW to generate lots of
2092 * SYS_WAKING and SYS_SLEEPING messages which will make
2093 * BT CPU to busy to process.
2094 */
2095 if (ath9k_hw_mci_is_enabled(ah))
2096 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2097 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2098 /*
2099 * Clear the RTC force wake bit to allow the
2100 * mac to go to sleep.
2101 */
2102 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2103
2104 if (ath9k_hw_mci_is_enabled(ah))
2105 udelay(30);
2106 }
2107
2108 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2109 if (AR_SREV_9300_20_OR_LATER(ah))
2110 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2111 }
2112
2113 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2114 {
2115 u32 val;
2116 int i;
2117
2118 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2119 if (AR_SREV_9300_20_OR_LATER(ah)) {
2120 REG_WRITE(ah, AR_WA, ah->WARegVal);
2121 udelay(10);
2122 }
2123
2124 if ((REG_READ(ah, AR_RTC_STATUS) &
2125 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2126 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2127 return false;
2128 }
2129 if (!AR_SREV_9300_20_OR_LATER(ah))
2130 ath9k_hw_init_pll(ah, NULL);
2131 }
2132 if (AR_SREV_9100(ah))
2133 REG_SET_BIT(ah, AR_RTC_RESET,
2134 AR_RTC_RESET_EN);
2135
2136 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2137 AR_RTC_FORCE_WAKE_EN);
2138 udelay(50);
2139
2140 if (ath9k_hw_mci_is_enabled(ah))
2141 ar9003_mci_set_power_awake(ah);
2142
2143 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2144 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2145 if (val == AR_RTC_STATUS_ON)
2146 break;
2147 udelay(50);
2148 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2149 AR_RTC_FORCE_WAKE_EN);
2150 }
2151 if (i == 0) {
2152 ath_err(ath9k_hw_common(ah),
2153 "Failed to wakeup in %uus\n",
2154 POWER_UP_TIME / 20);
2155 return false;
2156 }
2157
2158 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2159
2160 return true;
2161 }
2162
2163 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2164 {
2165 struct ath_common *common = ath9k_hw_common(ah);
2166 int status = true;
2167 static const char *modes[] = {
2168 "AWAKE",
2169 "FULL-SLEEP",
2170 "NETWORK SLEEP",
2171 "UNDEFINED"
2172 };
2173
2174 if (ah->power_mode == mode)
2175 return status;
2176
2177 ath_dbg(common, RESET, "%s -> %s\n",
2178 modes[ah->power_mode], modes[mode]);
2179
2180 switch (mode) {
2181 case ATH9K_PM_AWAKE:
2182 status = ath9k_hw_set_power_awake(ah);
2183 break;
2184 case ATH9K_PM_FULL_SLEEP:
2185 if (ath9k_hw_mci_is_enabled(ah))
2186 ar9003_mci_set_full_sleep(ah);
2187
2188 ath9k_set_power_sleep(ah);
2189 ah->chip_fullsleep = true;
2190 break;
2191 case ATH9K_PM_NETWORK_SLEEP:
2192 ath9k_set_power_network_sleep(ah);
2193 break;
2194 default:
2195 ath_err(common, "Unknown power mode %u\n", mode);
2196 return false;
2197 }
2198 ah->power_mode = mode;
2199
2200 /*
2201 * XXX: If this warning never comes up after a while then
2202 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2203 * ath9k_hw_setpower() return type void.
2204 */
2205
2206 if (!(ah->ah_flags & AH_UNPLUGGED))
2207 ATH_DBG_WARN_ON_ONCE(!status);
2208
2209 return status;
2210 }
2211 EXPORT_SYMBOL(ath9k_hw_setpower);
2212
2213 /*******************/
2214 /* Beacon Handling */
2215 /*******************/
2216
2217 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2218 {
2219 int flags = 0;
2220
2221 ENABLE_REGWRITE_BUFFER(ah);
2222
2223 switch (ah->opmode) {
2224 case NL80211_IFTYPE_ADHOC:
2225 case NL80211_IFTYPE_MESH_POINT:
2226 REG_SET_BIT(ah, AR_TXCFG,
2227 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2228 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2229 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2230 flags |= AR_NDP_TIMER_EN;
2231 case NL80211_IFTYPE_AP:
2232 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2233 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2234 TU_TO_USEC(ah->config.dma_beacon_response_time));
2235 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2236 TU_TO_USEC(ah->config.sw_beacon_response_time));
2237 flags |=
2238 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2239 break;
2240 default:
2241 ath_dbg(ath9k_hw_common(ah), BEACON,
2242 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2243 return;
2244 break;
2245 }
2246
2247 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2248 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2249 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2250 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2251
2252 REGWRITE_BUFFER_FLUSH(ah);
2253
2254 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2255 }
2256 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2257
2258 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2259 const struct ath9k_beacon_state *bs)
2260 {
2261 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2262 struct ath9k_hw_capabilities *pCap = &ah->caps;
2263 struct ath_common *common = ath9k_hw_common(ah);
2264
2265 ENABLE_REGWRITE_BUFFER(ah);
2266
2267 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2268
2269 REG_WRITE(ah, AR_BEACON_PERIOD,
2270 TU_TO_USEC(bs->bs_intval));
2271 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2272 TU_TO_USEC(bs->bs_intval));
2273
2274 REGWRITE_BUFFER_FLUSH(ah);
2275
2276 REG_RMW_FIELD(ah, AR_RSSI_THR,
2277 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2278
2279 beaconintval = bs->bs_intval;
2280
2281 if (bs->bs_sleepduration > beaconintval)
2282 beaconintval = bs->bs_sleepduration;
2283
2284 dtimperiod = bs->bs_dtimperiod;
2285 if (bs->bs_sleepduration > dtimperiod)
2286 dtimperiod = bs->bs_sleepduration;
2287
2288 if (beaconintval == dtimperiod)
2289 nextTbtt = bs->bs_nextdtim;
2290 else
2291 nextTbtt = bs->bs_nexttbtt;
2292
2293 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2294 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2295 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2296 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2297
2298 ENABLE_REGWRITE_BUFFER(ah);
2299
2300 REG_WRITE(ah, AR_NEXT_DTIM,
2301 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2302 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2303
2304 REG_WRITE(ah, AR_SLEEP1,
2305 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2306 | AR_SLEEP1_ASSUME_DTIM);
2307
2308 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2309 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2310 else
2311 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2312
2313 REG_WRITE(ah, AR_SLEEP2,
2314 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2315
2316 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2317 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2318
2319 REGWRITE_BUFFER_FLUSH(ah);
2320
2321 REG_SET_BIT(ah, AR_TIMER_MODE,
2322 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2323 AR_DTIM_TIMER_EN);
2324
2325 /* TSF Out of Range Threshold */
2326 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2327 }
2328 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2329
2330 /*******************/
2331 /* HW Capabilities */
2332 /*******************/
2333
2334 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2335 {
2336 eeprom_chainmask &= chip_chainmask;
2337 if (eeprom_chainmask)
2338 return eeprom_chainmask;
2339 else
2340 return chip_chainmask;
2341 }
2342
2343 /**
2344 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2345 * @ah: the atheros hardware data structure
2346 *
2347 * We enable DFS support upstream on chipsets which have passed a series
2348 * of tests. The testing requirements are going to be documented. Desired
2349 * test requirements are documented at:
2350 *
2351 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2352 *
2353 * Once a new chipset gets properly tested an individual commit can be used
2354 * to document the testing for DFS for that chipset.
2355 */
2356 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2357 {
2358
2359 switch (ah->hw_version.macVersion) {
2360 /* AR9580 will likely be our first target to get testing on */
2361 case AR_SREV_VERSION_9580:
2362 default:
2363 return false;
2364 }
2365 }
2366
2367 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2368 {
2369 struct ath9k_hw_capabilities *pCap = &ah->caps;
2370 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2371 struct ath_common *common = ath9k_hw_common(ah);
2372 unsigned int chip_chainmask;
2373
2374 u16 eeval;
2375 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2376
2377 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2378 regulatory->current_rd = eeval;
2379
2380 if (ah->opmode != NL80211_IFTYPE_AP &&
2381 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2382 if (regulatory->current_rd == 0x64 ||
2383 regulatory->current_rd == 0x65)
2384 regulatory->current_rd += 5;
2385 else if (regulatory->current_rd == 0x41)
2386 regulatory->current_rd = 0x43;
2387 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2388 regulatory->current_rd);
2389 }
2390
2391 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2392 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2393 ath_err(common,
2394 "no band has been marked as supported in EEPROM\n");
2395 return -EINVAL;
2396 }
2397
2398 if (eeval & AR5416_OPFLAGS_11A)
2399 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2400
2401 if (eeval & AR5416_OPFLAGS_11G)
2402 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2403
2404 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2405 chip_chainmask = 1;
2406 else if (AR_SREV_9462(ah))
2407 chip_chainmask = 3;
2408 else if (!AR_SREV_9280_20_OR_LATER(ah))
2409 chip_chainmask = 7;
2410 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2411 chip_chainmask = 3;
2412 else
2413 chip_chainmask = 7;
2414
2415 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2416 /*
2417 * For AR9271 we will temporarilly uses the rx chainmax as read from
2418 * the EEPROM.
2419 */
2420 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2421 !(eeval & AR5416_OPFLAGS_11A) &&
2422 !(AR_SREV_9271(ah)))
2423 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2424 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2425 else if (AR_SREV_9100(ah))
2426 pCap->rx_chainmask = 0x7;
2427 else
2428 /* Use rx_chainmask from EEPROM. */
2429 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2430
2431 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2432 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2433 ah->txchainmask = pCap->tx_chainmask;
2434 ah->rxchainmask = pCap->rx_chainmask;
2435
2436 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2437
2438 /* enable key search for every frame in an aggregate */
2439 if (AR_SREV_9300_20_OR_LATER(ah))
2440 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2441
2442 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2443
2444 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2445 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2446 else
2447 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2448
2449 if (AR_SREV_9271(ah))
2450 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2451 else if (AR_DEVID_7010(ah))
2452 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2453 else if (AR_SREV_9300_20_OR_LATER(ah))
2454 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2455 else if (AR_SREV_9287_11_OR_LATER(ah))
2456 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2457 else if (AR_SREV_9285_12_OR_LATER(ah))
2458 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2459 else if (AR_SREV_9280_20_OR_LATER(ah))
2460 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2461 else
2462 pCap->num_gpio_pins = AR_NUM_GPIO;
2463
2464 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2465 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2466 else
2467 pCap->rts_aggr_limit = (8 * 1024);
2468
2469 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2470 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2471 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2472 ah->rfkill_gpio =
2473 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2474 ah->rfkill_polarity =
2475 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2476
2477 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2478 }
2479 #endif
2480 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2481 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2482 else
2483 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2484
2485 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2486 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2487 else
2488 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2489
2490 if (AR_SREV_9300_20_OR_LATER(ah)) {
2491 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2492 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2493 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2494
2495 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2496 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2497 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2498 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2499 pCap->txs_len = sizeof(struct ar9003_txs);
2500 if (!ah->config.paprd_disable &&
2501 ah->eep_ops->get_eeprom(ah, EEP_PAPRD) &&
2502 !AR_SREV_9462(ah))
2503 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2504 } else {
2505 pCap->tx_desc_len = sizeof(struct ath_desc);
2506 if (AR_SREV_9280_20(ah))
2507 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2508 }
2509
2510 if (AR_SREV_9300_20_OR_LATER(ah))
2511 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2512
2513 if (AR_SREV_9300_20_OR_LATER(ah))
2514 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2515
2516 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2517 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2518
2519 if (AR_SREV_9285(ah))
2520 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2521 ant_div_ctl1 =
2522 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2523 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2524 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2525 }
2526 if (AR_SREV_9300_20_OR_LATER(ah)) {
2527 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2528 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2529 }
2530
2531
2532 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2533 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2534 /*
2535 * enable the diversity-combining algorithm only when
2536 * both enable_lna_div and enable_fast_div are set
2537 * Table for Diversity
2538 * ant_div_alt_lnaconf bit 0-1
2539 * ant_div_main_lnaconf bit 2-3
2540 * ant_div_alt_gaintb bit 4
2541 * ant_div_main_gaintb bit 5
2542 * enable_ant_div_lnadiv bit 6
2543 * enable_ant_fast_div bit 7
2544 */
2545 if ((ant_div_ctl1 >> 0x6) == 0x3)
2546 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2547 }
2548
2549 if (AR_SREV_9485_10(ah)) {
2550 pCap->pcie_lcr_extsync_en = true;
2551 pCap->pcie_lcr_offset = 0x80;
2552 }
2553
2554 if (ath9k_hw_dfs_tested(ah))
2555 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2556
2557 tx_chainmask = pCap->tx_chainmask;
2558 rx_chainmask = pCap->rx_chainmask;
2559 while (tx_chainmask || rx_chainmask) {
2560 if (tx_chainmask & BIT(0))
2561 pCap->max_txchains++;
2562 if (rx_chainmask & BIT(0))
2563 pCap->max_rxchains++;
2564
2565 tx_chainmask >>= 1;
2566 rx_chainmask >>= 1;
2567 }
2568
2569 if (AR_SREV_9300_20_OR_LATER(ah)) {
2570 ah->enabled_cals |= TX_IQ_CAL;
2571 if (AR_SREV_9485_OR_LATER(ah))
2572 ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2573 }
2574
2575 if (AR_SREV_9462(ah)) {
2576
2577 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2578 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2579
2580 if (AR_SREV_9462_20(ah))
2581 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2582
2583 }
2584
2585
2586 if (AR_SREV_9280_20_OR_LATER(ah)) {
2587 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2588 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2589
2590 if (AR_SREV_9280(ah))
2591 pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2592 }
2593
2594 return 0;
2595 }
2596
2597 /****************************/
2598 /* GPIO / RFKILL / Antennae */
2599 /****************************/
2600
2601 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2602 u32 gpio, u32 type)
2603 {
2604 int addr;
2605 u32 gpio_shift, tmp;
2606
2607 if (gpio > 11)
2608 addr = AR_GPIO_OUTPUT_MUX3;
2609 else if (gpio > 5)
2610 addr = AR_GPIO_OUTPUT_MUX2;
2611 else
2612 addr = AR_GPIO_OUTPUT_MUX1;
2613
2614 gpio_shift = (gpio % 6) * 5;
2615
2616 if (AR_SREV_9280_20_OR_LATER(ah)
2617 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2618 REG_RMW(ah, addr, (type << gpio_shift),
2619 (0x1f << gpio_shift));
2620 } else {
2621 tmp = REG_READ(ah, addr);
2622 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2623 tmp &= ~(0x1f << gpio_shift);
2624 tmp |= (type << gpio_shift);
2625 REG_WRITE(ah, addr, tmp);
2626 }
2627 }
2628
2629 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2630 {
2631 u32 gpio_shift;
2632
2633 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2634
2635 if (AR_DEVID_7010(ah)) {
2636 gpio_shift = gpio;
2637 REG_RMW(ah, AR7010_GPIO_OE,
2638 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2639 (AR7010_GPIO_OE_MASK << gpio_shift));
2640 return;
2641 }
2642
2643 gpio_shift = gpio << 1;
2644 REG_RMW(ah,
2645 AR_GPIO_OE_OUT,
2646 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2647 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2648 }
2649 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2650
2651 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2652 {
2653 #define MS_REG_READ(x, y) \
2654 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2655
2656 if (gpio >= ah->caps.num_gpio_pins)
2657 return 0xffffffff;
2658
2659 if (AR_DEVID_7010(ah)) {
2660 u32 val;
2661 val = REG_READ(ah, AR7010_GPIO_IN);
2662 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2663 } else if (AR_SREV_9300_20_OR_LATER(ah))
2664 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2665 AR_GPIO_BIT(gpio)) != 0;
2666 else if (AR_SREV_9271(ah))
2667 return MS_REG_READ(AR9271, gpio) != 0;
2668 else if (AR_SREV_9287_11_OR_LATER(ah))
2669 return MS_REG_READ(AR9287, gpio) != 0;
2670 else if (AR_SREV_9285_12_OR_LATER(ah))
2671 return MS_REG_READ(AR9285, gpio) != 0;
2672 else if (AR_SREV_9280_20_OR_LATER(ah))
2673 return MS_REG_READ(AR928X, gpio) != 0;
2674 else
2675 return MS_REG_READ(AR, gpio) != 0;
2676 }
2677 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2678
2679 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2680 u32 ah_signal_type)
2681 {
2682 u32 gpio_shift;
2683
2684 if (AR_DEVID_7010(ah)) {
2685 gpio_shift = gpio;
2686 REG_RMW(ah, AR7010_GPIO_OE,
2687 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2688 (AR7010_GPIO_OE_MASK << gpio_shift));
2689 return;
2690 }
2691
2692 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2693 gpio_shift = 2 * gpio;
2694 REG_RMW(ah,
2695 AR_GPIO_OE_OUT,
2696 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2697 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2700
2701 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2702 {
2703 if (AR_DEVID_7010(ah)) {
2704 val = val ? 0 : 1;
2705 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2706 AR_GPIO_BIT(gpio));
2707 return;
2708 }
2709
2710 if (AR_SREV_9271(ah))
2711 val = ~val;
2712
2713 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2714 AR_GPIO_BIT(gpio));
2715 }
2716 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2717
2718 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2719 {
2720 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2721 }
2722 EXPORT_SYMBOL(ath9k_hw_setantenna);
2723
2724 /*********************/
2725 /* General Operation */
2726 /*********************/
2727
2728 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2729 {
2730 u32 bits = REG_READ(ah, AR_RX_FILTER);
2731 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2732
2733 if (phybits & AR_PHY_ERR_RADAR)
2734 bits |= ATH9K_RX_FILTER_PHYRADAR;
2735 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2736 bits |= ATH9K_RX_FILTER_PHYERR;
2737
2738 return bits;
2739 }
2740 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2741
2742 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2743 {
2744 u32 phybits;
2745
2746 ENABLE_REGWRITE_BUFFER(ah);
2747
2748 if (AR_SREV_9462(ah))
2749 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2750
2751 REG_WRITE(ah, AR_RX_FILTER, bits);
2752
2753 phybits = 0;
2754 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2755 phybits |= AR_PHY_ERR_RADAR;
2756 if (bits & ATH9K_RX_FILTER_PHYERR)
2757 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2758 REG_WRITE(ah, AR_PHY_ERR, phybits);
2759
2760 if (phybits)
2761 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2762 else
2763 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2764
2765 REGWRITE_BUFFER_FLUSH(ah);
2766 }
2767 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2768
2769 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2770 {
2771 if (ath9k_hw_mci_is_enabled(ah))
2772 ar9003_mci_bt_gain_ctrl(ah);
2773
2774 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2775 return false;
2776
2777 ath9k_hw_init_pll(ah, NULL);
2778 ah->htc_reset_init = true;
2779 return true;
2780 }
2781 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2782
2783 bool ath9k_hw_disable(struct ath_hw *ah)
2784 {
2785 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2786 return false;
2787
2788 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2789 return false;
2790
2791 ath9k_hw_init_pll(ah, NULL);
2792 return true;
2793 }
2794 EXPORT_SYMBOL(ath9k_hw_disable);
2795
2796 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2797 {
2798 enum eeprom_param gain_param;
2799
2800 if (IS_CHAN_2GHZ(chan))
2801 gain_param = EEP_ANTENNA_GAIN_2G;
2802 else
2803 gain_param = EEP_ANTENNA_GAIN_5G;
2804
2805 return ah->eep_ops->get_eeprom(ah, gain_param);
2806 }
2807
2808 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2809 bool test)
2810 {
2811 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2812 struct ieee80211_channel *channel;
2813 int chan_pwr, new_pwr, max_gain;
2814 int ant_gain, ant_reduction = 0;
2815
2816 if (!chan)
2817 return;
2818
2819 channel = chan->chan;
2820 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2821 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2822 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2823
2824 ant_gain = get_antenna_gain(ah, chan);
2825 if (ant_gain > max_gain)
2826 ant_reduction = ant_gain - max_gain;
2827
2828 ah->eep_ops->set_txpower(ah, chan,
2829 ath9k_regd_get_ctl(reg, chan),
2830 ant_reduction, new_pwr, test);
2831 }
2832
2833 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2834 {
2835 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2836 struct ath9k_channel *chan = ah->curchan;
2837 struct ieee80211_channel *channel = chan->chan;
2838
2839 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2840 if (test)
2841 channel->max_power = MAX_RATE_POWER / 2;
2842
2843 ath9k_hw_apply_txpower(ah, chan, test);
2844
2845 if (test)
2846 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2847 }
2848 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2849
2850 void ath9k_hw_setopmode(struct ath_hw *ah)
2851 {
2852 ath9k_hw_set_operating_mode(ah, ah->opmode);
2853 }
2854 EXPORT_SYMBOL(ath9k_hw_setopmode);
2855
2856 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2857 {
2858 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2859 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2860 }
2861 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2862
2863 void ath9k_hw_write_associd(struct ath_hw *ah)
2864 {
2865 struct ath_common *common = ath9k_hw_common(ah);
2866
2867 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2868 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2869 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_write_associd);
2872
2873 #define ATH9K_MAX_TSF_READ 10
2874
2875 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2876 {
2877 u32 tsf_lower, tsf_upper1, tsf_upper2;
2878 int i;
2879
2880 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2881 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2882 tsf_lower = REG_READ(ah, AR_TSF_L32);
2883 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2884 if (tsf_upper2 == tsf_upper1)
2885 break;
2886 tsf_upper1 = tsf_upper2;
2887 }
2888
2889 WARN_ON( i == ATH9K_MAX_TSF_READ );
2890
2891 return (((u64)tsf_upper1 << 32) | tsf_lower);
2892 }
2893 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2894
2895 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2896 {
2897 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2898 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2899 }
2900 EXPORT_SYMBOL(ath9k_hw_settsf64);
2901
2902 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2903 {
2904 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2905 AH_TSF_WRITE_TIMEOUT))
2906 ath_dbg(ath9k_hw_common(ah), RESET,
2907 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2908
2909 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2910 }
2911 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2912
2913 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2914 {
2915 if (set)
2916 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2917 else
2918 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2919 }
2920 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2921
2922 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2923 {
2924 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2925 u32 macmode;
2926
2927 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2928 macmode = AR_2040_JOINED_RX_CLEAR;
2929 else
2930 macmode = 0;
2931
2932 REG_WRITE(ah, AR_2040_MODE, macmode);
2933 }
2934
2935 /* HW Generic timers configuration */
2936
2937 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2938 {
2939 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2940 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2941 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2942 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2943 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2944 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2945 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2946 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2947 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2948 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2949 AR_NDP2_TIMER_MODE, 0x0002},
2950 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2951 AR_NDP2_TIMER_MODE, 0x0004},
2952 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2953 AR_NDP2_TIMER_MODE, 0x0008},
2954 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2955 AR_NDP2_TIMER_MODE, 0x0010},
2956 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2957 AR_NDP2_TIMER_MODE, 0x0020},
2958 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2959 AR_NDP2_TIMER_MODE, 0x0040},
2960 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2961 AR_NDP2_TIMER_MODE, 0x0080}
2962 };
2963
2964 /* HW generic timer primitives */
2965
2966 /* compute and clear index of rightmost 1 */
2967 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2968 {
2969 u32 b;
2970
2971 b = *mask;
2972 b &= (0-b);
2973 *mask &= ~b;
2974 b *= debruijn32;
2975 b >>= 27;
2976
2977 return timer_table->gen_timer_index[b];
2978 }
2979
2980 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2981 {
2982 return REG_READ(ah, AR_TSF_L32);
2983 }
2984 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2985
2986 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2987 void (*trigger)(void *),
2988 void (*overflow)(void *),
2989 void *arg,
2990 u8 timer_index)
2991 {
2992 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2993 struct ath_gen_timer *timer;
2994
2995 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2996
2997 if (timer == NULL) {
2998 ath_err(ath9k_hw_common(ah),
2999 "Failed to allocate memory for hw timer[%d]\n",
3000 timer_index);
3001 return NULL;
3002 }
3003
3004 /* allocate a hardware generic timer slot */
3005 timer_table->timers[timer_index] = timer;
3006 timer->index = timer_index;
3007 timer->trigger = trigger;
3008 timer->overflow = overflow;
3009 timer->arg = arg;
3010
3011 return timer;
3012 }
3013 EXPORT_SYMBOL(ath_gen_timer_alloc);
3014
3015 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3016 struct ath_gen_timer *timer,
3017 u32 trig_timeout,
3018 u32 timer_period)
3019 {
3020 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3021 u32 tsf, timer_next;
3022
3023 BUG_ON(!timer_period);
3024
3025 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3026
3027 tsf = ath9k_hw_gettsf32(ah);
3028
3029 timer_next = tsf + trig_timeout;
3030
3031 ath_dbg(ath9k_hw_common(ah), HWTIMER,
3032 "current tsf %x period %x timer_next %x\n",
3033 tsf, timer_period, timer_next);
3034
3035 /*
3036 * Program generic timer registers
3037 */
3038 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3039 timer_next);
3040 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3041 timer_period);
3042 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3043 gen_tmr_configuration[timer->index].mode_mask);
3044
3045 if (AR_SREV_9462(ah)) {
3046 /*
3047 * Starting from AR9462, each generic timer can select which tsf
3048 * to use. But we still follow the old rule, 0 - 7 use tsf and
3049 * 8 - 15 use tsf2.
3050 */
3051 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3052 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3053 (1 << timer->index));
3054 else
3055 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3056 (1 << timer->index));
3057 }
3058
3059 /* Enable both trigger and thresh interrupt masks */
3060 REG_SET_BIT(ah, AR_IMR_S5,
3061 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3062 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3063 }
3064 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3065
3066 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3067 {
3068 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3069
3070 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3071 (timer->index >= ATH_MAX_GEN_TIMER)) {
3072 return;
3073 }
3074
3075 /* Clear generic timer enable bits. */
3076 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3077 gen_tmr_configuration[timer->index].mode_mask);
3078
3079 /* Disable both trigger and thresh interrupt masks */
3080 REG_CLR_BIT(ah, AR_IMR_S5,
3081 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3082 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3083
3084 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3085 }
3086 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3087
3088 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3089 {
3090 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3091
3092 /* free the hardware generic timer slot */
3093 timer_table->timers[timer->index] = NULL;
3094 kfree(timer);
3095 }
3096 EXPORT_SYMBOL(ath_gen_timer_free);
3097
3098 /*
3099 * Generic Timer Interrupts handling
3100 */
3101 void ath_gen_timer_isr(struct ath_hw *ah)
3102 {
3103 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3104 struct ath_gen_timer *timer;
3105 struct ath_common *common = ath9k_hw_common(ah);
3106 u32 trigger_mask, thresh_mask, index;
3107
3108 /* get hardware generic timer interrupt status */
3109 trigger_mask = ah->intr_gen_timer_trigger;
3110 thresh_mask = ah->intr_gen_timer_thresh;
3111 trigger_mask &= timer_table->timer_mask.val;
3112 thresh_mask &= timer_table->timer_mask.val;
3113
3114 trigger_mask &= ~thresh_mask;
3115
3116 while (thresh_mask) {
3117 index = rightmost_index(timer_table, &thresh_mask);
3118 timer = timer_table->timers[index];
3119 BUG_ON(!timer);
3120 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3121 index);
3122 timer->overflow(timer->arg);
3123 }
3124
3125 while (trigger_mask) {
3126 index = rightmost_index(timer_table, &trigger_mask);
3127 timer = timer_table->timers[index];
3128 BUG_ON(!timer);
3129 ath_dbg(common, HWTIMER,
3130 "Gen timer[%d] trigger\n", index);
3131 timer->trigger(timer->arg);
3132 }
3133 }
3134 EXPORT_SYMBOL(ath_gen_timer_isr);
3135
3136 /********/
3137 /* HTC */
3138 /********/
3139
3140 static struct {
3141 u32 version;
3142 const char * name;
3143 } ath_mac_bb_names[] = {
3144 /* Devices with external radios */
3145 { AR_SREV_VERSION_5416_PCI, "5416" },
3146 { AR_SREV_VERSION_5416_PCIE, "5418" },
3147 { AR_SREV_VERSION_9100, "9100" },
3148 { AR_SREV_VERSION_9160, "9160" },
3149 /* Single-chip solutions */
3150 { AR_SREV_VERSION_9280, "9280" },
3151 { AR_SREV_VERSION_9285, "9285" },
3152 { AR_SREV_VERSION_9287, "9287" },
3153 { AR_SREV_VERSION_9271, "9271" },
3154 { AR_SREV_VERSION_9300, "9300" },
3155 { AR_SREV_VERSION_9330, "9330" },
3156 { AR_SREV_VERSION_9340, "9340" },
3157 { AR_SREV_VERSION_9485, "9485" },
3158 { AR_SREV_VERSION_9462, "9462" },
3159 { AR_SREV_VERSION_9550, "9550" },
3160 };
3161
3162 /* For devices with external radios */
3163 static struct {
3164 u16 version;
3165 const char * name;
3166 } ath_rf_names[] = {
3167 { 0, "5133" },
3168 { AR_RAD5133_SREV_MAJOR, "5133" },
3169 { AR_RAD5122_SREV_MAJOR, "5122" },
3170 { AR_RAD2133_SREV_MAJOR, "2133" },
3171 { AR_RAD2122_SREV_MAJOR, "2122" }
3172 };
3173
3174 /*
3175 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3176 */
3177 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3178 {
3179 int i;
3180
3181 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3182 if (ath_mac_bb_names[i].version == mac_bb_version) {
3183 return ath_mac_bb_names[i].name;
3184 }
3185 }
3186
3187 return "????";
3188 }
3189
3190 /*
3191 * Return the RF name. "????" is returned if the RF is unknown.
3192 * Used for devices with external radios.
3193 */
3194 static const char *ath9k_hw_rf_name(u16 rf_version)
3195 {
3196 int i;
3197
3198 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3199 if (ath_rf_names[i].version == rf_version) {
3200 return ath_rf_names[i].name;
3201 }
3202 }
3203
3204 return "????";
3205 }
3206
3207 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3208 {
3209 int used;
3210
3211 /* chipsets >= AR9280 are single-chip */
3212 if (AR_SREV_9280_20_OR_LATER(ah)) {
3213 used = snprintf(hw_name, len,
3214 "Atheros AR%s Rev:%x",
3215 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3216 ah->hw_version.macRev);
3217 }
3218 else {
3219 used = snprintf(hw_name, len,
3220 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3221 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3222 ah->hw_version.macRev,
3223 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3224 AR_RADIO_SREV_MAJOR)),
3225 ah->hw_version.phyRev);
3226 }
3227
3228 hw_name[used] = '\0';
3229 }
3230 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.136568 seconds and 5 git commands to generate.