Merge branch 'for-linus' into for-next
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "debug.h"
28 #include "ath9k.h"
29
30 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
31
32 MODULE_AUTHOR("Atheros Communications");
33 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
34 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
35 MODULE_LICENSE("Dual BSD/GPL");
36
37 static int __init ath9k_init(void)
38 {
39 return 0;
40 }
41 module_init(ath9k_init);
42
43 static void __exit ath9k_exit(void)
44 {
45 return;
46 }
47 module_exit(ath9k_exit);
48
49 /* Private hardware callbacks */
50
51 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
52 {
53 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
54 }
55
56 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
57 {
58 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
59 }
60
61 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
62 struct ath9k_channel *chan)
63 {
64 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
65 }
66
67 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
68 {
69 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
70 return;
71
72 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
73 }
74
75 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
76 {
77 /* You will not have this callback if using the old ANI */
78 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
79 return;
80
81 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
82 }
83
84 /********************/
85 /* Helper Functions */
86 /********************/
87
88 #ifdef CONFIG_ATH9K_DEBUGFS
89
90 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
91 {
92 struct ath_softc *sc = common->priv;
93 if (sync_cause)
94 sc->debug.stats.istats.sync_cause_all++;
95 if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
96 sc->debug.stats.istats.sync_rtc_irq++;
97 if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
98 sc->debug.stats.istats.sync_mac_irq++;
99 if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
100 sc->debug.stats.istats.eeprom_illegal_access++;
101 if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
102 sc->debug.stats.istats.apb_timeout++;
103 if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
104 sc->debug.stats.istats.pci_mode_conflict++;
105 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
106 sc->debug.stats.istats.host1_fatal++;
107 if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
108 sc->debug.stats.istats.host1_perr++;
109 if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
110 sc->debug.stats.istats.trcv_fifo_perr++;
111 if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
112 sc->debug.stats.istats.radm_cpl_ep++;
113 if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
114 sc->debug.stats.istats.radm_cpl_dllp_abort++;
115 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
116 sc->debug.stats.istats.radm_cpl_tlp_abort++;
117 if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
118 sc->debug.stats.istats.radm_cpl_ecrc_err++;
119 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
120 sc->debug.stats.istats.radm_cpl_timeout++;
121 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
122 sc->debug.stats.istats.local_timeout++;
123 if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
124 sc->debug.stats.istats.pm_access++;
125 if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
126 sc->debug.stats.istats.mac_awake++;
127 if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
128 sc->debug.stats.istats.mac_asleep++;
129 if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
130 sc->debug.stats.istats.mac_sleep_access++;
131 }
132 #endif
133
134
135 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
136 {
137 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
138 struct ath_common *common = ath9k_hw_common(ah);
139 unsigned int clockrate;
140
141 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
142 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
143 clockrate = 117;
144 else if (!ah->curchan) /* should really check for CCK instead */
145 clockrate = ATH9K_CLOCK_RATE_CCK;
146 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
147 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
148 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
149 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
150 else
151 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
152
153 if (conf_is_ht40(conf))
154 clockrate *= 2;
155
156 if (ah->curchan) {
157 if (IS_CHAN_HALF_RATE(ah->curchan))
158 clockrate /= 2;
159 if (IS_CHAN_QUARTER_RATE(ah->curchan))
160 clockrate /= 4;
161 }
162
163 common->clockrate = clockrate;
164 }
165
166 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
167 {
168 struct ath_common *common = ath9k_hw_common(ah);
169
170 return usecs * common->clockrate;
171 }
172
173 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
174 {
175 int i;
176
177 BUG_ON(timeout < AH_TIME_QUANTUM);
178
179 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
180 if ((REG_READ(ah, reg) & mask) == val)
181 return true;
182
183 udelay(AH_TIME_QUANTUM);
184 }
185
186 ath_dbg(ath9k_hw_common(ah), ANY,
187 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
188 timeout, reg, REG_READ(ah, reg), mask, val);
189
190 return false;
191 }
192 EXPORT_SYMBOL(ath9k_hw_wait);
193
194 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
195 int hw_delay)
196 {
197 if (IS_CHAN_B(chan))
198 hw_delay = (4 * hw_delay) / 22;
199 else
200 hw_delay /= 10;
201
202 if (IS_CHAN_HALF_RATE(chan))
203 hw_delay *= 2;
204 else if (IS_CHAN_QUARTER_RATE(chan))
205 hw_delay *= 4;
206
207 udelay(hw_delay + BASE_ACTIVATE_DELAY);
208 }
209
210 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
211 int column, unsigned int *writecnt)
212 {
213 int r;
214
215 ENABLE_REGWRITE_BUFFER(ah);
216 for (r = 0; r < array->ia_rows; r++) {
217 REG_WRITE(ah, INI_RA(array, r, 0),
218 INI_RA(array, r, column));
219 DO_DELAY(*writecnt);
220 }
221 REGWRITE_BUFFER_FLUSH(ah);
222 }
223
224 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
225 {
226 u32 retval;
227 int i;
228
229 for (i = 0, retval = 0; i < n; i++) {
230 retval = (retval << 1) | (val & 1);
231 val >>= 1;
232 }
233 return retval;
234 }
235
236 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
237 u8 phy, int kbps,
238 u32 frameLen, u16 rateix,
239 bool shortPreamble)
240 {
241 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
242
243 if (kbps == 0)
244 return 0;
245
246 switch (phy) {
247 case WLAN_RC_PHY_CCK:
248 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
249 if (shortPreamble)
250 phyTime >>= 1;
251 numBits = frameLen << 3;
252 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
253 break;
254 case WLAN_RC_PHY_OFDM:
255 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
256 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
257 numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 txTime = OFDM_SIFS_TIME_QUARTER
260 + OFDM_PREAMBLE_TIME_QUARTER
261 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
262 } else if (ah->curchan &&
263 IS_CHAN_HALF_RATE(ah->curchan)) {
264 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
265 numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 txTime = OFDM_SIFS_TIME_HALF +
268 OFDM_PREAMBLE_TIME_HALF
269 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
270 } else {
271 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
272 numBits = OFDM_PLCP_BITS + (frameLen << 3);
273 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
274 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
275 + (numSymbols * OFDM_SYMBOL_TIME);
276 }
277 break;
278 default:
279 ath_err(ath9k_hw_common(ah),
280 "Unknown phy %u (rate ix %u)\n", phy, rateix);
281 txTime = 0;
282 break;
283 }
284
285 return txTime;
286 }
287 EXPORT_SYMBOL(ath9k_hw_computetxtime);
288
289 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
290 struct ath9k_channel *chan,
291 struct chan_centers *centers)
292 {
293 int8_t extoff;
294
295 if (!IS_CHAN_HT40(chan)) {
296 centers->ctl_center = centers->ext_center =
297 centers->synth_center = chan->channel;
298 return;
299 }
300
301 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
302 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
303 centers->synth_center =
304 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
305 extoff = 1;
306 } else {
307 centers->synth_center =
308 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
309 extoff = -1;
310 }
311
312 centers->ctl_center =
313 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
314 /* 25 MHz spacing is supported by hw but not on upper layers */
315 centers->ext_center =
316 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
317 }
318
319 /******************/
320 /* Chip Revisions */
321 /******************/
322
323 static void ath9k_hw_read_revisions(struct ath_hw *ah)
324 {
325 u32 val;
326
327 switch (ah->hw_version.devid) {
328 case AR5416_AR9100_DEVID:
329 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
330 break;
331 case AR9300_DEVID_AR9330:
332 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
333 if (ah->get_mac_revision) {
334 ah->hw_version.macRev = ah->get_mac_revision();
335 } else {
336 val = REG_READ(ah, AR_SREV);
337 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
338 }
339 return;
340 case AR9300_DEVID_AR9340:
341 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
342 val = REG_READ(ah, AR_SREV);
343 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
344 return;
345 case AR9300_DEVID_QCA955X:
346 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
347 return;
348 }
349
350 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
351
352 if (val == 0xFF) {
353 val = REG_READ(ah, AR_SREV);
354 ah->hw_version.macVersion =
355 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
356 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
357
358 if (AR_SREV_9462(ah))
359 ah->is_pciexpress = true;
360 else
361 ah->is_pciexpress = (val &
362 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
363 } else {
364 if (!AR_SREV_9100(ah))
365 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
366
367 ah->hw_version.macRev = val & AR_SREV_REVISION;
368
369 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
370 ah->is_pciexpress = true;
371 }
372 }
373
374 /************************************/
375 /* HW Attach, Detach, Init Routines */
376 /************************************/
377
378 static void ath9k_hw_disablepcie(struct ath_hw *ah)
379 {
380 if (!AR_SREV_5416(ah))
381 return;
382
383 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
384 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
385 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
386 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
387 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
388 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
389 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
390 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
391 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
392
393 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
394 }
395
396 /* This should work for all families including legacy */
397 static bool ath9k_hw_chip_test(struct ath_hw *ah)
398 {
399 struct ath_common *common = ath9k_hw_common(ah);
400 u32 regAddr[2] = { AR_STA_ID0 };
401 u32 regHold[2];
402 static const u32 patternData[4] = {
403 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
404 };
405 int i, j, loop_max;
406
407 if (!AR_SREV_9300_20_OR_LATER(ah)) {
408 loop_max = 2;
409 regAddr[1] = AR_PHY_BASE + (8 << 2);
410 } else
411 loop_max = 1;
412
413 for (i = 0; i < loop_max; i++) {
414 u32 addr = regAddr[i];
415 u32 wrData, rdData;
416
417 regHold[i] = REG_READ(ah, addr);
418 for (j = 0; j < 0x100; j++) {
419 wrData = (j << 16) | j;
420 REG_WRITE(ah, addr, wrData);
421 rdData = REG_READ(ah, addr);
422 if (rdData != wrData) {
423 ath_err(common,
424 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
425 addr, wrData, rdData);
426 return false;
427 }
428 }
429 for (j = 0; j < 4; j++) {
430 wrData = patternData[j];
431 REG_WRITE(ah, addr, wrData);
432 rdData = REG_READ(ah, addr);
433 if (wrData != rdData) {
434 ath_err(common,
435 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
436 addr, wrData, rdData);
437 return false;
438 }
439 }
440 REG_WRITE(ah, regAddr[i], regHold[i]);
441 }
442 udelay(100);
443
444 return true;
445 }
446
447 static void ath9k_hw_init_config(struct ath_hw *ah)
448 {
449 int i;
450
451 ah->config.dma_beacon_response_time = 1;
452 ah->config.sw_beacon_response_time = 6;
453 ah->config.additional_swba_backoff = 0;
454 ah->config.ack_6mb = 0x0;
455 ah->config.cwm_ignore_extcca = 0;
456 ah->config.pcie_clock_req = 0;
457 ah->config.pcie_waen = 0;
458 ah->config.analog_shiftreg = 1;
459 ah->config.enable_ani = true;
460
461 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
462 ah->config.spurchans[i][0] = AR_NO_SPUR;
463 ah->config.spurchans[i][1] = AR_NO_SPUR;
464 }
465
466 /* PAPRD needs some more work to be enabled */
467 ah->config.paprd_disable = 1;
468
469 ah->config.rx_intr_mitigation = true;
470 ah->config.pcieSerDesWrite = true;
471
472 /*
473 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
474 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
475 * This means we use it for all AR5416 devices, and the few
476 * minor PCI AR9280 devices out there.
477 *
478 * Serialization is required because these devices do not handle
479 * well the case of two concurrent reads/writes due to the latency
480 * involved. During one read/write another read/write can be issued
481 * on another CPU while the previous read/write may still be working
482 * on our hardware, if we hit this case the hardware poops in a loop.
483 * We prevent this by serializing reads and writes.
484 *
485 * This issue is not present on PCI-Express devices or pre-AR5416
486 * devices (legacy, 802.11abg).
487 */
488 if (num_possible_cpus() > 1)
489 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
490 }
491
492 static void ath9k_hw_init_defaults(struct ath_hw *ah)
493 {
494 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
495
496 regulatory->country_code = CTRY_DEFAULT;
497 regulatory->power_limit = MAX_RATE_POWER;
498
499 ah->hw_version.magic = AR5416_MAGIC;
500 ah->hw_version.subvendorid = 0;
501
502 ah->atim_window = 0;
503 ah->sta_id1_defaults =
504 AR_STA_ID1_CRPT_MIC_ENABLE |
505 AR_STA_ID1_MCAST_KSRCH;
506 if (AR_SREV_9100(ah))
507 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
508 ah->slottime = ATH9K_SLOT_TIME_9;
509 ah->globaltxtimeout = (u32) -1;
510 ah->power_mode = ATH9K_PM_UNDEFINED;
511 ah->htc_reset_init = true;
512 }
513
514 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
515 {
516 struct ath_common *common = ath9k_hw_common(ah);
517 u32 sum;
518 int i;
519 u16 eeval;
520 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
521
522 sum = 0;
523 for (i = 0; i < 3; i++) {
524 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
525 sum += eeval;
526 common->macaddr[2 * i] = eeval >> 8;
527 common->macaddr[2 * i + 1] = eeval & 0xff;
528 }
529 if (sum == 0 || sum == 0xffff * 3)
530 return -EADDRNOTAVAIL;
531
532 return 0;
533 }
534
535 static int ath9k_hw_post_init(struct ath_hw *ah)
536 {
537 struct ath_common *common = ath9k_hw_common(ah);
538 int ecode;
539
540 if (common->bus_ops->ath_bus_type != ATH_USB) {
541 if (!ath9k_hw_chip_test(ah))
542 return -ENODEV;
543 }
544
545 if (!AR_SREV_9300_20_OR_LATER(ah)) {
546 ecode = ar9002_hw_rf_claim(ah);
547 if (ecode != 0)
548 return ecode;
549 }
550
551 ecode = ath9k_hw_eeprom_init(ah);
552 if (ecode != 0)
553 return ecode;
554
555 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
556 ah->eep_ops->get_eeprom_ver(ah),
557 ah->eep_ops->get_eeprom_rev(ah));
558
559 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
560 if (ecode) {
561 ath_err(ath9k_hw_common(ah),
562 "Failed allocating banks for external radio\n");
563 ath9k_hw_rf_free_ext_banks(ah);
564 return ecode;
565 }
566
567 if (ah->config.enable_ani) {
568 ath9k_hw_ani_setup(ah);
569 ath9k_hw_ani_init(ah);
570 }
571
572 return 0;
573 }
574
575 static void ath9k_hw_attach_ops(struct ath_hw *ah)
576 {
577 if (AR_SREV_9300_20_OR_LATER(ah))
578 ar9003_hw_attach_ops(ah);
579 else
580 ar9002_hw_attach_ops(ah);
581 }
582
583 /* Called for all hardware families */
584 static int __ath9k_hw_init(struct ath_hw *ah)
585 {
586 struct ath_common *common = ath9k_hw_common(ah);
587 int r = 0;
588
589 ath9k_hw_read_revisions(ah);
590
591 /*
592 * Read back AR_WA into a permanent copy and set bits 14 and 17.
593 * We need to do this to avoid RMW of this register. We cannot
594 * read the reg when chip is asleep.
595 */
596 ah->WARegVal = REG_READ(ah, AR_WA);
597 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
598 AR_WA_ASPM_TIMER_BASED_DISABLE);
599
600 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
601 ath_err(common, "Couldn't reset chip\n");
602 return -EIO;
603 }
604
605 if (AR_SREV_9462(ah))
606 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
607
608 ath9k_hw_init_defaults(ah);
609 ath9k_hw_init_config(ah);
610
611 ath9k_hw_attach_ops(ah);
612
613 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
614 ath_err(common, "Couldn't wakeup chip\n");
615 return -EIO;
616 }
617
618 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
619 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
620 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
621 !ah->is_pciexpress)) {
622 ah->config.serialize_regmode =
623 SER_REG_MODE_ON;
624 } else {
625 ah->config.serialize_regmode =
626 SER_REG_MODE_OFF;
627 }
628 }
629
630 ath_dbg(common, RESET, "serialize_regmode is %d\n",
631 ah->config.serialize_regmode);
632
633 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
634 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
635 else
636 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
637
638 switch (ah->hw_version.macVersion) {
639 case AR_SREV_VERSION_5416_PCI:
640 case AR_SREV_VERSION_5416_PCIE:
641 case AR_SREV_VERSION_9160:
642 case AR_SREV_VERSION_9100:
643 case AR_SREV_VERSION_9280:
644 case AR_SREV_VERSION_9285:
645 case AR_SREV_VERSION_9287:
646 case AR_SREV_VERSION_9271:
647 case AR_SREV_VERSION_9300:
648 case AR_SREV_VERSION_9330:
649 case AR_SREV_VERSION_9485:
650 case AR_SREV_VERSION_9340:
651 case AR_SREV_VERSION_9462:
652 case AR_SREV_VERSION_9550:
653 break;
654 default:
655 ath_err(common,
656 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
657 ah->hw_version.macVersion, ah->hw_version.macRev);
658 return -EOPNOTSUPP;
659 }
660
661 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
662 AR_SREV_9330(ah) || AR_SREV_9550(ah))
663 ah->is_pciexpress = false;
664
665 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
666 ath9k_hw_init_cal_settings(ah);
667
668 ah->ani_function = ATH9K_ANI_ALL;
669 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
670 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
671 if (!AR_SREV_9300_20_OR_LATER(ah))
672 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
673
674 ath9k_hw_init_mode_regs(ah);
675
676 if (!ah->is_pciexpress)
677 ath9k_hw_disablepcie(ah);
678
679 r = ath9k_hw_post_init(ah);
680 if (r)
681 return r;
682
683 ath9k_hw_init_mode_gain_regs(ah);
684 r = ath9k_hw_fill_cap_info(ah);
685 if (r)
686 return r;
687
688 r = ath9k_hw_init_macaddr(ah);
689 if (r) {
690 ath_err(common, "Failed to initialize MAC address\n");
691 return r;
692 }
693
694 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
695 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
696 else
697 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
698
699 if (AR_SREV_9330(ah))
700 ah->bb_watchdog_timeout_ms = 85;
701 else
702 ah->bb_watchdog_timeout_ms = 25;
703
704 common->state = ATH_HW_INITIALIZED;
705
706 return 0;
707 }
708
709 int ath9k_hw_init(struct ath_hw *ah)
710 {
711 int ret;
712 struct ath_common *common = ath9k_hw_common(ah);
713
714 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
715 switch (ah->hw_version.devid) {
716 case AR5416_DEVID_PCI:
717 case AR5416_DEVID_PCIE:
718 case AR5416_AR9100_DEVID:
719 case AR9160_DEVID_PCI:
720 case AR9280_DEVID_PCI:
721 case AR9280_DEVID_PCIE:
722 case AR9285_DEVID_PCIE:
723 case AR9287_DEVID_PCI:
724 case AR9287_DEVID_PCIE:
725 case AR2427_DEVID_PCIE:
726 case AR9300_DEVID_PCIE:
727 case AR9300_DEVID_AR9485_PCIE:
728 case AR9300_DEVID_AR9330:
729 case AR9300_DEVID_AR9340:
730 case AR9300_DEVID_QCA955X:
731 case AR9300_DEVID_AR9580:
732 case AR9300_DEVID_AR9462:
733 case AR9485_DEVID_AR1111:
734 break;
735 default:
736 if (common->bus_ops->ath_bus_type == ATH_USB)
737 break;
738 ath_err(common, "Hardware device ID 0x%04x not supported\n",
739 ah->hw_version.devid);
740 return -EOPNOTSUPP;
741 }
742
743 ret = __ath9k_hw_init(ah);
744 if (ret) {
745 ath_err(common,
746 "Unable to initialize hardware; initialization status: %d\n",
747 ret);
748 return ret;
749 }
750
751 return 0;
752 }
753 EXPORT_SYMBOL(ath9k_hw_init);
754
755 static void ath9k_hw_init_qos(struct ath_hw *ah)
756 {
757 ENABLE_REGWRITE_BUFFER(ah);
758
759 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
760 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
761
762 REG_WRITE(ah, AR_QOS_NO_ACK,
763 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
764 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
765 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
766
767 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
768 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
769 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
770 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
771 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
772
773 REGWRITE_BUFFER_FLUSH(ah);
774 }
775
776 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
777 {
778 struct ath_common *common = ath9k_hw_common(ah);
779 int i = 0;
780
781 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
782 udelay(100);
783 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
784
785 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
786
787 udelay(100);
788
789 if (WARN_ON_ONCE(i >= 100)) {
790 ath_err(common, "PLL4 meaurement not done\n");
791 break;
792 }
793
794 i++;
795 }
796
797 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
798 }
799 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
800
801 static void ath9k_hw_init_pll(struct ath_hw *ah,
802 struct ath9k_channel *chan)
803 {
804 u32 pll;
805
806 if (AR_SREV_9485(ah)) {
807
808 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
809 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
810 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
811 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
812 AR_CH0_DPLL2_KD, 0x40);
813 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 AR_CH0_DPLL2_KI, 0x4);
815
816 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
817 AR_CH0_BB_DPLL1_REFDIV, 0x5);
818 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
819 AR_CH0_BB_DPLL1_NINI, 0x58);
820 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
821 AR_CH0_BB_DPLL1_NFRAC, 0x0);
822
823 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
824 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
825 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
826 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
827 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
828 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
829
830 /* program BB PLL phase_shift to 0x6 */
831 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
832 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
833
834 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
835 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
836 udelay(1000);
837 } else if (AR_SREV_9330(ah)) {
838 u32 ddr_dpll2, pll_control2, kd;
839
840 if (ah->is_clk_25mhz) {
841 ddr_dpll2 = 0x18e82f01;
842 pll_control2 = 0xe04a3d;
843 kd = 0x1d;
844 } else {
845 ddr_dpll2 = 0x19e82f01;
846 pll_control2 = 0x886666;
847 kd = 0x3d;
848 }
849
850 /* program DDR PLL ki and kd value */
851 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
852
853 /* program DDR PLL phase_shift */
854 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
855 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
856
857 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
858 udelay(1000);
859
860 /* program refdiv, nint, frac to RTC register */
861 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
862
863 /* program BB PLL kd and ki value */
864 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
865 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
866
867 /* program BB PLL phase_shift */
868 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
869 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
870 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
871 u32 regval, pll2_divint, pll2_divfrac, refdiv;
872
873 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
874 udelay(1000);
875
876 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
877 udelay(100);
878
879 if (ah->is_clk_25mhz) {
880 pll2_divint = 0x54;
881 pll2_divfrac = 0x1eb85;
882 refdiv = 3;
883 } else {
884 if (AR_SREV_9340(ah)) {
885 pll2_divint = 88;
886 pll2_divfrac = 0;
887 refdiv = 5;
888 } else {
889 pll2_divint = 0x11;
890 pll2_divfrac = 0x26666;
891 refdiv = 1;
892 }
893 }
894
895 regval = REG_READ(ah, AR_PHY_PLL_MODE);
896 regval |= (0x1 << 16);
897 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
898 udelay(100);
899
900 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
901 (pll2_divint << 18) | pll2_divfrac);
902 udelay(100);
903
904 regval = REG_READ(ah, AR_PHY_PLL_MODE);
905 if (AR_SREV_9340(ah))
906 regval = (regval & 0x80071fff) | (0x1 << 30) |
907 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
908 else
909 regval = (regval & 0x80071fff) | (0x3 << 30) |
910 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
911 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
912 REG_WRITE(ah, AR_PHY_PLL_MODE,
913 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
914 udelay(1000);
915 }
916
917 pll = ath9k_hw_compute_pll_control(ah, chan);
918
919 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
920
921 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
922 AR_SREV_9550(ah))
923 udelay(1000);
924
925 /* Switch the core clock for ar9271 to 117Mhz */
926 if (AR_SREV_9271(ah)) {
927 udelay(500);
928 REG_WRITE(ah, 0x50040, 0x304);
929 }
930
931 udelay(RTC_PLL_SETTLE_DELAY);
932
933 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
934
935 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
936 if (ah->is_clk_25mhz) {
937 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
938 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
939 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
940 } else {
941 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
942 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
943 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
944 }
945 udelay(100);
946 }
947 }
948
949 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
950 enum nl80211_iftype opmode)
951 {
952 u32 sync_default = AR_INTR_SYNC_DEFAULT;
953 u32 imr_reg = AR_IMR_TXERR |
954 AR_IMR_TXURN |
955 AR_IMR_RXERR |
956 AR_IMR_RXORN |
957 AR_IMR_BCNMISC;
958
959 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
960 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
961
962 if (AR_SREV_9300_20_OR_LATER(ah)) {
963 imr_reg |= AR_IMR_RXOK_HP;
964 if (ah->config.rx_intr_mitigation)
965 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
966 else
967 imr_reg |= AR_IMR_RXOK_LP;
968
969 } else {
970 if (ah->config.rx_intr_mitigation)
971 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
972 else
973 imr_reg |= AR_IMR_RXOK;
974 }
975
976 if (ah->config.tx_intr_mitigation)
977 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
978 else
979 imr_reg |= AR_IMR_TXOK;
980
981 if (opmode == NL80211_IFTYPE_AP)
982 imr_reg |= AR_IMR_MIB;
983
984 ENABLE_REGWRITE_BUFFER(ah);
985
986 REG_WRITE(ah, AR_IMR, imr_reg);
987 ah->imrs2_reg |= AR_IMR_S2_GTT;
988 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
989
990 if (!AR_SREV_9100(ah)) {
991 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
992 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
993 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
994 }
995
996 REGWRITE_BUFFER_FLUSH(ah);
997
998 if (AR_SREV_9300_20_OR_LATER(ah)) {
999 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1000 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1001 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1002 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1003 }
1004 }
1005
1006 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1007 {
1008 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1009 val = min(val, (u32) 0xFFFF);
1010 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1011 }
1012
1013 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1014 {
1015 u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 val = min(val, (u32) 0xFFFF);
1017 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1018 }
1019
1020 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1021 {
1022 u32 val = ath9k_hw_mac_to_clks(ah, us);
1023 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1024 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1025 }
1026
1027 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1028 {
1029 u32 val = ath9k_hw_mac_to_clks(ah, us);
1030 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1031 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1032 }
1033
1034 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1035 {
1036 if (tu > 0xFFFF) {
1037 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1038 tu);
1039 ah->globaltxtimeout = (u32) -1;
1040 return false;
1041 } else {
1042 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1043 ah->globaltxtimeout = tu;
1044 return true;
1045 }
1046 }
1047
1048 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1049 {
1050 struct ath_common *common = ath9k_hw_common(ah);
1051 struct ieee80211_conf *conf = &common->hw->conf;
1052 const struct ath9k_channel *chan = ah->curchan;
1053 int acktimeout, ctstimeout, ack_offset = 0;
1054 int slottime;
1055 int sifstime;
1056 int rx_lat = 0, tx_lat = 0, eifs = 0;
1057 u32 reg;
1058
1059 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1060 ah->misc_mode);
1061
1062 if (!chan)
1063 return;
1064
1065 if (ah->misc_mode != 0)
1066 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1067
1068 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1069 rx_lat = 41;
1070 else
1071 rx_lat = 37;
1072 tx_lat = 54;
1073
1074 if (IS_CHAN_5GHZ(chan))
1075 sifstime = 16;
1076 else
1077 sifstime = 10;
1078
1079 if (IS_CHAN_HALF_RATE(chan)) {
1080 eifs = 175;
1081 rx_lat *= 2;
1082 tx_lat *= 2;
1083 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1084 tx_lat += 11;
1085
1086 sifstime *= 2;
1087 ack_offset = 16;
1088 slottime = 13;
1089 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1090 eifs = 340;
1091 rx_lat = (rx_lat * 4) - 1;
1092 tx_lat *= 4;
1093 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1094 tx_lat += 22;
1095
1096 sifstime *= 4;
1097 ack_offset = 32;
1098 slottime = 21;
1099 } else {
1100 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102 reg = AR_USEC_ASYNC_FIFO;
1103 } else {
1104 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105 common->clockrate;
1106 reg = REG_READ(ah, AR_USEC);
1107 }
1108 rx_lat = MS(reg, AR_USEC_RX_LAT);
1109 tx_lat = MS(reg, AR_USEC_TX_LAT);
1110
1111 slottime = ah->slottime;
1112 }
1113
1114 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1115 acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1116 ctstimeout = acktimeout;
1117
1118 /*
1119 * Workaround for early ACK timeouts, add an offset to match the
1120 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1121 * This was initially only meant to work around an issue with delayed
1122 * BA frames in some implementations, but it has been found to fix ACK
1123 * timeout issues in other cases as well.
1124 */
1125 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1126 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1127 acktimeout += 64 - sifstime - ah->slottime;
1128 ctstimeout += 48 - sifstime - ah->slottime;
1129 }
1130
1131
1132 ath9k_hw_set_sifs_time(ah, sifstime);
1133 ath9k_hw_setslottime(ah, slottime);
1134 ath9k_hw_set_ack_timeout(ah, acktimeout);
1135 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1136 if (ah->globaltxtimeout != (u32) -1)
1137 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1138
1139 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1140 REG_RMW(ah, AR_USEC,
1141 (common->clockrate - 1) |
1142 SM(rx_lat, AR_USEC_RX_LAT) |
1143 SM(tx_lat, AR_USEC_TX_LAT),
1144 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1145
1146 }
1147 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1148
1149 void ath9k_hw_deinit(struct ath_hw *ah)
1150 {
1151 struct ath_common *common = ath9k_hw_common(ah);
1152
1153 if (common->state < ATH_HW_INITIALIZED)
1154 goto free_hw;
1155
1156 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1157
1158 free_hw:
1159 ath9k_hw_rf_free_ext_banks(ah);
1160 }
1161 EXPORT_SYMBOL(ath9k_hw_deinit);
1162
1163 /*******/
1164 /* INI */
1165 /*******/
1166
1167 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1168 {
1169 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1170
1171 if (IS_CHAN_B(chan))
1172 ctl |= CTL_11B;
1173 else if (IS_CHAN_G(chan))
1174 ctl |= CTL_11G;
1175 else
1176 ctl |= CTL_11A;
1177
1178 return ctl;
1179 }
1180
1181 /****************************************/
1182 /* Reset and Channel Switching Routines */
1183 /****************************************/
1184
1185 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1186 {
1187 struct ath_common *common = ath9k_hw_common(ah);
1188
1189 ENABLE_REGWRITE_BUFFER(ah);
1190
1191 /*
1192 * set AHB_MODE not to do cacheline prefetches
1193 */
1194 if (!AR_SREV_9300_20_OR_LATER(ah))
1195 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1196
1197 /*
1198 * let mac dma reads be in 128 byte chunks
1199 */
1200 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1201
1202 REGWRITE_BUFFER_FLUSH(ah);
1203
1204 /*
1205 * Restore TX Trigger Level to its pre-reset value.
1206 * The initial value depends on whether aggregation is enabled, and is
1207 * adjusted whenever underruns are detected.
1208 */
1209 if (!AR_SREV_9300_20_OR_LATER(ah))
1210 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1211
1212 ENABLE_REGWRITE_BUFFER(ah);
1213
1214 /*
1215 * let mac dma writes be in 128 byte chunks
1216 */
1217 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1218
1219 /*
1220 * Setup receive FIFO threshold to hold off TX activities
1221 */
1222 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1223
1224 if (AR_SREV_9300_20_OR_LATER(ah)) {
1225 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1226 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1227
1228 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1229 ah->caps.rx_status_len);
1230 }
1231
1232 /*
1233 * reduce the number of usable entries in PCU TXBUF to avoid
1234 * wrap around issues.
1235 */
1236 if (AR_SREV_9285(ah)) {
1237 /* For AR9285 the number of Fifos are reduced to half.
1238 * So set the usable tx buf size also to half to
1239 * avoid data/delimiter underruns
1240 */
1241 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1242 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1243 } else if (!AR_SREV_9271(ah)) {
1244 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1245 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1246 }
1247
1248 REGWRITE_BUFFER_FLUSH(ah);
1249
1250 if (AR_SREV_9300_20_OR_LATER(ah))
1251 ath9k_hw_reset_txstatus_ring(ah);
1252 }
1253
1254 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1255 {
1256 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1257 u32 set = AR_STA_ID1_KSRCH_MODE;
1258
1259 switch (opmode) {
1260 case NL80211_IFTYPE_ADHOC:
1261 case NL80211_IFTYPE_MESH_POINT:
1262 set |= AR_STA_ID1_ADHOC;
1263 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1264 break;
1265 case NL80211_IFTYPE_AP:
1266 set |= AR_STA_ID1_STA_AP;
1267 /* fall through */
1268 case NL80211_IFTYPE_STATION:
1269 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1270 break;
1271 default:
1272 if (!ah->is_monitoring)
1273 set = 0;
1274 break;
1275 }
1276 REG_RMW(ah, AR_STA_ID1, set, mask);
1277 }
1278
1279 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1280 u32 *coef_mantissa, u32 *coef_exponent)
1281 {
1282 u32 coef_exp, coef_man;
1283
1284 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1285 if ((coef_scaled >> coef_exp) & 0x1)
1286 break;
1287
1288 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1289
1290 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1291
1292 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1293 *coef_exponent = coef_exp - 16;
1294 }
1295
1296 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1297 {
1298 u32 rst_flags;
1299 u32 tmpReg;
1300
1301 if (AR_SREV_9100(ah)) {
1302 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1303 AR_RTC_DERIVED_CLK_PERIOD, 1);
1304 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1305 }
1306
1307 ENABLE_REGWRITE_BUFFER(ah);
1308
1309 if (AR_SREV_9300_20_OR_LATER(ah)) {
1310 REG_WRITE(ah, AR_WA, ah->WARegVal);
1311 udelay(10);
1312 }
1313
1314 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1315 AR_RTC_FORCE_WAKE_ON_INT);
1316
1317 if (AR_SREV_9100(ah)) {
1318 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1319 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1320 } else {
1321 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1322 if (tmpReg &
1323 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1324 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1325 u32 val;
1326 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1327
1328 val = AR_RC_HOSTIF;
1329 if (!AR_SREV_9300_20_OR_LATER(ah))
1330 val |= AR_RC_AHB;
1331 REG_WRITE(ah, AR_RC, val);
1332
1333 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1334 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1335
1336 rst_flags = AR_RTC_RC_MAC_WARM;
1337 if (type == ATH9K_RESET_COLD)
1338 rst_flags |= AR_RTC_RC_MAC_COLD;
1339 }
1340
1341 if (AR_SREV_9330(ah)) {
1342 int npend = 0;
1343 int i;
1344
1345 /* AR9330 WAR:
1346 * call external reset function to reset WMAC if:
1347 * - doing a cold reset
1348 * - we have pending frames in the TX queues
1349 */
1350
1351 for (i = 0; i < AR_NUM_QCU; i++) {
1352 npend = ath9k_hw_numtxpending(ah, i);
1353 if (npend)
1354 break;
1355 }
1356
1357 if (ah->external_reset &&
1358 (npend || type == ATH9K_RESET_COLD)) {
1359 int reset_err = 0;
1360
1361 ath_dbg(ath9k_hw_common(ah), RESET,
1362 "reset MAC via external reset\n");
1363
1364 reset_err = ah->external_reset();
1365 if (reset_err) {
1366 ath_err(ath9k_hw_common(ah),
1367 "External reset failed, err=%d\n",
1368 reset_err);
1369 return false;
1370 }
1371
1372 REG_WRITE(ah, AR_RTC_RESET, 1);
1373 }
1374 }
1375
1376 if (ath9k_hw_mci_is_enabled(ah))
1377 ar9003_mci_check_gpm_offset(ah);
1378
1379 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1380
1381 REGWRITE_BUFFER_FLUSH(ah);
1382
1383 udelay(50);
1384
1385 REG_WRITE(ah, AR_RTC_RC, 0);
1386 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1387 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1388 return false;
1389 }
1390
1391 if (!AR_SREV_9100(ah))
1392 REG_WRITE(ah, AR_RC, 0);
1393
1394 if (AR_SREV_9100(ah))
1395 udelay(50);
1396
1397 return true;
1398 }
1399
1400 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1401 {
1402 ENABLE_REGWRITE_BUFFER(ah);
1403
1404 if (AR_SREV_9300_20_OR_LATER(ah)) {
1405 REG_WRITE(ah, AR_WA, ah->WARegVal);
1406 udelay(10);
1407 }
1408
1409 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1410 AR_RTC_FORCE_WAKE_ON_INT);
1411
1412 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1413 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1414
1415 REG_WRITE(ah, AR_RTC_RESET, 0);
1416
1417 REGWRITE_BUFFER_FLUSH(ah);
1418
1419 if (!AR_SREV_9300_20_OR_LATER(ah))
1420 udelay(2);
1421
1422 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1423 REG_WRITE(ah, AR_RC, 0);
1424
1425 REG_WRITE(ah, AR_RTC_RESET, 1);
1426
1427 if (!ath9k_hw_wait(ah,
1428 AR_RTC_STATUS,
1429 AR_RTC_STATUS_M,
1430 AR_RTC_STATUS_ON,
1431 AH_WAIT_TIMEOUT)) {
1432 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1433 return false;
1434 }
1435
1436 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1437 }
1438
1439 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1440 {
1441 bool ret = false;
1442
1443 if (AR_SREV_9300_20_OR_LATER(ah)) {
1444 REG_WRITE(ah, AR_WA, ah->WARegVal);
1445 udelay(10);
1446 }
1447
1448 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1449 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1450
1451 switch (type) {
1452 case ATH9K_RESET_POWER_ON:
1453 ret = ath9k_hw_set_reset_power_on(ah);
1454 break;
1455 case ATH9K_RESET_WARM:
1456 case ATH9K_RESET_COLD:
1457 ret = ath9k_hw_set_reset(ah, type);
1458 break;
1459 default:
1460 break;
1461 }
1462
1463 return ret;
1464 }
1465
1466 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1467 struct ath9k_channel *chan)
1468 {
1469 int reset_type = ATH9K_RESET_WARM;
1470
1471 if (AR_SREV_9280(ah)) {
1472 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1473 reset_type = ATH9K_RESET_POWER_ON;
1474 else
1475 reset_type = ATH9K_RESET_COLD;
1476 }
1477
1478 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1479 return false;
1480
1481 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1482 return false;
1483
1484 ah->chip_fullsleep = false;
1485
1486 if (AR_SREV_9330(ah))
1487 ar9003_hw_internal_regulator_apply(ah);
1488 ath9k_hw_init_pll(ah, chan);
1489 ath9k_hw_set_rfmode(ah, chan);
1490
1491 return true;
1492 }
1493
1494 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1495 struct ath9k_channel *chan)
1496 {
1497 struct ath_common *common = ath9k_hw_common(ah);
1498 u32 qnum;
1499 int r;
1500 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1501 bool band_switch, mode_diff;
1502 u8 ini_reloaded;
1503
1504 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1505 (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1506 CHANNEL_5GHZ));
1507 mode_diff = (chan->chanmode != ah->curchan->chanmode);
1508
1509 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1510 if (ath9k_hw_numtxpending(ah, qnum)) {
1511 ath_dbg(common, QUEUE,
1512 "Transmit frames pending on queue %d\n", qnum);
1513 return false;
1514 }
1515 }
1516
1517 if (!ath9k_hw_rfbus_req(ah)) {
1518 ath_err(common, "Could not kill baseband RX\n");
1519 return false;
1520 }
1521
1522 if (edma && (band_switch || mode_diff)) {
1523 ath9k_hw_mark_phy_inactive(ah);
1524 udelay(5);
1525
1526 ath9k_hw_init_pll(ah, NULL);
1527
1528 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1529 ath_err(common, "Failed to do fast channel change\n");
1530 return false;
1531 }
1532 }
1533
1534 ath9k_hw_set_channel_regs(ah, chan);
1535
1536 r = ath9k_hw_rf_set_freq(ah, chan);
1537 if (r) {
1538 ath_err(common, "Failed to set channel\n");
1539 return false;
1540 }
1541 ath9k_hw_set_clockrate(ah);
1542 ath9k_hw_apply_txpower(ah, chan, false);
1543 ath9k_hw_rfbus_done(ah);
1544
1545 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1546 ath9k_hw_set_delta_slope(ah, chan);
1547
1548 ath9k_hw_spur_mitigate_freq(ah, chan);
1549
1550 if (edma && (band_switch || mode_diff)) {
1551 ah->ah_flags |= AH_FASTCC;
1552 if (band_switch || ini_reloaded)
1553 ah->eep_ops->set_board_values(ah, chan);
1554
1555 ath9k_hw_init_bb(ah, chan);
1556
1557 if (band_switch || ini_reloaded)
1558 ath9k_hw_init_cal(ah, chan);
1559 ah->ah_flags &= ~AH_FASTCC;
1560 }
1561
1562 return true;
1563 }
1564
1565 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1566 {
1567 u32 gpio_mask = ah->gpio_mask;
1568 int i;
1569
1570 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1571 if (!(gpio_mask & 1))
1572 continue;
1573
1574 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1575 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1576 }
1577 }
1578
1579 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1580 int *hang_state, int *hang_pos)
1581 {
1582 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1583 u32 chain_state, dcs_pos, i;
1584
1585 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1586 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1587 for (i = 0; i < 3; i++) {
1588 if (chain_state == dcu_chain_state[i]) {
1589 *hang_state = chain_state;
1590 *hang_pos = dcs_pos;
1591 return true;
1592 }
1593 }
1594 }
1595 return false;
1596 }
1597
1598 #define DCU_COMPLETE_STATE 1
1599 #define DCU_COMPLETE_STATE_MASK 0x3
1600 #define NUM_STATUS_READS 50
1601 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1602 {
1603 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1604 u32 i, hang_pos, hang_state, num_state = 6;
1605
1606 comp_state = REG_READ(ah, AR_DMADBG_6);
1607
1608 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1609 ath_dbg(ath9k_hw_common(ah), RESET,
1610 "MAC Hang signature not found at DCU complete\n");
1611 return false;
1612 }
1613
1614 chain_state = REG_READ(ah, dcs_reg);
1615 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1616 goto hang_check_iter;
1617
1618 dcs_reg = AR_DMADBG_5;
1619 num_state = 4;
1620 chain_state = REG_READ(ah, dcs_reg);
1621 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1622 goto hang_check_iter;
1623
1624 ath_dbg(ath9k_hw_common(ah), RESET,
1625 "MAC Hang signature 1 not found\n");
1626 return false;
1627
1628 hang_check_iter:
1629 ath_dbg(ath9k_hw_common(ah), RESET,
1630 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1631 chain_state, comp_state, hang_state, hang_pos);
1632
1633 for (i = 0; i < NUM_STATUS_READS; i++) {
1634 chain_state = REG_READ(ah, dcs_reg);
1635 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1636 comp_state = REG_READ(ah, AR_DMADBG_6);
1637
1638 if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1639 DCU_COMPLETE_STATE) ||
1640 (chain_state != hang_state))
1641 return false;
1642 }
1643
1644 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1645
1646 return true;
1647 }
1648
1649 bool ath9k_hw_check_alive(struct ath_hw *ah)
1650 {
1651 int count = 50;
1652 u32 reg;
1653
1654 if (AR_SREV_9300(ah))
1655 return !ath9k_hw_detect_mac_hang(ah);
1656
1657 if (AR_SREV_9285_12_OR_LATER(ah))
1658 return true;
1659
1660 do {
1661 reg = REG_READ(ah, AR_OBS_BUS_1);
1662
1663 if ((reg & 0x7E7FFFEF) == 0x00702400)
1664 continue;
1665
1666 switch (reg & 0x7E000B00) {
1667 case 0x1E000000:
1668 case 0x52000B00:
1669 case 0x18000B00:
1670 continue;
1671 default:
1672 return true;
1673 }
1674 } while (count-- > 0);
1675
1676 return false;
1677 }
1678 EXPORT_SYMBOL(ath9k_hw_check_alive);
1679
1680 /*
1681 * Fast channel change:
1682 * (Change synthesizer based on channel freq without resetting chip)
1683 *
1684 * Don't do FCC when
1685 * - Flag is not set
1686 * - Chip is just coming out of full sleep
1687 * - Channel to be set is same as current channel
1688 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1689 */
1690 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1691 {
1692 struct ath_common *common = ath9k_hw_common(ah);
1693 int ret;
1694
1695 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1696 goto fail;
1697
1698 if (ah->chip_fullsleep)
1699 goto fail;
1700
1701 if (!ah->curchan)
1702 goto fail;
1703
1704 if (chan->channel == ah->curchan->channel)
1705 goto fail;
1706
1707 if ((ah->curchan->channelFlags | chan->channelFlags) &
1708 (CHANNEL_HALF | CHANNEL_QUARTER))
1709 goto fail;
1710
1711 if ((chan->channelFlags & CHANNEL_ALL) !=
1712 (ah->curchan->channelFlags & CHANNEL_ALL))
1713 goto fail;
1714
1715 if (!ath9k_hw_check_alive(ah))
1716 goto fail;
1717
1718 /*
1719 * For AR9462, make sure that calibration data for
1720 * re-using are present.
1721 */
1722 if (AR_SREV_9462(ah) && (ah->caldata &&
1723 (!ah->caldata->done_txiqcal_once ||
1724 !ah->caldata->done_txclcal_once ||
1725 !ah->caldata->rtt_done)))
1726 goto fail;
1727
1728 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1729 ah->curchan->channel, chan->channel);
1730
1731 ret = ath9k_hw_channel_change(ah, chan);
1732 if (!ret)
1733 goto fail;
1734
1735 ath9k_hw_loadnf(ah, ah->curchan);
1736 ath9k_hw_start_nfcal(ah, true);
1737
1738 if (ath9k_hw_mci_is_enabled(ah))
1739 ar9003_mci_2g5g_switch(ah, false);
1740
1741 if (AR_SREV_9271(ah))
1742 ar9002_hw_load_ani_reg(ah, chan);
1743
1744 return 0;
1745 fail:
1746 return -EINVAL;
1747 }
1748
1749 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1750 struct ath9k_hw_cal_data *caldata, bool fastcc)
1751 {
1752 struct ath_common *common = ath9k_hw_common(ah);
1753 u32 saveLedState;
1754 u32 saveDefAntenna;
1755 u32 macStaId1;
1756 u64 tsf = 0;
1757 int i, r;
1758 bool start_mci_reset = false;
1759 bool save_fullsleep = ah->chip_fullsleep;
1760
1761 if (ath9k_hw_mci_is_enabled(ah)) {
1762 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1763 if (start_mci_reset)
1764 return 0;
1765 }
1766
1767 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1768 return -EIO;
1769
1770 if (ah->curchan && !ah->chip_fullsleep)
1771 ath9k_hw_getnf(ah, ah->curchan);
1772
1773 ah->caldata = caldata;
1774 if (caldata &&
1775 (chan->channel != caldata->channel ||
1776 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1777 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1778 /* Operating channel changed, reset channel calibration data */
1779 memset(caldata, 0, sizeof(*caldata));
1780 ath9k_init_nfcal_hist_buffer(ah, chan);
1781 }
1782 ah->noise = ath9k_hw_getchan_noise(ah, chan);
1783
1784 if (fastcc) {
1785 r = ath9k_hw_do_fastcc(ah, chan);
1786 if (!r)
1787 return r;
1788 }
1789
1790 if (ath9k_hw_mci_is_enabled(ah))
1791 ar9003_mci_stop_bt(ah, save_fullsleep);
1792
1793 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1794 if (saveDefAntenna == 0)
1795 saveDefAntenna = 1;
1796
1797 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1798
1799 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1800 if (AR_SREV_9100(ah) ||
1801 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1802 tsf = ath9k_hw_gettsf64(ah);
1803
1804 saveLedState = REG_READ(ah, AR_CFG_LED) &
1805 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1806 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1807
1808 ath9k_hw_mark_phy_inactive(ah);
1809
1810 ah->paprd_table_write_done = false;
1811
1812 /* Only required on the first reset */
1813 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1814 REG_WRITE(ah,
1815 AR9271_RESET_POWER_DOWN_CONTROL,
1816 AR9271_RADIO_RF_RST);
1817 udelay(50);
1818 }
1819
1820 if (!ath9k_hw_chip_reset(ah, chan)) {
1821 ath_err(common, "Chip reset failed\n");
1822 return -EINVAL;
1823 }
1824
1825 /* Only required on the first reset */
1826 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1827 ah->htc_reset_init = false;
1828 REG_WRITE(ah,
1829 AR9271_RESET_POWER_DOWN_CONTROL,
1830 AR9271_GATE_MAC_CTL);
1831 udelay(50);
1832 }
1833
1834 /* Restore TSF */
1835 if (tsf)
1836 ath9k_hw_settsf64(ah, tsf);
1837
1838 if (AR_SREV_9280_20_OR_LATER(ah))
1839 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1840
1841 if (!AR_SREV_9300_20_OR_LATER(ah))
1842 ar9002_hw_enable_async_fifo(ah);
1843
1844 r = ath9k_hw_process_ini(ah, chan);
1845 if (r)
1846 return r;
1847
1848 if (ath9k_hw_mci_is_enabled(ah))
1849 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1850
1851 /*
1852 * Some AR91xx SoC devices frequently fail to accept TSF writes
1853 * right after the chip reset. When that happens, write a new
1854 * value after the initvals have been applied, with an offset
1855 * based on measured time difference
1856 */
1857 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1858 tsf += 1500;
1859 ath9k_hw_settsf64(ah, tsf);
1860 }
1861
1862 /* Setup MFP options for CCMP */
1863 if (AR_SREV_9280_20_OR_LATER(ah)) {
1864 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1865 * frames when constructing CCMP AAD. */
1866 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1867 0xc7ff);
1868 ah->sw_mgmt_crypto = false;
1869 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1870 /* Disable hardware crypto for management frames */
1871 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1872 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1873 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1874 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1875 ah->sw_mgmt_crypto = true;
1876 } else
1877 ah->sw_mgmt_crypto = true;
1878
1879 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1880 ath9k_hw_set_delta_slope(ah, chan);
1881
1882 ath9k_hw_spur_mitigate_freq(ah, chan);
1883 ah->eep_ops->set_board_values(ah, chan);
1884
1885 ENABLE_REGWRITE_BUFFER(ah);
1886
1887 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1888 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1889 | macStaId1
1890 | AR_STA_ID1_RTS_USE_DEF
1891 | (ah->config.
1892 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1893 | ah->sta_id1_defaults);
1894 ath_hw_setbssidmask(common);
1895 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1896 ath9k_hw_write_associd(ah);
1897 REG_WRITE(ah, AR_ISR, ~0);
1898 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1899
1900 REGWRITE_BUFFER_FLUSH(ah);
1901
1902 ath9k_hw_set_operating_mode(ah, ah->opmode);
1903
1904 r = ath9k_hw_rf_set_freq(ah, chan);
1905 if (r)
1906 return r;
1907
1908 ath9k_hw_set_clockrate(ah);
1909
1910 ENABLE_REGWRITE_BUFFER(ah);
1911
1912 for (i = 0; i < AR_NUM_DCU; i++)
1913 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1914
1915 REGWRITE_BUFFER_FLUSH(ah);
1916
1917 ah->intr_txqs = 0;
1918 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1919 ath9k_hw_resettxqueue(ah, i);
1920
1921 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1922 ath9k_hw_ani_cache_ini_regs(ah);
1923 ath9k_hw_init_qos(ah);
1924
1925 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1926 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1927
1928 ath9k_hw_init_global_settings(ah);
1929
1930 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1931 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1932 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1933 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1934 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1935 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1936 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1937 }
1938
1939 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1940
1941 ath9k_hw_set_dma(ah);
1942
1943 if (!ath9k_hw_mci_is_enabled(ah))
1944 REG_WRITE(ah, AR_OBS, 8);
1945
1946 if (ah->config.rx_intr_mitigation) {
1947 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1948 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1949 }
1950
1951 if (ah->config.tx_intr_mitigation) {
1952 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1953 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1954 }
1955
1956 ath9k_hw_init_bb(ah, chan);
1957
1958 if (caldata) {
1959 caldata->done_txiqcal_once = false;
1960 caldata->done_txclcal_once = false;
1961 }
1962 if (!ath9k_hw_init_cal(ah, chan))
1963 return -EIO;
1964
1965 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1966 return -EIO;
1967
1968 ENABLE_REGWRITE_BUFFER(ah);
1969
1970 ath9k_hw_restore_chainmask(ah);
1971 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1972
1973 REGWRITE_BUFFER_FLUSH(ah);
1974
1975 /*
1976 * For big endian systems turn on swapping for descriptors
1977 */
1978 if (AR_SREV_9100(ah)) {
1979 u32 mask;
1980 mask = REG_READ(ah, AR_CFG);
1981 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1982 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1983 mask);
1984 } else {
1985 mask =
1986 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1987 REG_WRITE(ah, AR_CFG, mask);
1988 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1989 REG_READ(ah, AR_CFG));
1990 }
1991 } else {
1992 if (common->bus_ops->ath_bus_type == ATH_USB) {
1993 /* Configure AR9271 target WLAN */
1994 if (AR_SREV_9271(ah))
1995 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1996 else
1997 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1998 }
1999 #ifdef __BIG_ENDIAN
2000 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
2001 AR_SREV_9550(ah))
2002 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
2003 else
2004 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2005 #endif
2006 }
2007
2008 if (ath9k_hw_btcoex_is_enabled(ah))
2009 ath9k_hw_btcoex_enable(ah);
2010
2011 if (ath9k_hw_mci_is_enabled(ah))
2012 ar9003_mci_check_bt(ah);
2013
2014 ath9k_hw_loadnf(ah, chan);
2015 ath9k_hw_start_nfcal(ah, true);
2016
2017 if (AR_SREV_9300_20_OR_LATER(ah)) {
2018 ar9003_hw_bb_watchdog_config(ah);
2019
2020 ar9003_hw_disable_phy_restart(ah);
2021 }
2022
2023 ath9k_hw_apply_gpio_override(ah);
2024
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(ath9k_hw_reset);
2028
2029 /******************************/
2030 /* Power Management (Chipset) */
2031 /******************************/
2032
2033 /*
2034 * Notify Power Mgt is disabled in self-generated frames.
2035 * If requested, force chip to sleep.
2036 */
2037 static void ath9k_set_power_sleep(struct ath_hw *ah)
2038 {
2039 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2040
2041 if (AR_SREV_9462(ah)) {
2042 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2043 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2044 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2045 /* xxx Required for WLAN only case ? */
2046 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2047 udelay(100);
2048 }
2049
2050 /*
2051 * Clear the RTC force wake bit to allow the
2052 * mac to go to sleep.
2053 */
2054 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2055
2056 if (ath9k_hw_mci_is_enabled(ah))
2057 udelay(100);
2058
2059 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2060 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2061
2062 /* Shutdown chip. Active low */
2063 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2064 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2065 udelay(2);
2066 }
2067
2068 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2069 if (AR_SREV_9300_20_OR_LATER(ah))
2070 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2071 }
2072
2073 /*
2074 * Notify Power Management is enabled in self-generating
2075 * frames. If request, set power mode of chip to
2076 * auto/normal. Duration in units of 128us (1/8 TU).
2077 */
2078 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2079 {
2080 struct ath9k_hw_capabilities *pCap = &ah->caps;
2081
2082 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2083
2084 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2085 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2086 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2087 AR_RTC_FORCE_WAKE_ON_INT);
2088 } else {
2089
2090 /* When chip goes into network sleep, it could be waken
2091 * up by MCI_INT interrupt caused by BT's HW messages
2092 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2093 * rate (~100us). This will cause chip to leave and
2094 * re-enter network sleep mode frequently, which in
2095 * consequence will have WLAN MCI HW to generate lots of
2096 * SYS_WAKING and SYS_SLEEPING messages which will make
2097 * BT CPU to busy to process.
2098 */
2099 if (ath9k_hw_mci_is_enabled(ah))
2100 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2101 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2102 /*
2103 * Clear the RTC force wake bit to allow the
2104 * mac to go to sleep.
2105 */
2106 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2107
2108 if (ath9k_hw_mci_is_enabled(ah))
2109 udelay(30);
2110 }
2111
2112 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2113 if (AR_SREV_9300_20_OR_LATER(ah))
2114 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2115 }
2116
2117 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2118 {
2119 u32 val;
2120 int i;
2121
2122 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2123 if (AR_SREV_9300_20_OR_LATER(ah)) {
2124 REG_WRITE(ah, AR_WA, ah->WARegVal);
2125 udelay(10);
2126 }
2127
2128 if ((REG_READ(ah, AR_RTC_STATUS) &
2129 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2130 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2131 return false;
2132 }
2133 if (!AR_SREV_9300_20_OR_LATER(ah))
2134 ath9k_hw_init_pll(ah, NULL);
2135 }
2136 if (AR_SREV_9100(ah))
2137 REG_SET_BIT(ah, AR_RTC_RESET,
2138 AR_RTC_RESET_EN);
2139
2140 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2141 AR_RTC_FORCE_WAKE_EN);
2142 udelay(50);
2143
2144 if (ath9k_hw_mci_is_enabled(ah))
2145 ar9003_mci_set_power_awake(ah);
2146
2147 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2148 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2149 if (val == AR_RTC_STATUS_ON)
2150 break;
2151 udelay(50);
2152 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2153 AR_RTC_FORCE_WAKE_EN);
2154 }
2155 if (i == 0) {
2156 ath_err(ath9k_hw_common(ah),
2157 "Failed to wakeup in %uus\n",
2158 POWER_UP_TIME / 20);
2159 return false;
2160 }
2161
2162 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2163
2164 return true;
2165 }
2166
2167 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2168 {
2169 struct ath_common *common = ath9k_hw_common(ah);
2170 int status = true;
2171 static const char *modes[] = {
2172 "AWAKE",
2173 "FULL-SLEEP",
2174 "NETWORK SLEEP",
2175 "UNDEFINED"
2176 };
2177
2178 if (ah->power_mode == mode)
2179 return status;
2180
2181 ath_dbg(common, RESET, "%s -> %s\n",
2182 modes[ah->power_mode], modes[mode]);
2183
2184 switch (mode) {
2185 case ATH9K_PM_AWAKE:
2186 status = ath9k_hw_set_power_awake(ah);
2187 break;
2188 case ATH9K_PM_FULL_SLEEP:
2189 if (ath9k_hw_mci_is_enabled(ah))
2190 ar9003_mci_set_full_sleep(ah);
2191
2192 ath9k_set_power_sleep(ah);
2193 ah->chip_fullsleep = true;
2194 break;
2195 case ATH9K_PM_NETWORK_SLEEP:
2196 ath9k_set_power_network_sleep(ah);
2197 break;
2198 default:
2199 ath_err(common, "Unknown power mode %u\n", mode);
2200 return false;
2201 }
2202 ah->power_mode = mode;
2203
2204 /*
2205 * XXX: If this warning never comes up after a while then
2206 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2207 * ath9k_hw_setpower() return type void.
2208 */
2209
2210 if (!(ah->ah_flags & AH_UNPLUGGED))
2211 ATH_DBG_WARN_ON_ONCE(!status);
2212
2213 return status;
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_setpower);
2216
2217 /*******************/
2218 /* Beacon Handling */
2219 /*******************/
2220
2221 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2222 {
2223 int flags = 0;
2224
2225 ENABLE_REGWRITE_BUFFER(ah);
2226
2227 switch (ah->opmode) {
2228 case NL80211_IFTYPE_ADHOC:
2229 case NL80211_IFTYPE_MESH_POINT:
2230 REG_SET_BIT(ah, AR_TXCFG,
2231 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2232 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2233 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2234 flags |= AR_NDP_TIMER_EN;
2235 case NL80211_IFTYPE_AP:
2236 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2237 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2238 TU_TO_USEC(ah->config.dma_beacon_response_time));
2239 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2240 TU_TO_USEC(ah->config.sw_beacon_response_time));
2241 flags |=
2242 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2243 break;
2244 default:
2245 ath_dbg(ath9k_hw_common(ah), BEACON,
2246 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2247 return;
2248 break;
2249 }
2250
2251 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2252 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2253 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2254 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2255
2256 REGWRITE_BUFFER_FLUSH(ah);
2257
2258 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2259 }
2260 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2261
2262 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2263 const struct ath9k_beacon_state *bs)
2264 {
2265 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2266 struct ath9k_hw_capabilities *pCap = &ah->caps;
2267 struct ath_common *common = ath9k_hw_common(ah);
2268
2269 ENABLE_REGWRITE_BUFFER(ah);
2270
2271 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2272
2273 REG_WRITE(ah, AR_BEACON_PERIOD,
2274 TU_TO_USEC(bs->bs_intval));
2275 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2276 TU_TO_USEC(bs->bs_intval));
2277
2278 REGWRITE_BUFFER_FLUSH(ah);
2279
2280 REG_RMW_FIELD(ah, AR_RSSI_THR,
2281 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2282
2283 beaconintval = bs->bs_intval;
2284
2285 if (bs->bs_sleepduration > beaconintval)
2286 beaconintval = bs->bs_sleepduration;
2287
2288 dtimperiod = bs->bs_dtimperiod;
2289 if (bs->bs_sleepduration > dtimperiod)
2290 dtimperiod = bs->bs_sleepduration;
2291
2292 if (beaconintval == dtimperiod)
2293 nextTbtt = bs->bs_nextdtim;
2294 else
2295 nextTbtt = bs->bs_nexttbtt;
2296
2297 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2298 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2299 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2300 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2301
2302 ENABLE_REGWRITE_BUFFER(ah);
2303
2304 REG_WRITE(ah, AR_NEXT_DTIM,
2305 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2306 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2307
2308 REG_WRITE(ah, AR_SLEEP1,
2309 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2310 | AR_SLEEP1_ASSUME_DTIM);
2311
2312 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2313 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2314 else
2315 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2316
2317 REG_WRITE(ah, AR_SLEEP2,
2318 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2319
2320 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2321 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2322
2323 REGWRITE_BUFFER_FLUSH(ah);
2324
2325 REG_SET_BIT(ah, AR_TIMER_MODE,
2326 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2327 AR_DTIM_TIMER_EN);
2328
2329 /* TSF Out of Range Threshold */
2330 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2331 }
2332 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2333
2334 /*******************/
2335 /* HW Capabilities */
2336 /*******************/
2337
2338 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2339 {
2340 eeprom_chainmask &= chip_chainmask;
2341 if (eeprom_chainmask)
2342 return eeprom_chainmask;
2343 else
2344 return chip_chainmask;
2345 }
2346
2347 /**
2348 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2349 * @ah: the atheros hardware data structure
2350 *
2351 * We enable DFS support upstream on chipsets which have passed a series
2352 * of tests. The testing requirements are going to be documented. Desired
2353 * test requirements are documented at:
2354 *
2355 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2356 *
2357 * Once a new chipset gets properly tested an individual commit can be used
2358 * to document the testing for DFS for that chipset.
2359 */
2360 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2361 {
2362
2363 switch (ah->hw_version.macVersion) {
2364 /* AR9580 will likely be our first target to get testing on */
2365 case AR_SREV_VERSION_9580:
2366 default:
2367 return false;
2368 }
2369 }
2370
2371 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2372 {
2373 struct ath9k_hw_capabilities *pCap = &ah->caps;
2374 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2375 struct ath_common *common = ath9k_hw_common(ah);
2376 unsigned int chip_chainmask;
2377
2378 u16 eeval;
2379 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2380
2381 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2382 regulatory->current_rd = eeval;
2383
2384 if (ah->opmode != NL80211_IFTYPE_AP &&
2385 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2386 if (regulatory->current_rd == 0x64 ||
2387 regulatory->current_rd == 0x65)
2388 regulatory->current_rd += 5;
2389 else if (regulatory->current_rd == 0x41)
2390 regulatory->current_rd = 0x43;
2391 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2392 regulatory->current_rd);
2393 }
2394
2395 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2396 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2397 ath_err(common,
2398 "no band has been marked as supported in EEPROM\n");
2399 return -EINVAL;
2400 }
2401
2402 if (eeval & AR5416_OPFLAGS_11A)
2403 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2404
2405 if (eeval & AR5416_OPFLAGS_11G)
2406 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2407
2408 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2409 chip_chainmask = 1;
2410 else if (AR_SREV_9462(ah))
2411 chip_chainmask = 3;
2412 else if (!AR_SREV_9280_20_OR_LATER(ah))
2413 chip_chainmask = 7;
2414 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2415 chip_chainmask = 3;
2416 else
2417 chip_chainmask = 7;
2418
2419 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2420 /*
2421 * For AR9271 we will temporarilly uses the rx chainmax as read from
2422 * the EEPROM.
2423 */
2424 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2425 !(eeval & AR5416_OPFLAGS_11A) &&
2426 !(AR_SREV_9271(ah)))
2427 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2428 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2429 else if (AR_SREV_9100(ah))
2430 pCap->rx_chainmask = 0x7;
2431 else
2432 /* Use rx_chainmask from EEPROM. */
2433 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2434
2435 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2436 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2437 ah->txchainmask = pCap->tx_chainmask;
2438 ah->rxchainmask = pCap->rx_chainmask;
2439
2440 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2441
2442 /* enable key search for every frame in an aggregate */
2443 if (AR_SREV_9300_20_OR_LATER(ah))
2444 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2445
2446 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2447
2448 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2449 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2450 else
2451 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2452
2453 if (AR_SREV_9271(ah))
2454 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2455 else if (AR_DEVID_7010(ah))
2456 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2457 else if (AR_SREV_9300_20_OR_LATER(ah))
2458 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2459 else if (AR_SREV_9287_11_OR_LATER(ah))
2460 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2461 else if (AR_SREV_9285_12_OR_LATER(ah))
2462 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2463 else if (AR_SREV_9280_20_OR_LATER(ah))
2464 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2465 else
2466 pCap->num_gpio_pins = AR_NUM_GPIO;
2467
2468 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2469 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2470 else
2471 pCap->rts_aggr_limit = (8 * 1024);
2472
2473 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2474 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2475 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2476 ah->rfkill_gpio =
2477 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2478 ah->rfkill_polarity =
2479 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2480
2481 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2482 }
2483 #endif
2484 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2485 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2486 else
2487 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2488
2489 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2490 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2491 else
2492 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2493
2494 if (AR_SREV_9300_20_OR_LATER(ah)) {
2495 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2496 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2497 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2498
2499 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2500 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2501 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2502 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2503 pCap->txs_len = sizeof(struct ar9003_txs);
2504 if (!ah->config.paprd_disable &&
2505 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2506 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2507 } else {
2508 pCap->tx_desc_len = sizeof(struct ath_desc);
2509 if (AR_SREV_9280_20(ah))
2510 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2511 }
2512
2513 if (AR_SREV_9300_20_OR_LATER(ah))
2514 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2515
2516 if (AR_SREV_9300_20_OR_LATER(ah))
2517 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2518
2519 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2520 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2521
2522 if (AR_SREV_9285(ah))
2523 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2524 ant_div_ctl1 =
2525 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2526 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2527 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2528 }
2529 if (AR_SREV_9300_20_OR_LATER(ah)) {
2530 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2531 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2532 }
2533
2534
2535 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2536 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2537 /*
2538 * enable the diversity-combining algorithm only when
2539 * both enable_lna_div and enable_fast_div are set
2540 * Table for Diversity
2541 * ant_div_alt_lnaconf bit 0-1
2542 * ant_div_main_lnaconf bit 2-3
2543 * ant_div_alt_gaintb bit 4
2544 * ant_div_main_gaintb bit 5
2545 * enable_ant_div_lnadiv bit 6
2546 * enable_ant_fast_div bit 7
2547 */
2548 if ((ant_div_ctl1 >> 0x6) == 0x3)
2549 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2550 }
2551
2552 if (AR_SREV_9485_10(ah)) {
2553 pCap->pcie_lcr_extsync_en = true;
2554 pCap->pcie_lcr_offset = 0x80;
2555 }
2556
2557 if (ath9k_hw_dfs_tested(ah))
2558 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2559
2560 tx_chainmask = pCap->tx_chainmask;
2561 rx_chainmask = pCap->rx_chainmask;
2562 while (tx_chainmask || rx_chainmask) {
2563 if (tx_chainmask & BIT(0))
2564 pCap->max_txchains++;
2565 if (rx_chainmask & BIT(0))
2566 pCap->max_rxchains++;
2567
2568 tx_chainmask >>= 1;
2569 rx_chainmask >>= 1;
2570 }
2571
2572 if (AR_SREV_9300_20_OR_LATER(ah)) {
2573 ah->enabled_cals |= TX_IQ_CAL;
2574 if (AR_SREV_9485_OR_LATER(ah))
2575 ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2576 }
2577
2578 if (AR_SREV_9462(ah)) {
2579
2580 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2581 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2582
2583 if (AR_SREV_9462_20(ah))
2584 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2585
2586 }
2587
2588
2589 if (AR_SREV_9280_20_OR_LATER(ah)) {
2590 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2591 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2592
2593 if (AR_SREV_9280(ah))
2594 pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /****************************/
2601 /* GPIO / RFKILL / Antennae */
2602 /****************************/
2603
2604 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2605 u32 gpio, u32 type)
2606 {
2607 int addr;
2608 u32 gpio_shift, tmp;
2609
2610 if (gpio > 11)
2611 addr = AR_GPIO_OUTPUT_MUX3;
2612 else if (gpio > 5)
2613 addr = AR_GPIO_OUTPUT_MUX2;
2614 else
2615 addr = AR_GPIO_OUTPUT_MUX1;
2616
2617 gpio_shift = (gpio % 6) * 5;
2618
2619 if (AR_SREV_9280_20_OR_LATER(ah)
2620 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2621 REG_RMW(ah, addr, (type << gpio_shift),
2622 (0x1f << gpio_shift));
2623 } else {
2624 tmp = REG_READ(ah, addr);
2625 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2626 tmp &= ~(0x1f << gpio_shift);
2627 tmp |= (type << gpio_shift);
2628 REG_WRITE(ah, addr, tmp);
2629 }
2630 }
2631
2632 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2633 {
2634 u32 gpio_shift;
2635
2636 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2637
2638 if (AR_DEVID_7010(ah)) {
2639 gpio_shift = gpio;
2640 REG_RMW(ah, AR7010_GPIO_OE,
2641 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2642 (AR7010_GPIO_OE_MASK << gpio_shift));
2643 return;
2644 }
2645
2646 gpio_shift = gpio << 1;
2647 REG_RMW(ah,
2648 AR_GPIO_OE_OUT,
2649 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2650 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2651 }
2652 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2653
2654 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2655 {
2656 #define MS_REG_READ(x, y) \
2657 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2658
2659 if (gpio >= ah->caps.num_gpio_pins)
2660 return 0xffffffff;
2661
2662 if (AR_DEVID_7010(ah)) {
2663 u32 val;
2664 val = REG_READ(ah, AR7010_GPIO_IN);
2665 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2666 } else if (AR_SREV_9300_20_OR_LATER(ah))
2667 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2668 AR_GPIO_BIT(gpio)) != 0;
2669 else if (AR_SREV_9271(ah))
2670 return MS_REG_READ(AR9271, gpio) != 0;
2671 else if (AR_SREV_9287_11_OR_LATER(ah))
2672 return MS_REG_READ(AR9287, gpio) != 0;
2673 else if (AR_SREV_9285_12_OR_LATER(ah))
2674 return MS_REG_READ(AR9285, gpio) != 0;
2675 else if (AR_SREV_9280_20_OR_LATER(ah))
2676 return MS_REG_READ(AR928X, gpio) != 0;
2677 else
2678 return MS_REG_READ(AR, gpio) != 0;
2679 }
2680 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2681
2682 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2683 u32 ah_signal_type)
2684 {
2685 u32 gpio_shift;
2686
2687 if (AR_DEVID_7010(ah)) {
2688 gpio_shift = gpio;
2689 REG_RMW(ah, AR7010_GPIO_OE,
2690 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2691 (AR7010_GPIO_OE_MASK << gpio_shift));
2692 return;
2693 }
2694
2695 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2696 gpio_shift = 2 * gpio;
2697 REG_RMW(ah,
2698 AR_GPIO_OE_OUT,
2699 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2700 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2701 }
2702 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2703
2704 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2705 {
2706 if (AR_DEVID_7010(ah)) {
2707 val = val ? 0 : 1;
2708 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2709 AR_GPIO_BIT(gpio));
2710 return;
2711 }
2712
2713 if (AR_SREV_9271(ah))
2714 val = ~val;
2715
2716 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2717 AR_GPIO_BIT(gpio));
2718 }
2719 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2720
2721 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2722 {
2723 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_setantenna);
2726
2727 /*********************/
2728 /* General Operation */
2729 /*********************/
2730
2731 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2732 {
2733 u32 bits = REG_READ(ah, AR_RX_FILTER);
2734 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2735
2736 if (phybits & AR_PHY_ERR_RADAR)
2737 bits |= ATH9K_RX_FILTER_PHYRADAR;
2738 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2739 bits |= ATH9K_RX_FILTER_PHYERR;
2740
2741 return bits;
2742 }
2743 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2744
2745 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2746 {
2747 u32 phybits;
2748
2749 ENABLE_REGWRITE_BUFFER(ah);
2750
2751 if (AR_SREV_9462(ah))
2752 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2753
2754 REG_WRITE(ah, AR_RX_FILTER, bits);
2755
2756 phybits = 0;
2757 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2758 phybits |= AR_PHY_ERR_RADAR;
2759 if (bits & ATH9K_RX_FILTER_PHYERR)
2760 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2761 REG_WRITE(ah, AR_PHY_ERR, phybits);
2762
2763 if (phybits)
2764 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2765 else
2766 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2767
2768 REGWRITE_BUFFER_FLUSH(ah);
2769 }
2770 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2771
2772 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2773 {
2774 if (ath9k_hw_mci_is_enabled(ah))
2775 ar9003_mci_bt_gain_ctrl(ah);
2776
2777 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2778 return false;
2779
2780 ath9k_hw_init_pll(ah, NULL);
2781 ah->htc_reset_init = true;
2782 return true;
2783 }
2784 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2785
2786 bool ath9k_hw_disable(struct ath_hw *ah)
2787 {
2788 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2789 return false;
2790
2791 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2792 return false;
2793
2794 ath9k_hw_init_pll(ah, NULL);
2795 return true;
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_disable);
2798
2799 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2800 {
2801 enum eeprom_param gain_param;
2802
2803 if (IS_CHAN_2GHZ(chan))
2804 gain_param = EEP_ANTENNA_GAIN_2G;
2805 else
2806 gain_param = EEP_ANTENNA_GAIN_5G;
2807
2808 return ah->eep_ops->get_eeprom(ah, gain_param);
2809 }
2810
2811 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2812 bool test)
2813 {
2814 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2815 struct ieee80211_channel *channel;
2816 int chan_pwr, new_pwr, max_gain;
2817 int ant_gain, ant_reduction = 0;
2818
2819 if (!chan)
2820 return;
2821
2822 channel = chan->chan;
2823 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2824 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2825 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2826
2827 ant_gain = get_antenna_gain(ah, chan);
2828 if (ant_gain > max_gain)
2829 ant_reduction = ant_gain - max_gain;
2830
2831 ah->eep_ops->set_txpower(ah, chan,
2832 ath9k_regd_get_ctl(reg, chan),
2833 ant_reduction, new_pwr, test);
2834 }
2835
2836 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2837 {
2838 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2839 struct ath9k_channel *chan = ah->curchan;
2840 struct ieee80211_channel *channel = chan->chan;
2841
2842 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2843 if (test)
2844 channel->max_power = MAX_RATE_POWER / 2;
2845
2846 ath9k_hw_apply_txpower(ah, chan, test);
2847
2848 if (test)
2849 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2850 }
2851 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2852
2853 void ath9k_hw_setopmode(struct ath_hw *ah)
2854 {
2855 ath9k_hw_set_operating_mode(ah, ah->opmode);
2856 }
2857 EXPORT_SYMBOL(ath9k_hw_setopmode);
2858
2859 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2860 {
2861 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2862 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2863 }
2864 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2865
2866 void ath9k_hw_write_associd(struct ath_hw *ah)
2867 {
2868 struct ath_common *common = ath9k_hw_common(ah);
2869
2870 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2871 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2872 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2873 }
2874 EXPORT_SYMBOL(ath9k_hw_write_associd);
2875
2876 #define ATH9K_MAX_TSF_READ 10
2877
2878 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2879 {
2880 u32 tsf_lower, tsf_upper1, tsf_upper2;
2881 int i;
2882
2883 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2884 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2885 tsf_lower = REG_READ(ah, AR_TSF_L32);
2886 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2887 if (tsf_upper2 == tsf_upper1)
2888 break;
2889 tsf_upper1 = tsf_upper2;
2890 }
2891
2892 WARN_ON( i == ATH9K_MAX_TSF_READ );
2893
2894 return (((u64)tsf_upper1 << 32) | tsf_lower);
2895 }
2896 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2897
2898 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2899 {
2900 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2901 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2902 }
2903 EXPORT_SYMBOL(ath9k_hw_settsf64);
2904
2905 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2906 {
2907 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2908 AH_TSF_WRITE_TIMEOUT))
2909 ath_dbg(ath9k_hw_common(ah), RESET,
2910 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2911
2912 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2913 }
2914 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2915
2916 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2917 {
2918 if (set)
2919 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2920 else
2921 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2922 }
2923 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2924
2925 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2926 {
2927 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2928 u32 macmode;
2929
2930 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2931 macmode = AR_2040_JOINED_RX_CLEAR;
2932 else
2933 macmode = 0;
2934
2935 REG_WRITE(ah, AR_2040_MODE, macmode);
2936 }
2937
2938 /* HW Generic timers configuration */
2939
2940 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2941 {
2942 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2943 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2944 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2945 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2946 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2947 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2948 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2949 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2950 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2951 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2952 AR_NDP2_TIMER_MODE, 0x0002},
2953 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2954 AR_NDP2_TIMER_MODE, 0x0004},
2955 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2956 AR_NDP2_TIMER_MODE, 0x0008},
2957 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2958 AR_NDP2_TIMER_MODE, 0x0010},
2959 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2960 AR_NDP2_TIMER_MODE, 0x0020},
2961 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2962 AR_NDP2_TIMER_MODE, 0x0040},
2963 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2964 AR_NDP2_TIMER_MODE, 0x0080}
2965 };
2966
2967 /* HW generic timer primitives */
2968
2969 /* compute and clear index of rightmost 1 */
2970 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2971 {
2972 u32 b;
2973
2974 b = *mask;
2975 b &= (0-b);
2976 *mask &= ~b;
2977 b *= debruijn32;
2978 b >>= 27;
2979
2980 return timer_table->gen_timer_index[b];
2981 }
2982
2983 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2984 {
2985 return REG_READ(ah, AR_TSF_L32);
2986 }
2987 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2988
2989 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2990 void (*trigger)(void *),
2991 void (*overflow)(void *),
2992 void *arg,
2993 u8 timer_index)
2994 {
2995 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2996 struct ath_gen_timer *timer;
2997
2998 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2999
3000 if (timer == NULL) {
3001 ath_err(ath9k_hw_common(ah),
3002 "Failed to allocate memory for hw timer[%d]\n",
3003 timer_index);
3004 return NULL;
3005 }
3006
3007 /* allocate a hardware generic timer slot */
3008 timer_table->timers[timer_index] = timer;
3009 timer->index = timer_index;
3010 timer->trigger = trigger;
3011 timer->overflow = overflow;
3012 timer->arg = arg;
3013
3014 return timer;
3015 }
3016 EXPORT_SYMBOL(ath_gen_timer_alloc);
3017
3018 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3019 struct ath_gen_timer *timer,
3020 u32 trig_timeout,
3021 u32 timer_period)
3022 {
3023 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3024 u32 tsf, timer_next;
3025
3026 BUG_ON(!timer_period);
3027
3028 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3029
3030 tsf = ath9k_hw_gettsf32(ah);
3031
3032 timer_next = tsf + trig_timeout;
3033
3034 ath_dbg(ath9k_hw_common(ah), HWTIMER,
3035 "current tsf %x period %x timer_next %x\n",
3036 tsf, timer_period, timer_next);
3037
3038 /*
3039 * Program generic timer registers
3040 */
3041 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3042 timer_next);
3043 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3044 timer_period);
3045 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3046 gen_tmr_configuration[timer->index].mode_mask);
3047
3048 if (AR_SREV_9462(ah)) {
3049 /*
3050 * Starting from AR9462, each generic timer can select which tsf
3051 * to use. But we still follow the old rule, 0 - 7 use tsf and
3052 * 8 - 15 use tsf2.
3053 */
3054 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3055 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3056 (1 << timer->index));
3057 else
3058 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3059 (1 << timer->index));
3060 }
3061
3062 /* Enable both trigger and thresh interrupt masks */
3063 REG_SET_BIT(ah, AR_IMR_S5,
3064 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3065 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3066 }
3067 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3068
3069 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3070 {
3071 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3072
3073 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3074 (timer->index >= ATH_MAX_GEN_TIMER)) {
3075 return;
3076 }
3077
3078 /* Clear generic timer enable bits. */
3079 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3080 gen_tmr_configuration[timer->index].mode_mask);
3081
3082 /* Disable both trigger and thresh interrupt masks */
3083 REG_CLR_BIT(ah, AR_IMR_S5,
3084 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3085 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3086
3087 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3088 }
3089 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3090
3091 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3092 {
3093 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3094
3095 /* free the hardware generic timer slot */
3096 timer_table->timers[timer->index] = NULL;
3097 kfree(timer);
3098 }
3099 EXPORT_SYMBOL(ath_gen_timer_free);
3100
3101 /*
3102 * Generic Timer Interrupts handling
3103 */
3104 void ath_gen_timer_isr(struct ath_hw *ah)
3105 {
3106 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3107 struct ath_gen_timer *timer;
3108 struct ath_common *common = ath9k_hw_common(ah);
3109 u32 trigger_mask, thresh_mask, index;
3110
3111 /* get hardware generic timer interrupt status */
3112 trigger_mask = ah->intr_gen_timer_trigger;
3113 thresh_mask = ah->intr_gen_timer_thresh;
3114 trigger_mask &= timer_table->timer_mask.val;
3115 thresh_mask &= timer_table->timer_mask.val;
3116
3117 trigger_mask &= ~thresh_mask;
3118
3119 while (thresh_mask) {
3120 index = rightmost_index(timer_table, &thresh_mask);
3121 timer = timer_table->timers[index];
3122 BUG_ON(!timer);
3123 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3124 index);
3125 timer->overflow(timer->arg);
3126 }
3127
3128 while (trigger_mask) {
3129 index = rightmost_index(timer_table, &trigger_mask);
3130 timer = timer_table->timers[index];
3131 BUG_ON(!timer);
3132 ath_dbg(common, HWTIMER,
3133 "Gen timer[%d] trigger\n", index);
3134 timer->trigger(timer->arg);
3135 }
3136 }
3137 EXPORT_SYMBOL(ath_gen_timer_isr);
3138
3139 /********/
3140 /* HTC */
3141 /********/
3142
3143 static struct {
3144 u32 version;
3145 const char * name;
3146 } ath_mac_bb_names[] = {
3147 /* Devices with external radios */
3148 { AR_SREV_VERSION_5416_PCI, "5416" },
3149 { AR_SREV_VERSION_5416_PCIE, "5418" },
3150 { AR_SREV_VERSION_9100, "9100" },
3151 { AR_SREV_VERSION_9160, "9160" },
3152 /* Single-chip solutions */
3153 { AR_SREV_VERSION_9280, "9280" },
3154 { AR_SREV_VERSION_9285, "9285" },
3155 { AR_SREV_VERSION_9287, "9287" },
3156 { AR_SREV_VERSION_9271, "9271" },
3157 { AR_SREV_VERSION_9300, "9300" },
3158 { AR_SREV_VERSION_9330, "9330" },
3159 { AR_SREV_VERSION_9340, "9340" },
3160 { AR_SREV_VERSION_9485, "9485" },
3161 { AR_SREV_VERSION_9462, "9462" },
3162 { AR_SREV_VERSION_9550, "9550" },
3163 };
3164
3165 /* For devices with external radios */
3166 static struct {
3167 u16 version;
3168 const char * name;
3169 } ath_rf_names[] = {
3170 { 0, "5133" },
3171 { AR_RAD5133_SREV_MAJOR, "5133" },
3172 { AR_RAD5122_SREV_MAJOR, "5122" },
3173 { AR_RAD2133_SREV_MAJOR, "2133" },
3174 { AR_RAD2122_SREV_MAJOR, "2122" }
3175 };
3176
3177 /*
3178 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3179 */
3180 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3181 {
3182 int i;
3183
3184 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3185 if (ath_mac_bb_names[i].version == mac_bb_version) {
3186 return ath_mac_bb_names[i].name;
3187 }
3188 }
3189
3190 return "????";
3191 }
3192
3193 /*
3194 * Return the RF name. "????" is returned if the RF is unknown.
3195 * Used for devices with external radios.
3196 */
3197 static const char *ath9k_hw_rf_name(u16 rf_version)
3198 {
3199 int i;
3200
3201 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3202 if (ath_rf_names[i].version == rf_version) {
3203 return ath_rf_names[i].name;
3204 }
3205 }
3206
3207 return "????";
3208 }
3209
3210 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3211 {
3212 int used;
3213
3214 /* chipsets >= AR9280 are single-chip */
3215 if (AR_SREV_9280_20_OR_LATER(ah)) {
3216 used = snprintf(hw_name, len,
3217 "Atheros AR%s Rev:%x",
3218 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3219 ah->hw_version.macRev);
3220 }
3221 else {
3222 used = snprintf(hw_name, len,
3223 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3224 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3225 ah->hw_version.macRev,
3226 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3227 AR_RADIO_SREV_MAJOR)),
3228 ah->hw_version.phyRev);
3229 }
3230
3231 hw_name[used] = '\0';
3232 }
3233 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.098681 seconds and 5 git commands to generate.