ath9k: describe hw initialization better
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK 22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33 enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35 struct ar5416_eeprom_def *pEepData,
36 u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48 if (!ah->curchan) /* should really check for CCK instead */
49 return clks / ATH9K_CLOCK_RATE_CCK;
50 if (conf->channel->band == IEEE80211_BAND_2GHZ)
51 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60 if (conf_is_ht40(conf))
61 return ath9k_hw_mac_usec(ah, clks) / 2;
62 else
63 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70 if (!ah->curchan) /* should really check for CCK instead */
71 return usecs *ATH9K_CLOCK_RATE_CCK;
72 if (conf->channel->band == IEEE80211_BAND_2GHZ)
73 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79 struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81 if (conf_is_ht40(conf))
82 return ath9k_hw_mac_clks(ah, usecs) * 2;
83 else
84 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88 * Read and write, they both share the same lock. We do this to serialize
89 * reads and writes on Atheros 802.11n PCI devices only. This is required
90 * as the FIFO on these devices can only accept sanely 2 requests. After
91 * that the device goes bananas. Serializing the reads/writes prevents this
92 * from happening.
93 */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98 unsigned long flags;
99 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100 iowrite32(val, ah->ah_sc->mem + reg_offset);
101 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102 } else
103 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108 u32 val;
109 if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110 unsigned long flags;
111 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112 val = ioread32(ah->ah_sc->mem + reg_offset);
113 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114 } else
115 val = ioread32(ah->ah_sc->mem + reg_offset);
116 return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121 int i;
122
123 BUG_ON(timeout < AH_TIME_QUANTUM);
124
125 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126 if ((REG_READ(ah, reg) & mask) == val)
127 return true;
128
129 udelay(AH_TIME_QUANTUM);
130 }
131
132 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 timeout, reg, REG_READ(ah, reg), mask, val);
135
136 return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141 u32 retval;
142 int i;
143
144 for (i = 0, retval = 0; i < n; i++) {
145 retval = (retval << 1) | (val & 1);
146 val >>= 1;
147 }
148 return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152 u16 flags, u16 *low,
153 u16 *high)
154 {
155 struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157 if (flags & CHANNEL_5GHZ) {
158 *low = pCap->low_5ghz_chan;
159 *high = pCap->high_5ghz_chan;
160 return true;
161 }
162 if ((flags & CHANNEL_2GHZ)) {
163 *low = pCap->low_2ghz_chan;
164 *high = pCap->high_2ghz_chan;
165 return true;
166 }
167 return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 const struct ath_rate_table *rates,
172 u32 frameLen, u16 rateix,
173 bool shortPreamble)
174 {
175 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 u32 kbps;
177
178 kbps = rates->info[rateix].ratekbps;
179
180 if (kbps == 0)
181 return 0;
182
183 switch (rates->info[rateix].phy) {
184 case WLAN_RC_PHY_CCK:
185 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186 if (shortPreamble && rates->info[rateix].short_preamble)
187 phyTime >>= 1;
188 numBits = frameLen << 3;
189 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190 break;
191 case WLAN_RC_PHY_OFDM:
192 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194 numBits = OFDM_PLCP_BITS + (frameLen << 3);
195 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196 txTime = OFDM_SIFS_TIME_QUARTER
197 + OFDM_PREAMBLE_TIME_QUARTER
198 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199 } else if (ah->curchan &&
200 IS_CHAN_HALF_RATE(ah->curchan)) {
201 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202 numBits = OFDM_PLCP_BITS + (frameLen << 3);
203 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204 txTime = OFDM_SIFS_TIME_HALF +
205 OFDM_PREAMBLE_TIME_HALF
206 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207 } else {
208 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209 numBits = OFDM_PLCP_BITS + (frameLen << 3);
210 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212 + (numSymbols * OFDM_SYMBOL_TIME);
213 }
214 break;
215 default:
216 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217 "Unknown phy %u (rate ix %u)\n",
218 rates->info[rateix].phy, rateix);
219 txTime = 0;
220 break;
221 }
222
223 return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227 struct ath9k_channel *chan,
228 struct chan_centers *centers)
229 {
230 int8_t extoff;
231
232 if (!IS_CHAN_HT40(chan)) {
233 centers->ctl_center = centers->ext_center =
234 centers->synth_center = chan->channel;
235 return;
236 }
237
238 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240 centers->synth_center =
241 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242 extoff = 1;
243 } else {
244 centers->synth_center =
245 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246 extoff = -1;
247 }
248
249 centers->ctl_center =
250 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 centers->ext_center =
252 centers->synth_center + (extoff *
253 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254 HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263 u32 val;
264
265 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267 if (val == 0xFF) {
268 val = REG_READ(ah, AR_SREV);
269 ah->hw_version.macVersion =
270 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273 } else {
274 if (!AR_SREV_9100(ah))
275 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280 ah->is_pciexpress = true;
281 }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286 u32 val;
287 int i;
288
289 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291 for (i = 0; i < 8; i++)
292 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296 return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305 if (AR_SREV_9100(ah))
306 return;
307
308 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324 u32 regHold[2];
325 u32 patternData[4] = { 0x55555555,
326 0xaaaaaaaa,
327 0x66666666,
328 0x99999999 };
329 int i, j;
330
331 for (i = 0; i < 2; i++) {
332 u32 addr = regAddr[i];
333 u32 wrData, rdData;
334
335 regHold[i] = REG_READ(ah, addr);
336 for (j = 0; j < 0x100; j++) {
337 wrData = (j << 16) | j;
338 REG_WRITE(ah, addr, wrData);
339 rdData = REG_READ(ah, addr);
340 if (rdData != wrData) {
341 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342 "address test failed "
343 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344 addr, wrData, rdData);
345 return false;
346 }
347 }
348 for (j = 0; j < 4; j++) {
349 wrData = patternData[j];
350 REG_WRITE(ah, addr, wrData);
351 rdData = REG_READ(ah, addr);
352 if (wrData != rdData) {
353 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354 "address test failed "
355 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356 addr, wrData, rdData);
357 return false;
358 }
359 }
360 REG_WRITE(ah, regAddr[i], regHold[i]);
361 }
362 udelay(100);
363
364 return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369 switch (devid) {
370 case AR5416_DEVID_PCI:
371 return "Atheros 5416";
372 case AR5416_DEVID_PCIE:
373 return "Atheros 5418";
374 case AR9160_DEVID_PCI:
375 return "Atheros 9160";
376 case AR5416_AR9100_DEVID:
377 return "Atheros 9100";
378 case AR9280_DEVID_PCI:
379 case AR9280_DEVID_PCIE:
380 return "Atheros 9280";
381 case AR9285_DEVID_PCIE:
382 return "Atheros 9285";
383 case AR5416_DEVID_AR9287_PCI:
384 case AR5416_DEVID_AR9287_PCIE:
385 return "Atheros 9287";
386 }
387
388 return NULL;
389 }
390
391 static void ath9k_hw_init_config(struct ath_hw *ah)
392 {
393 int i;
394
395 ah->config.dma_beacon_response_time = 2;
396 ah->config.sw_beacon_response_time = 10;
397 ah->config.additional_swba_backoff = 0;
398 ah->config.ack_6mb = 0x0;
399 ah->config.cwm_ignore_extcca = 0;
400 ah->config.pcie_powersave_enable = 0;
401 ah->config.pcie_clock_req = 0;
402 ah->config.pcie_waen = 0;
403 ah->config.analog_shiftreg = 1;
404 ah->config.ht_enable = 1;
405 ah->config.ofdm_trig_low = 200;
406 ah->config.ofdm_trig_high = 500;
407 ah->config.cck_trig_high = 200;
408 ah->config.cck_trig_low = 100;
409 ah->config.enable_ani = 1;
410 ah->config.diversity_control = 0;
411 ah->config.antenna_switch_swap = 0;
412
413 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
414 ah->config.spurchans[i][0] = AR_NO_SPUR;
415 ah->config.spurchans[i][1] = AR_NO_SPUR;
416 }
417
418 ah->config.intr_mitigation = true;
419
420 /*
421 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
422 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
423 * This means we use it for all AR5416 devices, and the few
424 * minor PCI AR9280 devices out there.
425 *
426 * Serialization is required because these devices do not handle
427 * well the case of two concurrent reads/writes due to the latency
428 * involved. During one read/write another read/write can be issued
429 * on another CPU while the previous read/write may still be working
430 * on our hardware, if we hit this case the hardware poops in a loop.
431 * We prevent this by serializing reads and writes.
432 *
433 * This issue is not present on PCI-Express devices or pre-AR5416
434 * devices (legacy, 802.11abg).
435 */
436 if (num_possible_cpus() > 1)
437 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
438 }
439
440 static void ath9k_hw_init_defaults(struct ath_hw *ah)
441 {
442 ah->hw_version.magic = AR5416_MAGIC;
443 ah->regulatory.country_code = CTRY_DEFAULT;
444 ah->hw_version.subvendorid = 0;
445
446 ah->ah_flags = 0;
447 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
448 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
449 if (!AR_SREV_9100(ah))
450 ah->ah_flags = AH_USE_EEPROM;
451
452 ah->regulatory.power_limit = MAX_RATE_POWER;
453 ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
454 ah->atim_window = 0;
455 ah->diversity_control = ah->config.diversity_control;
456 ah->antenna_switch_swap =
457 ah->config.antenna_switch_swap;
458 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
459 ah->beacon_interval = 100;
460 ah->enable_32kHz_clock = DONT_USE_32KHZ;
461 ah->slottime = (u32) -1;
462 ah->acktimeout = (u32) -1;
463 ah->ctstimeout = (u32) -1;
464 ah->globaltxtimeout = (u32) -1;
465
466 ah->gbeacon_rate = 0;
467
468 ah->power_mode = ATH9K_PM_UNDEFINED;
469 }
470
471 static int ath9k_hw_rfattach(struct ath_hw *ah)
472 {
473 bool rfStatus = false;
474 int ecode = 0;
475
476 rfStatus = ath9k_hw_init_rf(ah, &ecode);
477 if (!rfStatus) {
478 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
479 "RF setup failed, status: %u\n", ecode);
480 return ecode;
481 }
482
483 return 0;
484 }
485
486 static int ath9k_hw_rf_claim(struct ath_hw *ah)
487 {
488 u32 val;
489
490 REG_WRITE(ah, AR_PHY(0), 0x00000007);
491
492 val = ath9k_hw_get_radiorev(ah);
493 switch (val & AR_RADIO_SREV_MAJOR) {
494 case 0:
495 val = AR_RAD5133_SREV_MAJOR;
496 break;
497 case AR_RAD5133_SREV_MAJOR:
498 case AR_RAD5122_SREV_MAJOR:
499 case AR_RAD2133_SREV_MAJOR:
500 case AR_RAD2122_SREV_MAJOR:
501 break;
502 default:
503 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
504 "Radio Chip Rev 0x%02X not supported\n",
505 val & AR_RADIO_SREV_MAJOR);
506 return -EOPNOTSUPP;
507 }
508
509 ah->hw_version.analog5GhzRev = val;
510
511 return 0;
512 }
513
514 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
515 {
516 u32 sum;
517 int i;
518 u16 eeval;
519
520 sum = 0;
521 for (i = 0; i < 3; i++) {
522 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
523 sum += eeval;
524 ah->macaddr[2 * i] = eeval >> 8;
525 ah->macaddr[2 * i + 1] = eeval & 0xff;
526 }
527 if (sum == 0 || sum == 0xffff * 3)
528 return -EADDRNOTAVAIL;
529
530 return 0;
531 }
532
533 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
534 {
535 u32 rxgain_type;
536
537 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
538 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
539
540 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
541 INIT_INI_ARRAY(&ah->iniModesRxGain,
542 ar9280Modes_backoff_13db_rxgain_9280_2,
543 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
544 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
545 INIT_INI_ARRAY(&ah->iniModesRxGain,
546 ar9280Modes_backoff_23db_rxgain_9280_2,
547 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
548 else
549 INIT_INI_ARRAY(&ah->iniModesRxGain,
550 ar9280Modes_original_rxgain_9280_2,
551 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
552 } else {
553 INIT_INI_ARRAY(&ah->iniModesRxGain,
554 ar9280Modes_original_rxgain_9280_2,
555 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
556 }
557 }
558
559 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
560 {
561 u32 txgain_type;
562
563 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
564 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
565
566 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
567 INIT_INI_ARRAY(&ah->iniModesTxGain,
568 ar9280Modes_high_power_tx_gain_9280_2,
569 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
570 else
571 INIT_INI_ARRAY(&ah->iniModesTxGain,
572 ar9280Modes_original_tx_gain_9280_2,
573 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
574 } else {
575 INIT_INI_ARRAY(&ah->iniModesTxGain,
576 ar9280Modes_original_tx_gain_9280_2,
577 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
578 }
579 }
580
581 static int ath9k_hw_post_init(struct ath_hw *ah)
582 {
583 int ecode;
584
585 if (!ath9k_hw_chip_test(ah))
586 return -ENODEV;
587
588 ecode = ath9k_hw_rf_claim(ah);
589 if (ecode != 0)
590 return ecode;
591
592 ecode = ath9k_hw_eeprom_init(ah);
593 if (ecode != 0)
594 return ecode;
595
596 DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
597 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
598
599 ecode = ath9k_hw_rfattach(ah);
600 if (ecode != 0)
601 return ecode;
602
603 if (!AR_SREV_9100(ah)) {
604 ath9k_hw_ani_setup(ah);
605 ath9k_hw_ani_init(ah);
606 }
607
608 return 0;
609 }
610
611 static bool ath9k_hw_devid_supported(u16 devid)
612 {
613 switch (devid) {
614 case AR5416_DEVID_PCI:
615 case AR5416_DEVID_PCIE:
616 case AR5416_AR9100_DEVID:
617 case AR9160_DEVID_PCI:
618 case AR9280_DEVID_PCI:
619 case AR9280_DEVID_PCIE:
620 case AR9285_DEVID_PCIE:
621 case AR5416_DEVID_AR9287_PCI:
622 case AR5416_DEVID_AR9287_PCIE:
623 return true;
624 default:
625 break;
626 }
627 return false;
628 }
629
630 static bool ath9k_hw_macversion_supported(u32 macversion)
631 {
632 switch (macversion) {
633 case AR_SREV_VERSION_5416_PCI:
634 case AR_SREV_VERSION_5416_PCIE:
635 case AR_SREV_VERSION_9160:
636 case AR_SREV_VERSION_9100:
637 case AR_SREV_VERSION_9280:
638 case AR_SREV_VERSION_9285:
639 case AR_SREV_VERSION_9287:
640 return true;
641 default:
642 break;
643 }
644 return false;
645 }
646
647 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
648 {
649 if (AR_SREV_9160_10_OR_LATER(ah)) {
650 if (AR_SREV_9280_10_OR_LATER(ah)) {
651 ah->iq_caldata.calData = &iq_cal_single_sample;
652 ah->adcgain_caldata.calData =
653 &adc_gain_cal_single_sample;
654 ah->adcdc_caldata.calData =
655 &adc_dc_cal_single_sample;
656 ah->adcdc_calinitdata.calData =
657 &adc_init_dc_cal;
658 } else {
659 ah->iq_caldata.calData = &iq_cal_multi_sample;
660 ah->adcgain_caldata.calData =
661 &adc_gain_cal_multi_sample;
662 ah->adcdc_caldata.calData =
663 &adc_dc_cal_multi_sample;
664 ah->adcdc_calinitdata.calData =
665 &adc_init_dc_cal;
666 }
667 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
668 }
669 }
670
671 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
672 {
673 if (AR_SREV_9287_11_OR_LATER(ah)) {
674 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
675 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
676 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
677 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
678 if (ah->config.pcie_clock_req)
679 INIT_INI_ARRAY(&ah->iniPcieSerdes,
680 ar9287PciePhy_clkreq_off_L1_9287_1_1,
681 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
682 else
683 INIT_INI_ARRAY(&ah->iniPcieSerdes,
684 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
685 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
686 2);
687 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
688 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
689 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
690 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
691 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
692
693 if (ah->config.pcie_clock_req)
694 INIT_INI_ARRAY(&ah->iniPcieSerdes,
695 ar9287PciePhy_clkreq_off_L1_9287_1_0,
696 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
697 else
698 INIT_INI_ARRAY(&ah->iniPcieSerdes,
699 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
700 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
701 2);
702 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
703
704
705 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
706 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
707 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
708 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
709
710 if (ah->config.pcie_clock_req) {
711 INIT_INI_ARRAY(&ah->iniPcieSerdes,
712 ar9285PciePhy_clkreq_off_L1_9285_1_2,
713 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
714 } else {
715 INIT_INI_ARRAY(&ah->iniPcieSerdes,
716 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
717 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
718 2);
719 }
720 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
721 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
722 ARRAY_SIZE(ar9285Modes_9285), 6);
723 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
724 ARRAY_SIZE(ar9285Common_9285), 2);
725
726 if (ah->config.pcie_clock_req) {
727 INIT_INI_ARRAY(&ah->iniPcieSerdes,
728 ar9285PciePhy_clkreq_off_L1_9285,
729 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
730 } else {
731 INIT_INI_ARRAY(&ah->iniPcieSerdes,
732 ar9285PciePhy_clkreq_always_on_L1_9285,
733 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
734 }
735 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
736 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
737 ARRAY_SIZE(ar9280Modes_9280_2), 6);
738 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
739 ARRAY_SIZE(ar9280Common_9280_2), 2);
740
741 if (ah->config.pcie_clock_req) {
742 INIT_INI_ARRAY(&ah->iniPcieSerdes,
743 ar9280PciePhy_clkreq_off_L1_9280,
744 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
745 } else {
746 INIT_INI_ARRAY(&ah->iniPcieSerdes,
747 ar9280PciePhy_clkreq_always_on_L1_9280,
748 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
749 }
750 INIT_INI_ARRAY(&ah->iniModesAdditional,
751 ar9280Modes_fast_clock_9280_2,
752 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
753 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
754 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
755 ARRAY_SIZE(ar9280Modes_9280), 6);
756 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
757 ARRAY_SIZE(ar9280Common_9280), 2);
758 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
759 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
760 ARRAY_SIZE(ar5416Modes_9160), 6);
761 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
762 ARRAY_SIZE(ar5416Common_9160), 2);
763 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
764 ARRAY_SIZE(ar5416Bank0_9160), 2);
765 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
766 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
767 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
768 ARRAY_SIZE(ar5416Bank1_9160), 2);
769 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
770 ARRAY_SIZE(ar5416Bank2_9160), 2);
771 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
772 ARRAY_SIZE(ar5416Bank3_9160), 3);
773 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
774 ARRAY_SIZE(ar5416Bank6_9160), 3);
775 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
776 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
777 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
778 ARRAY_SIZE(ar5416Bank7_9160), 2);
779 if (AR_SREV_9160_11(ah)) {
780 INIT_INI_ARRAY(&ah->iniAddac,
781 ar5416Addac_91601_1,
782 ARRAY_SIZE(ar5416Addac_91601_1), 2);
783 } else {
784 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
785 ARRAY_SIZE(ar5416Addac_9160), 2);
786 }
787 } else if (AR_SREV_9100_OR_LATER(ah)) {
788 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
789 ARRAY_SIZE(ar5416Modes_9100), 6);
790 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
791 ARRAY_SIZE(ar5416Common_9100), 2);
792 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
793 ARRAY_SIZE(ar5416Bank0_9100), 2);
794 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
795 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
796 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
797 ARRAY_SIZE(ar5416Bank1_9100), 2);
798 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
799 ARRAY_SIZE(ar5416Bank2_9100), 2);
800 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
801 ARRAY_SIZE(ar5416Bank3_9100), 3);
802 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
803 ARRAY_SIZE(ar5416Bank6_9100), 3);
804 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
805 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
806 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
807 ARRAY_SIZE(ar5416Bank7_9100), 2);
808 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
809 ARRAY_SIZE(ar5416Addac_9100), 2);
810 } else {
811 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
812 ARRAY_SIZE(ar5416Modes), 6);
813 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
814 ARRAY_SIZE(ar5416Common), 2);
815 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
816 ARRAY_SIZE(ar5416Bank0), 2);
817 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
818 ARRAY_SIZE(ar5416BB_RfGain), 3);
819 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
820 ARRAY_SIZE(ar5416Bank1), 2);
821 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
822 ARRAY_SIZE(ar5416Bank2), 2);
823 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
824 ARRAY_SIZE(ar5416Bank3), 3);
825 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
826 ARRAY_SIZE(ar5416Bank6), 3);
827 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
828 ARRAY_SIZE(ar5416Bank6TPC), 3);
829 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
830 ARRAY_SIZE(ar5416Bank7), 2);
831 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
832 ARRAY_SIZE(ar5416Addac), 2);
833 }
834 }
835
836 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
837 {
838 if (AR_SREV_9287_11(ah))
839 INIT_INI_ARRAY(&ah->iniModesRxGain,
840 ar9287Modes_rx_gain_9287_1_1,
841 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
842 else if (AR_SREV_9287_10(ah))
843 INIT_INI_ARRAY(&ah->iniModesRxGain,
844 ar9287Modes_rx_gain_9287_1_0,
845 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
846 else if (AR_SREV_9280_20(ah))
847 ath9k_hw_init_rxgain_ini(ah);
848
849 if (AR_SREV_9287_11(ah)) {
850 INIT_INI_ARRAY(&ah->iniModesTxGain,
851 ar9287Modes_tx_gain_9287_1_1,
852 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
853 } else if (AR_SREV_9287_10(ah)) {
854 INIT_INI_ARRAY(&ah->iniModesTxGain,
855 ar9287Modes_tx_gain_9287_1_0,
856 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
857 } else if (AR_SREV_9280_20(ah)) {
858 ath9k_hw_init_txgain_ini(ah);
859 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
860 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
861
862 /* txgain table */
863 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
864 INIT_INI_ARRAY(&ah->iniModesTxGain,
865 ar9285Modes_high_power_tx_gain_9285_1_2,
866 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
867 } else {
868 INIT_INI_ARRAY(&ah->iniModesTxGain,
869 ar9285Modes_original_tx_gain_9285_1_2,
870 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
871 }
872
873 }
874 }
875
876 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
877 {
878 u32 i, j;
879
880 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
881 test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
882
883 /* EEPROM Fixup */
884 for (i = 0; i < ah->iniModes.ia_rows; i++) {
885 u32 reg = INI_RA(&ah->iniModes, i, 0);
886
887 for (j = 1; j < ah->iniModes.ia_columns; j++) {
888 u32 val = INI_RA(&ah->iniModes, i, j);
889
890 INI_RA(&ah->iniModes, i, j) =
891 ath9k_hw_ini_fixup(ah,
892 &ah->eeprom.def,
893 reg, val);
894 }
895 }
896 }
897 }
898
899 int ath9k_hw_init(struct ath_hw *ah)
900 {
901 int r;
902
903 if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
904 r = -EOPNOTSUPP;
905 goto bad;
906 }
907
908 ath9k_hw_init_defaults(ah);
909 ath9k_hw_init_config(ah);
910
911 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
912 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
913 r = -EIO;
914 goto bad;
915 }
916
917 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
918 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
919 r = -EIO;
920 goto bad;
921 }
922
923 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
924 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
925 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
926 ah->config.serialize_regmode =
927 SER_REG_MODE_ON;
928 } else {
929 ah->config.serialize_regmode =
930 SER_REG_MODE_OFF;
931 }
932 }
933
934 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
935 ah->config.serialize_regmode);
936
937 if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
938 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
939 "Mac Chip Rev 0x%02x.%x is not supported by "
940 "this driver\n", ah->hw_version.macVersion,
941 ah->hw_version.macRev);
942 r = -EOPNOTSUPP;
943 goto bad;
944 }
945
946 if (AR_SREV_9100(ah)) {
947 ah->iq_caldata.calData = &iq_cal_multi_sample;
948 ah->supp_cals = IQ_MISMATCH_CAL;
949 ah->is_pciexpress = false;
950 }
951 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
952
953 ath9k_hw_init_cal_settings(ah);
954
955 ah->ani_function = ATH9K_ANI_ALL;
956 if (AR_SREV_9280_10_OR_LATER(ah))
957 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
958
959 ath9k_hw_init_mode_regs(ah);
960
961 if (ah->is_pciexpress)
962 ath9k_hw_configpcipowersave(ah, 0);
963 else
964 ath9k_hw_disablepcie(ah);
965
966 r = ath9k_hw_post_init(ah);
967 if (r)
968 goto bad;
969
970 ath9k_hw_init_mode_gain_regs(ah);
971 ath9k_hw_fill_cap_info(ah);
972 ath9k_hw_init_11a_eeprom_fix(ah);
973
974 r = ath9k_hw_init_macaddr(ah);
975 if (r) {
976 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
977 "Failed to initialize MAC address\n");
978 goto bad;
979 }
980
981 if (AR_SREV_9285(ah))
982 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
983 else
984 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
985
986 ath9k_init_nfcal_hist_buffer(ah);
987
988 return 0;
989 bad:
990 ath9k_hw_detach(ah);
991 return r;
992 }
993
994 static void ath9k_hw_init_bb(struct ath_hw *ah,
995 struct ath9k_channel *chan)
996 {
997 u32 synthDelay;
998
999 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1000 if (IS_CHAN_B(chan))
1001 synthDelay = (4 * synthDelay) / 22;
1002 else
1003 synthDelay /= 10;
1004
1005 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1006
1007 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1008 }
1009
1010 static void ath9k_hw_init_qos(struct ath_hw *ah)
1011 {
1012 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1013 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1014
1015 REG_WRITE(ah, AR_QOS_NO_ACK,
1016 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1017 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1018 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1019
1020 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1021 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1022 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1023 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1024 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1025 }
1026
1027 static void ath9k_hw_init_pll(struct ath_hw *ah,
1028 struct ath9k_channel *chan)
1029 {
1030 u32 pll;
1031
1032 if (AR_SREV_9100(ah)) {
1033 if (chan && IS_CHAN_5GHZ(chan))
1034 pll = 0x1450;
1035 else
1036 pll = 0x1458;
1037 } else {
1038 if (AR_SREV_9280_10_OR_LATER(ah)) {
1039 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1040
1041 if (chan && IS_CHAN_HALF_RATE(chan))
1042 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1043 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1044 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1045
1046 if (chan && IS_CHAN_5GHZ(chan)) {
1047 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1048
1049
1050 if (AR_SREV_9280_20(ah)) {
1051 if (((chan->channel % 20) == 0)
1052 || ((chan->channel % 10) == 0))
1053 pll = 0x2850;
1054 else
1055 pll = 0x142c;
1056 }
1057 } else {
1058 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1059 }
1060
1061 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1062
1063 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1064
1065 if (chan && IS_CHAN_HALF_RATE(chan))
1066 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1067 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1068 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1069
1070 if (chan && IS_CHAN_5GHZ(chan))
1071 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1072 else
1073 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1074 } else {
1075 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1076
1077 if (chan && IS_CHAN_HALF_RATE(chan))
1078 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1079 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1080 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1081
1082 if (chan && IS_CHAN_5GHZ(chan))
1083 pll |= SM(0xa, AR_RTC_PLL_DIV);
1084 else
1085 pll |= SM(0xb, AR_RTC_PLL_DIV);
1086 }
1087 }
1088 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1089
1090 udelay(RTC_PLL_SETTLE_DELAY);
1091
1092 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1093 }
1094
1095 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1096 {
1097 int rx_chainmask, tx_chainmask;
1098
1099 rx_chainmask = ah->rxchainmask;
1100 tx_chainmask = ah->txchainmask;
1101
1102 switch (rx_chainmask) {
1103 case 0x5:
1104 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1105 AR_PHY_SWAP_ALT_CHAIN);
1106 case 0x3:
1107 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1108 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1109 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1110 break;
1111 }
1112 case 0x1:
1113 case 0x2:
1114 case 0x7:
1115 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1116 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1117 break;
1118 default:
1119 break;
1120 }
1121
1122 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1123 if (tx_chainmask == 0x5) {
1124 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1125 AR_PHY_SWAP_ALT_CHAIN);
1126 }
1127 if (AR_SREV_9100(ah))
1128 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1129 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1130 }
1131
1132 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1133 enum nl80211_iftype opmode)
1134 {
1135 ah->mask_reg = AR_IMR_TXERR |
1136 AR_IMR_TXURN |
1137 AR_IMR_RXERR |
1138 AR_IMR_RXORN |
1139 AR_IMR_BCNMISC;
1140
1141 if (ah->config.intr_mitigation)
1142 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1143 else
1144 ah->mask_reg |= AR_IMR_RXOK;
1145
1146 ah->mask_reg |= AR_IMR_TXOK;
1147
1148 if (opmode == NL80211_IFTYPE_AP)
1149 ah->mask_reg |= AR_IMR_MIB;
1150
1151 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1152 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1153
1154 if (!AR_SREV_9100(ah)) {
1155 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1156 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1157 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1158 }
1159 }
1160
1161 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1162 {
1163 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1164 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1165 ah->acktimeout = (u32) -1;
1166 return false;
1167 } else {
1168 REG_RMW_FIELD(ah, AR_TIME_OUT,
1169 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1170 ah->acktimeout = us;
1171 return true;
1172 }
1173 }
1174
1175 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1176 {
1177 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1178 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1179 ah->ctstimeout = (u32) -1;
1180 return false;
1181 } else {
1182 REG_RMW_FIELD(ah, AR_TIME_OUT,
1183 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1184 ah->ctstimeout = us;
1185 return true;
1186 }
1187 }
1188
1189 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1190 {
1191 if (tu > 0xFFFF) {
1192 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1193 "bad global tx timeout %u\n", tu);
1194 ah->globaltxtimeout = (u32) -1;
1195 return false;
1196 } else {
1197 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1198 ah->globaltxtimeout = tu;
1199 return true;
1200 }
1201 }
1202
1203 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1204 {
1205 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1206 ah->misc_mode);
1207
1208 if (ah->misc_mode != 0)
1209 REG_WRITE(ah, AR_PCU_MISC,
1210 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1211 if (ah->slottime != (u32) -1)
1212 ath9k_hw_setslottime(ah, ah->slottime);
1213 if (ah->acktimeout != (u32) -1)
1214 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1215 if (ah->ctstimeout != (u32) -1)
1216 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1217 if (ah->globaltxtimeout != (u32) -1)
1218 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1219 }
1220
1221 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1222 {
1223 return vendorid == ATHEROS_VENDOR_ID ?
1224 ath9k_hw_devname(devid) : NULL;
1225 }
1226
1227 void ath9k_hw_detach(struct ath_hw *ah)
1228 {
1229 if (!AR_SREV_9100(ah))
1230 ath9k_hw_ani_detach(ah);
1231
1232 ath9k_hw_rfdetach(ah);
1233 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1234 kfree(ah);
1235 }
1236
1237 /*******/
1238 /* INI */
1239 /*******/
1240
1241 static void ath9k_hw_override_ini(struct ath_hw *ah,
1242 struct ath9k_channel *chan)
1243 {
1244 /*
1245 * Set the RX_ABORT and RX_DIS and clear if off only after
1246 * RXE is set for MAC. This prevents frames with corrupted
1247 * descriptor status.
1248 */
1249 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1250
1251
1252 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1253 AR_SREV_9280_10_OR_LATER(ah))
1254 return;
1255
1256 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1257 }
1258
1259 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1260 struct ar5416_eeprom_def *pEepData,
1261 u32 reg, u32 value)
1262 {
1263 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1264
1265 switch (ah->hw_version.devid) {
1266 case AR9280_DEVID_PCI:
1267 if (reg == 0x7894) {
1268 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1269 "ini VAL: %x EEPROM: %x\n", value,
1270 (pBase->version & 0xff));
1271
1272 if ((pBase->version & 0xff) > 0x0a) {
1273 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1274 "PWDCLKIND: %d\n",
1275 pBase->pwdclkind);
1276 value &= ~AR_AN_TOP2_PWDCLKIND;
1277 value |= AR_AN_TOP2_PWDCLKIND &
1278 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1279 } else {
1280 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1281 "PWDCLKIND Earlier Rev\n");
1282 }
1283
1284 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1285 "final ini VAL: %x\n", value);
1286 }
1287 break;
1288 }
1289
1290 return value;
1291 }
1292
1293 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1294 struct ar5416_eeprom_def *pEepData,
1295 u32 reg, u32 value)
1296 {
1297 if (ah->eep_map == EEP_MAP_4KBITS)
1298 return value;
1299 else
1300 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1301 }
1302
1303 static void ath9k_olc_init(struct ath_hw *ah)
1304 {
1305 u32 i;
1306
1307 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1308 ah->originalGain[i] =
1309 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1310 AR_PHY_TX_GAIN);
1311 ah->PDADCdelta = 0;
1312 }
1313
1314 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1315 struct ath9k_channel *chan)
1316 {
1317 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1318
1319 if (IS_CHAN_B(chan))
1320 ctl |= CTL_11B;
1321 else if (IS_CHAN_G(chan))
1322 ctl |= CTL_11G;
1323 else
1324 ctl |= CTL_11A;
1325
1326 return ctl;
1327 }
1328
1329 static int ath9k_hw_process_ini(struct ath_hw *ah,
1330 struct ath9k_channel *chan,
1331 enum ath9k_ht_macmode macmode)
1332 {
1333 int i, regWrites = 0;
1334 struct ieee80211_channel *channel = chan->chan;
1335 u32 modesIndex, freqIndex;
1336
1337 switch (chan->chanmode) {
1338 case CHANNEL_A:
1339 case CHANNEL_A_HT20:
1340 modesIndex = 1;
1341 freqIndex = 1;
1342 break;
1343 case CHANNEL_A_HT40PLUS:
1344 case CHANNEL_A_HT40MINUS:
1345 modesIndex = 2;
1346 freqIndex = 1;
1347 break;
1348 case CHANNEL_G:
1349 case CHANNEL_G_HT20:
1350 case CHANNEL_B:
1351 modesIndex = 4;
1352 freqIndex = 2;
1353 break;
1354 case CHANNEL_G_HT40PLUS:
1355 case CHANNEL_G_HT40MINUS:
1356 modesIndex = 3;
1357 freqIndex = 2;
1358 break;
1359
1360 default:
1361 return -EINVAL;
1362 }
1363
1364 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1365 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1366 ah->eep_ops->set_addac(ah, chan);
1367
1368 if (AR_SREV_5416_22_OR_LATER(ah)) {
1369 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1370 } else {
1371 struct ar5416IniArray temp;
1372 u32 addacSize =
1373 sizeof(u32) * ah->iniAddac.ia_rows *
1374 ah->iniAddac.ia_columns;
1375
1376 memcpy(ah->addac5416_21,
1377 ah->iniAddac.ia_array, addacSize);
1378
1379 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1380
1381 temp.ia_array = ah->addac5416_21;
1382 temp.ia_columns = ah->iniAddac.ia_columns;
1383 temp.ia_rows = ah->iniAddac.ia_rows;
1384 REG_WRITE_ARRAY(&temp, 1, regWrites);
1385 }
1386
1387 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1388
1389 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1390 u32 reg = INI_RA(&ah->iniModes, i, 0);
1391 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1392
1393 REG_WRITE(ah, reg, val);
1394
1395 if (reg >= 0x7800 && reg < 0x78a0
1396 && ah->config.analog_shiftreg) {
1397 udelay(100);
1398 }
1399
1400 DO_DELAY(regWrites);
1401 }
1402
1403 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1404 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1405
1406 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1407 AR_SREV_9287_10_OR_LATER(ah))
1408 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1409
1410 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1411 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1412 u32 val = INI_RA(&ah->iniCommon, i, 1);
1413
1414 REG_WRITE(ah, reg, val);
1415
1416 if (reg >= 0x7800 && reg < 0x78a0
1417 && ah->config.analog_shiftreg) {
1418 udelay(100);
1419 }
1420
1421 DO_DELAY(regWrites);
1422 }
1423
1424 ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1425
1426 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1427 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1428 regWrites);
1429 }
1430
1431 ath9k_hw_override_ini(ah, chan);
1432 ath9k_hw_set_regs(ah, chan, macmode);
1433 ath9k_hw_init_chain_masks(ah);
1434
1435 if (OLC_FOR_AR9280_20_LATER)
1436 ath9k_olc_init(ah);
1437
1438 ah->eep_ops->set_txpower(ah, chan,
1439 ath9k_regd_get_ctl(&ah->regulatory, chan),
1440 channel->max_antenna_gain * 2,
1441 channel->max_power * 2,
1442 min((u32) MAX_RATE_POWER,
1443 (u32) ah->regulatory.power_limit));
1444
1445 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1446 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1447 "ar5416SetRfRegs failed\n");
1448 return -EIO;
1449 }
1450
1451 return 0;
1452 }
1453
1454 /****************************************/
1455 /* Reset and Channel Switching Routines */
1456 /****************************************/
1457
1458 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1459 {
1460 u32 rfMode = 0;
1461
1462 if (chan == NULL)
1463 return;
1464
1465 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1466 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1467
1468 if (!AR_SREV_9280_10_OR_LATER(ah))
1469 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1470 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1471
1472 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1473 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1474
1475 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1476 }
1477
1478 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1479 {
1480 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1481 }
1482
1483 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1484 {
1485 u32 regval;
1486
1487 regval = REG_READ(ah, AR_AHB_MODE);
1488 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1489
1490 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1491 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1492
1493 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1494
1495 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1496 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1497
1498 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1499
1500 if (AR_SREV_9285(ah)) {
1501 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1502 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1503 } else {
1504 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1505 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1506 }
1507 }
1508
1509 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1510 {
1511 u32 val;
1512
1513 val = REG_READ(ah, AR_STA_ID1);
1514 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1515 switch (opmode) {
1516 case NL80211_IFTYPE_AP:
1517 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1518 | AR_STA_ID1_KSRCH_MODE);
1519 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1520 break;
1521 case NL80211_IFTYPE_ADHOC:
1522 case NL80211_IFTYPE_MESH_POINT:
1523 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1524 | AR_STA_ID1_KSRCH_MODE);
1525 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1526 break;
1527 case NL80211_IFTYPE_STATION:
1528 case NL80211_IFTYPE_MONITOR:
1529 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1530 break;
1531 }
1532 }
1533
1534 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1535 u32 coef_scaled,
1536 u32 *coef_mantissa,
1537 u32 *coef_exponent)
1538 {
1539 u32 coef_exp, coef_man;
1540
1541 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1542 if ((coef_scaled >> coef_exp) & 0x1)
1543 break;
1544
1545 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1546
1547 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1548
1549 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1550 *coef_exponent = coef_exp - 16;
1551 }
1552
1553 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1554 struct ath9k_channel *chan)
1555 {
1556 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1557 u32 clockMhzScaled = 0x64000000;
1558 struct chan_centers centers;
1559
1560 if (IS_CHAN_HALF_RATE(chan))
1561 clockMhzScaled = clockMhzScaled >> 1;
1562 else if (IS_CHAN_QUARTER_RATE(chan))
1563 clockMhzScaled = clockMhzScaled >> 2;
1564
1565 ath9k_hw_get_channel_centers(ah, chan, &centers);
1566 coef_scaled = clockMhzScaled / centers.synth_center;
1567
1568 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1569 &ds_coef_exp);
1570
1571 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1572 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1573 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1574 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1575
1576 coef_scaled = (9 * coef_scaled) / 10;
1577
1578 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1579 &ds_coef_exp);
1580
1581 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1582 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1583 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1584 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1585 }
1586
1587 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1588 {
1589 u32 rst_flags;
1590 u32 tmpReg;
1591
1592 if (AR_SREV_9100(ah)) {
1593 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1594 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1595 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1596 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1597 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1598 }
1599
1600 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1601 AR_RTC_FORCE_WAKE_ON_INT);
1602
1603 if (AR_SREV_9100(ah)) {
1604 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1605 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1606 } else {
1607 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1608 if (tmpReg &
1609 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1610 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1611 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1612 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1613 } else {
1614 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1615 }
1616
1617 rst_flags = AR_RTC_RC_MAC_WARM;
1618 if (type == ATH9K_RESET_COLD)
1619 rst_flags |= AR_RTC_RC_MAC_COLD;
1620 }
1621
1622 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1623 udelay(50);
1624
1625 REG_WRITE(ah, AR_RTC_RC, 0);
1626 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1627 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1628 "RTC stuck in MAC reset\n");
1629 return false;
1630 }
1631
1632 if (!AR_SREV_9100(ah))
1633 REG_WRITE(ah, AR_RC, 0);
1634
1635 ath9k_hw_init_pll(ah, NULL);
1636
1637 if (AR_SREV_9100(ah))
1638 udelay(50);
1639
1640 return true;
1641 }
1642
1643 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1644 {
1645 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1646 AR_RTC_FORCE_WAKE_ON_INT);
1647
1648 REG_WRITE(ah, AR_RTC_RESET, 0);
1649 udelay(2);
1650 REG_WRITE(ah, AR_RTC_RESET, 1);
1651
1652 if (!ath9k_hw_wait(ah,
1653 AR_RTC_STATUS,
1654 AR_RTC_STATUS_M,
1655 AR_RTC_STATUS_ON,
1656 AH_WAIT_TIMEOUT)) {
1657 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1658 return false;
1659 }
1660
1661 ath9k_hw_read_revisions(ah);
1662
1663 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1664 }
1665
1666 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1667 {
1668 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1669 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1670
1671 switch (type) {
1672 case ATH9K_RESET_POWER_ON:
1673 return ath9k_hw_set_reset_power_on(ah);
1674 case ATH9K_RESET_WARM:
1675 case ATH9K_RESET_COLD:
1676 return ath9k_hw_set_reset(ah, type);
1677 default:
1678 return false;
1679 }
1680 }
1681
1682 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1683 enum ath9k_ht_macmode macmode)
1684 {
1685 u32 phymode;
1686 u32 enableDacFifo = 0;
1687
1688 if (AR_SREV_9285_10_OR_LATER(ah))
1689 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1690 AR_PHY_FC_ENABLE_DAC_FIFO);
1691
1692 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1693 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1694
1695 if (IS_CHAN_HT40(chan)) {
1696 phymode |= AR_PHY_FC_DYN2040_EN;
1697
1698 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1699 (chan->chanmode == CHANNEL_G_HT40PLUS))
1700 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1701
1702 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1703 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1704 }
1705 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1706
1707 ath9k_hw_set11nmac2040(ah, macmode);
1708
1709 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1710 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1711 }
1712
1713 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1714 struct ath9k_channel *chan)
1715 {
1716 if (OLC_FOR_AR9280_20_LATER) {
1717 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1718 return false;
1719 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1720 return false;
1721
1722 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1723 return false;
1724
1725 ah->chip_fullsleep = false;
1726 ath9k_hw_init_pll(ah, chan);
1727 ath9k_hw_set_rfmode(ah, chan);
1728
1729 return true;
1730 }
1731
1732 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1733 struct ath9k_channel *chan,
1734 enum ath9k_ht_macmode macmode)
1735 {
1736 struct ieee80211_channel *channel = chan->chan;
1737 u32 synthDelay, qnum;
1738
1739 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1740 if (ath9k_hw_numtxpending(ah, qnum)) {
1741 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1742 "Transmit frames pending on queue %d\n", qnum);
1743 return false;
1744 }
1745 }
1746
1747 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1748 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1749 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1750 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1751 "Could not kill baseband RX\n");
1752 return false;
1753 }
1754
1755 ath9k_hw_set_regs(ah, chan, macmode);
1756
1757 if (AR_SREV_9280_10_OR_LATER(ah)) {
1758 ath9k_hw_ar9280_set_channel(ah, chan);
1759 } else {
1760 if (!(ath9k_hw_set_channel(ah, chan))) {
1761 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1762 "Failed to set channel\n");
1763 return false;
1764 }
1765 }
1766
1767 ah->eep_ops->set_txpower(ah, chan,
1768 ath9k_regd_get_ctl(&ah->regulatory, chan),
1769 channel->max_antenna_gain * 2,
1770 channel->max_power * 2,
1771 min((u32) MAX_RATE_POWER,
1772 (u32) ah->regulatory.power_limit));
1773
1774 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1775 if (IS_CHAN_B(chan))
1776 synthDelay = (4 * synthDelay) / 22;
1777 else
1778 synthDelay /= 10;
1779
1780 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1781
1782 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1783
1784 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1785 ath9k_hw_set_delta_slope(ah, chan);
1786
1787 if (AR_SREV_9280_10_OR_LATER(ah))
1788 ath9k_hw_9280_spur_mitigate(ah, chan);
1789 else
1790 ath9k_hw_spur_mitigate(ah, chan);
1791
1792 if (!chan->oneTimeCalsDone)
1793 chan->oneTimeCalsDone = true;
1794
1795 return true;
1796 }
1797
1798 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1799 {
1800 int bb_spur = AR_NO_SPUR;
1801 int freq;
1802 int bin, cur_bin;
1803 int bb_spur_off, spur_subchannel_sd;
1804 int spur_freq_sd;
1805 int spur_delta_phase;
1806 int denominator;
1807 int upper, lower, cur_vit_mask;
1808 int tmp, newVal;
1809 int i;
1810 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1811 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1812 };
1813 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1814 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1815 };
1816 int inc[4] = { 0, 100, 0, 0 };
1817 struct chan_centers centers;
1818
1819 int8_t mask_m[123];
1820 int8_t mask_p[123];
1821 int8_t mask_amt;
1822 int tmp_mask;
1823 int cur_bb_spur;
1824 bool is2GHz = IS_CHAN_2GHZ(chan);
1825
1826 memset(&mask_m, 0, sizeof(int8_t) * 123);
1827 memset(&mask_p, 0, sizeof(int8_t) * 123);
1828
1829 ath9k_hw_get_channel_centers(ah, chan, &centers);
1830 freq = centers.synth_center;
1831
1832 ah->config.spurmode = SPUR_ENABLE_EEPROM;
1833 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1834 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1835
1836 if (is2GHz)
1837 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1838 else
1839 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1840
1841 if (AR_NO_SPUR == cur_bb_spur)
1842 break;
1843 cur_bb_spur = cur_bb_spur - freq;
1844
1845 if (IS_CHAN_HT40(chan)) {
1846 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1847 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1848 bb_spur = cur_bb_spur;
1849 break;
1850 }
1851 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1852 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1853 bb_spur = cur_bb_spur;
1854 break;
1855 }
1856 }
1857
1858 if (AR_NO_SPUR == bb_spur) {
1859 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1860 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1861 return;
1862 } else {
1863 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1864 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1865 }
1866
1867 bin = bb_spur * 320;
1868
1869 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1870
1871 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1872 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1873 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1874 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1875 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1876
1877 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1878 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1879 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1880 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1881 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1882 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1883
1884 if (IS_CHAN_HT40(chan)) {
1885 if (bb_spur < 0) {
1886 spur_subchannel_sd = 1;
1887 bb_spur_off = bb_spur + 10;
1888 } else {
1889 spur_subchannel_sd = 0;
1890 bb_spur_off = bb_spur - 10;
1891 }
1892 } else {
1893 spur_subchannel_sd = 0;
1894 bb_spur_off = bb_spur;
1895 }
1896
1897 if (IS_CHAN_HT40(chan))
1898 spur_delta_phase =
1899 ((bb_spur * 262144) /
1900 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1901 else
1902 spur_delta_phase =
1903 ((bb_spur * 524288) /
1904 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1905
1906 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1907 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1908
1909 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1910 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1911 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1912 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1913
1914 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1915 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1916
1917 cur_bin = -6000;
1918 upper = bin + 100;
1919 lower = bin - 100;
1920
1921 for (i = 0; i < 4; i++) {
1922 int pilot_mask = 0;
1923 int chan_mask = 0;
1924 int bp = 0;
1925 for (bp = 0; bp < 30; bp++) {
1926 if ((cur_bin > lower) && (cur_bin < upper)) {
1927 pilot_mask = pilot_mask | 0x1 << bp;
1928 chan_mask = chan_mask | 0x1 << bp;
1929 }
1930 cur_bin += 100;
1931 }
1932 cur_bin += inc[i];
1933 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1934 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1935 }
1936
1937 cur_vit_mask = 6100;
1938 upper = bin + 120;
1939 lower = bin - 120;
1940
1941 for (i = 0; i < 123; i++) {
1942 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1943
1944 /* workaround for gcc bug #37014 */
1945 volatile int tmp_v = abs(cur_vit_mask - bin);
1946
1947 if (tmp_v < 75)
1948 mask_amt = 1;
1949 else
1950 mask_amt = 0;
1951 if (cur_vit_mask < 0)
1952 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1953 else
1954 mask_p[cur_vit_mask / 100] = mask_amt;
1955 }
1956 cur_vit_mask -= 100;
1957 }
1958
1959 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1960 | (mask_m[48] << 26) | (mask_m[49] << 24)
1961 | (mask_m[50] << 22) | (mask_m[51] << 20)
1962 | (mask_m[52] << 18) | (mask_m[53] << 16)
1963 | (mask_m[54] << 14) | (mask_m[55] << 12)
1964 | (mask_m[56] << 10) | (mask_m[57] << 8)
1965 | (mask_m[58] << 6) | (mask_m[59] << 4)
1966 | (mask_m[60] << 2) | (mask_m[61] << 0);
1967 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1968 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1969
1970 tmp_mask = (mask_m[31] << 28)
1971 | (mask_m[32] << 26) | (mask_m[33] << 24)
1972 | (mask_m[34] << 22) | (mask_m[35] << 20)
1973 | (mask_m[36] << 18) | (mask_m[37] << 16)
1974 | (mask_m[48] << 14) | (mask_m[39] << 12)
1975 | (mask_m[40] << 10) | (mask_m[41] << 8)
1976 | (mask_m[42] << 6) | (mask_m[43] << 4)
1977 | (mask_m[44] << 2) | (mask_m[45] << 0);
1978 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1979 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1980
1981 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1982 | (mask_m[18] << 26) | (mask_m[18] << 24)
1983 | (mask_m[20] << 22) | (mask_m[20] << 20)
1984 | (mask_m[22] << 18) | (mask_m[22] << 16)
1985 | (mask_m[24] << 14) | (mask_m[24] << 12)
1986 | (mask_m[25] << 10) | (mask_m[26] << 8)
1987 | (mask_m[27] << 6) | (mask_m[28] << 4)
1988 | (mask_m[29] << 2) | (mask_m[30] << 0);
1989 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1990 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1991
1992 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1993 | (mask_m[2] << 26) | (mask_m[3] << 24)
1994 | (mask_m[4] << 22) | (mask_m[5] << 20)
1995 | (mask_m[6] << 18) | (mask_m[7] << 16)
1996 | (mask_m[8] << 14) | (mask_m[9] << 12)
1997 | (mask_m[10] << 10) | (mask_m[11] << 8)
1998 | (mask_m[12] << 6) | (mask_m[13] << 4)
1999 | (mask_m[14] << 2) | (mask_m[15] << 0);
2000 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2001 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2002
2003 tmp_mask = (mask_p[15] << 28)
2004 | (mask_p[14] << 26) | (mask_p[13] << 24)
2005 | (mask_p[12] << 22) | (mask_p[11] << 20)
2006 | (mask_p[10] << 18) | (mask_p[9] << 16)
2007 | (mask_p[8] << 14) | (mask_p[7] << 12)
2008 | (mask_p[6] << 10) | (mask_p[5] << 8)
2009 | (mask_p[4] << 6) | (mask_p[3] << 4)
2010 | (mask_p[2] << 2) | (mask_p[1] << 0);
2011 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2012 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2013
2014 tmp_mask = (mask_p[30] << 28)
2015 | (mask_p[29] << 26) | (mask_p[28] << 24)
2016 | (mask_p[27] << 22) | (mask_p[26] << 20)
2017 | (mask_p[25] << 18) | (mask_p[24] << 16)
2018 | (mask_p[23] << 14) | (mask_p[22] << 12)
2019 | (mask_p[21] << 10) | (mask_p[20] << 8)
2020 | (mask_p[19] << 6) | (mask_p[18] << 4)
2021 | (mask_p[17] << 2) | (mask_p[16] << 0);
2022 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2023 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2024
2025 tmp_mask = (mask_p[45] << 28)
2026 | (mask_p[44] << 26) | (mask_p[43] << 24)
2027 | (mask_p[42] << 22) | (mask_p[41] << 20)
2028 | (mask_p[40] << 18) | (mask_p[39] << 16)
2029 | (mask_p[38] << 14) | (mask_p[37] << 12)
2030 | (mask_p[36] << 10) | (mask_p[35] << 8)
2031 | (mask_p[34] << 6) | (mask_p[33] << 4)
2032 | (mask_p[32] << 2) | (mask_p[31] << 0);
2033 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2034 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2035
2036 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2037 | (mask_p[59] << 26) | (mask_p[58] << 24)
2038 | (mask_p[57] << 22) | (mask_p[56] << 20)
2039 | (mask_p[55] << 18) | (mask_p[54] << 16)
2040 | (mask_p[53] << 14) | (mask_p[52] << 12)
2041 | (mask_p[51] << 10) | (mask_p[50] << 8)
2042 | (mask_p[49] << 6) | (mask_p[48] << 4)
2043 | (mask_p[47] << 2) | (mask_p[46] << 0);
2044 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2045 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2046 }
2047
2048 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2049 {
2050 int bb_spur = AR_NO_SPUR;
2051 int bin, cur_bin;
2052 int spur_freq_sd;
2053 int spur_delta_phase;
2054 int denominator;
2055 int upper, lower, cur_vit_mask;
2056 int tmp, new;
2057 int i;
2058 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2059 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2060 };
2061 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2062 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2063 };
2064 int inc[4] = { 0, 100, 0, 0 };
2065
2066 int8_t mask_m[123];
2067 int8_t mask_p[123];
2068 int8_t mask_amt;
2069 int tmp_mask;
2070 int cur_bb_spur;
2071 bool is2GHz = IS_CHAN_2GHZ(chan);
2072
2073 memset(&mask_m, 0, sizeof(int8_t) * 123);
2074 memset(&mask_p, 0, sizeof(int8_t) * 123);
2075
2076 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2077 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2078 if (AR_NO_SPUR == cur_bb_spur)
2079 break;
2080 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2081 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2082 bb_spur = cur_bb_spur;
2083 break;
2084 }
2085 }
2086
2087 if (AR_NO_SPUR == bb_spur)
2088 return;
2089
2090 bin = bb_spur * 32;
2091
2092 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2093 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2094 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2095 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2096 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2097
2098 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2099
2100 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2101 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2102 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2103 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2104 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2105 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2106
2107 spur_delta_phase = ((bb_spur * 524288) / 100) &
2108 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2109
2110 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2111 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2112
2113 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2114 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2115 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2116 REG_WRITE(ah, AR_PHY_TIMING11, new);
2117
2118 cur_bin = -6000;
2119 upper = bin + 100;
2120 lower = bin - 100;
2121
2122 for (i = 0; i < 4; i++) {
2123 int pilot_mask = 0;
2124 int chan_mask = 0;
2125 int bp = 0;
2126 for (bp = 0; bp < 30; bp++) {
2127 if ((cur_bin > lower) && (cur_bin < upper)) {
2128 pilot_mask = pilot_mask | 0x1 << bp;
2129 chan_mask = chan_mask | 0x1 << bp;
2130 }
2131 cur_bin += 100;
2132 }
2133 cur_bin += inc[i];
2134 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2135 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2136 }
2137
2138 cur_vit_mask = 6100;
2139 upper = bin + 120;
2140 lower = bin - 120;
2141
2142 for (i = 0; i < 123; i++) {
2143 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2144
2145 /* workaround for gcc bug #37014 */
2146 volatile int tmp_v = abs(cur_vit_mask - bin);
2147
2148 if (tmp_v < 75)
2149 mask_amt = 1;
2150 else
2151 mask_amt = 0;
2152 if (cur_vit_mask < 0)
2153 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2154 else
2155 mask_p[cur_vit_mask / 100] = mask_amt;
2156 }
2157 cur_vit_mask -= 100;
2158 }
2159
2160 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2161 | (mask_m[48] << 26) | (mask_m[49] << 24)
2162 | (mask_m[50] << 22) | (mask_m[51] << 20)
2163 | (mask_m[52] << 18) | (mask_m[53] << 16)
2164 | (mask_m[54] << 14) | (mask_m[55] << 12)
2165 | (mask_m[56] << 10) | (mask_m[57] << 8)
2166 | (mask_m[58] << 6) | (mask_m[59] << 4)
2167 | (mask_m[60] << 2) | (mask_m[61] << 0);
2168 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2169 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2170
2171 tmp_mask = (mask_m[31] << 28)
2172 | (mask_m[32] << 26) | (mask_m[33] << 24)
2173 | (mask_m[34] << 22) | (mask_m[35] << 20)
2174 | (mask_m[36] << 18) | (mask_m[37] << 16)
2175 | (mask_m[48] << 14) | (mask_m[39] << 12)
2176 | (mask_m[40] << 10) | (mask_m[41] << 8)
2177 | (mask_m[42] << 6) | (mask_m[43] << 4)
2178 | (mask_m[44] << 2) | (mask_m[45] << 0);
2179 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2180 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2181
2182 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2183 | (mask_m[18] << 26) | (mask_m[18] << 24)
2184 | (mask_m[20] << 22) | (mask_m[20] << 20)
2185 | (mask_m[22] << 18) | (mask_m[22] << 16)
2186 | (mask_m[24] << 14) | (mask_m[24] << 12)
2187 | (mask_m[25] << 10) | (mask_m[26] << 8)
2188 | (mask_m[27] << 6) | (mask_m[28] << 4)
2189 | (mask_m[29] << 2) | (mask_m[30] << 0);
2190 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2191 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2192
2193 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2194 | (mask_m[2] << 26) | (mask_m[3] << 24)
2195 | (mask_m[4] << 22) | (mask_m[5] << 20)
2196 | (mask_m[6] << 18) | (mask_m[7] << 16)
2197 | (mask_m[8] << 14) | (mask_m[9] << 12)
2198 | (mask_m[10] << 10) | (mask_m[11] << 8)
2199 | (mask_m[12] << 6) | (mask_m[13] << 4)
2200 | (mask_m[14] << 2) | (mask_m[15] << 0);
2201 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2202 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2203
2204 tmp_mask = (mask_p[15] << 28)
2205 | (mask_p[14] << 26) | (mask_p[13] << 24)
2206 | (mask_p[12] << 22) | (mask_p[11] << 20)
2207 | (mask_p[10] << 18) | (mask_p[9] << 16)
2208 | (mask_p[8] << 14) | (mask_p[7] << 12)
2209 | (mask_p[6] << 10) | (mask_p[5] << 8)
2210 | (mask_p[4] << 6) | (mask_p[3] << 4)
2211 | (mask_p[2] << 2) | (mask_p[1] << 0);
2212 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2213 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2214
2215 tmp_mask = (mask_p[30] << 28)
2216 | (mask_p[29] << 26) | (mask_p[28] << 24)
2217 | (mask_p[27] << 22) | (mask_p[26] << 20)
2218 | (mask_p[25] << 18) | (mask_p[24] << 16)
2219 | (mask_p[23] << 14) | (mask_p[22] << 12)
2220 | (mask_p[21] << 10) | (mask_p[20] << 8)
2221 | (mask_p[19] << 6) | (mask_p[18] << 4)
2222 | (mask_p[17] << 2) | (mask_p[16] << 0);
2223 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2224 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2225
2226 tmp_mask = (mask_p[45] << 28)
2227 | (mask_p[44] << 26) | (mask_p[43] << 24)
2228 | (mask_p[42] << 22) | (mask_p[41] << 20)
2229 | (mask_p[40] << 18) | (mask_p[39] << 16)
2230 | (mask_p[38] << 14) | (mask_p[37] << 12)
2231 | (mask_p[36] << 10) | (mask_p[35] << 8)
2232 | (mask_p[34] << 6) | (mask_p[33] << 4)
2233 | (mask_p[32] << 2) | (mask_p[31] << 0);
2234 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2235 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2236
2237 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2238 | (mask_p[59] << 26) | (mask_p[58] << 24)
2239 | (mask_p[57] << 22) | (mask_p[56] << 20)
2240 | (mask_p[55] << 18) | (mask_p[54] << 16)
2241 | (mask_p[53] << 14) | (mask_p[52] << 12)
2242 | (mask_p[51] << 10) | (mask_p[50] << 8)
2243 | (mask_p[49] << 6) | (mask_p[48] << 4)
2244 | (mask_p[47] << 2) | (mask_p[46] << 0);
2245 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2246 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2247 }
2248
2249 static void ath9k_enable_rfkill(struct ath_hw *ah)
2250 {
2251 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2252 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2253
2254 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2255 AR_GPIO_INPUT_MUX2_RFSILENT);
2256
2257 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2258 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2259 }
2260
2261 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2262 bool bChannelChange)
2263 {
2264 u32 saveLedState;
2265 struct ath_softc *sc = ah->ah_sc;
2266 struct ath9k_channel *curchan = ah->curchan;
2267 u32 saveDefAntenna;
2268 u32 macStaId1;
2269 int i, rx_chainmask, r;
2270
2271 ah->extprotspacing = sc->ht_extprotspacing;
2272 ah->txchainmask = sc->tx_chainmask;
2273 ah->rxchainmask = sc->rx_chainmask;
2274
2275 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2276 return -EIO;
2277
2278 if (curchan)
2279 ath9k_hw_getnf(ah, curchan);
2280
2281 if (bChannelChange &&
2282 (ah->chip_fullsleep != true) &&
2283 (ah->curchan != NULL) &&
2284 (chan->channel != ah->curchan->channel) &&
2285 ((chan->channelFlags & CHANNEL_ALL) ==
2286 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2287 (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2288 !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2289
2290 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2291 ath9k_hw_loadnf(ah, ah->curchan);
2292 ath9k_hw_start_nfcal(ah);
2293 return 0;
2294 }
2295 }
2296
2297 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2298 if (saveDefAntenna == 0)
2299 saveDefAntenna = 1;
2300
2301 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2302
2303 saveLedState = REG_READ(ah, AR_CFG_LED) &
2304 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2305 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2306
2307 ath9k_hw_mark_phy_inactive(ah);
2308
2309 if (!ath9k_hw_chip_reset(ah, chan)) {
2310 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2311 return -EINVAL;
2312 }
2313
2314 if (AR_SREV_9280_10_OR_LATER(ah))
2315 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2316
2317 if (AR_SREV_9287_10_OR_LATER(ah)) {
2318 /* Enable ASYNC FIFO */
2319 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2320 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2321 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2322 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2323 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2324 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2325 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2326 }
2327 r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2328 if (r)
2329 return r;
2330
2331 /* Setup MFP options for CCMP */
2332 if (AR_SREV_9280_20_OR_LATER(ah)) {
2333 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2334 * frames when constructing CCMP AAD. */
2335 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2336 0xc7ff);
2337 ah->sw_mgmt_crypto = false;
2338 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2339 /* Disable hardware crypto for management frames */
2340 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2341 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2342 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2343 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2344 ah->sw_mgmt_crypto = true;
2345 } else
2346 ah->sw_mgmt_crypto = true;
2347
2348 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2349 ath9k_hw_set_delta_slope(ah, chan);
2350
2351 if (AR_SREV_9280_10_OR_LATER(ah))
2352 ath9k_hw_9280_spur_mitigate(ah, chan);
2353 else
2354 ath9k_hw_spur_mitigate(ah, chan);
2355
2356 ah->eep_ops->set_board_values(ah, chan);
2357
2358 ath9k_hw_decrease_chain_power(ah, chan);
2359
2360 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2361 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2362 | macStaId1
2363 | AR_STA_ID1_RTS_USE_DEF
2364 | (ah->config.
2365 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2366 | ah->sta_id1_defaults);
2367 ath9k_hw_set_operating_mode(ah, ah->opmode);
2368
2369 REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2370 REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2371
2372 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2373
2374 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2375 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2376 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2377
2378 REG_WRITE(ah, AR_ISR, ~0);
2379
2380 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2381
2382 if (AR_SREV_9280_10_OR_LATER(ah))
2383 ath9k_hw_ar9280_set_channel(ah, chan);
2384 else
2385 if (!(ath9k_hw_set_channel(ah, chan)))
2386 return -EIO;
2387
2388 for (i = 0; i < AR_NUM_DCU; i++)
2389 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2390
2391 ah->intr_txqs = 0;
2392 for (i = 0; i < ah->caps.total_queues; i++)
2393 ath9k_hw_resettxqueue(ah, i);
2394
2395 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2396 ath9k_hw_init_qos(ah);
2397
2398 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2399 ath9k_enable_rfkill(ah);
2400
2401 ath9k_hw_init_user_settings(ah);
2402
2403 if (AR_SREV_9287_10_OR_LATER(ah)) {
2404 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2405 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2406 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2407 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2408 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2409 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2410
2411 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2412 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2413
2414 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2415 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2416 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2417 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2418 }
2419 if (AR_SREV_9287_10_OR_LATER(ah)) {
2420 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2421 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2422 }
2423
2424 REG_WRITE(ah, AR_STA_ID1,
2425 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2426
2427 ath9k_hw_set_dma(ah);
2428
2429 REG_WRITE(ah, AR_OBS, 8);
2430
2431 if (ah->config.intr_mitigation) {
2432 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2433 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2434 }
2435
2436 ath9k_hw_init_bb(ah, chan);
2437
2438 if (!ath9k_hw_init_cal(ah, chan))
2439 return -EIO;
2440
2441 rx_chainmask = ah->rxchainmask;
2442 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2443 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2444 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2445 }
2446
2447 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2448
2449 if (AR_SREV_9100(ah)) {
2450 u32 mask;
2451 mask = REG_READ(ah, AR_CFG);
2452 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2453 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2454 "CFG Byte Swap Set 0x%x\n", mask);
2455 } else {
2456 mask =
2457 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2458 REG_WRITE(ah, AR_CFG, mask);
2459 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2460 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2461 }
2462 } else {
2463 #ifdef __BIG_ENDIAN
2464 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2465 #endif
2466 }
2467
2468 return 0;
2469 }
2470
2471 /************************/
2472 /* Key Cache Management */
2473 /************************/
2474
2475 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2476 {
2477 u32 keyType;
2478
2479 if (entry >= ah->caps.keycache_size) {
2480 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2481 "keychache entry %u out of range\n", entry);
2482 return false;
2483 }
2484
2485 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2486
2487 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2488 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2489 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2490 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2491 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2492 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2493 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2494 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2495
2496 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2497 u16 micentry = entry + 64;
2498
2499 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2500 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2501 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2502 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2503
2504 }
2505
2506 if (ah->curchan == NULL)
2507 return true;
2508
2509 return true;
2510 }
2511
2512 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2513 {
2514 u32 macHi, macLo;
2515
2516 if (entry >= ah->caps.keycache_size) {
2517 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2518 "keychache entry %u out of range\n", entry);
2519 return false;
2520 }
2521
2522 if (mac != NULL) {
2523 macHi = (mac[5] << 8) | mac[4];
2524 macLo = (mac[3] << 24) |
2525 (mac[2] << 16) |
2526 (mac[1] << 8) |
2527 mac[0];
2528 macLo >>= 1;
2529 macLo |= (macHi & 1) << 31;
2530 macHi >>= 1;
2531 } else {
2532 macLo = macHi = 0;
2533 }
2534 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2535 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2536
2537 return true;
2538 }
2539
2540 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2541 const struct ath9k_keyval *k,
2542 const u8 *mac)
2543 {
2544 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2545 u32 key0, key1, key2, key3, key4;
2546 u32 keyType;
2547
2548 if (entry >= pCap->keycache_size) {
2549 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2550 "keycache entry %u out of range\n", entry);
2551 return false;
2552 }
2553
2554 switch (k->kv_type) {
2555 case ATH9K_CIPHER_AES_OCB:
2556 keyType = AR_KEYTABLE_TYPE_AES;
2557 break;
2558 case ATH9K_CIPHER_AES_CCM:
2559 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2560 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2561 "AES-CCM not supported by mac rev 0x%x\n",
2562 ah->hw_version.macRev);
2563 return false;
2564 }
2565 keyType = AR_KEYTABLE_TYPE_CCM;
2566 break;
2567 case ATH9K_CIPHER_TKIP:
2568 keyType = AR_KEYTABLE_TYPE_TKIP;
2569 if (ATH9K_IS_MIC_ENABLED(ah)
2570 && entry + 64 >= pCap->keycache_size) {
2571 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2572 "entry %u inappropriate for TKIP\n", entry);
2573 return false;
2574 }
2575 break;
2576 case ATH9K_CIPHER_WEP:
2577 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2578 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2579 "WEP key length %u too small\n", k->kv_len);
2580 return false;
2581 }
2582 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2583 keyType = AR_KEYTABLE_TYPE_40;
2584 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2585 keyType = AR_KEYTABLE_TYPE_104;
2586 else
2587 keyType = AR_KEYTABLE_TYPE_128;
2588 break;
2589 case ATH9K_CIPHER_CLR:
2590 keyType = AR_KEYTABLE_TYPE_CLR;
2591 break;
2592 default:
2593 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2594 "cipher %u not supported\n", k->kv_type);
2595 return false;
2596 }
2597
2598 key0 = get_unaligned_le32(k->kv_val + 0);
2599 key1 = get_unaligned_le16(k->kv_val + 4);
2600 key2 = get_unaligned_le32(k->kv_val + 6);
2601 key3 = get_unaligned_le16(k->kv_val + 10);
2602 key4 = get_unaligned_le32(k->kv_val + 12);
2603 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2604 key4 &= 0xff;
2605
2606 /*
2607 * Note: Key cache registers access special memory area that requires
2608 * two 32-bit writes to actually update the values in the internal
2609 * memory. Consequently, the exact order and pairs used here must be
2610 * maintained.
2611 */
2612
2613 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2614 u16 micentry = entry + 64;
2615
2616 /*
2617 * Write inverted key[47:0] first to avoid Michael MIC errors
2618 * on frames that could be sent or received at the same time.
2619 * The correct key will be written in the end once everything
2620 * else is ready.
2621 */
2622 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2623 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2624
2625 /* Write key[95:48] */
2626 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2627 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2628
2629 /* Write key[127:96] and key type */
2630 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2631 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2632
2633 /* Write MAC address for the entry */
2634 (void) ath9k_hw_keysetmac(ah, entry, mac);
2635
2636 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2637 /*
2638 * TKIP uses two key cache entries:
2639 * Michael MIC TX/RX keys in the same key cache entry
2640 * (idx = main index + 64):
2641 * key0 [31:0] = RX key [31:0]
2642 * key1 [15:0] = TX key [31:16]
2643 * key1 [31:16] = reserved
2644 * key2 [31:0] = RX key [63:32]
2645 * key3 [15:0] = TX key [15:0]
2646 * key3 [31:16] = reserved
2647 * key4 [31:0] = TX key [63:32]
2648 */
2649 u32 mic0, mic1, mic2, mic3, mic4;
2650
2651 mic0 = get_unaligned_le32(k->kv_mic + 0);
2652 mic2 = get_unaligned_le32(k->kv_mic + 4);
2653 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2654 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2655 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2656
2657 /* Write RX[31:0] and TX[31:16] */
2658 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2659 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2660
2661 /* Write RX[63:32] and TX[15:0] */
2662 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2663 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2664
2665 /* Write TX[63:32] and keyType(reserved) */
2666 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2667 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2668 AR_KEYTABLE_TYPE_CLR);
2669
2670 } else {
2671 /*
2672 * TKIP uses four key cache entries (two for group
2673 * keys):
2674 * Michael MIC TX/RX keys are in different key cache
2675 * entries (idx = main index + 64 for TX and
2676 * main index + 32 + 96 for RX):
2677 * key0 [31:0] = TX/RX MIC key [31:0]
2678 * key1 [31:0] = reserved
2679 * key2 [31:0] = TX/RX MIC key [63:32]
2680 * key3 [31:0] = reserved
2681 * key4 [31:0] = reserved
2682 *
2683 * Upper layer code will call this function separately
2684 * for TX and RX keys when these registers offsets are
2685 * used.
2686 */
2687 u32 mic0, mic2;
2688
2689 mic0 = get_unaligned_le32(k->kv_mic + 0);
2690 mic2 = get_unaligned_le32(k->kv_mic + 4);
2691
2692 /* Write MIC key[31:0] */
2693 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2694 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2695
2696 /* Write MIC key[63:32] */
2697 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2698 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2699
2700 /* Write TX[63:32] and keyType(reserved) */
2701 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2702 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2703 AR_KEYTABLE_TYPE_CLR);
2704 }
2705
2706 /* MAC address registers are reserved for the MIC entry */
2707 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2708 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2709
2710 /*
2711 * Write the correct (un-inverted) key[47:0] last to enable
2712 * TKIP now that all other registers are set with correct
2713 * values.
2714 */
2715 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2716 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2717 } else {
2718 /* Write key[47:0] */
2719 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2720 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2721
2722 /* Write key[95:48] */
2723 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2724 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2725
2726 /* Write key[127:96] and key type */
2727 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2728 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2729
2730 /* Write MAC address for the entry */
2731 (void) ath9k_hw_keysetmac(ah, entry, mac);
2732 }
2733
2734 return true;
2735 }
2736
2737 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2738 {
2739 if (entry < ah->caps.keycache_size) {
2740 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2741 if (val & AR_KEYTABLE_VALID)
2742 return true;
2743 }
2744 return false;
2745 }
2746
2747 /******************************/
2748 /* Power Management (Chipset) */
2749 /******************************/
2750
2751 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2752 {
2753 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2754 if (setChip) {
2755 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2756 AR_RTC_FORCE_WAKE_EN);
2757 if (!AR_SREV_9100(ah))
2758 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2759
2760 REG_CLR_BIT(ah, (AR_RTC_RESET),
2761 AR_RTC_RESET_EN);
2762 }
2763 }
2764
2765 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2766 {
2767 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2768 if (setChip) {
2769 struct ath9k_hw_capabilities *pCap = &ah->caps;
2770
2771 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2772 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2773 AR_RTC_FORCE_WAKE_ON_INT);
2774 } else {
2775 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2776 AR_RTC_FORCE_WAKE_EN);
2777 }
2778 }
2779 }
2780
2781 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2782 {
2783 u32 val;
2784 int i;
2785
2786 if (setChip) {
2787 if ((REG_READ(ah, AR_RTC_STATUS) &
2788 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2789 if (ath9k_hw_set_reset_reg(ah,
2790 ATH9K_RESET_POWER_ON) != true) {
2791 return false;
2792 }
2793 }
2794 if (AR_SREV_9100(ah))
2795 REG_SET_BIT(ah, AR_RTC_RESET,
2796 AR_RTC_RESET_EN);
2797
2798 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2799 AR_RTC_FORCE_WAKE_EN);
2800 udelay(50);
2801
2802 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2803 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2804 if (val == AR_RTC_STATUS_ON)
2805 break;
2806 udelay(50);
2807 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2808 AR_RTC_FORCE_WAKE_EN);
2809 }
2810 if (i == 0) {
2811 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2812 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2813 return false;
2814 }
2815 }
2816
2817 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2818
2819 return true;
2820 }
2821
2822 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2823 enum ath9k_power_mode mode)
2824 {
2825 int status = true, setChip = true;
2826 static const char *modes[] = {
2827 "AWAKE",
2828 "FULL-SLEEP",
2829 "NETWORK SLEEP",
2830 "UNDEFINED"
2831 };
2832
2833 if (ah->power_mode == mode)
2834 return status;
2835
2836 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2837 modes[ah->power_mode], modes[mode]);
2838
2839 switch (mode) {
2840 case ATH9K_PM_AWAKE:
2841 status = ath9k_hw_set_power_awake(ah, setChip);
2842 break;
2843 case ATH9K_PM_FULL_SLEEP:
2844 ath9k_set_power_sleep(ah, setChip);
2845 ah->chip_fullsleep = true;
2846 break;
2847 case ATH9K_PM_NETWORK_SLEEP:
2848 ath9k_set_power_network_sleep(ah, setChip);
2849 break;
2850 default:
2851 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2852 "Unknown power mode %u\n", mode);
2853 return false;
2854 }
2855 ah->power_mode = mode;
2856
2857 return status;
2858 }
2859
2860 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2861 {
2862 unsigned long flags;
2863 bool ret;
2864
2865 spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2866 ret = ath9k_hw_setpower_nolock(ah, mode);
2867 spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2868
2869 return ret;
2870 }
2871
2872 void ath9k_ps_wakeup(struct ath_softc *sc)
2873 {
2874 unsigned long flags;
2875
2876 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2877 if (++sc->ps_usecount != 1)
2878 goto unlock;
2879
2880 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2881
2882 unlock:
2883 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2884 }
2885
2886 void ath9k_ps_restore(struct ath_softc *sc)
2887 {
2888 unsigned long flags;
2889
2890 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2891 if (--sc->ps_usecount != 0)
2892 goto unlock;
2893
2894 if (sc->ps_enabled &&
2895 !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
2896 SC_OP_WAIT_FOR_CAB |
2897 SC_OP_WAIT_FOR_PSPOLL_DATA |
2898 SC_OP_WAIT_FOR_TX_ACK)))
2899 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2900
2901 unlock:
2902 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2903 }
2904
2905 /*
2906 * Helper for ASPM support.
2907 *
2908 * Disable PLL when in L0s as well as receiver clock when in L1.
2909 * This power saving option must be enabled through the SerDes.
2910 *
2911 * Programming the SerDes must go through the same 288 bit serial shift
2912 * register as the other analog registers. Hence the 9 writes.
2913 */
2914 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2915 {
2916 u8 i;
2917
2918 if (ah->is_pciexpress != true)
2919 return;
2920
2921 /* Do not touch SerDes registers */
2922 if (ah->config.pcie_powersave_enable == 2)
2923 return;
2924
2925 /* Nothing to do on restore for 11N */
2926 if (restore)
2927 return;
2928
2929 if (AR_SREV_9280_20_OR_LATER(ah)) {
2930 /*
2931 * AR9280 2.0 or later chips use SerDes values from the
2932 * initvals.h initialized depending on chipset during
2933 * ath9k_hw_init()
2934 */
2935 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2936 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2937 INI_RA(&ah->iniPcieSerdes, i, 1));
2938 }
2939 } else if (AR_SREV_9280(ah) &&
2940 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2941 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2942 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2943
2944 /* RX shut off when elecidle is asserted */
2945 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2946 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2947 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2948
2949 /* Shut off CLKREQ active in L1 */
2950 if (ah->config.pcie_clock_req)
2951 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2952 else
2953 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2954
2955 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2956 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2957 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2958
2959 /* Load the new settings */
2960 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2961
2962 } else {
2963 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2964 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2965
2966 /* RX shut off when elecidle is asserted */
2967 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2968 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2969 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2970
2971 /*
2972 * Ignore ah->ah_config.pcie_clock_req setting for
2973 * pre-AR9280 11n
2974 */
2975 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2976
2977 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2978 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2979 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2980
2981 /* Load the new settings */
2982 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2983 }
2984
2985 udelay(1000);
2986
2987 /* set bit 19 to allow forcing of pcie core into L1 state */
2988 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2989
2990 /* Several PCIe massages to ensure proper behaviour */
2991 if (ah->config.pcie_waen) {
2992 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2993 } else {
2994 if (AR_SREV_9285(ah))
2995 REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2996 /*
2997 * On AR9280 chips bit 22 of 0x4004 needs to be set to
2998 * otherwise card may disappear.
2999 */
3000 else if (AR_SREV_9280(ah))
3001 REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
3002 else
3003 REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
3004 }
3005 }
3006
3007 /**********************/
3008 /* Interrupt Handling */
3009 /**********************/
3010
3011 bool ath9k_hw_intrpend(struct ath_hw *ah)
3012 {
3013 u32 host_isr;
3014
3015 if (AR_SREV_9100(ah))
3016 return true;
3017
3018 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3019 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3020 return true;
3021
3022 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3023 if ((host_isr & AR_INTR_SYNC_DEFAULT)
3024 && (host_isr != AR_INTR_SPURIOUS))
3025 return true;
3026
3027 return false;
3028 }
3029
3030 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3031 {
3032 u32 isr = 0;
3033 u32 mask2 = 0;
3034 struct ath9k_hw_capabilities *pCap = &ah->caps;
3035 u32 sync_cause = 0;
3036 bool fatal_int = false;
3037
3038 if (!AR_SREV_9100(ah)) {
3039 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3040 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3041 == AR_RTC_STATUS_ON) {
3042 isr = REG_READ(ah, AR_ISR);
3043 }
3044 }
3045
3046 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3047 AR_INTR_SYNC_DEFAULT;
3048
3049 *masked = 0;
3050
3051 if (!isr && !sync_cause)
3052 return false;
3053 } else {
3054 *masked = 0;
3055 isr = REG_READ(ah, AR_ISR);
3056 }
3057
3058 if (isr) {
3059 if (isr & AR_ISR_BCNMISC) {
3060 u32 isr2;
3061 isr2 = REG_READ(ah, AR_ISR_S2);
3062 if (isr2 & AR_ISR_S2_TIM)
3063 mask2 |= ATH9K_INT_TIM;
3064 if (isr2 & AR_ISR_S2_DTIM)
3065 mask2 |= ATH9K_INT_DTIM;
3066 if (isr2 & AR_ISR_S2_DTIMSYNC)
3067 mask2 |= ATH9K_INT_DTIMSYNC;
3068 if (isr2 & (AR_ISR_S2_CABEND))
3069 mask2 |= ATH9K_INT_CABEND;
3070 if (isr2 & AR_ISR_S2_GTT)
3071 mask2 |= ATH9K_INT_GTT;
3072 if (isr2 & AR_ISR_S2_CST)
3073 mask2 |= ATH9K_INT_CST;
3074 if (isr2 & AR_ISR_S2_TSFOOR)
3075 mask2 |= ATH9K_INT_TSFOOR;
3076 }
3077
3078 isr = REG_READ(ah, AR_ISR_RAC);
3079 if (isr == 0xffffffff) {
3080 *masked = 0;
3081 return false;
3082 }
3083
3084 *masked = isr & ATH9K_INT_COMMON;
3085
3086 if (ah->config.intr_mitigation) {
3087 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3088 *masked |= ATH9K_INT_RX;
3089 }
3090
3091 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3092 *masked |= ATH9K_INT_RX;
3093 if (isr &
3094 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3095 AR_ISR_TXEOL)) {
3096 u32 s0_s, s1_s;
3097
3098 *masked |= ATH9K_INT_TX;
3099
3100 s0_s = REG_READ(ah, AR_ISR_S0_S);
3101 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3102 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3103
3104 s1_s = REG_READ(ah, AR_ISR_S1_S);
3105 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3106 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3107 }
3108
3109 if (isr & AR_ISR_RXORN) {
3110 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3111 "receive FIFO overrun interrupt\n");
3112 }
3113
3114 if (!AR_SREV_9100(ah)) {
3115 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3116 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3117 if (isr5 & AR_ISR_S5_TIM_TIMER)
3118 *masked |= ATH9K_INT_TIM_TIMER;
3119 }
3120 }
3121
3122 *masked |= mask2;
3123 }
3124
3125 if (AR_SREV_9100(ah))
3126 return true;
3127
3128 if (sync_cause) {
3129 fatal_int =
3130 (sync_cause &
3131 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3132 ? true : false;
3133
3134 if (fatal_int) {
3135 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3136 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3137 "received PCI FATAL interrupt\n");
3138 }
3139 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3140 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3141 "received PCI PERR interrupt\n");
3142 }
3143 *masked |= ATH9K_INT_FATAL;
3144 }
3145 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3146 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3147 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3148 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3149 REG_WRITE(ah, AR_RC, 0);
3150 *masked |= ATH9K_INT_FATAL;
3151 }
3152 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3153 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3154 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3155 }
3156
3157 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3158 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3159 }
3160
3161 return true;
3162 }
3163
3164 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3165 {
3166 u32 omask = ah->mask_reg;
3167 u32 mask, mask2;
3168 struct ath9k_hw_capabilities *pCap = &ah->caps;
3169
3170 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3171
3172 if (omask & ATH9K_INT_GLOBAL) {
3173 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3174 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3175 (void) REG_READ(ah, AR_IER);
3176 if (!AR_SREV_9100(ah)) {
3177 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3178 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3179
3180 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3181 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3182 }
3183 }
3184
3185 mask = ints & ATH9K_INT_COMMON;
3186 mask2 = 0;
3187
3188 if (ints & ATH9K_INT_TX) {
3189 if (ah->txok_interrupt_mask)
3190 mask |= AR_IMR_TXOK;
3191 if (ah->txdesc_interrupt_mask)
3192 mask |= AR_IMR_TXDESC;
3193 if (ah->txerr_interrupt_mask)
3194 mask |= AR_IMR_TXERR;
3195 if (ah->txeol_interrupt_mask)
3196 mask |= AR_IMR_TXEOL;
3197 }
3198 if (ints & ATH9K_INT_RX) {
3199 mask |= AR_IMR_RXERR;
3200 if (ah->config.intr_mitigation)
3201 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3202 else
3203 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3204 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3205 mask |= AR_IMR_GENTMR;
3206 }
3207
3208 if (ints & (ATH9K_INT_BMISC)) {
3209 mask |= AR_IMR_BCNMISC;
3210 if (ints & ATH9K_INT_TIM)
3211 mask2 |= AR_IMR_S2_TIM;
3212 if (ints & ATH9K_INT_DTIM)
3213 mask2 |= AR_IMR_S2_DTIM;
3214 if (ints & ATH9K_INT_DTIMSYNC)
3215 mask2 |= AR_IMR_S2_DTIMSYNC;
3216 if (ints & ATH9K_INT_CABEND)
3217 mask2 |= AR_IMR_S2_CABEND;
3218 if (ints & ATH9K_INT_TSFOOR)
3219 mask2 |= AR_IMR_S2_TSFOOR;
3220 }
3221
3222 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3223 mask |= AR_IMR_BCNMISC;
3224 if (ints & ATH9K_INT_GTT)
3225 mask2 |= AR_IMR_S2_GTT;
3226 if (ints & ATH9K_INT_CST)
3227 mask2 |= AR_IMR_S2_CST;
3228 }
3229
3230 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3231 REG_WRITE(ah, AR_IMR, mask);
3232 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3233 AR_IMR_S2_DTIM |
3234 AR_IMR_S2_DTIMSYNC |
3235 AR_IMR_S2_CABEND |
3236 AR_IMR_S2_CABTO |
3237 AR_IMR_S2_TSFOOR |
3238 AR_IMR_S2_GTT | AR_IMR_S2_CST);
3239 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3240 ah->mask_reg = ints;
3241
3242 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3243 if (ints & ATH9K_INT_TIM_TIMER)
3244 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3245 else
3246 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3247 }
3248
3249 if (ints & ATH9K_INT_GLOBAL) {
3250 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3251 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3252 if (!AR_SREV_9100(ah)) {
3253 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3254 AR_INTR_MAC_IRQ);
3255 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3256
3257
3258 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3259 AR_INTR_SYNC_DEFAULT);
3260 REG_WRITE(ah, AR_INTR_SYNC_MASK,
3261 AR_INTR_SYNC_DEFAULT);
3262 }
3263 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3264 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3265 }
3266
3267 return omask;
3268 }
3269
3270 /*******************/
3271 /* Beacon Handling */
3272 /*******************/
3273
3274 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3275 {
3276 int flags = 0;
3277
3278 ah->beacon_interval = beacon_period;
3279
3280 switch (ah->opmode) {
3281 case NL80211_IFTYPE_STATION:
3282 case NL80211_IFTYPE_MONITOR:
3283 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3284 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3285 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3286 flags |= AR_TBTT_TIMER_EN;
3287 break;
3288 case NL80211_IFTYPE_ADHOC:
3289 case NL80211_IFTYPE_MESH_POINT:
3290 REG_SET_BIT(ah, AR_TXCFG,
3291 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3292 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3293 TU_TO_USEC(next_beacon +
3294 (ah->atim_window ? ah->
3295 atim_window : 1)));
3296 flags |= AR_NDP_TIMER_EN;
3297 case NL80211_IFTYPE_AP:
3298 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3299 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3300 TU_TO_USEC(next_beacon -
3301 ah->config.
3302 dma_beacon_response_time));
3303 REG_WRITE(ah, AR_NEXT_SWBA,
3304 TU_TO_USEC(next_beacon -
3305 ah->config.
3306 sw_beacon_response_time));
3307 flags |=
3308 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3309 break;
3310 default:
3311 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3312 "%s: unsupported opmode: %d\n",
3313 __func__, ah->opmode);
3314 return;
3315 break;
3316 }
3317
3318 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3319 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3320 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3321 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3322
3323 beacon_period &= ~ATH9K_BEACON_ENA;
3324 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3325 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3326 ath9k_hw_reset_tsf(ah);
3327 }
3328
3329 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3330 }
3331
3332 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3333 const struct ath9k_beacon_state *bs)
3334 {
3335 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3336 struct ath9k_hw_capabilities *pCap = &ah->caps;
3337
3338 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3339
3340 REG_WRITE(ah, AR_BEACON_PERIOD,
3341 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3342 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3343 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3344
3345 REG_RMW_FIELD(ah, AR_RSSI_THR,
3346 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3347
3348 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3349
3350 if (bs->bs_sleepduration > beaconintval)
3351 beaconintval = bs->bs_sleepduration;
3352
3353 dtimperiod = bs->bs_dtimperiod;
3354 if (bs->bs_sleepduration > dtimperiod)
3355 dtimperiod = bs->bs_sleepduration;
3356
3357 if (beaconintval == dtimperiod)
3358 nextTbtt = bs->bs_nextdtim;
3359 else
3360 nextTbtt = bs->bs_nexttbtt;
3361
3362 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3363 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3364 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3365 DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3366
3367 REG_WRITE(ah, AR_NEXT_DTIM,
3368 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3369 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3370
3371 REG_WRITE(ah, AR_SLEEP1,
3372 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3373 | AR_SLEEP1_ASSUME_DTIM);
3374
3375 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3376 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3377 else
3378 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3379
3380 REG_WRITE(ah, AR_SLEEP2,
3381 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3382
3383 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3384 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3385
3386 REG_SET_BIT(ah, AR_TIMER_MODE,
3387 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3388 AR_DTIM_TIMER_EN);
3389
3390 /* TSF Out of Range Threshold */
3391 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3392 }
3393
3394 /*******************/
3395 /* HW Capabilities */
3396 /*******************/
3397
3398 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3399 {
3400 struct ath9k_hw_capabilities *pCap = &ah->caps;
3401 u16 capField = 0, eeval;
3402
3403 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3404 ah->regulatory.current_rd = eeval;
3405
3406 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3407 if (AR_SREV_9285_10_OR_LATER(ah))
3408 eeval |= AR9285_RDEXT_DEFAULT;
3409 ah->regulatory.current_rd_ext = eeval;
3410
3411 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3412
3413 if (ah->opmode != NL80211_IFTYPE_AP &&
3414 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3415 if (ah->regulatory.current_rd == 0x64 ||
3416 ah->regulatory.current_rd == 0x65)
3417 ah->regulatory.current_rd += 5;
3418 else if (ah->regulatory.current_rd == 0x41)
3419 ah->regulatory.current_rd = 0x43;
3420 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3421 "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3422 }
3423
3424 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3425 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3426
3427 if (eeval & AR5416_OPFLAGS_11A) {
3428 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3429 if (ah->config.ht_enable) {
3430 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3431 set_bit(ATH9K_MODE_11NA_HT20,
3432 pCap->wireless_modes);
3433 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3434 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3435 pCap->wireless_modes);
3436 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3437 pCap->wireless_modes);
3438 }
3439 }
3440 }
3441
3442 if (eeval & AR5416_OPFLAGS_11G) {
3443 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3444 if (ah->config.ht_enable) {
3445 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3446 set_bit(ATH9K_MODE_11NG_HT20,
3447 pCap->wireless_modes);
3448 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3449 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3450 pCap->wireless_modes);
3451 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3452 pCap->wireless_modes);
3453 }
3454 }
3455 }
3456
3457 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3458 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3459 !(eeval & AR5416_OPFLAGS_11A))
3460 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3461 else
3462 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3463
3464 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3465 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3466
3467 pCap->low_2ghz_chan = 2312;
3468 pCap->high_2ghz_chan = 2732;
3469
3470 pCap->low_5ghz_chan = 4920;
3471 pCap->high_5ghz_chan = 6100;
3472
3473 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3474 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3475 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3476
3477 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3478 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3479 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3480
3481 if (ah->config.ht_enable)
3482 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3483 else
3484 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3485
3486 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3487 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3488 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3489 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3490
3491 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3492 pCap->total_queues =
3493 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3494 else
3495 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3496
3497 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3498 pCap->keycache_size =
3499 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3500 else
3501 pCap->keycache_size = AR_KEYTABLE_SIZE;
3502
3503 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3504 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3505
3506 if (AR_SREV_9285_10_OR_LATER(ah))
3507 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3508 else if (AR_SREV_9280_10_OR_LATER(ah))
3509 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3510 else
3511 pCap->num_gpio_pins = AR_NUM_GPIO;
3512
3513 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3514 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3515 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3516 } else {
3517 pCap->rts_aggr_limit = (8 * 1024);
3518 }
3519
3520 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3521
3522 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3523 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3524 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3525 ah->rfkill_gpio =
3526 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3527 ah->rfkill_polarity =
3528 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3529
3530 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3531 }
3532 #endif
3533
3534 if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3535 (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3536 (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3537 (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3538 (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3539 (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3540 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3541 else
3542 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3543
3544 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3545 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3546 else
3547 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3548
3549 if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3550 pCap->reg_cap =
3551 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3552 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3553 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3554 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3555 } else {
3556 pCap->reg_cap =
3557 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3558 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3559 }
3560
3561 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3562
3563 pCap->num_antcfg_5ghz =
3564 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3565 pCap->num_antcfg_2ghz =
3566 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3567
3568 if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3569 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3570 ah->btactive_gpio = 6;
3571 ah->wlanactive_gpio = 5;
3572 }
3573 }
3574
3575 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3576 u32 capability, u32 *result)
3577 {
3578 switch (type) {
3579 case ATH9K_CAP_CIPHER:
3580 switch (capability) {
3581 case ATH9K_CIPHER_AES_CCM:
3582 case ATH9K_CIPHER_AES_OCB:
3583 case ATH9K_CIPHER_TKIP:
3584 case ATH9K_CIPHER_WEP:
3585 case ATH9K_CIPHER_MIC:
3586 case ATH9K_CIPHER_CLR:
3587 return true;
3588 default:
3589 return false;
3590 }
3591 case ATH9K_CAP_TKIP_MIC:
3592 switch (capability) {
3593 case 0:
3594 return true;
3595 case 1:
3596 return (ah->sta_id1_defaults &
3597 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3598 false;
3599 }
3600 case ATH9K_CAP_TKIP_SPLIT:
3601 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3602 false : true;
3603 case ATH9K_CAP_DIVERSITY:
3604 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3605 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3606 true : false;
3607 case ATH9K_CAP_MCAST_KEYSRCH:
3608 switch (capability) {
3609 case 0:
3610 return true;
3611 case 1:
3612 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3613 return false;
3614 } else {
3615 return (ah->sta_id1_defaults &
3616 AR_STA_ID1_MCAST_KSRCH) ? true :
3617 false;
3618 }
3619 }
3620 return false;
3621 case ATH9K_CAP_TXPOW:
3622 switch (capability) {
3623 case 0:
3624 return 0;
3625 case 1:
3626 *result = ah->regulatory.power_limit;
3627 return 0;
3628 case 2:
3629 *result = ah->regulatory.max_power_level;
3630 return 0;
3631 case 3:
3632 *result = ah->regulatory.tp_scale;
3633 return 0;
3634 }
3635 return false;
3636 case ATH9K_CAP_DS:
3637 return (AR_SREV_9280_20_OR_LATER(ah) &&
3638 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3639 ? false : true;
3640 default:
3641 return false;
3642 }
3643 }
3644
3645 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3646 u32 capability, u32 setting, int *status)
3647 {
3648 u32 v;
3649
3650 switch (type) {
3651 case ATH9K_CAP_TKIP_MIC:
3652 if (setting)
3653 ah->sta_id1_defaults |=
3654 AR_STA_ID1_CRPT_MIC_ENABLE;
3655 else
3656 ah->sta_id1_defaults &=
3657 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3658 return true;
3659 case ATH9K_CAP_DIVERSITY:
3660 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3661 if (setting)
3662 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3663 else
3664 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3665 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3666 return true;
3667 case ATH9K_CAP_MCAST_KEYSRCH:
3668 if (setting)
3669 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3670 else
3671 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3672 return true;
3673 default:
3674 return false;
3675 }
3676 }
3677
3678 /****************************/
3679 /* GPIO / RFKILL / Antennae */
3680 /****************************/
3681
3682 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3683 u32 gpio, u32 type)
3684 {
3685 int addr;
3686 u32 gpio_shift, tmp;
3687
3688 if (gpio > 11)
3689 addr = AR_GPIO_OUTPUT_MUX3;
3690 else if (gpio > 5)
3691 addr = AR_GPIO_OUTPUT_MUX2;
3692 else
3693 addr = AR_GPIO_OUTPUT_MUX1;
3694
3695 gpio_shift = (gpio % 6) * 5;
3696
3697 if (AR_SREV_9280_20_OR_LATER(ah)
3698 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3699 REG_RMW(ah, addr, (type << gpio_shift),
3700 (0x1f << gpio_shift));
3701 } else {
3702 tmp = REG_READ(ah, addr);
3703 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3704 tmp &= ~(0x1f << gpio_shift);
3705 tmp |= (type << gpio_shift);
3706 REG_WRITE(ah, addr, tmp);
3707 }
3708 }
3709
3710 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3711 {
3712 u32 gpio_shift;
3713
3714 ASSERT(gpio < ah->caps.num_gpio_pins);
3715
3716 gpio_shift = gpio << 1;
3717
3718 REG_RMW(ah,
3719 AR_GPIO_OE_OUT,
3720 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3721 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3722 }
3723
3724 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3725 {
3726 #define MS_REG_READ(x, y) \
3727 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3728
3729 if (gpio >= ah->caps.num_gpio_pins)
3730 return 0xffffffff;
3731
3732 if (AR_SREV_9287_10_OR_LATER(ah))
3733 return MS_REG_READ(AR9287, gpio) != 0;
3734 else if (AR_SREV_9285_10_OR_LATER(ah))
3735 return MS_REG_READ(AR9285, gpio) != 0;
3736 else if (AR_SREV_9280_10_OR_LATER(ah))
3737 return MS_REG_READ(AR928X, gpio) != 0;
3738 else
3739 return MS_REG_READ(AR, gpio) != 0;
3740 }
3741
3742 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3743 u32 ah_signal_type)
3744 {
3745 u32 gpio_shift;
3746
3747 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3748
3749 gpio_shift = 2 * gpio;
3750
3751 REG_RMW(ah,
3752 AR_GPIO_OE_OUT,
3753 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3754 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3755 }
3756
3757 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3758 {
3759 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3760 AR_GPIO_BIT(gpio));
3761 }
3762
3763 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3764 {
3765 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3766 }
3767
3768 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3769 {
3770 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3771 }
3772
3773 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3774 enum ath9k_ant_setting settings,
3775 struct ath9k_channel *chan,
3776 u8 *tx_chainmask,
3777 u8 *rx_chainmask,
3778 u8 *antenna_cfgd)
3779 {
3780 static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3781
3782 if (AR_SREV_9280(ah)) {
3783 if (!tx_chainmask_cfg) {
3784
3785 tx_chainmask_cfg = *tx_chainmask;
3786 rx_chainmask_cfg = *rx_chainmask;
3787 }
3788
3789 switch (settings) {
3790 case ATH9K_ANT_FIXED_A:
3791 *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3792 *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3793 *antenna_cfgd = true;
3794 break;
3795 case ATH9K_ANT_FIXED_B:
3796 if (ah->caps.tx_chainmask >
3797 ATH9K_ANTENNA1_CHAINMASK) {
3798 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3799 }
3800 *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3801 *antenna_cfgd = true;
3802 break;
3803 case ATH9K_ANT_VARIABLE:
3804 *tx_chainmask = tx_chainmask_cfg;
3805 *rx_chainmask = rx_chainmask_cfg;
3806 *antenna_cfgd = true;
3807 break;
3808 default:
3809 break;
3810 }
3811 } else {
3812 ah->diversity_control = settings;
3813 }
3814
3815 return true;
3816 }
3817
3818 /*********************/
3819 /* General Operation */
3820 /*********************/
3821
3822 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3823 {
3824 u32 bits = REG_READ(ah, AR_RX_FILTER);
3825 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3826
3827 if (phybits & AR_PHY_ERR_RADAR)
3828 bits |= ATH9K_RX_FILTER_PHYRADAR;
3829 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3830 bits |= ATH9K_RX_FILTER_PHYERR;
3831
3832 return bits;
3833 }
3834
3835 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3836 {
3837 u32 phybits;
3838
3839 REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3840 phybits = 0;
3841 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3842 phybits |= AR_PHY_ERR_RADAR;
3843 if (bits & ATH9K_RX_FILTER_PHYERR)
3844 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3845 REG_WRITE(ah, AR_PHY_ERR, phybits);
3846
3847 if (phybits)
3848 REG_WRITE(ah, AR_RXCFG,
3849 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3850 else
3851 REG_WRITE(ah, AR_RXCFG,
3852 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3853 }
3854
3855 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3856 {
3857 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3858 }
3859
3860 bool ath9k_hw_disable(struct ath_hw *ah)
3861 {
3862 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3863 return false;
3864
3865 return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3866 }
3867
3868 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3869 {
3870 struct ath9k_channel *chan = ah->curchan;
3871 struct ieee80211_channel *channel = chan->chan;
3872
3873 ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3874
3875 ah->eep_ops->set_txpower(ah, chan,
3876 ath9k_regd_get_ctl(&ah->regulatory, chan),
3877 channel->max_antenna_gain * 2,
3878 channel->max_power * 2,
3879 min((u32) MAX_RATE_POWER,
3880 (u32) ah->regulatory.power_limit));
3881 }
3882
3883 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3884 {
3885 memcpy(ah->macaddr, mac, ETH_ALEN);
3886 }
3887
3888 void ath9k_hw_setopmode(struct ath_hw *ah)
3889 {
3890 ath9k_hw_set_operating_mode(ah, ah->opmode);
3891 }
3892
3893 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3894 {
3895 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3896 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3897 }
3898
3899 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3900 {
3901 REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3902 REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3903 }
3904
3905 void ath9k_hw_write_associd(struct ath_softc *sc)
3906 {
3907 REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3908 REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3909 ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3910 }
3911
3912 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3913 {
3914 u64 tsf;
3915
3916 tsf = REG_READ(ah, AR_TSF_U32);
3917 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3918
3919 return tsf;
3920 }
3921
3922 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3923 {
3924 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3925 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3926 }
3927
3928 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3929 {
3930 ath9k_ps_wakeup(ah->ah_sc);
3931 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3932 AH_TSF_WRITE_TIMEOUT))
3933 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3934 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3935
3936 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3937 ath9k_ps_restore(ah->ah_sc);
3938 }
3939
3940 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3941 {
3942 if (setting)
3943 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3944 else
3945 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3946
3947 return true;
3948 }
3949
3950 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3951 {
3952 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3953 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3954 ah->slottime = (u32) -1;
3955 return false;
3956 } else {
3957 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3958 ah->slottime = us;
3959 return true;
3960 }
3961 }
3962
3963 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3964 {
3965 u32 macmode;
3966
3967 if (mode == ATH9K_HT_MACMODE_2040 &&
3968 !ah->config.cwm_ignore_extcca)
3969 macmode = AR_2040_JOINED_RX_CLEAR;
3970 else
3971 macmode = 0;
3972
3973 REG_WRITE(ah, AR_2040_MODE, macmode);
3974 }
3975
3976 /***************************/
3977 /* Bluetooth Coexistence */
3978 /***************************/
3979
3980 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3981 {
3982 /* connect bt_active to baseband */
3983 REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3984 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3985 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3986
3987 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3988 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3989
3990 /* Set input mux for bt_active to gpio pin */
3991 REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3992 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3993 ah->btactive_gpio);
3994
3995 /* Configure the desired gpio port for input */
3996 ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3997
3998 /* Configure the desired GPIO port for TX_FRAME output */
3999 ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
4000 AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
4001 }
This page took 0.46136 seconds and 5 git commands to generate.