Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29
30 MODULE_AUTHOR("Atheros Communications");
31 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
32 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
33 MODULE_LICENSE("Dual BSD/GPL");
34
35 static int __init ath9k_init(void)
36 {
37 return 0;
38 }
39 module_init(ath9k_init);
40
41 static void __exit ath9k_exit(void)
42 {
43 return;
44 }
45 module_exit(ath9k_exit);
46
47 /* Private hardware callbacks */
48
49 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
50 {
51 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 }
53
54 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
55 {
56 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 }
58
59 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
60 struct ath9k_channel *chan)
61 {
62 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
63 }
64
65 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
66 {
67 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
68 return;
69
70 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
71 }
72
73 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
74 {
75 /* You will not have this callback if using the old ANI */
76 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
77 return;
78
79 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
80 }
81
82 /********************/
83 /* Helper Functions */
84 /********************/
85
86 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
87 {
88 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
89 struct ath_common *common = ath9k_hw_common(ah);
90 unsigned int clockrate;
91
92 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
93 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
94 clockrate = 117;
95 else if (!ah->curchan) /* should really check for CCK instead */
96 clockrate = ATH9K_CLOCK_RATE_CCK;
97 else if (conf->channel->band == IEEE80211_BAND_2GHZ)
98 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
99 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
100 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
101 else
102 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
103
104 if (conf_is_ht40(conf))
105 clockrate *= 2;
106
107 if (ah->curchan) {
108 if (IS_CHAN_HALF_RATE(ah->curchan))
109 clockrate /= 2;
110 if (IS_CHAN_QUARTER_RATE(ah->curchan))
111 clockrate /= 4;
112 }
113
114 common->clockrate = clockrate;
115 }
116
117 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
118 {
119 struct ath_common *common = ath9k_hw_common(ah);
120
121 return usecs * common->clockrate;
122 }
123
124 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
125 {
126 int i;
127
128 BUG_ON(timeout < AH_TIME_QUANTUM);
129
130 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
131 if ((REG_READ(ah, reg) & mask) == val)
132 return true;
133
134 udelay(AH_TIME_QUANTUM);
135 }
136
137 ath_dbg(ath9k_hw_common(ah), ANY,
138 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
139 timeout, reg, REG_READ(ah, reg), mask, val);
140
141 return false;
142 }
143 EXPORT_SYMBOL(ath9k_hw_wait);
144
145 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
146 int column, unsigned int *writecnt)
147 {
148 int r;
149
150 ENABLE_REGWRITE_BUFFER(ah);
151 for (r = 0; r < array->ia_rows; r++) {
152 REG_WRITE(ah, INI_RA(array, r, 0),
153 INI_RA(array, r, column));
154 DO_DELAY(*writecnt);
155 }
156 REGWRITE_BUFFER_FLUSH(ah);
157 }
158
159 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
160 {
161 u32 retval;
162 int i;
163
164 for (i = 0, retval = 0; i < n; i++) {
165 retval = (retval << 1) | (val & 1);
166 val >>= 1;
167 }
168 return retval;
169 }
170
171 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172 u8 phy, int kbps,
173 u32 frameLen, u16 rateix,
174 bool shortPreamble)
175 {
176 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
177
178 if (kbps == 0)
179 return 0;
180
181 switch (phy) {
182 case WLAN_RC_PHY_CCK:
183 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184 if (shortPreamble)
185 phyTime >>= 1;
186 numBits = frameLen << 3;
187 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188 break;
189 case WLAN_RC_PHY_OFDM:
190 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192 numBits = OFDM_PLCP_BITS + (frameLen << 3);
193 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194 txTime = OFDM_SIFS_TIME_QUARTER
195 + OFDM_PREAMBLE_TIME_QUARTER
196 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197 } else if (ah->curchan &&
198 IS_CHAN_HALF_RATE(ah->curchan)) {
199 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200 numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 txTime = OFDM_SIFS_TIME_HALF +
203 OFDM_PREAMBLE_TIME_HALF
204 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
205 } else {
206 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207 numBits = OFDM_PLCP_BITS + (frameLen << 3);
208 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210 + (numSymbols * OFDM_SYMBOL_TIME);
211 }
212 break;
213 default:
214 ath_err(ath9k_hw_common(ah),
215 "Unknown phy %u (rate ix %u)\n", phy, rateix);
216 txTime = 0;
217 break;
218 }
219
220 return txTime;
221 }
222 EXPORT_SYMBOL(ath9k_hw_computetxtime);
223
224 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225 struct ath9k_channel *chan,
226 struct chan_centers *centers)
227 {
228 int8_t extoff;
229
230 if (!IS_CHAN_HT40(chan)) {
231 centers->ctl_center = centers->ext_center =
232 centers->synth_center = chan->channel;
233 return;
234 }
235
236 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238 centers->synth_center =
239 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240 extoff = 1;
241 } else {
242 centers->synth_center =
243 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244 extoff = -1;
245 }
246
247 centers->ctl_center =
248 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 /* 25 MHz spacing is supported by hw but not on upper layers */
250 centers->ext_center =
251 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
252 }
253
254 /******************/
255 /* Chip Revisions */
256 /******************/
257
258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
259 {
260 u32 val;
261
262 switch (ah->hw_version.devid) {
263 case AR5416_AR9100_DEVID:
264 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265 break;
266 case AR9300_DEVID_AR9330:
267 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268 if (ah->get_mac_revision) {
269 ah->hw_version.macRev = ah->get_mac_revision();
270 } else {
271 val = REG_READ(ah, AR_SREV);
272 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
273 }
274 return;
275 case AR9300_DEVID_AR9340:
276 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
277 val = REG_READ(ah, AR_SREV);
278 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
279 return;
280 }
281
282 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
283
284 if (val == 0xFF) {
285 val = REG_READ(ah, AR_SREV);
286 ah->hw_version.macVersion =
287 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
288 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
289
290 if (AR_SREV_9462(ah))
291 ah->is_pciexpress = true;
292 else
293 ah->is_pciexpress = (val &
294 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
295 } else {
296 if (!AR_SREV_9100(ah))
297 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
298
299 ah->hw_version.macRev = val & AR_SREV_REVISION;
300
301 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
302 ah->is_pciexpress = true;
303 }
304 }
305
306 /************************************/
307 /* HW Attach, Detach, Init Routines */
308 /************************************/
309
310 static void ath9k_hw_disablepcie(struct ath_hw *ah)
311 {
312 if (!AR_SREV_5416(ah))
313 return;
314
315 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
316 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
317 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
318 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
319 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
320 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
321 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
322 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
323 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
324
325 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
326 }
327
328 static void ath9k_hw_aspm_init(struct ath_hw *ah)
329 {
330 struct ath_common *common = ath9k_hw_common(ah);
331
332 if (common->bus_ops->aspm_init)
333 common->bus_ops->aspm_init(common);
334 }
335
336 /* This should work for all families including legacy */
337 static bool ath9k_hw_chip_test(struct ath_hw *ah)
338 {
339 struct ath_common *common = ath9k_hw_common(ah);
340 u32 regAddr[2] = { AR_STA_ID0 };
341 u32 regHold[2];
342 static const u32 patternData[4] = {
343 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
344 };
345 int i, j, loop_max;
346
347 if (!AR_SREV_9300_20_OR_LATER(ah)) {
348 loop_max = 2;
349 regAddr[1] = AR_PHY_BASE + (8 << 2);
350 } else
351 loop_max = 1;
352
353 for (i = 0; i < loop_max; i++) {
354 u32 addr = regAddr[i];
355 u32 wrData, rdData;
356
357 regHold[i] = REG_READ(ah, addr);
358 for (j = 0; j < 0x100; j++) {
359 wrData = (j << 16) | j;
360 REG_WRITE(ah, addr, wrData);
361 rdData = REG_READ(ah, addr);
362 if (rdData != wrData) {
363 ath_err(common,
364 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
365 addr, wrData, rdData);
366 return false;
367 }
368 }
369 for (j = 0; j < 4; j++) {
370 wrData = patternData[j];
371 REG_WRITE(ah, addr, wrData);
372 rdData = REG_READ(ah, addr);
373 if (wrData != rdData) {
374 ath_err(common,
375 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
376 addr, wrData, rdData);
377 return false;
378 }
379 }
380 REG_WRITE(ah, regAddr[i], regHold[i]);
381 }
382 udelay(100);
383
384 return true;
385 }
386
387 static void ath9k_hw_init_config(struct ath_hw *ah)
388 {
389 int i;
390
391 ah->config.dma_beacon_response_time = 2;
392 ah->config.sw_beacon_response_time = 10;
393 ah->config.additional_swba_backoff = 0;
394 ah->config.ack_6mb = 0x0;
395 ah->config.cwm_ignore_extcca = 0;
396 ah->config.pcie_clock_req = 0;
397 ah->config.pcie_waen = 0;
398 ah->config.analog_shiftreg = 1;
399 ah->config.enable_ani = true;
400
401 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
402 ah->config.spurchans[i][0] = AR_NO_SPUR;
403 ah->config.spurchans[i][1] = AR_NO_SPUR;
404 }
405
406 /* PAPRD needs some more work to be enabled */
407 ah->config.paprd_disable = 1;
408
409 ah->config.rx_intr_mitigation = true;
410 ah->config.pcieSerDesWrite = true;
411
412 /*
413 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
414 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
415 * This means we use it for all AR5416 devices, and the few
416 * minor PCI AR9280 devices out there.
417 *
418 * Serialization is required because these devices do not handle
419 * well the case of two concurrent reads/writes due to the latency
420 * involved. During one read/write another read/write can be issued
421 * on another CPU while the previous read/write may still be working
422 * on our hardware, if we hit this case the hardware poops in a loop.
423 * We prevent this by serializing reads and writes.
424 *
425 * This issue is not present on PCI-Express devices or pre-AR5416
426 * devices (legacy, 802.11abg).
427 */
428 if (num_possible_cpus() > 1)
429 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
430 }
431
432 static void ath9k_hw_init_defaults(struct ath_hw *ah)
433 {
434 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
435
436 regulatory->country_code = CTRY_DEFAULT;
437 regulatory->power_limit = MAX_RATE_POWER;
438
439 ah->hw_version.magic = AR5416_MAGIC;
440 ah->hw_version.subvendorid = 0;
441
442 ah->atim_window = 0;
443 ah->sta_id1_defaults =
444 AR_STA_ID1_CRPT_MIC_ENABLE |
445 AR_STA_ID1_MCAST_KSRCH;
446 if (AR_SREV_9100(ah))
447 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
448 ah->enable_32kHz_clock = DONT_USE_32KHZ;
449 ah->slottime = ATH9K_SLOT_TIME_9;
450 ah->globaltxtimeout = (u32) -1;
451 ah->power_mode = ATH9K_PM_UNDEFINED;
452 ah->htc_reset_init = true;
453 }
454
455 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
456 {
457 struct ath_common *common = ath9k_hw_common(ah);
458 u32 sum;
459 int i;
460 u16 eeval;
461 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
462
463 sum = 0;
464 for (i = 0; i < 3; i++) {
465 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
466 sum += eeval;
467 common->macaddr[2 * i] = eeval >> 8;
468 common->macaddr[2 * i + 1] = eeval & 0xff;
469 }
470 if (sum == 0 || sum == 0xffff * 3)
471 return -EADDRNOTAVAIL;
472
473 return 0;
474 }
475
476 static int ath9k_hw_post_init(struct ath_hw *ah)
477 {
478 struct ath_common *common = ath9k_hw_common(ah);
479 int ecode;
480
481 if (common->bus_ops->ath_bus_type != ATH_USB) {
482 if (!ath9k_hw_chip_test(ah))
483 return -ENODEV;
484 }
485
486 if (!AR_SREV_9300_20_OR_LATER(ah)) {
487 ecode = ar9002_hw_rf_claim(ah);
488 if (ecode != 0)
489 return ecode;
490 }
491
492 ecode = ath9k_hw_eeprom_init(ah);
493 if (ecode != 0)
494 return ecode;
495
496 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
497 ah->eep_ops->get_eeprom_ver(ah),
498 ah->eep_ops->get_eeprom_rev(ah));
499
500 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
501 if (ecode) {
502 ath_err(ath9k_hw_common(ah),
503 "Failed allocating banks for external radio\n");
504 ath9k_hw_rf_free_ext_banks(ah);
505 return ecode;
506 }
507
508 if (ah->config.enable_ani) {
509 ath9k_hw_ani_setup(ah);
510 ath9k_hw_ani_init(ah);
511 }
512
513 return 0;
514 }
515
516 static void ath9k_hw_attach_ops(struct ath_hw *ah)
517 {
518 if (AR_SREV_9300_20_OR_LATER(ah))
519 ar9003_hw_attach_ops(ah);
520 else
521 ar9002_hw_attach_ops(ah);
522 }
523
524 /* Called for all hardware families */
525 static int __ath9k_hw_init(struct ath_hw *ah)
526 {
527 struct ath_common *common = ath9k_hw_common(ah);
528 int r = 0;
529
530 ath9k_hw_read_revisions(ah);
531
532 /*
533 * Read back AR_WA into a permanent copy and set bits 14 and 17.
534 * We need to do this to avoid RMW of this register. We cannot
535 * read the reg when chip is asleep.
536 */
537 ah->WARegVal = REG_READ(ah, AR_WA);
538 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
539 AR_WA_ASPM_TIMER_BASED_DISABLE);
540
541 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
542 ath_err(common, "Couldn't reset chip\n");
543 return -EIO;
544 }
545
546 if (AR_SREV_9462(ah))
547 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
548
549 ath9k_hw_init_defaults(ah);
550 ath9k_hw_init_config(ah);
551
552 ath9k_hw_attach_ops(ah);
553
554 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
555 ath_err(common, "Couldn't wakeup chip\n");
556 return -EIO;
557 }
558
559 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
560 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
561 ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
562 !ah->is_pciexpress)) {
563 ah->config.serialize_regmode =
564 SER_REG_MODE_ON;
565 } else {
566 ah->config.serialize_regmode =
567 SER_REG_MODE_OFF;
568 }
569 }
570
571 ath_dbg(common, RESET, "serialize_regmode is %d\n",
572 ah->config.serialize_regmode);
573
574 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
575 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
576 else
577 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
578
579 switch (ah->hw_version.macVersion) {
580 case AR_SREV_VERSION_5416_PCI:
581 case AR_SREV_VERSION_5416_PCIE:
582 case AR_SREV_VERSION_9160:
583 case AR_SREV_VERSION_9100:
584 case AR_SREV_VERSION_9280:
585 case AR_SREV_VERSION_9285:
586 case AR_SREV_VERSION_9287:
587 case AR_SREV_VERSION_9271:
588 case AR_SREV_VERSION_9300:
589 case AR_SREV_VERSION_9330:
590 case AR_SREV_VERSION_9485:
591 case AR_SREV_VERSION_9340:
592 case AR_SREV_VERSION_9462:
593 break;
594 default:
595 ath_err(common,
596 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
597 ah->hw_version.macVersion, ah->hw_version.macRev);
598 return -EOPNOTSUPP;
599 }
600
601 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
602 AR_SREV_9330(ah))
603 ah->is_pciexpress = false;
604
605 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
606 ath9k_hw_init_cal_settings(ah);
607
608 ah->ani_function = ATH9K_ANI_ALL;
609 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
610 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
611 if (!AR_SREV_9300_20_OR_LATER(ah))
612 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
613
614 /* disable ANI for 9340 */
615 if (AR_SREV_9340(ah))
616 ah->config.enable_ani = false;
617
618 ath9k_hw_init_mode_regs(ah);
619
620 if (!ah->is_pciexpress)
621 ath9k_hw_disablepcie(ah);
622
623 r = ath9k_hw_post_init(ah);
624 if (r)
625 return r;
626
627 ath9k_hw_init_mode_gain_regs(ah);
628 r = ath9k_hw_fill_cap_info(ah);
629 if (r)
630 return r;
631
632 if (ah->is_pciexpress)
633 ath9k_hw_aspm_init(ah);
634
635 r = ath9k_hw_init_macaddr(ah);
636 if (r) {
637 ath_err(common, "Failed to initialize MAC address\n");
638 return r;
639 }
640
641 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
642 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
643 else
644 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
645
646 if (AR_SREV_9330(ah))
647 ah->bb_watchdog_timeout_ms = 85;
648 else
649 ah->bb_watchdog_timeout_ms = 25;
650
651 common->state = ATH_HW_INITIALIZED;
652
653 return 0;
654 }
655
656 int ath9k_hw_init(struct ath_hw *ah)
657 {
658 int ret;
659 struct ath_common *common = ath9k_hw_common(ah);
660
661 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
662 switch (ah->hw_version.devid) {
663 case AR5416_DEVID_PCI:
664 case AR5416_DEVID_PCIE:
665 case AR5416_AR9100_DEVID:
666 case AR9160_DEVID_PCI:
667 case AR9280_DEVID_PCI:
668 case AR9280_DEVID_PCIE:
669 case AR9285_DEVID_PCIE:
670 case AR9287_DEVID_PCI:
671 case AR9287_DEVID_PCIE:
672 case AR2427_DEVID_PCIE:
673 case AR9300_DEVID_PCIE:
674 case AR9300_DEVID_AR9485_PCIE:
675 case AR9300_DEVID_AR9330:
676 case AR9300_DEVID_AR9340:
677 case AR9300_DEVID_AR9580:
678 case AR9300_DEVID_AR9462:
679 break;
680 default:
681 if (common->bus_ops->ath_bus_type == ATH_USB)
682 break;
683 ath_err(common, "Hardware device ID 0x%04x not supported\n",
684 ah->hw_version.devid);
685 return -EOPNOTSUPP;
686 }
687
688 ret = __ath9k_hw_init(ah);
689 if (ret) {
690 ath_err(common,
691 "Unable to initialize hardware; initialization status: %d\n",
692 ret);
693 return ret;
694 }
695
696 return 0;
697 }
698 EXPORT_SYMBOL(ath9k_hw_init);
699
700 static void ath9k_hw_init_qos(struct ath_hw *ah)
701 {
702 ENABLE_REGWRITE_BUFFER(ah);
703
704 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
705 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
706
707 REG_WRITE(ah, AR_QOS_NO_ACK,
708 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
709 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
710 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
711
712 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
713 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
714 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
715 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
716 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
717
718 REGWRITE_BUFFER_FLUSH(ah);
719 }
720
721 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
722 {
723 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
724 udelay(100);
725 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
726
727 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
728 udelay(100);
729
730 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
731 }
732 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
733
734 static void ath9k_hw_init_pll(struct ath_hw *ah,
735 struct ath9k_channel *chan)
736 {
737 u32 pll;
738
739 if (AR_SREV_9485(ah)) {
740
741 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
742 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
743 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
744 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
745 AR_CH0_DPLL2_KD, 0x40);
746 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
747 AR_CH0_DPLL2_KI, 0x4);
748
749 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
750 AR_CH0_BB_DPLL1_REFDIV, 0x5);
751 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
752 AR_CH0_BB_DPLL1_NINI, 0x58);
753 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
754 AR_CH0_BB_DPLL1_NFRAC, 0x0);
755
756 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
758 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
760 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
762
763 /* program BB PLL phase_shift to 0x6 */
764 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
765 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
766
767 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
768 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
769 udelay(1000);
770 } else if (AR_SREV_9330(ah)) {
771 u32 ddr_dpll2, pll_control2, kd;
772
773 if (ah->is_clk_25mhz) {
774 ddr_dpll2 = 0x18e82f01;
775 pll_control2 = 0xe04a3d;
776 kd = 0x1d;
777 } else {
778 ddr_dpll2 = 0x19e82f01;
779 pll_control2 = 0x886666;
780 kd = 0x3d;
781 }
782
783 /* program DDR PLL ki and kd value */
784 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
785
786 /* program DDR PLL phase_shift */
787 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
788 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
789
790 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
791 udelay(1000);
792
793 /* program refdiv, nint, frac to RTC register */
794 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
795
796 /* program BB PLL kd and ki value */
797 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
798 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
799
800 /* program BB PLL phase_shift */
801 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
802 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
803 } else if (AR_SREV_9340(ah)) {
804 u32 regval, pll2_divint, pll2_divfrac, refdiv;
805
806 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
807 udelay(1000);
808
809 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
810 udelay(100);
811
812 if (ah->is_clk_25mhz) {
813 pll2_divint = 0x54;
814 pll2_divfrac = 0x1eb85;
815 refdiv = 3;
816 } else {
817 pll2_divint = 88;
818 pll2_divfrac = 0;
819 refdiv = 5;
820 }
821
822 regval = REG_READ(ah, AR_PHY_PLL_MODE);
823 regval |= (0x1 << 16);
824 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
825 udelay(100);
826
827 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
828 (pll2_divint << 18) | pll2_divfrac);
829 udelay(100);
830
831 regval = REG_READ(ah, AR_PHY_PLL_MODE);
832 regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
833 (0x4 << 26) | (0x18 << 19);
834 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
835 REG_WRITE(ah, AR_PHY_PLL_MODE,
836 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
837 udelay(1000);
838 }
839
840 pll = ath9k_hw_compute_pll_control(ah, chan);
841
842 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
843
844 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
845 udelay(1000);
846
847 /* Switch the core clock for ar9271 to 117Mhz */
848 if (AR_SREV_9271(ah)) {
849 udelay(500);
850 REG_WRITE(ah, 0x50040, 0x304);
851 }
852
853 udelay(RTC_PLL_SETTLE_DELAY);
854
855 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
856
857 if (AR_SREV_9340(ah)) {
858 if (ah->is_clk_25mhz) {
859 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
860 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
861 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
862 } else {
863 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
864 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
865 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
866 }
867 udelay(100);
868 }
869 }
870
871 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
872 enum nl80211_iftype opmode)
873 {
874 u32 sync_default = AR_INTR_SYNC_DEFAULT;
875 u32 imr_reg = AR_IMR_TXERR |
876 AR_IMR_TXURN |
877 AR_IMR_RXERR |
878 AR_IMR_RXORN |
879 AR_IMR_BCNMISC;
880
881 if (AR_SREV_9340(ah))
882 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
883
884 if (AR_SREV_9300_20_OR_LATER(ah)) {
885 imr_reg |= AR_IMR_RXOK_HP;
886 if (ah->config.rx_intr_mitigation)
887 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
888 else
889 imr_reg |= AR_IMR_RXOK_LP;
890
891 } else {
892 if (ah->config.rx_intr_mitigation)
893 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
894 else
895 imr_reg |= AR_IMR_RXOK;
896 }
897
898 if (ah->config.tx_intr_mitigation)
899 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
900 else
901 imr_reg |= AR_IMR_TXOK;
902
903 if (opmode == NL80211_IFTYPE_AP)
904 imr_reg |= AR_IMR_MIB;
905
906 ENABLE_REGWRITE_BUFFER(ah);
907
908 REG_WRITE(ah, AR_IMR, imr_reg);
909 ah->imrs2_reg |= AR_IMR_S2_GTT;
910 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
911
912 if (!AR_SREV_9100(ah)) {
913 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
914 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
915 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
916 }
917
918 REGWRITE_BUFFER_FLUSH(ah);
919
920 if (AR_SREV_9300_20_OR_LATER(ah)) {
921 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
922 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
923 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
924 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
925 }
926 }
927
928 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
929 {
930 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
931 val = min(val, (u32) 0xFFFF);
932 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
933 }
934
935 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
936 {
937 u32 val = ath9k_hw_mac_to_clks(ah, us);
938 val = min(val, (u32) 0xFFFF);
939 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
940 }
941
942 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
943 {
944 u32 val = ath9k_hw_mac_to_clks(ah, us);
945 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
946 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
947 }
948
949 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
950 {
951 u32 val = ath9k_hw_mac_to_clks(ah, us);
952 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
953 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
954 }
955
956 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
957 {
958 if (tu > 0xFFFF) {
959 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
960 tu);
961 ah->globaltxtimeout = (u32) -1;
962 return false;
963 } else {
964 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
965 ah->globaltxtimeout = tu;
966 return true;
967 }
968 }
969
970 void ath9k_hw_init_global_settings(struct ath_hw *ah)
971 {
972 struct ath_common *common = ath9k_hw_common(ah);
973 struct ieee80211_conf *conf = &common->hw->conf;
974 const struct ath9k_channel *chan = ah->curchan;
975 int acktimeout, ctstimeout;
976 int slottime;
977 int sifstime;
978 int rx_lat = 0, tx_lat = 0, eifs = 0;
979 u32 reg;
980
981 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
982 ah->misc_mode);
983
984 if (!chan)
985 return;
986
987 if (ah->misc_mode != 0)
988 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
989
990 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
991 rx_lat = 41;
992 else
993 rx_lat = 37;
994 tx_lat = 54;
995
996 if (IS_CHAN_HALF_RATE(chan)) {
997 eifs = 175;
998 rx_lat *= 2;
999 tx_lat *= 2;
1000 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1001 tx_lat += 11;
1002
1003 slottime = 13;
1004 sifstime = 32;
1005 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1006 eifs = 340;
1007 rx_lat = (rx_lat * 4) - 1;
1008 tx_lat *= 4;
1009 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1010 tx_lat += 22;
1011
1012 slottime = 21;
1013 sifstime = 64;
1014 } else {
1015 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1016 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1017 reg = AR_USEC_ASYNC_FIFO;
1018 } else {
1019 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1020 common->clockrate;
1021 reg = REG_READ(ah, AR_USEC);
1022 }
1023 rx_lat = MS(reg, AR_USEC_RX_LAT);
1024 tx_lat = MS(reg, AR_USEC_TX_LAT);
1025
1026 slottime = ah->slottime;
1027 if (IS_CHAN_5GHZ(chan))
1028 sifstime = 16;
1029 else
1030 sifstime = 10;
1031 }
1032
1033 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1034 acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1035 ctstimeout = acktimeout;
1036
1037 /*
1038 * Workaround for early ACK timeouts, add an offset to match the
1039 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1040 * This was initially only meant to work around an issue with delayed
1041 * BA frames in some implementations, but it has been found to fix ACK
1042 * timeout issues in other cases as well.
1043 */
1044 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1045 acktimeout += 64 - sifstime - ah->slottime;
1046 ctstimeout += 48 - sifstime - ah->slottime;
1047 }
1048
1049
1050 ath9k_hw_set_sifs_time(ah, sifstime);
1051 ath9k_hw_setslottime(ah, slottime);
1052 ath9k_hw_set_ack_timeout(ah, acktimeout);
1053 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1054 if (ah->globaltxtimeout != (u32) -1)
1055 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1056
1057 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1058 REG_RMW(ah, AR_USEC,
1059 (common->clockrate - 1) |
1060 SM(rx_lat, AR_USEC_RX_LAT) |
1061 SM(tx_lat, AR_USEC_TX_LAT),
1062 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1063
1064 }
1065 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1066
1067 void ath9k_hw_deinit(struct ath_hw *ah)
1068 {
1069 struct ath_common *common = ath9k_hw_common(ah);
1070
1071 if (common->state < ATH_HW_INITIALIZED)
1072 goto free_hw;
1073
1074 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1075
1076 free_hw:
1077 ath9k_hw_rf_free_ext_banks(ah);
1078 }
1079 EXPORT_SYMBOL(ath9k_hw_deinit);
1080
1081 /*******/
1082 /* INI */
1083 /*******/
1084
1085 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1086 {
1087 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1088
1089 if (IS_CHAN_B(chan))
1090 ctl |= CTL_11B;
1091 else if (IS_CHAN_G(chan))
1092 ctl |= CTL_11G;
1093 else
1094 ctl |= CTL_11A;
1095
1096 return ctl;
1097 }
1098
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1102
1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1104 {
1105 struct ath_common *common = ath9k_hw_common(ah);
1106
1107 ENABLE_REGWRITE_BUFFER(ah);
1108
1109 /*
1110 * set AHB_MODE not to do cacheline prefetches
1111 */
1112 if (!AR_SREV_9300_20_OR_LATER(ah))
1113 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1114
1115 /*
1116 * let mac dma reads be in 128 byte chunks
1117 */
1118 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1119
1120 REGWRITE_BUFFER_FLUSH(ah);
1121
1122 /*
1123 * Restore TX Trigger Level to its pre-reset value.
1124 * The initial value depends on whether aggregation is enabled, and is
1125 * adjusted whenever underruns are detected.
1126 */
1127 if (!AR_SREV_9300_20_OR_LATER(ah))
1128 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1129
1130 ENABLE_REGWRITE_BUFFER(ah);
1131
1132 /*
1133 * let mac dma writes be in 128 byte chunks
1134 */
1135 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1136
1137 /*
1138 * Setup receive FIFO threshold to hold off TX activities
1139 */
1140 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1141
1142 if (AR_SREV_9300_20_OR_LATER(ah)) {
1143 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1144 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1145
1146 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1147 ah->caps.rx_status_len);
1148 }
1149
1150 /*
1151 * reduce the number of usable entries in PCU TXBUF to avoid
1152 * wrap around issues.
1153 */
1154 if (AR_SREV_9285(ah)) {
1155 /* For AR9285 the number of Fifos are reduced to half.
1156 * So set the usable tx buf size also to half to
1157 * avoid data/delimiter underruns
1158 */
1159 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1160 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1161 } else if (!AR_SREV_9271(ah)) {
1162 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1163 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1164 }
1165
1166 REGWRITE_BUFFER_FLUSH(ah);
1167
1168 if (AR_SREV_9300_20_OR_LATER(ah))
1169 ath9k_hw_reset_txstatus_ring(ah);
1170 }
1171
1172 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1173 {
1174 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1175 u32 set = AR_STA_ID1_KSRCH_MODE;
1176
1177 switch (opmode) {
1178 case NL80211_IFTYPE_ADHOC:
1179 case NL80211_IFTYPE_MESH_POINT:
1180 set |= AR_STA_ID1_ADHOC;
1181 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1182 break;
1183 case NL80211_IFTYPE_AP:
1184 set |= AR_STA_ID1_STA_AP;
1185 /* fall through */
1186 case NL80211_IFTYPE_STATION:
1187 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1188 break;
1189 default:
1190 if (!ah->is_monitoring)
1191 set = 0;
1192 break;
1193 }
1194 REG_RMW(ah, AR_STA_ID1, set, mask);
1195 }
1196
1197 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1198 u32 *coef_mantissa, u32 *coef_exponent)
1199 {
1200 u32 coef_exp, coef_man;
1201
1202 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1203 if ((coef_scaled >> coef_exp) & 0x1)
1204 break;
1205
1206 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1207
1208 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1209
1210 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1211 *coef_exponent = coef_exp - 16;
1212 }
1213
1214 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1215 {
1216 u32 rst_flags;
1217 u32 tmpReg;
1218
1219 if (AR_SREV_9100(ah)) {
1220 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1221 AR_RTC_DERIVED_CLK_PERIOD, 1);
1222 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1223 }
1224
1225 ENABLE_REGWRITE_BUFFER(ah);
1226
1227 if (AR_SREV_9300_20_OR_LATER(ah)) {
1228 REG_WRITE(ah, AR_WA, ah->WARegVal);
1229 udelay(10);
1230 }
1231
1232 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1233 AR_RTC_FORCE_WAKE_ON_INT);
1234
1235 if (AR_SREV_9100(ah)) {
1236 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1237 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1238 } else {
1239 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1240 if (tmpReg &
1241 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1242 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1243 u32 val;
1244 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1245
1246 val = AR_RC_HOSTIF;
1247 if (!AR_SREV_9300_20_OR_LATER(ah))
1248 val |= AR_RC_AHB;
1249 REG_WRITE(ah, AR_RC, val);
1250
1251 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1252 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1253
1254 rst_flags = AR_RTC_RC_MAC_WARM;
1255 if (type == ATH9K_RESET_COLD)
1256 rst_flags |= AR_RTC_RC_MAC_COLD;
1257 }
1258
1259 if (AR_SREV_9330(ah)) {
1260 int npend = 0;
1261 int i;
1262
1263 /* AR9330 WAR:
1264 * call external reset function to reset WMAC if:
1265 * - doing a cold reset
1266 * - we have pending frames in the TX queues
1267 */
1268
1269 for (i = 0; i < AR_NUM_QCU; i++) {
1270 npend = ath9k_hw_numtxpending(ah, i);
1271 if (npend)
1272 break;
1273 }
1274
1275 if (ah->external_reset &&
1276 (npend || type == ATH9K_RESET_COLD)) {
1277 int reset_err = 0;
1278
1279 ath_dbg(ath9k_hw_common(ah), RESET,
1280 "reset MAC via external reset\n");
1281
1282 reset_err = ah->external_reset();
1283 if (reset_err) {
1284 ath_err(ath9k_hw_common(ah),
1285 "External reset failed, err=%d\n",
1286 reset_err);
1287 return false;
1288 }
1289
1290 REG_WRITE(ah, AR_RTC_RESET, 1);
1291 }
1292 }
1293
1294 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1295
1296 REGWRITE_BUFFER_FLUSH(ah);
1297
1298 udelay(50);
1299
1300 REG_WRITE(ah, AR_RTC_RC, 0);
1301 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1302 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1303 return false;
1304 }
1305
1306 if (!AR_SREV_9100(ah))
1307 REG_WRITE(ah, AR_RC, 0);
1308
1309 if (AR_SREV_9100(ah))
1310 udelay(50);
1311
1312 return true;
1313 }
1314
1315 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1316 {
1317 ENABLE_REGWRITE_BUFFER(ah);
1318
1319 if (AR_SREV_9300_20_OR_LATER(ah)) {
1320 REG_WRITE(ah, AR_WA, ah->WARegVal);
1321 udelay(10);
1322 }
1323
1324 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1325 AR_RTC_FORCE_WAKE_ON_INT);
1326
1327 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1328 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329
1330 REG_WRITE(ah, AR_RTC_RESET, 0);
1331
1332 REGWRITE_BUFFER_FLUSH(ah);
1333
1334 if (!AR_SREV_9300_20_OR_LATER(ah))
1335 udelay(2);
1336
1337 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1338 REG_WRITE(ah, AR_RC, 0);
1339
1340 REG_WRITE(ah, AR_RTC_RESET, 1);
1341
1342 if (!ath9k_hw_wait(ah,
1343 AR_RTC_STATUS,
1344 AR_RTC_STATUS_M,
1345 AR_RTC_STATUS_ON,
1346 AH_WAIT_TIMEOUT)) {
1347 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1348 return false;
1349 }
1350
1351 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1352 }
1353
1354 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1355 {
1356 bool ret = false;
1357
1358 if (AR_SREV_9300_20_OR_LATER(ah)) {
1359 REG_WRITE(ah, AR_WA, ah->WARegVal);
1360 udelay(10);
1361 }
1362
1363 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1364 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1365
1366 switch (type) {
1367 case ATH9K_RESET_POWER_ON:
1368 ret = ath9k_hw_set_reset_power_on(ah);
1369 break;
1370 case ATH9K_RESET_WARM:
1371 case ATH9K_RESET_COLD:
1372 ret = ath9k_hw_set_reset(ah, type);
1373 break;
1374 default:
1375 break;
1376 }
1377
1378 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1379 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1380
1381 return ret;
1382 }
1383
1384 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1385 struct ath9k_channel *chan)
1386 {
1387 int reset_type = ATH9K_RESET_WARM;
1388
1389 if (AR_SREV_9280(ah)) {
1390 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1391 reset_type = ATH9K_RESET_POWER_ON;
1392 else
1393 reset_type = ATH9K_RESET_COLD;
1394 }
1395
1396 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1397 return false;
1398
1399 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1400 return false;
1401
1402 ah->chip_fullsleep = false;
1403 ath9k_hw_init_pll(ah, chan);
1404 ath9k_hw_set_rfmode(ah, chan);
1405
1406 return true;
1407 }
1408
1409 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1410 struct ath9k_channel *chan)
1411 {
1412 struct ath_common *common = ath9k_hw_common(ah);
1413 u32 qnum;
1414 int r;
1415 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1416 bool band_switch, mode_diff;
1417 u8 ini_reloaded;
1418
1419 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1420 (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1421 CHANNEL_5GHZ));
1422 mode_diff = (chan->chanmode != ah->curchan->chanmode);
1423
1424 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1425 if (ath9k_hw_numtxpending(ah, qnum)) {
1426 ath_dbg(common, QUEUE,
1427 "Transmit frames pending on queue %d\n", qnum);
1428 return false;
1429 }
1430 }
1431
1432 if (!ath9k_hw_rfbus_req(ah)) {
1433 ath_err(common, "Could not kill baseband RX\n");
1434 return false;
1435 }
1436
1437 if (edma && (band_switch || mode_diff)) {
1438 ath9k_hw_mark_phy_inactive(ah);
1439 udelay(5);
1440
1441 ath9k_hw_init_pll(ah, NULL);
1442
1443 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1444 ath_err(common, "Failed to do fast channel change\n");
1445 return false;
1446 }
1447 }
1448
1449 ath9k_hw_set_channel_regs(ah, chan);
1450
1451 r = ath9k_hw_rf_set_freq(ah, chan);
1452 if (r) {
1453 ath_err(common, "Failed to set channel\n");
1454 return false;
1455 }
1456 ath9k_hw_set_clockrate(ah);
1457 ath9k_hw_apply_txpower(ah, chan);
1458 ath9k_hw_rfbus_done(ah);
1459
1460 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1461 ath9k_hw_set_delta_slope(ah, chan);
1462
1463 ath9k_hw_spur_mitigate_freq(ah, chan);
1464
1465 if (edma && (band_switch || mode_diff)) {
1466 ah->ah_flags |= AH_FASTCC;
1467 if (band_switch || ini_reloaded)
1468 ah->eep_ops->set_board_values(ah, chan);
1469
1470 ath9k_hw_init_bb(ah, chan);
1471
1472 if (band_switch || ini_reloaded)
1473 ath9k_hw_init_cal(ah, chan);
1474 ah->ah_flags &= ~AH_FASTCC;
1475 }
1476
1477 return true;
1478 }
1479
1480 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1481 {
1482 u32 gpio_mask = ah->gpio_mask;
1483 int i;
1484
1485 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1486 if (!(gpio_mask & 1))
1487 continue;
1488
1489 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1490 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1491 }
1492 }
1493
1494 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1495 int *hang_state, int *hang_pos)
1496 {
1497 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1498 u32 chain_state, dcs_pos, i;
1499
1500 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1501 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1502 for (i = 0; i < 3; i++) {
1503 if (chain_state == dcu_chain_state[i]) {
1504 *hang_state = chain_state;
1505 *hang_pos = dcs_pos;
1506 return true;
1507 }
1508 }
1509 }
1510 return false;
1511 }
1512
1513 #define DCU_COMPLETE_STATE 1
1514 #define DCU_COMPLETE_STATE_MASK 0x3
1515 #define NUM_STATUS_READS 50
1516 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1517 {
1518 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1519 u32 i, hang_pos, hang_state, num_state = 6;
1520
1521 comp_state = REG_READ(ah, AR_DMADBG_6);
1522
1523 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1524 ath_dbg(ath9k_hw_common(ah), RESET,
1525 "MAC Hang signature not found at DCU complete\n");
1526 return false;
1527 }
1528
1529 chain_state = REG_READ(ah, dcs_reg);
1530 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1531 goto hang_check_iter;
1532
1533 dcs_reg = AR_DMADBG_5;
1534 num_state = 4;
1535 chain_state = REG_READ(ah, dcs_reg);
1536 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1537 goto hang_check_iter;
1538
1539 ath_dbg(ath9k_hw_common(ah), RESET,
1540 "MAC Hang signature 1 not found\n");
1541 return false;
1542
1543 hang_check_iter:
1544 ath_dbg(ath9k_hw_common(ah), RESET,
1545 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1546 chain_state, comp_state, hang_state, hang_pos);
1547
1548 for (i = 0; i < NUM_STATUS_READS; i++) {
1549 chain_state = REG_READ(ah, dcs_reg);
1550 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1551 comp_state = REG_READ(ah, AR_DMADBG_6);
1552
1553 if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1554 DCU_COMPLETE_STATE) ||
1555 (chain_state != hang_state))
1556 return false;
1557 }
1558
1559 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1560
1561 return true;
1562 }
1563
1564 bool ath9k_hw_check_alive(struct ath_hw *ah)
1565 {
1566 int count = 50;
1567 u32 reg;
1568
1569 if (AR_SREV_9300(ah))
1570 return !ath9k_hw_detect_mac_hang(ah);
1571
1572 if (AR_SREV_9285_12_OR_LATER(ah))
1573 return true;
1574
1575 do {
1576 reg = REG_READ(ah, AR_OBS_BUS_1);
1577
1578 if ((reg & 0x7E7FFFEF) == 0x00702400)
1579 continue;
1580
1581 switch (reg & 0x7E000B00) {
1582 case 0x1E000000:
1583 case 0x52000B00:
1584 case 0x18000B00:
1585 continue;
1586 default:
1587 return true;
1588 }
1589 } while (count-- > 0);
1590
1591 return false;
1592 }
1593 EXPORT_SYMBOL(ath9k_hw_check_alive);
1594
1595 /*
1596 * Fast channel change:
1597 * (Change synthesizer based on channel freq without resetting chip)
1598 *
1599 * Don't do FCC when
1600 * - Flag is not set
1601 * - Chip is just coming out of full sleep
1602 * - Channel to be set is same as current channel
1603 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1604 */
1605 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1606 {
1607 struct ath_common *common = ath9k_hw_common(ah);
1608 int ret;
1609
1610 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1611 goto fail;
1612
1613 if (ah->chip_fullsleep)
1614 goto fail;
1615
1616 if (!ah->curchan)
1617 goto fail;
1618
1619 if (chan->channel == ah->curchan->channel)
1620 goto fail;
1621
1622 if ((chan->channelFlags & CHANNEL_ALL) !=
1623 (ah->curchan->channelFlags & CHANNEL_ALL))
1624 goto fail;
1625
1626 if (!ath9k_hw_check_alive(ah))
1627 goto fail;
1628
1629 /*
1630 * For AR9462, make sure that calibration data for
1631 * re-using are present.
1632 */
1633 if (AR_SREV_9462(ah) && (!ah->caldata ||
1634 !ah->caldata->done_txiqcal_once ||
1635 !ah->caldata->done_txclcal_once ||
1636 !ah->caldata->rtt_hist.num_readings))
1637 goto fail;
1638
1639 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1640 ah->curchan->channel, chan->channel);
1641
1642 ret = ath9k_hw_channel_change(ah, chan);
1643 if (!ret)
1644 goto fail;
1645
1646 ath9k_hw_loadnf(ah, ah->curchan);
1647 ath9k_hw_start_nfcal(ah, true);
1648
1649 if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
1650 ar9003_mci_2g5g_switch(ah, true);
1651
1652 if (AR_SREV_9271(ah))
1653 ar9002_hw_load_ani_reg(ah, chan);
1654
1655 return 0;
1656 fail:
1657 return -EINVAL;
1658 }
1659
1660 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1661 struct ath9k_hw_cal_data *caldata, bool fastcc)
1662 {
1663 struct ath_common *common = ath9k_hw_common(ah);
1664 u32 saveLedState;
1665 u32 saveDefAntenna;
1666 u32 macStaId1;
1667 u64 tsf = 0;
1668 int i, r;
1669 bool start_mci_reset = false;
1670 bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1671 bool save_fullsleep = ah->chip_fullsleep;
1672
1673 if (mci) {
1674 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1675 if (start_mci_reset)
1676 return 0;
1677 }
1678
1679 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1680 return -EIO;
1681
1682 if (ah->curchan && !ah->chip_fullsleep)
1683 ath9k_hw_getnf(ah, ah->curchan);
1684
1685 ah->caldata = caldata;
1686 if (caldata &&
1687 (chan->channel != caldata->channel ||
1688 (chan->channelFlags & ~CHANNEL_CW_INT) !=
1689 (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1690 /* Operating channel changed, reset channel calibration data */
1691 memset(caldata, 0, sizeof(*caldata));
1692 ath9k_init_nfcal_hist_buffer(ah, chan);
1693 }
1694 ah->noise = ath9k_hw_getchan_noise(ah, chan);
1695
1696 if (fastcc) {
1697 r = ath9k_hw_do_fastcc(ah, chan);
1698 if (!r)
1699 return r;
1700 }
1701
1702 if (mci)
1703 ar9003_mci_stop_bt(ah, save_fullsleep);
1704
1705 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1706 if (saveDefAntenna == 0)
1707 saveDefAntenna = 1;
1708
1709 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1710
1711 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1712 if (AR_SREV_9100(ah) ||
1713 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1714 tsf = ath9k_hw_gettsf64(ah);
1715
1716 saveLedState = REG_READ(ah, AR_CFG_LED) &
1717 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1718 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1719
1720 ath9k_hw_mark_phy_inactive(ah);
1721
1722 ah->paprd_table_write_done = false;
1723
1724 /* Only required on the first reset */
1725 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1726 REG_WRITE(ah,
1727 AR9271_RESET_POWER_DOWN_CONTROL,
1728 AR9271_RADIO_RF_RST);
1729 udelay(50);
1730 }
1731
1732 if (!ath9k_hw_chip_reset(ah, chan)) {
1733 ath_err(common, "Chip reset failed\n");
1734 return -EINVAL;
1735 }
1736
1737 /* Only required on the first reset */
1738 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1739 ah->htc_reset_init = false;
1740 REG_WRITE(ah,
1741 AR9271_RESET_POWER_DOWN_CONTROL,
1742 AR9271_GATE_MAC_CTL);
1743 udelay(50);
1744 }
1745
1746 /* Restore TSF */
1747 if (tsf)
1748 ath9k_hw_settsf64(ah, tsf);
1749
1750 if (AR_SREV_9280_20_OR_LATER(ah))
1751 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1752
1753 if (!AR_SREV_9300_20_OR_LATER(ah))
1754 ar9002_hw_enable_async_fifo(ah);
1755
1756 r = ath9k_hw_process_ini(ah, chan);
1757 if (r)
1758 return r;
1759
1760 if (mci)
1761 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1762
1763 /*
1764 * Some AR91xx SoC devices frequently fail to accept TSF writes
1765 * right after the chip reset. When that happens, write a new
1766 * value after the initvals have been applied, with an offset
1767 * based on measured time difference
1768 */
1769 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1770 tsf += 1500;
1771 ath9k_hw_settsf64(ah, tsf);
1772 }
1773
1774 /* Setup MFP options for CCMP */
1775 if (AR_SREV_9280_20_OR_LATER(ah)) {
1776 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1777 * frames when constructing CCMP AAD. */
1778 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1779 0xc7ff);
1780 ah->sw_mgmt_crypto = false;
1781 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1782 /* Disable hardware crypto for management frames */
1783 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1784 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1785 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1786 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1787 ah->sw_mgmt_crypto = true;
1788 } else
1789 ah->sw_mgmt_crypto = true;
1790
1791 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1792 ath9k_hw_set_delta_slope(ah, chan);
1793
1794 ath9k_hw_spur_mitigate_freq(ah, chan);
1795 ah->eep_ops->set_board_values(ah, chan);
1796
1797 ENABLE_REGWRITE_BUFFER(ah);
1798
1799 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1800 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1801 | macStaId1
1802 | AR_STA_ID1_RTS_USE_DEF
1803 | (ah->config.
1804 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1805 | ah->sta_id1_defaults);
1806 ath_hw_setbssidmask(common);
1807 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1808 ath9k_hw_write_associd(ah);
1809 REG_WRITE(ah, AR_ISR, ~0);
1810 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1811
1812 REGWRITE_BUFFER_FLUSH(ah);
1813
1814 ath9k_hw_set_operating_mode(ah, ah->opmode);
1815
1816 r = ath9k_hw_rf_set_freq(ah, chan);
1817 if (r)
1818 return r;
1819
1820 ath9k_hw_set_clockrate(ah);
1821
1822 ENABLE_REGWRITE_BUFFER(ah);
1823
1824 for (i = 0; i < AR_NUM_DCU; i++)
1825 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1826
1827 REGWRITE_BUFFER_FLUSH(ah);
1828
1829 ah->intr_txqs = 0;
1830 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1831 ath9k_hw_resettxqueue(ah, i);
1832
1833 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1834 ath9k_hw_ani_cache_ini_regs(ah);
1835 ath9k_hw_init_qos(ah);
1836
1837 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1838 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1839
1840 ath9k_hw_init_global_settings(ah);
1841
1842 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1843 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1844 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1845 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1846 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1847 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1848 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1849 }
1850
1851 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1852
1853 ath9k_hw_set_dma(ah);
1854
1855 REG_WRITE(ah, AR_OBS, 8);
1856
1857 if (ah->config.rx_intr_mitigation) {
1858 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1859 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1860 }
1861
1862 if (ah->config.tx_intr_mitigation) {
1863 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1864 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1865 }
1866
1867 ath9k_hw_init_bb(ah, chan);
1868
1869 if (caldata) {
1870 caldata->done_txiqcal_once = false;
1871 caldata->done_txclcal_once = false;
1872 caldata->rtt_hist.num_readings = 0;
1873 }
1874 if (!ath9k_hw_init_cal(ah, chan))
1875 return -EIO;
1876
1877 ath9k_hw_loadnf(ah, chan);
1878 ath9k_hw_start_nfcal(ah, true);
1879
1880 if (mci && ar9003_mci_end_reset(ah, chan, caldata))
1881 return -EIO;
1882
1883 ENABLE_REGWRITE_BUFFER(ah);
1884
1885 ath9k_hw_restore_chainmask(ah);
1886 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1887
1888 REGWRITE_BUFFER_FLUSH(ah);
1889
1890 /*
1891 * For big endian systems turn on swapping for descriptors
1892 */
1893 if (AR_SREV_9100(ah)) {
1894 u32 mask;
1895 mask = REG_READ(ah, AR_CFG);
1896 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1897 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1898 mask);
1899 } else {
1900 mask =
1901 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1902 REG_WRITE(ah, AR_CFG, mask);
1903 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1904 REG_READ(ah, AR_CFG));
1905 }
1906 } else {
1907 if (common->bus_ops->ath_bus_type == ATH_USB) {
1908 /* Configure AR9271 target WLAN */
1909 if (AR_SREV_9271(ah))
1910 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1911 else
1912 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1913 }
1914 #ifdef __BIG_ENDIAN
1915 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1916 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1917 else
1918 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1919 #endif
1920 }
1921
1922 if (ath9k_hw_btcoex_is_enabled(ah))
1923 ath9k_hw_btcoex_enable(ah);
1924
1925 if (mci)
1926 ar9003_mci_check_bt(ah);
1927
1928 if (AR_SREV_9300_20_OR_LATER(ah)) {
1929 ar9003_hw_bb_watchdog_config(ah);
1930
1931 ar9003_hw_disable_phy_restart(ah);
1932 }
1933
1934 ath9k_hw_apply_gpio_override(ah);
1935
1936 return 0;
1937 }
1938 EXPORT_SYMBOL(ath9k_hw_reset);
1939
1940 /******************************/
1941 /* Power Management (Chipset) */
1942 /******************************/
1943
1944 /*
1945 * Notify Power Mgt is disabled in self-generated frames.
1946 * If requested, force chip to sleep.
1947 */
1948 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1949 {
1950 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1951 if (setChip) {
1952 if (AR_SREV_9462(ah)) {
1953 REG_WRITE(ah, AR_TIMER_MODE,
1954 REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1955 REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1956 AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1957 REG_WRITE(ah, AR_SLP32_INC,
1958 REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1959 /* xxx Required for WLAN only case ? */
1960 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1961 udelay(100);
1962 }
1963
1964 /*
1965 * Clear the RTC force wake bit to allow the
1966 * mac to go to sleep.
1967 */
1968 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1969
1970 if (AR_SREV_9462(ah))
1971 udelay(100);
1972
1973 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1974 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1975
1976 /* Shutdown chip. Active low */
1977 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1978 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1979 udelay(2);
1980 }
1981 }
1982
1983 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1984 if (AR_SREV_9300_20_OR_LATER(ah))
1985 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1986 }
1987
1988 /*
1989 * Notify Power Management is enabled in self-generating
1990 * frames. If request, set power mode of chip to
1991 * auto/normal. Duration in units of 128us (1/8 TU).
1992 */
1993 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1994 {
1995 u32 val;
1996
1997 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1998 if (setChip) {
1999 struct ath9k_hw_capabilities *pCap = &ah->caps;
2000
2001 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2002 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2003 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2004 AR_RTC_FORCE_WAKE_ON_INT);
2005 } else {
2006
2007 /* When chip goes into network sleep, it could be waken
2008 * up by MCI_INT interrupt caused by BT's HW messages
2009 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2010 * rate (~100us). This will cause chip to leave and
2011 * re-enter network sleep mode frequently, which in
2012 * consequence will have WLAN MCI HW to generate lots of
2013 * SYS_WAKING and SYS_SLEEPING messages which will make
2014 * BT CPU to busy to process.
2015 */
2016 if (AR_SREV_9462(ah)) {
2017 val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2018 ~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2019 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2020 }
2021 /*
2022 * Clear the RTC force wake bit to allow the
2023 * mac to go to sleep.
2024 */
2025 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2026 AR_RTC_FORCE_WAKE_EN);
2027
2028 if (AR_SREV_9462(ah))
2029 udelay(30);
2030 }
2031 }
2032
2033 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2034 if (AR_SREV_9300_20_OR_LATER(ah))
2035 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2036 }
2037
2038 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2039 {
2040 u32 val;
2041 int i;
2042
2043 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2044 if (AR_SREV_9300_20_OR_LATER(ah)) {
2045 REG_WRITE(ah, AR_WA, ah->WARegVal);
2046 udelay(10);
2047 }
2048
2049 if (setChip) {
2050 if ((REG_READ(ah, AR_RTC_STATUS) &
2051 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2052 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2053 return false;
2054 }
2055 if (!AR_SREV_9300_20_OR_LATER(ah))
2056 ath9k_hw_init_pll(ah, NULL);
2057 }
2058 if (AR_SREV_9100(ah))
2059 REG_SET_BIT(ah, AR_RTC_RESET,
2060 AR_RTC_RESET_EN);
2061
2062 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2063 AR_RTC_FORCE_WAKE_EN);
2064 udelay(50);
2065
2066 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2067 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2068 if (val == AR_RTC_STATUS_ON)
2069 break;
2070 udelay(50);
2071 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2072 AR_RTC_FORCE_WAKE_EN);
2073 }
2074 if (i == 0) {
2075 ath_err(ath9k_hw_common(ah),
2076 "Failed to wakeup in %uus\n",
2077 POWER_UP_TIME / 20);
2078 return false;
2079 }
2080 }
2081
2082 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2083
2084 return true;
2085 }
2086
2087 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2088 {
2089 struct ath_common *common = ath9k_hw_common(ah);
2090 int status = true, setChip = true;
2091 static const char *modes[] = {
2092 "AWAKE",
2093 "FULL-SLEEP",
2094 "NETWORK SLEEP",
2095 "UNDEFINED"
2096 };
2097
2098 if (ah->power_mode == mode)
2099 return status;
2100
2101 ath_dbg(common, RESET, "%s -> %s\n",
2102 modes[ah->power_mode], modes[mode]);
2103
2104 switch (mode) {
2105 case ATH9K_PM_AWAKE:
2106 status = ath9k_hw_set_power_awake(ah, setChip);
2107
2108 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2109 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2110
2111 break;
2112 case ATH9K_PM_FULL_SLEEP:
2113 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2114 ar9003_mci_set_full_sleep(ah);
2115
2116 ath9k_set_power_sleep(ah, setChip);
2117 ah->chip_fullsleep = true;
2118 break;
2119 case ATH9K_PM_NETWORK_SLEEP:
2120
2121 if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2122 REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2123
2124 ath9k_set_power_network_sleep(ah, setChip);
2125 break;
2126 default:
2127 ath_err(common, "Unknown power mode %u\n", mode);
2128 return false;
2129 }
2130 ah->power_mode = mode;
2131
2132 /*
2133 * XXX: If this warning never comes up after a while then
2134 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2135 * ath9k_hw_setpower() return type void.
2136 */
2137
2138 if (!(ah->ah_flags & AH_UNPLUGGED))
2139 ATH_DBG_WARN_ON_ONCE(!status);
2140
2141 return status;
2142 }
2143 EXPORT_SYMBOL(ath9k_hw_setpower);
2144
2145 /*******************/
2146 /* Beacon Handling */
2147 /*******************/
2148
2149 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2150 {
2151 int flags = 0;
2152
2153 ENABLE_REGWRITE_BUFFER(ah);
2154
2155 switch (ah->opmode) {
2156 case NL80211_IFTYPE_ADHOC:
2157 case NL80211_IFTYPE_MESH_POINT:
2158 REG_SET_BIT(ah, AR_TXCFG,
2159 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2160 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2161 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2162 flags |= AR_NDP_TIMER_EN;
2163 case NL80211_IFTYPE_AP:
2164 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2165 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2166 TU_TO_USEC(ah->config.dma_beacon_response_time));
2167 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2168 TU_TO_USEC(ah->config.sw_beacon_response_time));
2169 flags |=
2170 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2171 break;
2172 default:
2173 ath_dbg(ath9k_hw_common(ah), BEACON,
2174 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2175 return;
2176 break;
2177 }
2178
2179 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2180 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2181 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2182 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2183
2184 REGWRITE_BUFFER_FLUSH(ah);
2185
2186 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2187 }
2188 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2189
2190 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2191 const struct ath9k_beacon_state *bs)
2192 {
2193 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2194 struct ath9k_hw_capabilities *pCap = &ah->caps;
2195 struct ath_common *common = ath9k_hw_common(ah);
2196
2197 ENABLE_REGWRITE_BUFFER(ah);
2198
2199 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2200
2201 REG_WRITE(ah, AR_BEACON_PERIOD,
2202 TU_TO_USEC(bs->bs_intval));
2203 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2204 TU_TO_USEC(bs->bs_intval));
2205
2206 REGWRITE_BUFFER_FLUSH(ah);
2207
2208 REG_RMW_FIELD(ah, AR_RSSI_THR,
2209 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2210
2211 beaconintval = bs->bs_intval;
2212
2213 if (bs->bs_sleepduration > beaconintval)
2214 beaconintval = bs->bs_sleepduration;
2215
2216 dtimperiod = bs->bs_dtimperiod;
2217 if (bs->bs_sleepduration > dtimperiod)
2218 dtimperiod = bs->bs_sleepduration;
2219
2220 if (beaconintval == dtimperiod)
2221 nextTbtt = bs->bs_nextdtim;
2222 else
2223 nextTbtt = bs->bs_nexttbtt;
2224
2225 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2226 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2227 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2228 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2229
2230 ENABLE_REGWRITE_BUFFER(ah);
2231
2232 REG_WRITE(ah, AR_NEXT_DTIM,
2233 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2234 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2235
2236 REG_WRITE(ah, AR_SLEEP1,
2237 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2238 | AR_SLEEP1_ASSUME_DTIM);
2239
2240 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2241 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2242 else
2243 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2244
2245 REG_WRITE(ah, AR_SLEEP2,
2246 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2247
2248 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2249 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2250
2251 REGWRITE_BUFFER_FLUSH(ah);
2252
2253 REG_SET_BIT(ah, AR_TIMER_MODE,
2254 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2255 AR_DTIM_TIMER_EN);
2256
2257 /* TSF Out of Range Threshold */
2258 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2259 }
2260 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2261
2262 /*******************/
2263 /* HW Capabilities */
2264 /*******************/
2265
2266 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2267 {
2268 eeprom_chainmask &= chip_chainmask;
2269 if (eeprom_chainmask)
2270 return eeprom_chainmask;
2271 else
2272 return chip_chainmask;
2273 }
2274
2275 /**
2276 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2277 * @ah: the atheros hardware data structure
2278 *
2279 * We enable DFS support upstream on chipsets which have passed a series
2280 * of tests. The testing requirements are going to be documented. Desired
2281 * test requirements are documented at:
2282 *
2283 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2284 *
2285 * Once a new chipset gets properly tested an individual commit can be used
2286 * to document the testing for DFS for that chipset.
2287 */
2288 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2289 {
2290
2291 switch (ah->hw_version.macVersion) {
2292 /* AR9580 will likely be our first target to get testing on */
2293 case AR_SREV_VERSION_9580:
2294 default:
2295 return false;
2296 }
2297 }
2298
2299 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2300 {
2301 struct ath9k_hw_capabilities *pCap = &ah->caps;
2302 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2303 struct ath_common *common = ath9k_hw_common(ah);
2304 unsigned int chip_chainmask;
2305
2306 u16 eeval;
2307 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2308
2309 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2310 regulatory->current_rd = eeval;
2311
2312 if (ah->opmode != NL80211_IFTYPE_AP &&
2313 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2314 if (regulatory->current_rd == 0x64 ||
2315 regulatory->current_rd == 0x65)
2316 regulatory->current_rd += 5;
2317 else if (regulatory->current_rd == 0x41)
2318 regulatory->current_rd = 0x43;
2319 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2320 regulatory->current_rd);
2321 }
2322
2323 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2324 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2325 ath_err(common,
2326 "no band has been marked as supported in EEPROM\n");
2327 return -EINVAL;
2328 }
2329
2330 if (eeval & AR5416_OPFLAGS_11A)
2331 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2332
2333 if (eeval & AR5416_OPFLAGS_11G)
2334 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2335
2336 if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2337 chip_chainmask = 1;
2338 else if (AR_SREV_9462(ah))
2339 chip_chainmask = 3;
2340 else if (!AR_SREV_9280_20_OR_LATER(ah))
2341 chip_chainmask = 7;
2342 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2343 chip_chainmask = 3;
2344 else
2345 chip_chainmask = 7;
2346
2347 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2348 /*
2349 * For AR9271 we will temporarilly uses the rx chainmax as read from
2350 * the EEPROM.
2351 */
2352 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2353 !(eeval & AR5416_OPFLAGS_11A) &&
2354 !(AR_SREV_9271(ah)))
2355 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2356 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2357 else if (AR_SREV_9100(ah))
2358 pCap->rx_chainmask = 0x7;
2359 else
2360 /* Use rx_chainmask from EEPROM. */
2361 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2362
2363 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2364 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2365 ah->txchainmask = pCap->tx_chainmask;
2366 ah->rxchainmask = pCap->rx_chainmask;
2367
2368 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2369
2370 /* enable key search for every frame in an aggregate */
2371 if (AR_SREV_9300_20_OR_LATER(ah))
2372 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2373
2374 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2375
2376 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2377 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2378 else
2379 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2380
2381 if (AR_SREV_9271(ah))
2382 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2383 else if (AR_DEVID_7010(ah))
2384 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2385 else if (AR_SREV_9300_20_OR_LATER(ah))
2386 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2387 else if (AR_SREV_9287_11_OR_LATER(ah))
2388 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2389 else if (AR_SREV_9285_12_OR_LATER(ah))
2390 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2391 else if (AR_SREV_9280_20_OR_LATER(ah))
2392 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2393 else
2394 pCap->num_gpio_pins = AR_NUM_GPIO;
2395
2396 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2397 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2398 else
2399 pCap->rts_aggr_limit = (8 * 1024);
2400
2401 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2402 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2403 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2404 ah->rfkill_gpio =
2405 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2406 ah->rfkill_polarity =
2407 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2408
2409 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2410 }
2411 #endif
2412 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2413 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2414 else
2415 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2416
2417 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2418 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2419 else
2420 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2421
2422 if (AR_SREV_9300_20_OR_LATER(ah)) {
2423 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2424 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2425 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2426
2427 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2428 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2429 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2430 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2431 pCap->txs_len = sizeof(struct ar9003_txs);
2432 if (!ah->config.paprd_disable &&
2433 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2434 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2435 } else {
2436 pCap->tx_desc_len = sizeof(struct ath_desc);
2437 if (AR_SREV_9280_20(ah))
2438 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2439 }
2440
2441 if (AR_SREV_9300_20_OR_LATER(ah))
2442 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2443
2444 if (AR_SREV_9300_20_OR_LATER(ah))
2445 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2446
2447 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2448 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2449
2450 if (AR_SREV_9285(ah))
2451 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2452 ant_div_ctl1 =
2453 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2454 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2455 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2456 }
2457 if (AR_SREV_9300_20_OR_LATER(ah)) {
2458 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2459 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2460 }
2461
2462
2463 if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2464 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2465 /*
2466 * enable the diversity-combining algorithm only when
2467 * both enable_lna_div and enable_fast_div are set
2468 * Table for Diversity
2469 * ant_div_alt_lnaconf bit 0-1
2470 * ant_div_main_lnaconf bit 2-3
2471 * ant_div_alt_gaintb bit 4
2472 * ant_div_main_gaintb bit 5
2473 * enable_ant_div_lnadiv bit 6
2474 * enable_ant_fast_div bit 7
2475 */
2476 if ((ant_div_ctl1 >> 0x6) == 0x3)
2477 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2478 }
2479
2480 if (AR_SREV_9485_10(ah)) {
2481 pCap->pcie_lcr_extsync_en = true;
2482 pCap->pcie_lcr_offset = 0x80;
2483 }
2484
2485 if (ath9k_hw_dfs_tested(ah))
2486 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2487
2488 tx_chainmask = pCap->tx_chainmask;
2489 rx_chainmask = pCap->rx_chainmask;
2490 while (tx_chainmask || rx_chainmask) {
2491 if (tx_chainmask & BIT(0))
2492 pCap->max_txchains++;
2493 if (rx_chainmask & BIT(0))
2494 pCap->max_rxchains++;
2495
2496 tx_chainmask >>= 1;
2497 rx_chainmask >>= 1;
2498 }
2499
2500 if (AR_SREV_9300_20_OR_LATER(ah)) {
2501 ah->enabled_cals |= TX_IQ_CAL;
2502 if (AR_SREV_9485_OR_LATER(ah))
2503 ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2504 }
2505
2506 if (AR_SREV_9462(ah)) {
2507
2508 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2509 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2510
2511 if (AR_SREV_9462_20(ah))
2512 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2513
2514 }
2515
2516
2517 return 0;
2518 }
2519
2520 /****************************/
2521 /* GPIO / RFKILL / Antennae */
2522 /****************************/
2523
2524 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2525 u32 gpio, u32 type)
2526 {
2527 int addr;
2528 u32 gpio_shift, tmp;
2529
2530 if (gpio > 11)
2531 addr = AR_GPIO_OUTPUT_MUX3;
2532 else if (gpio > 5)
2533 addr = AR_GPIO_OUTPUT_MUX2;
2534 else
2535 addr = AR_GPIO_OUTPUT_MUX1;
2536
2537 gpio_shift = (gpio % 6) * 5;
2538
2539 if (AR_SREV_9280_20_OR_LATER(ah)
2540 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2541 REG_RMW(ah, addr, (type << gpio_shift),
2542 (0x1f << gpio_shift));
2543 } else {
2544 tmp = REG_READ(ah, addr);
2545 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2546 tmp &= ~(0x1f << gpio_shift);
2547 tmp |= (type << gpio_shift);
2548 REG_WRITE(ah, addr, tmp);
2549 }
2550 }
2551
2552 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2553 {
2554 u32 gpio_shift;
2555
2556 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2557
2558 if (AR_DEVID_7010(ah)) {
2559 gpio_shift = gpio;
2560 REG_RMW(ah, AR7010_GPIO_OE,
2561 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2562 (AR7010_GPIO_OE_MASK << gpio_shift));
2563 return;
2564 }
2565
2566 gpio_shift = gpio << 1;
2567 REG_RMW(ah,
2568 AR_GPIO_OE_OUT,
2569 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2570 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2571 }
2572 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2573
2574 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2575 {
2576 #define MS_REG_READ(x, y) \
2577 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2578
2579 if (gpio >= ah->caps.num_gpio_pins)
2580 return 0xffffffff;
2581
2582 if (AR_DEVID_7010(ah)) {
2583 u32 val;
2584 val = REG_READ(ah, AR7010_GPIO_IN);
2585 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2586 } else if (AR_SREV_9300_20_OR_LATER(ah))
2587 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2588 AR_GPIO_BIT(gpio)) != 0;
2589 else if (AR_SREV_9271(ah))
2590 return MS_REG_READ(AR9271, gpio) != 0;
2591 else if (AR_SREV_9287_11_OR_LATER(ah))
2592 return MS_REG_READ(AR9287, gpio) != 0;
2593 else if (AR_SREV_9285_12_OR_LATER(ah))
2594 return MS_REG_READ(AR9285, gpio) != 0;
2595 else if (AR_SREV_9280_20_OR_LATER(ah))
2596 return MS_REG_READ(AR928X, gpio) != 0;
2597 else
2598 return MS_REG_READ(AR, gpio) != 0;
2599 }
2600 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2601
2602 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2603 u32 ah_signal_type)
2604 {
2605 u32 gpio_shift;
2606
2607 if (AR_DEVID_7010(ah)) {
2608 gpio_shift = gpio;
2609 REG_RMW(ah, AR7010_GPIO_OE,
2610 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2611 (AR7010_GPIO_OE_MASK << gpio_shift));
2612 return;
2613 }
2614
2615 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2616 gpio_shift = 2 * gpio;
2617 REG_RMW(ah,
2618 AR_GPIO_OE_OUT,
2619 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2620 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2621 }
2622 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2623
2624 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2625 {
2626 if (AR_DEVID_7010(ah)) {
2627 val = val ? 0 : 1;
2628 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2629 AR_GPIO_BIT(gpio));
2630 return;
2631 }
2632
2633 if (AR_SREV_9271(ah))
2634 val = ~val;
2635
2636 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2637 AR_GPIO_BIT(gpio));
2638 }
2639 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2640
2641 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2642 {
2643 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2644 }
2645 EXPORT_SYMBOL(ath9k_hw_setantenna);
2646
2647 /*********************/
2648 /* General Operation */
2649 /*********************/
2650
2651 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2652 {
2653 u32 bits = REG_READ(ah, AR_RX_FILTER);
2654 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2655
2656 if (phybits & AR_PHY_ERR_RADAR)
2657 bits |= ATH9K_RX_FILTER_PHYRADAR;
2658 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2659 bits |= ATH9K_RX_FILTER_PHYERR;
2660
2661 return bits;
2662 }
2663 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2664
2665 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2666 {
2667 u32 phybits;
2668
2669 ENABLE_REGWRITE_BUFFER(ah);
2670
2671 if (AR_SREV_9462(ah))
2672 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2673
2674 REG_WRITE(ah, AR_RX_FILTER, bits);
2675
2676 phybits = 0;
2677 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2678 phybits |= AR_PHY_ERR_RADAR;
2679 if (bits & ATH9K_RX_FILTER_PHYERR)
2680 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2681 REG_WRITE(ah, AR_PHY_ERR, phybits);
2682
2683 if (phybits)
2684 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2685 else
2686 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2687
2688 REGWRITE_BUFFER_FLUSH(ah);
2689 }
2690 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2691
2692 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2693 {
2694 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2695 return false;
2696
2697 ath9k_hw_init_pll(ah, NULL);
2698 ah->htc_reset_init = true;
2699 return true;
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2702
2703 bool ath9k_hw_disable(struct ath_hw *ah)
2704 {
2705 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2706 return false;
2707
2708 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2709 return false;
2710
2711 ath9k_hw_init_pll(ah, NULL);
2712 return true;
2713 }
2714 EXPORT_SYMBOL(ath9k_hw_disable);
2715
2716 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2717 {
2718 enum eeprom_param gain_param;
2719
2720 if (IS_CHAN_2GHZ(chan))
2721 gain_param = EEP_ANTENNA_GAIN_2G;
2722 else
2723 gain_param = EEP_ANTENNA_GAIN_5G;
2724
2725 return ah->eep_ops->get_eeprom(ah, gain_param);
2726 }
2727
2728 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan)
2729 {
2730 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2731 struct ieee80211_channel *channel;
2732 int chan_pwr, new_pwr, max_gain;
2733 int ant_gain, ant_reduction = 0;
2734
2735 if (!chan)
2736 return;
2737
2738 channel = chan->chan;
2739 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2740 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2741 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2742
2743 ant_gain = get_antenna_gain(ah, chan);
2744 if (ant_gain > max_gain)
2745 ant_reduction = ant_gain - max_gain;
2746
2747 ah->eep_ops->set_txpower(ah, chan,
2748 ath9k_regd_get_ctl(reg, chan),
2749 ant_reduction, new_pwr, false);
2750 }
2751
2752 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2753 {
2754 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2755 struct ath9k_channel *chan = ah->curchan;
2756 struct ieee80211_channel *channel = chan->chan;
2757
2758 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2759 if (test)
2760 channel->max_power = MAX_RATE_POWER / 2;
2761
2762 ath9k_hw_apply_txpower(ah, chan);
2763
2764 if (test)
2765 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2766 }
2767 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2768
2769 void ath9k_hw_setopmode(struct ath_hw *ah)
2770 {
2771 ath9k_hw_set_operating_mode(ah, ah->opmode);
2772 }
2773 EXPORT_SYMBOL(ath9k_hw_setopmode);
2774
2775 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2776 {
2777 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2778 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2779 }
2780 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2781
2782 void ath9k_hw_write_associd(struct ath_hw *ah)
2783 {
2784 struct ath_common *common = ath9k_hw_common(ah);
2785
2786 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2787 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2788 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2789 }
2790 EXPORT_SYMBOL(ath9k_hw_write_associd);
2791
2792 #define ATH9K_MAX_TSF_READ 10
2793
2794 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2795 {
2796 u32 tsf_lower, tsf_upper1, tsf_upper2;
2797 int i;
2798
2799 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2800 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2801 tsf_lower = REG_READ(ah, AR_TSF_L32);
2802 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2803 if (tsf_upper2 == tsf_upper1)
2804 break;
2805 tsf_upper1 = tsf_upper2;
2806 }
2807
2808 WARN_ON( i == ATH9K_MAX_TSF_READ );
2809
2810 return (((u64)tsf_upper1 << 32) | tsf_lower);
2811 }
2812 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2813
2814 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2815 {
2816 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2817 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2818 }
2819 EXPORT_SYMBOL(ath9k_hw_settsf64);
2820
2821 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2822 {
2823 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2824 AH_TSF_WRITE_TIMEOUT))
2825 ath_dbg(ath9k_hw_common(ah), RESET,
2826 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2827
2828 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2829 }
2830 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2831
2832 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2833 {
2834 if (setting)
2835 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2836 else
2837 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2838 }
2839 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2840
2841 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2842 {
2843 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2844 u32 macmode;
2845
2846 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2847 macmode = AR_2040_JOINED_RX_CLEAR;
2848 else
2849 macmode = 0;
2850
2851 REG_WRITE(ah, AR_2040_MODE, macmode);
2852 }
2853
2854 /* HW Generic timers configuration */
2855
2856 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2857 {
2858 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2859 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2860 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2861 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2862 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2863 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2864 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2865 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2866 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2867 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2868 AR_NDP2_TIMER_MODE, 0x0002},
2869 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2870 AR_NDP2_TIMER_MODE, 0x0004},
2871 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2872 AR_NDP2_TIMER_MODE, 0x0008},
2873 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2874 AR_NDP2_TIMER_MODE, 0x0010},
2875 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2876 AR_NDP2_TIMER_MODE, 0x0020},
2877 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2878 AR_NDP2_TIMER_MODE, 0x0040},
2879 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2880 AR_NDP2_TIMER_MODE, 0x0080}
2881 };
2882
2883 /* HW generic timer primitives */
2884
2885 /* compute and clear index of rightmost 1 */
2886 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2887 {
2888 u32 b;
2889
2890 b = *mask;
2891 b &= (0-b);
2892 *mask &= ~b;
2893 b *= debruijn32;
2894 b >>= 27;
2895
2896 return timer_table->gen_timer_index[b];
2897 }
2898
2899 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2900 {
2901 return REG_READ(ah, AR_TSF_L32);
2902 }
2903 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2904
2905 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2906 void (*trigger)(void *),
2907 void (*overflow)(void *),
2908 void *arg,
2909 u8 timer_index)
2910 {
2911 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2912 struct ath_gen_timer *timer;
2913
2914 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2915
2916 if (timer == NULL) {
2917 ath_err(ath9k_hw_common(ah),
2918 "Failed to allocate memory for hw timer[%d]\n",
2919 timer_index);
2920 return NULL;
2921 }
2922
2923 /* allocate a hardware generic timer slot */
2924 timer_table->timers[timer_index] = timer;
2925 timer->index = timer_index;
2926 timer->trigger = trigger;
2927 timer->overflow = overflow;
2928 timer->arg = arg;
2929
2930 return timer;
2931 }
2932 EXPORT_SYMBOL(ath_gen_timer_alloc);
2933
2934 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2935 struct ath_gen_timer *timer,
2936 u32 trig_timeout,
2937 u32 timer_period)
2938 {
2939 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2940 u32 tsf, timer_next;
2941
2942 BUG_ON(!timer_period);
2943
2944 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2945
2946 tsf = ath9k_hw_gettsf32(ah);
2947
2948 timer_next = tsf + trig_timeout;
2949
2950 ath_dbg(ath9k_hw_common(ah), HWTIMER,
2951 "current tsf %x period %x timer_next %x\n",
2952 tsf, timer_period, timer_next);
2953
2954 /*
2955 * Program generic timer registers
2956 */
2957 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2958 timer_next);
2959 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2960 timer_period);
2961 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2962 gen_tmr_configuration[timer->index].mode_mask);
2963
2964 if (AR_SREV_9462(ah)) {
2965 /*
2966 * Starting from AR9462, each generic timer can select which tsf
2967 * to use. But we still follow the old rule, 0 - 7 use tsf and
2968 * 8 - 15 use tsf2.
2969 */
2970 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2971 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2972 (1 << timer->index));
2973 else
2974 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2975 (1 << timer->index));
2976 }
2977
2978 /* Enable both trigger and thresh interrupt masks */
2979 REG_SET_BIT(ah, AR_IMR_S5,
2980 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2981 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2982 }
2983 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2984
2985 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2986 {
2987 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2988
2989 if ((timer->index < AR_FIRST_NDP_TIMER) ||
2990 (timer->index >= ATH_MAX_GEN_TIMER)) {
2991 return;
2992 }
2993
2994 /* Clear generic timer enable bits. */
2995 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2996 gen_tmr_configuration[timer->index].mode_mask);
2997
2998 /* Disable both trigger and thresh interrupt masks */
2999 REG_CLR_BIT(ah, AR_IMR_S5,
3000 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3001 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3002
3003 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3004 }
3005 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3006
3007 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3008 {
3009 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3010
3011 /* free the hardware generic timer slot */
3012 timer_table->timers[timer->index] = NULL;
3013 kfree(timer);
3014 }
3015 EXPORT_SYMBOL(ath_gen_timer_free);
3016
3017 /*
3018 * Generic Timer Interrupts handling
3019 */
3020 void ath_gen_timer_isr(struct ath_hw *ah)
3021 {
3022 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3023 struct ath_gen_timer *timer;
3024 struct ath_common *common = ath9k_hw_common(ah);
3025 u32 trigger_mask, thresh_mask, index;
3026
3027 /* get hardware generic timer interrupt status */
3028 trigger_mask = ah->intr_gen_timer_trigger;
3029 thresh_mask = ah->intr_gen_timer_thresh;
3030 trigger_mask &= timer_table->timer_mask.val;
3031 thresh_mask &= timer_table->timer_mask.val;
3032
3033 trigger_mask &= ~thresh_mask;
3034
3035 while (thresh_mask) {
3036 index = rightmost_index(timer_table, &thresh_mask);
3037 timer = timer_table->timers[index];
3038 BUG_ON(!timer);
3039 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3040 index);
3041 timer->overflow(timer->arg);
3042 }
3043
3044 while (trigger_mask) {
3045 index = rightmost_index(timer_table, &trigger_mask);
3046 timer = timer_table->timers[index];
3047 BUG_ON(!timer);
3048 ath_dbg(common, HWTIMER,
3049 "Gen timer[%d] trigger\n", index);
3050 timer->trigger(timer->arg);
3051 }
3052 }
3053 EXPORT_SYMBOL(ath_gen_timer_isr);
3054
3055 /********/
3056 /* HTC */
3057 /********/
3058
3059 static struct {
3060 u32 version;
3061 const char * name;
3062 } ath_mac_bb_names[] = {
3063 /* Devices with external radios */
3064 { AR_SREV_VERSION_5416_PCI, "5416" },
3065 { AR_SREV_VERSION_5416_PCIE, "5418" },
3066 { AR_SREV_VERSION_9100, "9100" },
3067 { AR_SREV_VERSION_9160, "9160" },
3068 /* Single-chip solutions */
3069 { AR_SREV_VERSION_9280, "9280" },
3070 { AR_SREV_VERSION_9285, "9285" },
3071 { AR_SREV_VERSION_9287, "9287" },
3072 { AR_SREV_VERSION_9271, "9271" },
3073 { AR_SREV_VERSION_9300, "9300" },
3074 { AR_SREV_VERSION_9330, "9330" },
3075 { AR_SREV_VERSION_9340, "9340" },
3076 { AR_SREV_VERSION_9485, "9485" },
3077 { AR_SREV_VERSION_9462, "9462" },
3078 };
3079
3080 /* For devices with external radios */
3081 static struct {
3082 u16 version;
3083 const char * name;
3084 } ath_rf_names[] = {
3085 { 0, "5133" },
3086 { AR_RAD5133_SREV_MAJOR, "5133" },
3087 { AR_RAD5122_SREV_MAJOR, "5122" },
3088 { AR_RAD2133_SREV_MAJOR, "2133" },
3089 { AR_RAD2122_SREV_MAJOR, "2122" }
3090 };
3091
3092 /*
3093 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3094 */
3095 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3096 {
3097 int i;
3098
3099 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3100 if (ath_mac_bb_names[i].version == mac_bb_version) {
3101 return ath_mac_bb_names[i].name;
3102 }
3103 }
3104
3105 return "????";
3106 }
3107
3108 /*
3109 * Return the RF name. "????" is returned if the RF is unknown.
3110 * Used for devices with external radios.
3111 */
3112 static const char *ath9k_hw_rf_name(u16 rf_version)
3113 {
3114 int i;
3115
3116 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3117 if (ath_rf_names[i].version == rf_version) {
3118 return ath_rf_names[i].name;
3119 }
3120 }
3121
3122 return "????";
3123 }
3124
3125 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3126 {
3127 int used;
3128
3129 /* chipsets >= AR9280 are single-chip */
3130 if (AR_SREV_9280_20_OR_LATER(ah)) {
3131 used = snprintf(hw_name, len,
3132 "Atheros AR%s Rev:%x",
3133 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3134 ah->hw_version.macRev);
3135 }
3136 else {
3137 used = snprintf(hw_name, len,
3138 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3139 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3140 ah->hw_version.macRev,
3141 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3142 AR_RADIO_SREV_MAJOR)),
3143 ah->hw_version.phyRev);
3144 }
3145
3146 hw_name[used] = '\0';
3147 }
3148 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.131602 seconds and 5 git commands to generate.