Merge branch 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32
33 static int __init ath9k_init(void)
34 {
35 return 0;
36 }
37 module_init(ath9k_init);
38
39 static void __exit ath9k_exit(void)
40 {
41 return;
42 }
43 module_exit(ath9k_exit);
44
45 /* Private hardware callbacks */
46
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 struct ath9k_channel *chan)
59 {
60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 return;
67
68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 /* You will not have this callback if using the old ANI */
74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 return;
76
77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79
80 /********************/
81 /* Helper Functions */
82 /********************/
83
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 struct ath_common *common = ath9k_hw_common(ah);
88 unsigned int clockrate;
89
90 if (!ah->curchan) /* should really check for CCK instead */
91 clockrate = ATH9K_CLOCK_RATE_CCK;
92 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 else
97 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98
99 if (conf_is_ht40(conf))
100 clockrate *= 2;
101
102 common->clockrate = clockrate;
103 }
104
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 struct ath_common *common = ath9k_hw_common(ah);
108
109 return usecs * common->clockrate;
110 }
111
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 int i;
115
116 BUG_ON(timeout < AH_TIME_QUANTUM);
117
118 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 if ((REG_READ(ah, reg) & mask) == val)
120 return true;
121
122 udelay(AH_TIME_QUANTUM);
123 }
124
125 ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 timeout, reg, REG_READ(ah, reg), mask, val);
128
129 return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135 u32 retval;
136 int i;
137
138 for (i = 0, retval = 0; i < n; i++) {
139 retval = (retval << 1) | (val & 1);
140 val >>= 1;
141 }
142 return retval;
143 }
144
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146 u16 flags, u16 *low,
147 u16 *high)
148 {
149 struct ath9k_hw_capabilities *pCap = &ah->caps;
150
151 if (flags & CHANNEL_5GHZ) {
152 *low = pCap->low_5ghz_chan;
153 *high = pCap->high_5ghz_chan;
154 return true;
155 }
156 if ((flags & CHANNEL_2GHZ)) {
157 *low = pCap->low_2ghz_chan;
158 *high = pCap->high_2ghz_chan;
159 return true;
160 }
161 return false;
162 }
163
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165 u8 phy, int kbps,
166 u32 frameLen, u16 rateix,
167 bool shortPreamble)
168 {
169 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170
171 if (kbps == 0)
172 return 0;
173
174 switch (phy) {
175 case WLAN_RC_PHY_CCK:
176 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177 if (shortPreamble)
178 phyTime >>= 1;
179 numBits = frameLen << 3;
180 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181 break;
182 case WLAN_RC_PHY_OFDM:
183 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185 numBits = OFDM_PLCP_BITS + (frameLen << 3);
186 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187 txTime = OFDM_SIFS_TIME_QUARTER
188 + OFDM_PREAMBLE_TIME_QUARTER
189 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190 } else if (ah->curchan &&
191 IS_CHAN_HALF_RATE(ah->curchan)) {
192 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193 numBits = OFDM_PLCP_BITS + (frameLen << 3);
194 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195 txTime = OFDM_SIFS_TIME_HALF +
196 OFDM_PREAMBLE_TIME_HALF
197 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
198 } else {
199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200 numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203 + (numSymbols * OFDM_SYMBOL_TIME);
204 }
205 break;
206 default:
207 ath_err(ath9k_hw_common(ah),
208 "Unknown phy %u (rate ix %u)\n", phy, rateix);
209 txTime = 0;
210 break;
211 }
212
213 return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218 struct ath9k_channel *chan,
219 struct chan_centers *centers)
220 {
221 int8_t extoff;
222
223 if (!IS_CHAN_HT40(chan)) {
224 centers->ctl_center = centers->ext_center =
225 centers->synth_center = chan->channel;
226 return;
227 }
228
229 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231 centers->synth_center =
232 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233 extoff = 1;
234 } else {
235 centers->synth_center =
236 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237 extoff = -1;
238 }
239
240 centers->ctl_center =
241 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242 /* 25 MHz spacing is supported by hw but not on upper layers */
243 centers->ext_center =
244 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246
247 /******************/
248 /* Chip Revisions */
249 /******************/
250
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253 u32 val;
254
255 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256
257 if (val == 0xFF) {
258 val = REG_READ(ah, AR_SREV);
259 ah->hw_version.macVersion =
260 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 } else {
264 if (!AR_SREV_9100(ah))
265 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266
267 ah->hw_version.macRev = val & AR_SREV_REVISION;
268
269 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 ah->is_pciexpress = true;
271 }
272 }
273
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 if (!AR_SREV_5416(ah))
281 return;
282
283 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292
293 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 struct ath_common *common = ath9k_hw_common(ah);
300 u32 regAddr[2] = { AR_STA_ID0 };
301 u32 regHold[2];
302 static const u32 patternData[4] = {
303 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 };
305 int i, j, loop_max;
306
307 if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 loop_max = 2;
309 regAddr[1] = AR_PHY_BASE + (8 << 2);
310 } else
311 loop_max = 1;
312
313 for (i = 0; i < loop_max; i++) {
314 u32 addr = regAddr[i];
315 u32 wrData, rdData;
316
317 regHold[i] = REG_READ(ah, addr);
318 for (j = 0; j < 0x100; j++) {
319 wrData = (j << 16) | j;
320 REG_WRITE(ah, addr, wrData);
321 rdData = REG_READ(ah, addr);
322 if (rdData != wrData) {
323 ath_err(common,
324 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 addr, wrData, rdData);
326 return false;
327 }
328 }
329 for (j = 0; j < 4; j++) {
330 wrData = patternData[j];
331 REG_WRITE(ah, addr, wrData);
332 rdData = REG_READ(ah, addr);
333 if (wrData != rdData) {
334 ath_err(common,
335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 addr, wrData, rdData);
337 return false;
338 }
339 }
340 REG_WRITE(ah, regAddr[i], regHold[i]);
341 }
342 udelay(100);
343
344 return true;
345 }
346
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 int i;
350
351 ah->config.dma_beacon_response_time = 2;
352 ah->config.sw_beacon_response_time = 10;
353 ah->config.additional_swba_backoff = 0;
354 ah->config.ack_6mb = 0x0;
355 ah->config.cwm_ignore_extcca = 0;
356 ah->config.pcie_powersave_enable = 0;
357 ah->config.pcie_clock_req = 0;
358 ah->config.pcie_waen = 0;
359 ah->config.analog_shiftreg = 1;
360 ah->config.enable_ani = true;
361
362 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 ah->config.spurchans[i][0] = AR_NO_SPUR;
364 ah->config.spurchans[i][1] = AR_NO_SPUR;
365 }
366
367 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 ah->config.ht_enable = 1;
369 else
370 ah->config.ht_enable = 0;
371
372 /* PAPRD needs some more work to be enabled */
373 ah->config.paprd_disable = 1;
374
375 ah->config.rx_intr_mitigation = true;
376 ah->config.pcieSerDesWrite = true;
377
378 /*
379 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
380 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
381 * This means we use it for all AR5416 devices, and the few
382 * minor PCI AR9280 devices out there.
383 *
384 * Serialization is required because these devices do not handle
385 * well the case of two concurrent reads/writes due to the latency
386 * involved. During one read/write another read/write can be issued
387 * on another CPU while the previous read/write may still be working
388 * on our hardware, if we hit this case the hardware poops in a loop.
389 * We prevent this by serializing reads and writes.
390 *
391 * This issue is not present on PCI-Express devices or pre-AR5416
392 * devices (legacy, 802.11abg).
393 */
394 if (num_possible_cpus() > 1)
395 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
396 }
397
398 static void ath9k_hw_init_defaults(struct ath_hw *ah)
399 {
400 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
401
402 regulatory->country_code = CTRY_DEFAULT;
403 regulatory->power_limit = MAX_RATE_POWER;
404 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
405
406 ah->hw_version.magic = AR5416_MAGIC;
407 ah->hw_version.subvendorid = 0;
408
409 ah->atim_window = 0;
410 ah->sta_id1_defaults =
411 AR_STA_ID1_CRPT_MIC_ENABLE |
412 AR_STA_ID1_MCAST_KSRCH;
413 ah->enable_32kHz_clock = DONT_USE_32KHZ;
414 ah->slottime = 20;
415 ah->globaltxtimeout = (u32) -1;
416 ah->power_mode = ATH9K_PM_UNDEFINED;
417 }
418
419 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
420 {
421 struct ath_common *common = ath9k_hw_common(ah);
422 u32 sum;
423 int i;
424 u16 eeval;
425 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
426
427 sum = 0;
428 for (i = 0; i < 3; i++) {
429 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
430 sum += eeval;
431 common->macaddr[2 * i] = eeval >> 8;
432 common->macaddr[2 * i + 1] = eeval & 0xff;
433 }
434 if (sum == 0 || sum == 0xffff * 3)
435 return -EADDRNOTAVAIL;
436
437 return 0;
438 }
439
440 static int ath9k_hw_post_init(struct ath_hw *ah)
441 {
442 struct ath_common *common = ath9k_hw_common(ah);
443 int ecode;
444
445 if (common->bus_ops->ath_bus_type != ATH_USB) {
446 if (!ath9k_hw_chip_test(ah))
447 return -ENODEV;
448 }
449
450 if (!AR_SREV_9300_20_OR_LATER(ah)) {
451 ecode = ar9002_hw_rf_claim(ah);
452 if (ecode != 0)
453 return ecode;
454 }
455
456 ecode = ath9k_hw_eeprom_init(ah);
457 if (ecode != 0)
458 return ecode;
459
460 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
461 "Eeprom VER: %d, REV: %d\n",
462 ah->eep_ops->get_eeprom_ver(ah),
463 ah->eep_ops->get_eeprom_rev(ah));
464
465 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
466 if (ecode) {
467 ath_err(ath9k_hw_common(ah),
468 "Failed allocating banks for external radio\n");
469 ath9k_hw_rf_free_ext_banks(ah);
470 return ecode;
471 }
472
473 if (!AR_SREV_9100(ah)) {
474 ath9k_hw_ani_setup(ah);
475 ath9k_hw_ani_init(ah);
476 }
477
478 return 0;
479 }
480
481 static void ath9k_hw_attach_ops(struct ath_hw *ah)
482 {
483 if (AR_SREV_9300_20_OR_LATER(ah))
484 ar9003_hw_attach_ops(ah);
485 else
486 ar9002_hw_attach_ops(ah);
487 }
488
489 /* Called for all hardware families */
490 static int __ath9k_hw_init(struct ath_hw *ah)
491 {
492 struct ath_common *common = ath9k_hw_common(ah);
493 int r = 0;
494
495 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
496 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
497
498 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
499 ath_err(common, "Couldn't reset chip\n");
500 return -EIO;
501 }
502
503 ath9k_hw_init_defaults(ah);
504 ath9k_hw_init_config(ah);
505
506 ath9k_hw_attach_ops(ah);
507
508 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
509 ath_err(common, "Couldn't wakeup chip\n");
510 return -EIO;
511 }
512
513 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
514 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
515 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
516 !ah->is_pciexpress)) {
517 ah->config.serialize_regmode =
518 SER_REG_MODE_ON;
519 } else {
520 ah->config.serialize_regmode =
521 SER_REG_MODE_OFF;
522 }
523 }
524
525 ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
526 ah->config.serialize_regmode);
527
528 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
529 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
530 else
531 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
532
533 switch (ah->hw_version.macVersion) {
534 case AR_SREV_VERSION_5416_PCI:
535 case AR_SREV_VERSION_5416_PCIE:
536 case AR_SREV_VERSION_9160:
537 case AR_SREV_VERSION_9100:
538 case AR_SREV_VERSION_9280:
539 case AR_SREV_VERSION_9285:
540 case AR_SREV_VERSION_9287:
541 case AR_SREV_VERSION_9271:
542 case AR_SREV_VERSION_9300:
543 case AR_SREV_VERSION_9485:
544 break;
545 default:
546 ath_err(common,
547 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
548 ah->hw_version.macVersion, ah->hw_version.macRev);
549 return -EOPNOTSUPP;
550 }
551
552 if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
553 ah->is_pciexpress = false;
554
555 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
556 ath9k_hw_init_cal_settings(ah);
557
558 ah->ani_function = ATH9K_ANI_ALL;
559 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
560 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
561 if (!AR_SREV_9300_20_OR_LATER(ah))
562 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
563
564 ath9k_hw_init_mode_regs(ah);
565
566 /*
567 * Read back AR_WA into a permanent copy and set bits 14 and 17.
568 * We need to do this to avoid RMW of this register. We cannot
569 * read the reg when chip is asleep.
570 */
571 ah->WARegVal = REG_READ(ah, AR_WA);
572 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
573 AR_WA_ASPM_TIMER_BASED_DISABLE);
574
575 if (ah->is_pciexpress)
576 ath9k_hw_configpcipowersave(ah, 0, 0);
577 else
578 ath9k_hw_disablepcie(ah);
579
580 if (!AR_SREV_9300_20_OR_LATER(ah))
581 ar9002_hw_cck_chan14_spread(ah);
582
583 r = ath9k_hw_post_init(ah);
584 if (r)
585 return r;
586
587 ath9k_hw_init_mode_gain_regs(ah);
588 r = ath9k_hw_fill_cap_info(ah);
589 if (r)
590 return r;
591
592 r = ath9k_hw_init_macaddr(ah);
593 if (r) {
594 ath_err(common, "Failed to initialize MAC address\n");
595 return r;
596 }
597
598 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
599 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
600 else
601 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
602
603 ah->bb_watchdog_timeout_ms = 25;
604
605 common->state = ATH_HW_INITIALIZED;
606
607 return 0;
608 }
609
610 int ath9k_hw_init(struct ath_hw *ah)
611 {
612 int ret;
613 struct ath_common *common = ath9k_hw_common(ah);
614
615 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
616 switch (ah->hw_version.devid) {
617 case AR5416_DEVID_PCI:
618 case AR5416_DEVID_PCIE:
619 case AR5416_AR9100_DEVID:
620 case AR9160_DEVID_PCI:
621 case AR9280_DEVID_PCI:
622 case AR9280_DEVID_PCIE:
623 case AR9285_DEVID_PCIE:
624 case AR9287_DEVID_PCI:
625 case AR9287_DEVID_PCIE:
626 case AR2427_DEVID_PCIE:
627 case AR9300_DEVID_PCIE:
628 case AR9300_DEVID_AR9485_PCIE:
629 break;
630 default:
631 if (common->bus_ops->ath_bus_type == ATH_USB)
632 break;
633 ath_err(common, "Hardware device ID 0x%04x not supported\n",
634 ah->hw_version.devid);
635 return -EOPNOTSUPP;
636 }
637
638 ret = __ath9k_hw_init(ah);
639 if (ret) {
640 ath_err(common,
641 "Unable to initialize hardware; initialization status: %d\n",
642 ret);
643 return ret;
644 }
645
646 return 0;
647 }
648 EXPORT_SYMBOL(ath9k_hw_init);
649
650 static void ath9k_hw_init_qos(struct ath_hw *ah)
651 {
652 ENABLE_REGWRITE_BUFFER(ah);
653
654 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
655 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
656
657 REG_WRITE(ah, AR_QOS_NO_ACK,
658 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
659 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
660 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
661
662 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
663 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
664 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
665 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
666 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
667
668 REGWRITE_BUFFER_FLUSH(ah);
669 }
670
671 static void ath9k_hw_init_pll(struct ath_hw *ah,
672 struct ath9k_channel *chan)
673 {
674 u32 pll;
675
676 if (AR_SREV_9485(ah))
677 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
678
679 pll = ath9k_hw_compute_pll_control(ah, chan);
680
681 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
682
683 /* Switch the core clock for ar9271 to 117Mhz */
684 if (AR_SREV_9271(ah)) {
685 udelay(500);
686 REG_WRITE(ah, 0x50040, 0x304);
687 }
688
689 udelay(RTC_PLL_SETTLE_DELAY);
690
691 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
692 }
693
694 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
695 enum nl80211_iftype opmode)
696 {
697 u32 imr_reg = AR_IMR_TXERR |
698 AR_IMR_TXURN |
699 AR_IMR_RXERR |
700 AR_IMR_RXORN |
701 AR_IMR_BCNMISC;
702
703 if (AR_SREV_9300_20_OR_LATER(ah)) {
704 imr_reg |= AR_IMR_RXOK_HP;
705 if (ah->config.rx_intr_mitigation)
706 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
707 else
708 imr_reg |= AR_IMR_RXOK_LP;
709
710 } else {
711 if (ah->config.rx_intr_mitigation)
712 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713 else
714 imr_reg |= AR_IMR_RXOK;
715 }
716
717 if (ah->config.tx_intr_mitigation)
718 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
719 else
720 imr_reg |= AR_IMR_TXOK;
721
722 if (opmode == NL80211_IFTYPE_AP)
723 imr_reg |= AR_IMR_MIB;
724
725 ENABLE_REGWRITE_BUFFER(ah);
726
727 REG_WRITE(ah, AR_IMR, imr_reg);
728 ah->imrs2_reg |= AR_IMR_S2_GTT;
729 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
730
731 if (!AR_SREV_9100(ah)) {
732 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
733 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
734 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
735 }
736
737 REGWRITE_BUFFER_FLUSH(ah);
738
739 if (AR_SREV_9300_20_OR_LATER(ah)) {
740 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
741 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
742 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
743 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
744 }
745 }
746
747 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
748 {
749 u32 val = ath9k_hw_mac_to_clks(ah, us);
750 val = min(val, (u32) 0xFFFF);
751 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
752 }
753
754 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
755 {
756 u32 val = ath9k_hw_mac_to_clks(ah, us);
757 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
758 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
759 }
760
761 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
762 {
763 u32 val = ath9k_hw_mac_to_clks(ah, us);
764 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
765 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
766 }
767
768 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
769 {
770 if (tu > 0xFFFF) {
771 ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
772 "bad global tx timeout %u\n", tu);
773 ah->globaltxtimeout = (u32) -1;
774 return false;
775 } else {
776 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
777 ah->globaltxtimeout = tu;
778 return true;
779 }
780 }
781
782 void ath9k_hw_init_global_settings(struct ath_hw *ah)
783 {
784 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
785 int acktimeout;
786 int slottime;
787 int sifstime;
788
789 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
790 ah->misc_mode);
791
792 if (ah->misc_mode != 0)
793 REG_WRITE(ah, AR_PCU_MISC,
794 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
795
796 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
797 sifstime = 16;
798 else
799 sifstime = 10;
800
801 /* As defined by IEEE 802.11-2007 17.3.8.6 */
802 slottime = ah->slottime + 3 * ah->coverage_class;
803 acktimeout = slottime + sifstime;
804
805 /*
806 * Workaround for early ACK timeouts, add an offset to match the
807 * initval's 64us ack timeout value.
808 * This was initially only meant to work around an issue with delayed
809 * BA frames in some implementations, but it has been found to fix ACK
810 * timeout issues in other cases as well.
811 */
812 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
813 acktimeout += 64 - sifstime - ah->slottime;
814
815 ath9k_hw_setslottime(ah, ah->slottime);
816 ath9k_hw_set_ack_timeout(ah, acktimeout);
817 ath9k_hw_set_cts_timeout(ah, acktimeout);
818 if (ah->globaltxtimeout != (u32) -1)
819 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
820 }
821 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
822
823 void ath9k_hw_deinit(struct ath_hw *ah)
824 {
825 struct ath_common *common = ath9k_hw_common(ah);
826
827 if (common->state < ATH_HW_INITIALIZED)
828 goto free_hw;
829
830 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
831
832 free_hw:
833 ath9k_hw_rf_free_ext_banks(ah);
834 }
835 EXPORT_SYMBOL(ath9k_hw_deinit);
836
837 /*******/
838 /* INI */
839 /*******/
840
841 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
842 {
843 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
844
845 if (IS_CHAN_B(chan))
846 ctl |= CTL_11B;
847 else if (IS_CHAN_G(chan))
848 ctl |= CTL_11G;
849 else
850 ctl |= CTL_11A;
851
852 return ctl;
853 }
854
855 /****************************************/
856 /* Reset and Channel Switching Routines */
857 /****************************************/
858
859 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
860 {
861 struct ath_common *common = ath9k_hw_common(ah);
862 u32 regval;
863
864 ENABLE_REGWRITE_BUFFER(ah);
865
866 /*
867 * set AHB_MODE not to do cacheline prefetches
868 */
869 if (!AR_SREV_9300_20_OR_LATER(ah)) {
870 regval = REG_READ(ah, AR_AHB_MODE);
871 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
872 }
873
874 /*
875 * let mac dma reads be in 128 byte chunks
876 */
877 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
878 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
879
880 REGWRITE_BUFFER_FLUSH(ah);
881
882 /*
883 * Restore TX Trigger Level to its pre-reset value.
884 * The initial value depends on whether aggregation is enabled, and is
885 * adjusted whenever underruns are detected.
886 */
887 if (!AR_SREV_9300_20_OR_LATER(ah))
888 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
889
890 ENABLE_REGWRITE_BUFFER(ah);
891
892 /*
893 * let mac dma writes be in 128 byte chunks
894 */
895 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
896 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
897
898 /*
899 * Setup receive FIFO threshold to hold off TX activities
900 */
901 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
902
903 if (AR_SREV_9300_20_OR_LATER(ah)) {
904 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
905 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
906
907 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
908 ah->caps.rx_status_len);
909 }
910
911 /*
912 * reduce the number of usable entries in PCU TXBUF to avoid
913 * wrap around issues.
914 */
915 if (AR_SREV_9285(ah)) {
916 /* For AR9285 the number of Fifos are reduced to half.
917 * So set the usable tx buf size also to half to
918 * avoid data/delimiter underruns
919 */
920 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
921 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
922 } else if (!AR_SREV_9271(ah)) {
923 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
924 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
925 }
926
927 REGWRITE_BUFFER_FLUSH(ah);
928
929 if (AR_SREV_9300_20_OR_LATER(ah))
930 ath9k_hw_reset_txstatus_ring(ah);
931 }
932
933 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
934 {
935 u32 val;
936
937 val = REG_READ(ah, AR_STA_ID1);
938 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
939 switch (opmode) {
940 case NL80211_IFTYPE_AP:
941 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
942 | AR_STA_ID1_KSRCH_MODE);
943 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
944 break;
945 case NL80211_IFTYPE_ADHOC:
946 case NL80211_IFTYPE_MESH_POINT:
947 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
948 | AR_STA_ID1_KSRCH_MODE);
949 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
950 break;
951 case NL80211_IFTYPE_STATION:
952 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953 break;
954 default:
955 if (ah->is_monitoring)
956 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
957 break;
958 }
959 }
960
961 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
962 u32 *coef_mantissa, u32 *coef_exponent)
963 {
964 u32 coef_exp, coef_man;
965
966 for (coef_exp = 31; coef_exp > 0; coef_exp--)
967 if ((coef_scaled >> coef_exp) & 0x1)
968 break;
969
970 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
971
972 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
973
974 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
975 *coef_exponent = coef_exp - 16;
976 }
977
978 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
979 {
980 u32 rst_flags;
981 u32 tmpReg;
982
983 if (AR_SREV_9100(ah)) {
984 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
985 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
986 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
987 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
988 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
989 }
990
991 ENABLE_REGWRITE_BUFFER(ah);
992
993 if (AR_SREV_9300_20_OR_LATER(ah)) {
994 REG_WRITE(ah, AR_WA, ah->WARegVal);
995 udelay(10);
996 }
997
998 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
999 AR_RTC_FORCE_WAKE_ON_INT);
1000
1001 if (AR_SREV_9100(ah)) {
1002 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1003 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1004 } else {
1005 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1006 if (tmpReg &
1007 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1008 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1009 u32 val;
1010 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1011
1012 val = AR_RC_HOSTIF;
1013 if (!AR_SREV_9300_20_OR_LATER(ah))
1014 val |= AR_RC_AHB;
1015 REG_WRITE(ah, AR_RC, val);
1016
1017 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1018 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1019
1020 rst_flags = AR_RTC_RC_MAC_WARM;
1021 if (type == ATH9K_RESET_COLD)
1022 rst_flags |= AR_RTC_RC_MAC_COLD;
1023 }
1024
1025 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1026
1027 REGWRITE_BUFFER_FLUSH(ah);
1028
1029 udelay(50);
1030
1031 REG_WRITE(ah, AR_RTC_RC, 0);
1032 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1033 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1034 "RTC stuck in MAC reset\n");
1035 return false;
1036 }
1037
1038 if (!AR_SREV_9100(ah))
1039 REG_WRITE(ah, AR_RC, 0);
1040
1041 if (AR_SREV_9100(ah))
1042 udelay(50);
1043
1044 return true;
1045 }
1046
1047 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1048 {
1049 ENABLE_REGWRITE_BUFFER(ah);
1050
1051 if (AR_SREV_9300_20_OR_LATER(ah)) {
1052 REG_WRITE(ah, AR_WA, ah->WARegVal);
1053 udelay(10);
1054 }
1055
1056 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1057 AR_RTC_FORCE_WAKE_ON_INT);
1058
1059 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1060 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1061
1062 REG_WRITE(ah, AR_RTC_RESET, 0);
1063 udelay(2);
1064
1065 REGWRITE_BUFFER_FLUSH(ah);
1066
1067 if (!AR_SREV_9300_20_OR_LATER(ah))
1068 udelay(2);
1069
1070 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1071 REG_WRITE(ah, AR_RC, 0);
1072
1073 REG_WRITE(ah, AR_RTC_RESET, 1);
1074
1075 if (!ath9k_hw_wait(ah,
1076 AR_RTC_STATUS,
1077 AR_RTC_STATUS_M,
1078 AR_RTC_STATUS_ON,
1079 AH_WAIT_TIMEOUT)) {
1080 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1081 "RTC not waking up\n");
1082 return false;
1083 }
1084
1085 ath9k_hw_read_revisions(ah);
1086
1087 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1088 }
1089
1090 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1091 {
1092 if (AR_SREV_9300_20_OR_LATER(ah)) {
1093 REG_WRITE(ah, AR_WA, ah->WARegVal);
1094 udelay(10);
1095 }
1096
1097 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1098 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1099
1100 switch (type) {
1101 case ATH9K_RESET_POWER_ON:
1102 return ath9k_hw_set_reset_power_on(ah);
1103 case ATH9K_RESET_WARM:
1104 case ATH9K_RESET_COLD:
1105 return ath9k_hw_set_reset(ah, type);
1106 default:
1107 return false;
1108 }
1109 }
1110
1111 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1112 struct ath9k_channel *chan)
1113 {
1114 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1115 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1116 return false;
1117 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1118 return false;
1119
1120 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1121 return false;
1122
1123 ah->chip_fullsleep = false;
1124 ath9k_hw_init_pll(ah, chan);
1125 ath9k_hw_set_rfmode(ah, chan);
1126
1127 return true;
1128 }
1129
1130 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1131 struct ath9k_channel *chan)
1132 {
1133 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1134 struct ath_common *common = ath9k_hw_common(ah);
1135 struct ieee80211_channel *channel = chan->chan;
1136 u32 qnum;
1137 int r;
1138
1139 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1140 if (ath9k_hw_numtxpending(ah, qnum)) {
1141 ath_dbg(common, ATH_DBG_QUEUE,
1142 "Transmit frames pending on queue %d\n", qnum);
1143 return false;
1144 }
1145 }
1146
1147 if (!ath9k_hw_rfbus_req(ah)) {
1148 ath_err(common, "Could not kill baseband RX\n");
1149 return false;
1150 }
1151
1152 ath9k_hw_set_channel_regs(ah, chan);
1153
1154 r = ath9k_hw_rf_set_freq(ah, chan);
1155 if (r) {
1156 ath_err(common, "Failed to set channel\n");
1157 return false;
1158 }
1159 ath9k_hw_set_clockrate(ah);
1160
1161 ah->eep_ops->set_txpower(ah, chan,
1162 ath9k_regd_get_ctl(regulatory, chan),
1163 channel->max_antenna_gain * 2,
1164 channel->max_power * 2,
1165 min((u32) MAX_RATE_POWER,
1166 (u32) regulatory->power_limit), false);
1167
1168 ath9k_hw_rfbus_done(ah);
1169
1170 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1171 ath9k_hw_set_delta_slope(ah, chan);
1172
1173 ath9k_hw_spur_mitigate_freq(ah, chan);
1174
1175 return true;
1176 }
1177
1178 bool ath9k_hw_check_alive(struct ath_hw *ah)
1179 {
1180 int count = 50;
1181 u32 reg;
1182
1183 if (AR_SREV_9285_12_OR_LATER(ah))
1184 return true;
1185
1186 do {
1187 reg = REG_READ(ah, AR_OBS_BUS_1);
1188
1189 if ((reg & 0x7E7FFFEF) == 0x00702400)
1190 continue;
1191
1192 switch (reg & 0x7E000B00) {
1193 case 0x1E000000:
1194 case 0x52000B00:
1195 case 0x18000B00:
1196 continue;
1197 default:
1198 return true;
1199 }
1200 } while (count-- > 0);
1201
1202 return false;
1203 }
1204 EXPORT_SYMBOL(ath9k_hw_check_alive);
1205
1206 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1207 struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1208 {
1209 struct ath_common *common = ath9k_hw_common(ah);
1210 u32 saveLedState;
1211 struct ath9k_channel *curchan = ah->curchan;
1212 u32 saveDefAntenna;
1213 u32 macStaId1;
1214 u64 tsf = 0;
1215 int i, r;
1216
1217 ah->txchainmask = common->tx_chainmask;
1218 ah->rxchainmask = common->rx_chainmask;
1219
1220 if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1221 ath9k_hw_abortpcurecv(ah);
1222 if (!ath9k_hw_stopdmarecv(ah)) {
1223 ath_dbg(common, ATH_DBG_XMIT,
1224 "Failed to stop receive dma\n");
1225 bChannelChange = false;
1226 }
1227 }
1228
1229 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1230 return -EIO;
1231
1232 if (curchan && !ah->chip_fullsleep)
1233 ath9k_hw_getnf(ah, curchan);
1234
1235 ah->caldata = caldata;
1236 if (caldata &&
1237 (chan->channel != caldata->channel ||
1238 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1239 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1240 /* Operating channel changed, reset channel calibration data */
1241 memset(caldata, 0, sizeof(*caldata));
1242 ath9k_init_nfcal_hist_buffer(ah, chan);
1243 }
1244
1245 if (bChannelChange &&
1246 (ah->chip_fullsleep != true) &&
1247 (ah->curchan != NULL) &&
1248 (chan->channel != ah->curchan->channel) &&
1249 ((chan->channelFlags & CHANNEL_ALL) ==
1250 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1251 (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1252
1253 if (ath9k_hw_channel_change(ah, chan)) {
1254 ath9k_hw_loadnf(ah, ah->curchan);
1255 ath9k_hw_start_nfcal(ah, true);
1256 if (AR_SREV_9271(ah))
1257 ar9002_hw_load_ani_reg(ah, chan);
1258 return 0;
1259 }
1260 }
1261
1262 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1263 if (saveDefAntenna == 0)
1264 saveDefAntenna = 1;
1265
1266 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1267
1268 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1269 if (AR_SREV_9100(ah) ||
1270 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1271 tsf = ath9k_hw_gettsf64(ah);
1272
1273 saveLedState = REG_READ(ah, AR_CFG_LED) &
1274 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1275 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1276
1277 ath9k_hw_mark_phy_inactive(ah);
1278
1279 ah->paprd_table_write_done = false;
1280
1281 /* Only required on the first reset */
1282 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1283 REG_WRITE(ah,
1284 AR9271_RESET_POWER_DOWN_CONTROL,
1285 AR9271_RADIO_RF_RST);
1286 udelay(50);
1287 }
1288
1289 if (!ath9k_hw_chip_reset(ah, chan)) {
1290 ath_err(common, "Chip reset failed\n");
1291 return -EINVAL;
1292 }
1293
1294 /* Only required on the first reset */
1295 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1296 ah->htc_reset_init = false;
1297 REG_WRITE(ah,
1298 AR9271_RESET_POWER_DOWN_CONTROL,
1299 AR9271_GATE_MAC_CTL);
1300 udelay(50);
1301 }
1302
1303 /* Restore TSF */
1304 if (tsf)
1305 ath9k_hw_settsf64(ah, tsf);
1306
1307 if (AR_SREV_9280_20_OR_LATER(ah))
1308 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1309
1310 if (!AR_SREV_9300_20_OR_LATER(ah))
1311 ar9002_hw_enable_async_fifo(ah);
1312
1313 r = ath9k_hw_process_ini(ah, chan);
1314 if (r)
1315 return r;
1316
1317 /*
1318 * Some AR91xx SoC devices frequently fail to accept TSF writes
1319 * right after the chip reset. When that happens, write a new
1320 * value after the initvals have been applied, with an offset
1321 * based on measured time difference
1322 */
1323 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1324 tsf += 1500;
1325 ath9k_hw_settsf64(ah, tsf);
1326 }
1327
1328 /* Setup MFP options for CCMP */
1329 if (AR_SREV_9280_20_OR_LATER(ah)) {
1330 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1331 * frames when constructing CCMP AAD. */
1332 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1333 0xc7ff);
1334 ah->sw_mgmt_crypto = false;
1335 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1336 /* Disable hardware crypto for management frames */
1337 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1338 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1339 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1340 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1341 ah->sw_mgmt_crypto = true;
1342 } else
1343 ah->sw_mgmt_crypto = true;
1344
1345 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1346 ath9k_hw_set_delta_slope(ah, chan);
1347
1348 ath9k_hw_spur_mitigate_freq(ah, chan);
1349 ah->eep_ops->set_board_values(ah, chan);
1350
1351 ath9k_hw_set_operating_mode(ah, ah->opmode);
1352
1353 ENABLE_REGWRITE_BUFFER(ah);
1354
1355 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1356 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1357 | macStaId1
1358 | AR_STA_ID1_RTS_USE_DEF
1359 | (ah->config.
1360 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1361 | ah->sta_id1_defaults);
1362 ath_hw_setbssidmask(common);
1363 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1364 ath9k_hw_write_associd(ah);
1365 REG_WRITE(ah, AR_ISR, ~0);
1366 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1367
1368 REGWRITE_BUFFER_FLUSH(ah);
1369
1370 r = ath9k_hw_rf_set_freq(ah, chan);
1371 if (r)
1372 return r;
1373
1374 ath9k_hw_set_clockrate(ah);
1375
1376 ENABLE_REGWRITE_BUFFER(ah);
1377
1378 for (i = 0; i < AR_NUM_DCU; i++)
1379 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1380
1381 REGWRITE_BUFFER_FLUSH(ah);
1382
1383 ah->intr_txqs = 0;
1384 for (i = 0; i < ah->caps.total_queues; i++)
1385 ath9k_hw_resettxqueue(ah, i);
1386
1387 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1388 ath9k_hw_ani_cache_ini_regs(ah);
1389 ath9k_hw_init_qos(ah);
1390
1391 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1392 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1393
1394 ath9k_hw_init_global_settings(ah);
1395
1396 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1397 ar9002_hw_update_async_fifo(ah);
1398 ar9002_hw_enable_wep_aggregation(ah);
1399 }
1400
1401 REG_WRITE(ah, AR_STA_ID1,
1402 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1403
1404 ath9k_hw_set_dma(ah);
1405
1406 REG_WRITE(ah, AR_OBS, 8);
1407
1408 if (ah->config.rx_intr_mitigation) {
1409 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1410 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1411 }
1412
1413 if (ah->config.tx_intr_mitigation) {
1414 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1415 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1416 }
1417
1418 ath9k_hw_init_bb(ah, chan);
1419
1420 if (!ath9k_hw_init_cal(ah, chan))
1421 return -EIO;
1422
1423 ENABLE_REGWRITE_BUFFER(ah);
1424
1425 ath9k_hw_restore_chainmask(ah);
1426 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1427
1428 REGWRITE_BUFFER_FLUSH(ah);
1429
1430 /*
1431 * For big endian systems turn on swapping for descriptors
1432 */
1433 if (AR_SREV_9100(ah)) {
1434 u32 mask;
1435 mask = REG_READ(ah, AR_CFG);
1436 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1437 ath_dbg(common, ATH_DBG_RESET,
1438 "CFG Byte Swap Set 0x%x\n", mask);
1439 } else {
1440 mask =
1441 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1442 REG_WRITE(ah, AR_CFG, mask);
1443 ath_dbg(common, ATH_DBG_RESET,
1444 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1445 }
1446 } else {
1447 if (common->bus_ops->ath_bus_type == ATH_USB) {
1448 /* Configure AR9271 target WLAN */
1449 if (AR_SREV_9271(ah))
1450 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1451 else
1452 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1453 }
1454 #ifdef __BIG_ENDIAN
1455 else
1456 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1457 #endif
1458 }
1459
1460 if (ah->btcoex_hw.enabled)
1461 ath9k_hw_btcoex_enable(ah);
1462
1463 if (AR_SREV_9300_20_OR_LATER(ah))
1464 ar9003_hw_bb_watchdog_config(ah);
1465
1466 return 0;
1467 }
1468 EXPORT_SYMBOL(ath9k_hw_reset);
1469
1470 /******************************/
1471 /* Power Management (Chipset) */
1472 /******************************/
1473
1474 /*
1475 * Notify Power Mgt is disabled in self-generated frames.
1476 * If requested, force chip to sleep.
1477 */
1478 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1479 {
1480 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1481 if (setChip) {
1482 /*
1483 * Clear the RTC force wake bit to allow the
1484 * mac to go to sleep.
1485 */
1486 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1487 AR_RTC_FORCE_WAKE_EN);
1488 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1489 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1490
1491 /* Shutdown chip. Active low */
1492 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1493 REG_CLR_BIT(ah, (AR_RTC_RESET),
1494 AR_RTC_RESET_EN);
1495 }
1496
1497 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1498 if (AR_SREV_9300_20_OR_LATER(ah))
1499 REG_WRITE(ah, AR_WA,
1500 ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1501 }
1502
1503 /*
1504 * Notify Power Management is enabled in self-generating
1505 * frames. If request, set power mode of chip to
1506 * auto/normal. Duration in units of 128us (1/8 TU).
1507 */
1508 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1509 {
1510 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1511 if (setChip) {
1512 struct ath9k_hw_capabilities *pCap = &ah->caps;
1513
1514 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1515 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1516 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1517 AR_RTC_FORCE_WAKE_ON_INT);
1518 } else {
1519 /*
1520 * Clear the RTC force wake bit to allow the
1521 * mac to go to sleep.
1522 */
1523 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1524 AR_RTC_FORCE_WAKE_EN);
1525 }
1526 }
1527
1528 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1529 if (AR_SREV_9300_20_OR_LATER(ah))
1530 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1531 }
1532
1533 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1534 {
1535 u32 val;
1536 int i;
1537
1538 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1539 if (AR_SREV_9300_20_OR_LATER(ah)) {
1540 REG_WRITE(ah, AR_WA, ah->WARegVal);
1541 udelay(10);
1542 }
1543
1544 if (setChip) {
1545 if ((REG_READ(ah, AR_RTC_STATUS) &
1546 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1547 if (ath9k_hw_set_reset_reg(ah,
1548 ATH9K_RESET_POWER_ON) != true) {
1549 return false;
1550 }
1551 if (!AR_SREV_9300_20_OR_LATER(ah))
1552 ath9k_hw_init_pll(ah, NULL);
1553 }
1554 if (AR_SREV_9100(ah))
1555 REG_SET_BIT(ah, AR_RTC_RESET,
1556 AR_RTC_RESET_EN);
1557
1558 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1559 AR_RTC_FORCE_WAKE_EN);
1560 udelay(50);
1561
1562 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1563 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1564 if (val == AR_RTC_STATUS_ON)
1565 break;
1566 udelay(50);
1567 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1568 AR_RTC_FORCE_WAKE_EN);
1569 }
1570 if (i == 0) {
1571 ath_err(ath9k_hw_common(ah),
1572 "Failed to wakeup in %uus\n",
1573 POWER_UP_TIME / 20);
1574 return false;
1575 }
1576 }
1577
1578 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1579
1580 return true;
1581 }
1582
1583 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1584 {
1585 struct ath_common *common = ath9k_hw_common(ah);
1586 int status = true, setChip = true;
1587 static const char *modes[] = {
1588 "AWAKE",
1589 "FULL-SLEEP",
1590 "NETWORK SLEEP",
1591 "UNDEFINED"
1592 };
1593
1594 if (ah->power_mode == mode)
1595 return status;
1596
1597 ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1598 modes[ah->power_mode], modes[mode]);
1599
1600 switch (mode) {
1601 case ATH9K_PM_AWAKE:
1602 status = ath9k_hw_set_power_awake(ah, setChip);
1603 break;
1604 case ATH9K_PM_FULL_SLEEP:
1605 ath9k_set_power_sleep(ah, setChip);
1606 ah->chip_fullsleep = true;
1607 break;
1608 case ATH9K_PM_NETWORK_SLEEP:
1609 ath9k_set_power_network_sleep(ah, setChip);
1610 break;
1611 default:
1612 ath_err(common, "Unknown power mode %u\n", mode);
1613 return false;
1614 }
1615 ah->power_mode = mode;
1616
1617 /*
1618 * XXX: If this warning never comes up after a while then
1619 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1620 * ath9k_hw_setpower() return type void.
1621 */
1622
1623 if (!(ah->ah_flags & AH_UNPLUGGED))
1624 ATH_DBG_WARN_ON_ONCE(!status);
1625
1626 return status;
1627 }
1628 EXPORT_SYMBOL(ath9k_hw_setpower);
1629
1630 /*******************/
1631 /* Beacon Handling */
1632 /*******************/
1633
1634 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1635 {
1636 int flags = 0;
1637
1638 ENABLE_REGWRITE_BUFFER(ah);
1639
1640 switch (ah->opmode) {
1641 case NL80211_IFTYPE_ADHOC:
1642 case NL80211_IFTYPE_MESH_POINT:
1643 REG_SET_BIT(ah, AR_TXCFG,
1644 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1645 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1646 TU_TO_USEC(next_beacon +
1647 (ah->atim_window ? ah->
1648 atim_window : 1)));
1649 flags |= AR_NDP_TIMER_EN;
1650 case NL80211_IFTYPE_AP:
1651 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1652 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1653 TU_TO_USEC(next_beacon -
1654 ah->config.
1655 dma_beacon_response_time));
1656 REG_WRITE(ah, AR_NEXT_SWBA,
1657 TU_TO_USEC(next_beacon -
1658 ah->config.
1659 sw_beacon_response_time));
1660 flags |=
1661 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1662 break;
1663 default:
1664 ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1665 "%s: unsupported opmode: %d\n",
1666 __func__, ah->opmode);
1667 return;
1668 break;
1669 }
1670
1671 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1672 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1673 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1674 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1675
1676 REGWRITE_BUFFER_FLUSH(ah);
1677
1678 beacon_period &= ~ATH9K_BEACON_ENA;
1679 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1680 ath9k_hw_reset_tsf(ah);
1681 }
1682
1683 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1684 }
1685 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1686
1687 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1688 const struct ath9k_beacon_state *bs)
1689 {
1690 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1691 struct ath9k_hw_capabilities *pCap = &ah->caps;
1692 struct ath_common *common = ath9k_hw_common(ah);
1693
1694 ENABLE_REGWRITE_BUFFER(ah);
1695
1696 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1697
1698 REG_WRITE(ah, AR_BEACON_PERIOD,
1699 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1700 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1701 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1702
1703 REGWRITE_BUFFER_FLUSH(ah);
1704
1705 REG_RMW_FIELD(ah, AR_RSSI_THR,
1706 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1707
1708 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1709
1710 if (bs->bs_sleepduration > beaconintval)
1711 beaconintval = bs->bs_sleepduration;
1712
1713 dtimperiod = bs->bs_dtimperiod;
1714 if (bs->bs_sleepduration > dtimperiod)
1715 dtimperiod = bs->bs_sleepduration;
1716
1717 if (beaconintval == dtimperiod)
1718 nextTbtt = bs->bs_nextdtim;
1719 else
1720 nextTbtt = bs->bs_nexttbtt;
1721
1722 ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1723 ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1724 ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1725 ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1726
1727 ENABLE_REGWRITE_BUFFER(ah);
1728
1729 REG_WRITE(ah, AR_NEXT_DTIM,
1730 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1731 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1732
1733 REG_WRITE(ah, AR_SLEEP1,
1734 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1735 | AR_SLEEP1_ASSUME_DTIM);
1736
1737 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1738 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1739 else
1740 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1741
1742 REG_WRITE(ah, AR_SLEEP2,
1743 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1744
1745 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1746 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1747
1748 REGWRITE_BUFFER_FLUSH(ah);
1749
1750 REG_SET_BIT(ah, AR_TIMER_MODE,
1751 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1752 AR_DTIM_TIMER_EN);
1753
1754 /* TSF Out of Range Threshold */
1755 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1756 }
1757 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1758
1759 /*******************/
1760 /* HW Capabilities */
1761 /*******************/
1762
1763 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1764 {
1765 struct ath9k_hw_capabilities *pCap = &ah->caps;
1766 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1767 struct ath_common *common = ath9k_hw_common(ah);
1768 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1769
1770 u16 capField = 0, eeval;
1771 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1772
1773 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1774 regulatory->current_rd = eeval;
1775
1776 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1777 if (AR_SREV_9285_12_OR_LATER(ah))
1778 eeval |= AR9285_RDEXT_DEFAULT;
1779 regulatory->current_rd_ext = eeval;
1780
1781 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1782
1783 if (ah->opmode != NL80211_IFTYPE_AP &&
1784 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1785 if (regulatory->current_rd == 0x64 ||
1786 regulatory->current_rd == 0x65)
1787 regulatory->current_rd += 5;
1788 else if (regulatory->current_rd == 0x41)
1789 regulatory->current_rd = 0x43;
1790 ath_dbg(common, ATH_DBG_REGULATORY,
1791 "regdomain mapped to 0x%x\n", regulatory->current_rd);
1792 }
1793
1794 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1795 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1796 ath_err(common,
1797 "no band has been marked as supported in EEPROM\n");
1798 return -EINVAL;
1799 }
1800
1801 if (eeval & AR5416_OPFLAGS_11A)
1802 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1803
1804 if (eeval & AR5416_OPFLAGS_11G)
1805 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1806
1807 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1808 /*
1809 * For AR9271 we will temporarilly uses the rx chainmax as read from
1810 * the EEPROM.
1811 */
1812 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1813 !(eeval & AR5416_OPFLAGS_11A) &&
1814 !(AR_SREV_9271(ah)))
1815 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1816 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1817 else
1818 /* Use rx_chainmask from EEPROM. */
1819 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1820
1821 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1822
1823 /* enable key search for every frame in an aggregate */
1824 if (AR_SREV_9300_20_OR_LATER(ah))
1825 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1826
1827 pCap->low_2ghz_chan = 2312;
1828 pCap->high_2ghz_chan = 2732;
1829
1830 pCap->low_5ghz_chan = 4920;
1831 pCap->high_5ghz_chan = 6100;
1832
1833 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1834
1835 if (ah->config.ht_enable)
1836 pCap->hw_caps |= ATH9K_HW_CAP_HT;
1837 else
1838 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1839
1840 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1841 pCap->total_queues =
1842 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1843 else
1844 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1845
1846 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1847 pCap->keycache_size =
1848 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1849 else
1850 pCap->keycache_size = AR_KEYTABLE_SIZE;
1851
1852 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1853 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1854 else
1855 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1856
1857 if (AR_SREV_9271(ah))
1858 pCap->num_gpio_pins = AR9271_NUM_GPIO;
1859 else if (AR_DEVID_7010(ah))
1860 pCap->num_gpio_pins = AR7010_NUM_GPIO;
1861 else if (AR_SREV_9285_12_OR_LATER(ah))
1862 pCap->num_gpio_pins = AR9285_NUM_GPIO;
1863 else if (AR_SREV_9280_20_OR_LATER(ah))
1864 pCap->num_gpio_pins = AR928X_NUM_GPIO;
1865 else
1866 pCap->num_gpio_pins = AR_NUM_GPIO;
1867
1868 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1869 pCap->hw_caps |= ATH9K_HW_CAP_CST;
1870 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1871 } else {
1872 pCap->rts_aggr_limit = (8 * 1024);
1873 }
1874
1875 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1876
1877 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1878 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1879 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1880 ah->rfkill_gpio =
1881 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1882 ah->rfkill_polarity =
1883 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1884
1885 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1886 }
1887 #endif
1888 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1889 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1890 else
1891 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1892
1893 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1894 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1895 else
1896 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1897
1898 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1899 pCap->reg_cap =
1900 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1901 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1902 AR_EEPROM_EEREGCAP_EN_KK_U2 |
1903 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1904 } else {
1905 pCap->reg_cap =
1906 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1907 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1908 }
1909
1910 /* Advertise midband for AR5416 with FCC midband set in eeprom */
1911 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1912 AR_SREV_5416(ah))
1913 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1914
1915 if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1916 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1917 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1918
1919 if (AR_SREV_9285(ah)) {
1920 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1921 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1922 } else {
1923 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1924 }
1925 } else {
1926 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1927 }
1928
1929 if (AR_SREV_9300_20_OR_LATER(ah)) {
1930 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1931 if (!AR_SREV_9485(ah))
1932 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1933
1934 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1935 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1936 pCap->rx_status_len = sizeof(struct ar9003_rxs);
1937 pCap->tx_desc_len = sizeof(struct ar9003_txc);
1938 pCap->txs_len = sizeof(struct ar9003_txs);
1939 if (!ah->config.paprd_disable &&
1940 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1941 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1942 } else {
1943 pCap->tx_desc_len = sizeof(struct ath_desc);
1944 if (AR_SREV_9280_20(ah) &&
1945 ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1946 AR5416_EEP_MINOR_VER_16) ||
1947 ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1948 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1949 }
1950
1951 if (AR_SREV_9300_20_OR_LATER(ah))
1952 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1953
1954 if (AR_SREV_9300_20_OR_LATER(ah))
1955 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1956
1957 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1958 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1959
1960 if (AR_SREV_9285(ah))
1961 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1962 ant_div_ctl1 =
1963 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1964 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1965 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1966 }
1967 if (AR_SREV_9300_20_OR_LATER(ah)) {
1968 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1969 pCap->hw_caps |= ATH9K_HW_CAP_APM;
1970 }
1971
1972
1973
1974 if (AR_SREV_9485_10(ah)) {
1975 pCap->pcie_lcr_extsync_en = true;
1976 pCap->pcie_lcr_offset = 0x80;
1977 }
1978
1979 tx_chainmask = pCap->tx_chainmask;
1980 rx_chainmask = pCap->rx_chainmask;
1981 while (tx_chainmask || rx_chainmask) {
1982 if (tx_chainmask & BIT(0))
1983 pCap->max_txchains++;
1984 if (rx_chainmask & BIT(0))
1985 pCap->max_rxchains++;
1986
1987 tx_chainmask >>= 1;
1988 rx_chainmask >>= 1;
1989 }
1990
1991 return 0;
1992 }
1993
1994 /****************************/
1995 /* GPIO / RFKILL / Antennae */
1996 /****************************/
1997
1998 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1999 u32 gpio, u32 type)
2000 {
2001 int addr;
2002 u32 gpio_shift, tmp;
2003
2004 if (gpio > 11)
2005 addr = AR_GPIO_OUTPUT_MUX3;
2006 else if (gpio > 5)
2007 addr = AR_GPIO_OUTPUT_MUX2;
2008 else
2009 addr = AR_GPIO_OUTPUT_MUX1;
2010
2011 gpio_shift = (gpio % 6) * 5;
2012
2013 if (AR_SREV_9280_20_OR_LATER(ah)
2014 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2015 REG_RMW(ah, addr, (type << gpio_shift),
2016 (0x1f << gpio_shift));
2017 } else {
2018 tmp = REG_READ(ah, addr);
2019 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2020 tmp &= ~(0x1f << gpio_shift);
2021 tmp |= (type << gpio_shift);
2022 REG_WRITE(ah, addr, tmp);
2023 }
2024 }
2025
2026 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2027 {
2028 u32 gpio_shift;
2029
2030 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2031
2032 if (AR_DEVID_7010(ah)) {
2033 gpio_shift = gpio;
2034 REG_RMW(ah, AR7010_GPIO_OE,
2035 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2036 (AR7010_GPIO_OE_MASK << gpio_shift));
2037 return;
2038 }
2039
2040 gpio_shift = gpio << 1;
2041 REG_RMW(ah,
2042 AR_GPIO_OE_OUT,
2043 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2044 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2045 }
2046 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2047
2048 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2049 {
2050 #define MS_REG_READ(x, y) \
2051 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2052
2053 if (gpio >= ah->caps.num_gpio_pins)
2054 return 0xffffffff;
2055
2056 if (AR_DEVID_7010(ah)) {
2057 u32 val;
2058 val = REG_READ(ah, AR7010_GPIO_IN);
2059 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2060 } else if (AR_SREV_9300_20_OR_LATER(ah))
2061 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2062 AR_GPIO_BIT(gpio)) != 0;
2063 else if (AR_SREV_9271(ah))
2064 return MS_REG_READ(AR9271, gpio) != 0;
2065 else if (AR_SREV_9287_11_OR_LATER(ah))
2066 return MS_REG_READ(AR9287, gpio) != 0;
2067 else if (AR_SREV_9285_12_OR_LATER(ah))
2068 return MS_REG_READ(AR9285, gpio) != 0;
2069 else if (AR_SREV_9280_20_OR_LATER(ah))
2070 return MS_REG_READ(AR928X, gpio) != 0;
2071 else
2072 return MS_REG_READ(AR, gpio) != 0;
2073 }
2074 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2075
2076 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2077 u32 ah_signal_type)
2078 {
2079 u32 gpio_shift;
2080
2081 if (AR_DEVID_7010(ah)) {
2082 gpio_shift = gpio;
2083 REG_RMW(ah, AR7010_GPIO_OE,
2084 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2085 (AR7010_GPIO_OE_MASK << gpio_shift));
2086 return;
2087 }
2088
2089 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2090 gpio_shift = 2 * gpio;
2091 REG_RMW(ah,
2092 AR_GPIO_OE_OUT,
2093 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2094 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2095 }
2096 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2097
2098 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2099 {
2100 if (AR_DEVID_7010(ah)) {
2101 val = val ? 0 : 1;
2102 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2103 AR_GPIO_BIT(gpio));
2104 return;
2105 }
2106
2107 if (AR_SREV_9271(ah))
2108 val = ~val;
2109
2110 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2111 AR_GPIO_BIT(gpio));
2112 }
2113 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2114
2115 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2116 {
2117 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2118 }
2119 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2120
2121 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2122 {
2123 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2124 }
2125 EXPORT_SYMBOL(ath9k_hw_setantenna);
2126
2127 /*********************/
2128 /* General Operation */
2129 /*********************/
2130
2131 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2132 {
2133 u32 bits = REG_READ(ah, AR_RX_FILTER);
2134 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2135
2136 if (phybits & AR_PHY_ERR_RADAR)
2137 bits |= ATH9K_RX_FILTER_PHYRADAR;
2138 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2139 bits |= ATH9K_RX_FILTER_PHYERR;
2140
2141 return bits;
2142 }
2143 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2144
2145 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2146 {
2147 u32 phybits;
2148
2149 ENABLE_REGWRITE_BUFFER(ah);
2150
2151 REG_WRITE(ah, AR_RX_FILTER, bits);
2152
2153 phybits = 0;
2154 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2155 phybits |= AR_PHY_ERR_RADAR;
2156 if (bits & ATH9K_RX_FILTER_PHYERR)
2157 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2158 REG_WRITE(ah, AR_PHY_ERR, phybits);
2159
2160 if (phybits)
2161 REG_WRITE(ah, AR_RXCFG,
2162 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2163 else
2164 REG_WRITE(ah, AR_RXCFG,
2165 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2166
2167 REGWRITE_BUFFER_FLUSH(ah);
2168 }
2169 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2170
2171 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2172 {
2173 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2174 return false;
2175
2176 ath9k_hw_init_pll(ah, NULL);
2177 return true;
2178 }
2179 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2180
2181 bool ath9k_hw_disable(struct ath_hw *ah)
2182 {
2183 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2184 return false;
2185
2186 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2187 return false;
2188
2189 ath9k_hw_init_pll(ah, NULL);
2190 return true;
2191 }
2192 EXPORT_SYMBOL(ath9k_hw_disable);
2193
2194 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2195 {
2196 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2197 struct ath9k_channel *chan = ah->curchan;
2198 struct ieee80211_channel *channel = chan->chan;
2199
2200 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2201
2202 ah->eep_ops->set_txpower(ah, chan,
2203 ath9k_regd_get_ctl(regulatory, chan),
2204 channel->max_antenna_gain * 2,
2205 channel->max_power * 2,
2206 min((u32) MAX_RATE_POWER,
2207 (u32) regulatory->power_limit), test);
2208 }
2209 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2210
2211 void ath9k_hw_setopmode(struct ath_hw *ah)
2212 {
2213 ath9k_hw_set_operating_mode(ah, ah->opmode);
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_setopmode);
2216
2217 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2218 {
2219 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2220 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2221 }
2222 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2223
2224 void ath9k_hw_write_associd(struct ath_hw *ah)
2225 {
2226 struct ath_common *common = ath9k_hw_common(ah);
2227
2228 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2229 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2230 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2231 }
2232 EXPORT_SYMBOL(ath9k_hw_write_associd);
2233
2234 #define ATH9K_MAX_TSF_READ 10
2235
2236 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2237 {
2238 u32 tsf_lower, tsf_upper1, tsf_upper2;
2239 int i;
2240
2241 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2242 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2243 tsf_lower = REG_READ(ah, AR_TSF_L32);
2244 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2245 if (tsf_upper2 == tsf_upper1)
2246 break;
2247 tsf_upper1 = tsf_upper2;
2248 }
2249
2250 WARN_ON( i == ATH9K_MAX_TSF_READ );
2251
2252 return (((u64)tsf_upper1 << 32) | tsf_lower);
2253 }
2254 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2255
2256 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2257 {
2258 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2259 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2260 }
2261 EXPORT_SYMBOL(ath9k_hw_settsf64);
2262
2263 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2264 {
2265 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2266 AH_TSF_WRITE_TIMEOUT))
2267 ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2268 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2269
2270 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2271 }
2272 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2273
2274 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2275 {
2276 if (setting)
2277 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2278 else
2279 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2280 }
2281 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2282
2283 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2284 {
2285 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2286 u32 macmode;
2287
2288 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2289 macmode = AR_2040_JOINED_RX_CLEAR;
2290 else
2291 macmode = 0;
2292
2293 REG_WRITE(ah, AR_2040_MODE, macmode);
2294 }
2295
2296 /* HW Generic timers configuration */
2297
2298 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2299 {
2300 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2305 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2306 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2307 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2308 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2309 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2310 AR_NDP2_TIMER_MODE, 0x0002},
2311 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2312 AR_NDP2_TIMER_MODE, 0x0004},
2313 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2314 AR_NDP2_TIMER_MODE, 0x0008},
2315 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2316 AR_NDP2_TIMER_MODE, 0x0010},
2317 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2318 AR_NDP2_TIMER_MODE, 0x0020},
2319 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2320 AR_NDP2_TIMER_MODE, 0x0040},
2321 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2322 AR_NDP2_TIMER_MODE, 0x0080}
2323 };
2324
2325 /* HW generic timer primitives */
2326
2327 /* compute and clear index of rightmost 1 */
2328 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2329 {
2330 u32 b;
2331
2332 b = *mask;
2333 b &= (0-b);
2334 *mask &= ~b;
2335 b *= debruijn32;
2336 b >>= 27;
2337
2338 return timer_table->gen_timer_index[b];
2339 }
2340
2341 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2342 {
2343 return REG_READ(ah, AR_TSF_L32);
2344 }
2345
2346 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2347 void (*trigger)(void *),
2348 void (*overflow)(void *),
2349 void *arg,
2350 u8 timer_index)
2351 {
2352 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2353 struct ath_gen_timer *timer;
2354
2355 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2356
2357 if (timer == NULL) {
2358 ath_err(ath9k_hw_common(ah),
2359 "Failed to allocate memory for hw timer[%d]\n",
2360 timer_index);
2361 return NULL;
2362 }
2363
2364 /* allocate a hardware generic timer slot */
2365 timer_table->timers[timer_index] = timer;
2366 timer->index = timer_index;
2367 timer->trigger = trigger;
2368 timer->overflow = overflow;
2369 timer->arg = arg;
2370
2371 return timer;
2372 }
2373 EXPORT_SYMBOL(ath_gen_timer_alloc);
2374
2375 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2376 struct ath_gen_timer *timer,
2377 u32 timer_next,
2378 u32 timer_period)
2379 {
2380 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2381 u32 tsf;
2382
2383 BUG_ON(!timer_period);
2384
2385 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2386
2387 tsf = ath9k_hw_gettsf32(ah);
2388
2389 ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2390 "current tsf %x period %x timer_next %x\n",
2391 tsf, timer_period, timer_next);
2392
2393 /*
2394 * Pull timer_next forward if the current TSF already passed it
2395 * because of software latency
2396 */
2397 if (timer_next < tsf)
2398 timer_next = tsf + timer_period;
2399
2400 /*
2401 * Program generic timer registers
2402 */
2403 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2404 timer_next);
2405 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2406 timer_period);
2407 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2408 gen_tmr_configuration[timer->index].mode_mask);
2409
2410 /* Enable both trigger and thresh interrupt masks */
2411 REG_SET_BIT(ah, AR_IMR_S5,
2412 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2413 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2416
2417 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2418 {
2419 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2420
2421 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2422 (timer->index >= ATH_MAX_GEN_TIMER)) {
2423 return;
2424 }
2425
2426 /* Clear generic timer enable bits. */
2427 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2428 gen_tmr_configuration[timer->index].mode_mask);
2429
2430 /* Disable both trigger and thresh interrupt masks */
2431 REG_CLR_BIT(ah, AR_IMR_S5,
2432 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2433 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2434
2435 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2436 }
2437 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2438
2439 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2440 {
2441 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2442
2443 /* free the hardware generic timer slot */
2444 timer_table->timers[timer->index] = NULL;
2445 kfree(timer);
2446 }
2447 EXPORT_SYMBOL(ath_gen_timer_free);
2448
2449 /*
2450 * Generic Timer Interrupts handling
2451 */
2452 void ath_gen_timer_isr(struct ath_hw *ah)
2453 {
2454 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2455 struct ath_gen_timer *timer;
2456 struct ath_common *common = ath9k_hw_common(ah);
2457 u32 trigger_mask, thresh_mask, index;
2458
2459 /* get hardware generic timer interrupt status */
2460 trigger_mask = ah->intr_gen_timer_trigger;
2461 thresh_mask = ah->intr_gen_timer_thresh;
2462 trigger_mask &= timer_table->timer_mask.val;
2463 thresh_mask &= timer_table->timer_mask.val;
2464
2465 trigger_mask &= ~thresh_mask;
2466
2467 while (thresh_mask) {
2468 index = rightmost_index(timer_table, &thresh_mask);
2469 timer = timer_table->timers[index];
2470 BUG_ON(!timer);
2471 ath_dbg(common, ATH_DBG_HWTIMER,
2472 "TSF overflow for Gen timer %d\n", index);
2473 timer->overflow(timer->arg);
2474 }
2475
2476 while (trigger_mask) {
2477 index = rightmost_index(timer_table, &trigger_mask);
2478 timer = timer_table->timers[index];
2479 BUG_ON(!timer);
2480 ath_dbg(common, ATH_DBG_HWTIMER,
2481 "Gen timer[%d] trigger\n", index);
2482 timer->trigger(timer->arg);
2483 }
2484 }
2485 EXPORT_SYMBOL(ath_gen_timer_isr);
2486
2487 /********/
2488 /* HTC */
2489 /********/
2490
2491 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2492 {
2493 ah->htc_reset_init = true;
2494 }
2495 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2496
2497 static struct {
2498 u32 version;
2499 const char * name;
2500 } ath_mac_bb_names[] = {
2501 /* Devices with external radios */
2502 { AR_SREV_VERSION_5416_PCI, "5416" },
2503 { AR_SREV_VERSION_5416_PCIE, "5418" },
2504 { AR_SREV_VERSION_9100, "9100" },
2505 { AR_SREV_VERSION_9160, "9160" },
2506 /* Single-chip solutions */
2507 { AR_SREV_VERSION_9280, "9280" },
2508 { AR_SREV_VERSION_9285, "9285" },
2509 { AR_SREV_VERSION_9287, "9287" },
2510 { AR_SREV_VERSION_9271, "9271" },
2511 { AR_SREV_VERSION_9300, "9300" },
2512 };
2513
2514 /* For devices with external radios */
2515 static struct {
2516 u16 version;
2517 const char * name;
2518 } ath_rf_names[] = {
2519 { 0, "5133" },
2520 { AR_RAD5133_SREV_MAJOR, "5133" },
2521 { AR_RAD5122_SREV_MAJOR, "5122" },
2522 { AR_RAD2133_SREV_MAJOR, "2133" },
2523 { AR_RAD2122_SREV_MAJOR, "2122" }
2524 };
2525
2526 /*
2527 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2528 */
2529 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2530 {
2531 int i;
2532
2533 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2534 if (ath_mac_bb_names[i].version == mac_bb_version) {
2535 return ath_mac_bb_names[i].name;
2536 }
2537 }
2538
2539 return "????";
2540 }
2541
2542 /*
2543 * Return the RF name. "????" is returned if the RF is unknown.
2544 * Used for devices with external radios.
2545 */
2546 static const char *ath9k_hw_rf_name(u16 rf_version)
2547 {
2548 int i;
2549
2550 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2551 if (ath_rf_names[i].version == rf_version) {
2552 return ath_rf_names[i].name;
2553 }
2554 }
2555
2556 return "????";
2557 }
2558
2559 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2560 {
2561 int used;
2562
2563 /* chipsets >= AR9280 are single-chip */
2564 if (AR_SREV_9280_20_OR_LATER(ah)) {
2565 used = snprintf(hw_name, len,
2566 "Atheros AR%s Rev:%x",
2567 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2568 ah->hw_version.macRev);
2569 }
2570 else {
2571 used = snprintf(hw_name, len,
2572 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2573 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2574 ah->hw_version.macRev,
2575 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2576 AR_RADIO_SREV_MAJOR)),
2577 ah->hw_version.phyRev);
2578 }
2579
2580 hw_name[used] = '\0';
2581 }
2582 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.124843 seconds and 5 git commands to generate.