ath9k_hw: update the chip tests for AR9003
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK 22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28
29 static void ar9002_hw_attach_ops(struct ath_hw *ah);
30 static void ar9003_hw_attach_ops(struct ath_hw *ah);
31
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41 return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47 return;
48 }
49 module_exit(ath9k_exit);
50
51 /* Private hardware callbacks */
52
53 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
54 {
55 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
56 }
57
58 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
59 {
60 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
61 }
62
63 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
64 {
65 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
66
67 return priv_ops->macversion_supported(ah->hw_version.macVersion);
68 }
69
70 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
71 struct ath9k_channel *chan)
72 {
73 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
74 }
75
76 /********************/
77 /* Helper Functions */
78 /********************/
79
80 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
81 {
82 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
83
84 if (!ah->curchan) /* should really check for CCK instead */
85 return usecs *ATH9K_CLOCK_RATE_CCK;
86 if (conf->channel->band == IEEE80211_BAND_2GHZ)
87 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
88 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
89 }
90
91 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
92 {
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95 if (conf_is_ht40(conf))
96 return ath9k_hw_mac_clks(ah, usecs) * 2;
97 else
98 return ath9k_hw_mac_clks(ah, usecs);
99 }
100
101 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
102 {
103 int i;
104
105 BUG_ON(timeout < AH_TIME_QUANTUM);
106
107 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
108 if ((REG_READ(ah, reg) & mask) == val)
109 return true;
110
111 udelay(AH_TIME_QUANTUM);
112 }
113
114 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
115 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
116 timeout, reg, REG_READ(ah, reg), mask, val);
117
118 return false;
119 }
120 EXPORT_SYMBOL(ath9k_hw_wait);
121
122 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
123 {
124 u32 retval;
125 int i;
126
127 for (i = 0, retval = 0; i < n; i++) {
128 retval = (retval << 1) | (val & 1);
129 val >>= 1;
130 }
131 return retval;
132 }
133
134 bool ath9k_get_channel_edges(struct ath_hw *ah,
135 u16 flags, u16 *low,
136 u16 *high)
137 {
138 struct ath9k_hw_capabilities *pCap = &ah->caps;
139
140 if (flags & CHANNEL_5GHZ) {
141 *low = pCap->low_5ghz_chan;
142 *high = pCap->high_5ghz_chan;
143 return true;
144 }
145 if ((flags & CHANNEL_2GHZ)) {
146 *low = pCap->low_2ghz_chan;
147 *high = pCap->high_2ghz_chan;
148 return true;
149 }
150 return false;
151 }
152
153 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
154 u8 phy, int kbps,
155 u32 frameLen, u16 rateix,
156 bool shortPreamble)
157 {
158 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
159
160 if (kbps == 0)
161 return 0;
162
163 switch (phy) {
164 case WLAN_RC_PHY_CCK:
165 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166 if (shortPreamble)
167 phyTime >>= 1;
168 numBits = frameLen << 3;
169 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
170 break;
171 case WLAN_RC_PHY_OFDM:
172 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
173 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
174 numBits = OFDM_PLCP_BITS + (frameLen << 3);
175 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176 txTime = OFDM_SIFS_TIME_QUARTER
177 + OFDM_PREAMBLE_TIME_QUARTER
178 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
179 } else if (ah->curchan &&
180 IS_CHAN_HALF_RATE(ah->curchan)) {
181 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
182 numBits = OFDM_PLCP_BITS + (frameLen << 3);
183 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184 txTime = OFDM_SIFS_TIME_HALF +
185 OFDM_PREAMBLE_TIME_HALF
186 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
187 } else {
188 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
189 numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
192 + (numSymbols * OFDM_SYMBOL_TIME);
193 }
194 break;
195 default:
196 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
197 "Unknown phy %u (rate ix %u)\n", phy, rateix);
198 txTime = 0;
199 break;
200 }
201
202 return txTime;
203 }
204 EXPORT_SYMBOL(ath9k_hw_computetxtime);
205
206 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
207 struct ath9k_channel *chan,
208 struct chan_centers *centers)
209 {
210 int8_t extoff;
211
212 if (!IS_CHAN_HT40(chan)) {
213 centers->ctl_center = centers->ext_center =
214 centers->synth_center = chan->channel;
215 return;
216 }
217
218 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
219 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
220 centers->synth_center =
221 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
222 extoff = 1;
223 } else {
224 centers->synth_center =
225 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
226 extoff = -1;
227 }
228
229 centers->ctl_center =
230 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 /* 25 MHz spacing is supported by hw but not on upper layers */
232 centers->ext_center =
233 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
234 }
235
236 /******************/
237 /* Chip Revisions */
238 /******************/
239
240 static void ath9k_hw_read_revisions(struct ath_hw *ah)
241 {
242 u32 val;
243
244 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
245
246 if (val == 0xFF) {
247 val = REG_READ(ah, AR_SREV);
248 ah->hw_version.macVersion =
249 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
250 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
251 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
252 } else {
253 if (!AR_SREV_9100(ah))
254 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
255
256 ah->hw_version.macRev = val & AR_SREV_REVISION;
257
258 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
259 ah->is_pciexpress = true;
260 }
261 }
262
263 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
264 {
265 u32 val;
266 int i;
267
268 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
269
270 for (i = 0; i < 8; i++)
271 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
272 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
273 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
274
275 return ath9k_hw_reverse_bits(val, 8);
276 }
277
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284 if (AR_SREV_9100(ah))
285 return;
286
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
296
297 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
298 }
299
300 /* This should work for all families including legacy */
301 static bool ath9k_hw_chip_test(struct ath_hw *ah)
302 {
303 struct ath_common *common = ath9k_hw_common(ah);
304 u32 regAddr[2] = { AR_STA_ID0 };
305 u32 regHold[2];
306 u32 patternData[4] = { 0x55555555,
307 0xaaaaaaaa,
308 0x66666666,
309 0x99999999 };
310 int i, j, loop_max;
311
312 if (!AR_SREV_9300_20_OR_LATER(ah)) {
313 loop_max = 2;
314 regAddr[1] = AR_PHY_BASE + (8 << 2);
315 } else
316 loop_max = 1;
317
318 for (i = 0; i < loop_max; i++) {
319 u32 addr = regAddr[i];
320 u32 wrData, rdData;
321
322 regHold[i] = REG_READ(ah, addr);
323 for (j = 0; j < 0x100; j++) {
324 wrData = (j << 16) | j;
325 REG_WRITE(ah, addr, wrData);
326 rdData = REG_READ(ah, addr);
327 if (rdData != wrData) {
328 ath_print(common, ATH_DBG_FATAL,
329 "address test failed "
330 "addr: 0x%08x - wr:0x%08x != "
331 "rd:0x%08x\n",
332 addr, wrData, rdData);
333 return false;
334 }
335 }
336 for (j = 0; j < 4; j++) {
337 wrData = patternData[j];
338 REG_WRITE(ah, addr, wrData);
339 rdData = REG_READ(ah, addr);
340 if (wrData != rdData) {
341 ath_print(common, ATH_DBG_FATAL,
342 "address test failed "
343 "addr: 0x%08x - wr:0x%08x != "
344 "rd:0x%08x\n",
345 addr, wrData, rdData);
346 return false;
347 }
348 }
349 REG_WRITE(ah, regAddr[i], regHold[i]);
350 }
351 udelay(100);
352
353 return true;
354 }
355
356 static void ath9k_hw_init_config(struct ath_hw *ah)
357 {
358 int i;
359
360 ah->config.dma_beacon_response_time = 2;
361 ah->config.sw_beacon_response_time = 10;
362 ah->config.additional_swba_backoff = 0;
363 ah->config.ack_6mb = 0x0;
364 ah->config.cwm_ignore_extcca = 0;
365 ah->config.pcie_powersave_enable = 0;
366 ah->config.pcie_clock_req = 0;
367 ah->config.pcie_waen = 0;
368 ah->config.analog_shiftreg = 1;
369 ah->config.ofdm_trig_low = 200;
370 ah->config.ofdm_trig_high = 500;
371 ah->config.cck_trig_high = 200;
372 ah->config.cck_trig_low = 100;
373
374 /*
375 * For now ANI is disabled for AR9003, it is still
376 * being tested.
377 */
378 if (!AR_SREV_9300_20_OR_LATER(ah))
379 ah->config.enable_ani = 1;
380
381 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
382 ah->config.spurchans[i][0] = AR_NO_SPUR;
383 ah->config.spurchans[i][1] = AR_NO_SPUR;
384 }
385
386 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
387 ah->config.ht_enable = 1;
388 else
389 ah->config.ht_enable = 0;
390
391 ah->config.rx_intr_mitigation = true;
392
393 /*
394 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
395 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
396 * This means we use it for all AR5416 devices, and the few
397 * minor PCI AR9280 devices out there.
398 *
399 * Serialization is required because these devices do not handle
400 * well the case of two concurrent reads/writes due to the latency
401 * involved. During one read/write another read/write can be issued
402 * on another CPU while the previous read/write may still be working
403 * on our hardware, if we hit this case the hardware poops in a loop.
404 * We prevent this by serializing reads and writes.
405 *
406 * This issue is not present on PCI-Express devices or pre-AR5416
407 * devices (legacy, 802.11abg).
408 */
409 if (num_possible_cpus() > 1)
410 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
411 }
412
413 static void ath9k_hw_init_defaults(struct ath_hw *ah)
414 {
415 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416
417 regulatory->country_code = CTRY_DEFAULT;
418 regulatory->power_limit = MAX_RATE_POWER;
419 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420
421 ah->hw_version.magic = AR5416_MAGIC;
422 ah->hw_version.subvendorid = 0;
423
424 ah->ah_flags = 0;
425 if (!AR_SREV_9100(ah))
426 ah->ah_flags = AH_USE_EEPROM;
427
428 ah->atim_window = 0;
429 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
430 ah->beacon_interval = 100;
431 ah->enable_32kHz_clock = DONT_USE_32KHZ;
432 ah->slottime = (u32) -1;
433 ah->globaltxtimeout = (u32) -1;
434 ah->power_mode = ATH9K_PM_UNDEFINED;
435 }
436
437 static int ath9k_hw_rf_claim(struct ath_hw *ah)
438 {
439 u32 val;
440
441 REG_WRITE(ah, AR_PHY(0), 0x00000007);
442
443 val = ath9k_hw_get_radiorev(ah);
444 switch (val & AR_RADIO_SREV_MAJOR) {
445 case 0:
446 val = AR_RAD5133_SREV_MAJOR;
447 break;
448 case AR_RAD5133_SREV_MAJOR:
449 case AR_RAD5122_SREV_MAJOR:
450 case AR_RAD2133_SREV_MAJOR:
451 case AR_RAD2122_SREV_MAJOR:
452 break;
453 default:
454 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
455 "Radio Chip Rev 0x%02X not supported\n",
456 val & AR_RADIO_SREV_MAJOR);
457 return -EOPNOTSUPP;
458 }
459
460 ah->hw_version.analog5GhzRev = val;
461
462 return 0;
463 }
464
465 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
466 {
467 struct ath_common *common = ath9k_hw_common(ah);
468 u32 sum;
469 int i;
470 u16 eeval;
471
472 sum = 0;
473 for (i = 0; i < 3; i++) {
474 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
475 sum += eeval;
476 common->macaddr[2 * i] = eeval >> 8;
477 common->macaddr[2 * i + 1] = eeval & 0xff;
478 }
479 if (sum == 0 || sum == 0xffff * 3)
480 return -EADDRNOTAVAIL;
481
482 return 0;
483 }
484
485 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
486 {
487 u32 rxgain_type;
488
489 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
490 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
491
492 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
493 INIT_INI_ARRAY(&ah->iniModesRxGain,
494 ar9280Modes_backoff_13db_rxgain_9280_2,
495 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
496 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
497 INIT_INI_ARRAY(&ah->iniModesRxGain,
498 ar9280Modes_backoff_23db_rxgain_9280_2,
499 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
500 else
501 INIT_INI_ARRAY(&ah->iniModesRxGain,
502 ar9280Modes_original_rxgain_9280_2,
503 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
504 } else {
505 INIT_INI_ARRAY(&ah->iniModesRxGain,
506 ar9280Modes_original_rxgain_9280_2,
507 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
508 }
509 }
510
511 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
512 {
513 u32 txgain_type;
514
515 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
516 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
517
518 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
519 INIT_INI_ARRAY(&ah->iniModesTxGain,
520 ar9280Modes_high_power_tx_gain_9280_2,
521 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
522 else
523 INIT_INI_ARRAY(&ah->iniModesTxGain,
524 ar9280Modes_original_tx_gain_9280_2,
525 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
526 } else {
527 INIT_INI_ARRAY(&ah->iniModesTxGain,
528 ar9280Modes_original_tx_gain_9280_2,
529 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
530 }
531 }
532
533 static int ath9k_hw_post_init(struct ath_hw *ah)
534 {
535 int ecode;
536
537 if (!AR_SREV_9271(ah)) {
538 if (!ath9k_hw_chip_test(ah))
539 return -ENODEV;
540 }
541
542 ecode = ath9k_hw_rf_claim(ah);
543 if (ecode != 0)
544 return ecode;
545
546 ecode = ath9k_hw_eeprom_init(ah);
547 if (ecode != 0)
548 return ecode;
549
550 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
551 "Eeprom VER: %d, REV: %d\n",
552 ah->eep_ops->get_eeprom_ver(ah),
553 ah->eep_ops->get_eeprom_rev(ah));
554
555 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
556 if (ecode) {
557 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
558 "Failed allocating banks for "
559 "external radio\n");
560 return ecode;
561 }
562
563 if (!AR_SREV_9100(ah)) {
564 ath9k_hw_ani_setup(ah);
565 ath9k_hw_ani_init(ah);
566 }
567
568 return 0;
569 }
570
571 static bool ar9002_hw_macversion_supported(u32 macversion)
572 {
573 switch (macversion) {
574 case AR_SREV_VERSION_5416_PCI:
575 case AR_SREV_VERSION_5416_PCIE:
576 case AR_SREV_VERSION_9160:
577 case AR_SREV_VERSION_9100:
578 case AR_SREV_VERSION_9280:
579 case AR_SREV_VERSION_9285:
580 case AR_SREV_VERSION_9287:
581 case AR_SREV_VERSION_9271:
582 return true;
583 default:
584 break;
585 }
586 return false;
587 }
588
589 static bool ar9003_hw_macversion_supported(u32 macversion)
590 {
591 switch (macversion) {
592 case AR_SREV_VERSION_9300:
593 return true;
594 default:
595 break;
596 }
597 return false;
598 }
599
600 static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
601 {
602 if (AR_SREV_9160_10_OR_LATER(ah)) {
603 if (AR_SREV_9280_10_OR_LATER(ah)) {
604 ah->iq_caldata.calData = &iq_cal_single_sample;
605 ah->adcgain_caldata.calData =
606 &adc_gain_cal_single_sample;
607 ah->adcdc_caldata.calData =
608 &adc_dc_cal_single_sample;
609 ah->adcdc_calinitdata.calData =
610 &adc_init_dc_cal;
611 } else {
612 ah->iq_caldata.calData = &iq_cal_multi_sample;
613 ah->adcgain_caldata.calData =
614 &adc_gain_cal_multi_sample;
615 ah->adcdc_caldata.calData =
616 &adc_dc_cal_multi_sample;
617 ah->adcdc_calinitdata.calData =
618 &adc_init_dc_cal;
619 }
620 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
621 }
622 }
623
624 static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
625 {
626 if (AR_SREV_9271(ah)) {
627 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
628 ARRAY_SIZE(ar9271Modes_9271), 6);
629 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
630 ARRAY_SIZE(ar9271Common_9271), 2);
631 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
632 ar9271Common_normal_cck_fir_coeff_9271,
633 ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
634 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
635 ar9271Common_japan_2484_cck_fir_coeff_9271,
636 ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
637 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
638 ar9271Modes_9271_1_0_only,
639 ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
640 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
641 ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
642 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
643 ar9271Modes_high_power_tx_gain_9271,
644 ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
645 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
646 ar9271Modes_normal_power_tx_gain_9271,
647 ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
648 return;
649 }
650
651 if (AR_SREV_9287_11_OR_LATER(ah)) {
652 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
653 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
654 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
655 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
656 if (ah->config.pcie_clock_req)
657 INIT_INI_ARRAY(&ah->iniPcieSerdes,
658 ar9287PciePhy_clkreq_off_L1_9287_1_1,
659 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
660 else
661 INIT_INI_ARRAY(&ah->iniPcieSerdes,
662 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
663 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
664 2);
665 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
666 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
667 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
668 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
669 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
670
671 if (ah->config.pcie_clock_req)
672 INIT_INI_ARRAY(&ah->iniPcieSerdes,
673 ar9287PciePhy_clkreq_off_L1_9287_1_0,
674 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
675 else
676 INIT_INI_ARRAY(&ah->iniPcieSerdes,
677 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
678 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
679 2);
680 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
681
682
683 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
684 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
685 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
686 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
687
688 if (ah->config.pcie_clock_req) {
689 INIT_INI_ARRAY(&ah->iniPcieSerdes,
690 ar9285PciePhy_clkreq_off_L1_9285_1_2,
691 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
692 } else {
693 INIT_INI_ARRAY(&ah->iniPcieSerdes,
694 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
695 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
696 2);
697 }
698 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
699 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
700 ARRAY_SIZE(ar9285Modes_9285), 6);
701 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
702 ARRAY_SIZE(ar9285Common_9285), 2);
703
704 if (ah->config.pcie_clock_req) {
705 INIT_INI_ARRAY(&ah->iniPcieSerdes,
706 ar9285PciePhy_clkreq_off_L1_9285,
707 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
708 } else {
709 INIT_INI_ARRAY(&ah->iniPcieSerdes,
710 ar9285PciePhy_clkreq_always_on_L1_9285,
711 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
712 }
713 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
714 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
715 ARRAY_SIZE(ar9280Modes_9280_2), 6);
716 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
717 ARRAY_SIZE(ar9280Common_9280_2), 2);
718
719 if (ah->config.pcie_clock_req) {
720 INIT_INI_ARRAY(&ah->iniPcieSerdes,
721 ar9280PciePhy_clkreq_off_L1_9280,
722 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
723 } else {
724 INIT_INI_ARRAY(&ah->iniPcieSerdes,
725 ar9280PciePhy_clkreq_always_on_L1_9280,
726 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
727 }
728 INIT_INI_ARRAY(&ah->iniModesAdditional,
729 ar9280Modes_fast_clock_9280_2,
730 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
731 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
732 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
733 ARRAY_SIZE(ar9280Modes_9280), 6);
734 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
735 ARRAY_SIZE(ar9280Common_9280), 2);
736 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
737 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
738 ARRAY_SIZE(ar5416Modes_9160), 6);
739 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
740 ARRAY_SIZE(ar5416Common_9160), 2);
741 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
742 ARRAY_SIZE(ar5416Bank0_9160), 2);
743 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
744 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
745 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
746 ARRAY_SIZE(ar5416Bank1_9160), 2);
747 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
748 ARRAY_SIZE(ar5416Bank2_9160), 2);
749 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
750 ARRAY_SIZE(ar5416Bank3_9160), 3);
751 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
752 ARRAY_SIZE(ar5416Bank6_9160), 3);
753 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
754 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
755 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
756 ARRAY_SIZE(ar5416Bank7_9160), 2);
757 if (AR_SREV_9160_11(ah)) {
758 INIT_INI_ARRAY(&ah->iniAddac,
759 ar5416Addac_91601_1,
760 ARRAY_SIZE(ar5416Addac_91601_1), 2);
761 } else {
762 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
763 ARRAY_SIZE(ar5416Addac_9160), 2);
764 }
765 } else if (AR_SREV_9100_OR_LATER(ah)) {
766 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
767 ARRAY_SIZE(ar5416Modes_9100), 6);
768 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
769 ARRAY_SIZE(ar5416Common_9100), 2);
770 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
771 ARRAY_SIZE(ar5416Bank0_9100), 2);
772 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
773 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
774 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
775 ARRAY_SIZE(ar5416Bank1_9100), 2);
776 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
777 ARRAY_SIZE(ar5416Bank2_9100), 2);
778 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
779 ARRAY_SIZE(ar5416Bank3_9100), 3);
780 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
781 ARRAY_SIZE(ar5416Bank6_9100), 3);
782 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
783 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
784 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
785 ARRAY_SIZE(ar5416Bank7_9100), 2);
786 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
787 ARRAY_SIZE(ar5416Addac_9100), 2);
788 } else {
789 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
790 ARRAY_SIZE(ar5416Modes), 6);
791 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
792 ARRAY_SIZE(ar5416Common), 2);
793 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
794 ARRAY_SIZE(ar5416Bank0), 2);
795 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
796 ARRAY_SIZE(ar5416BB_RfGain), 3);
797 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
798 ARRAY_SIZE(ar5416Bank1), 2);
799 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
800 ARRAY_SIZE(ar5416Bank2), 2);
801 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
802 ARRAY_SIZE(ar5416Bank3), 3);
803 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
804 ARRAY_SIZE(ar5416Bank6), 3);
805 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
806 ARRAY_SIZE(ar5416Bank6TPC), 3);
807 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
808 ARRAY_SIZE(ar5416Bank7), 2);
809 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
810 ARRAY_SIZE(ar5416Addac), 2);
811 }
812 }
813
814 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
815 {
816 if (AR_SREV_9287_11_OR_LATER(ah))
817 INIT_INI_ARRAY(&ah->iniModesRxGain,
818 ar9287Modes_rx_gain_9287_1_1,
819 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
820 else if (AR_SREV_9287_10(ah))
821 INIT_INI_ARRAY(&ah->iniModesRxGain,
822 ar9287Modes_rx_gain_9287_1_0,
823 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
824 else if (AR_SREV_9280_20(ah))
825 ath9k_hw_init_rxgain_ini(ah);
826
827 if (AR_SREV_9287_11_OR_LATER(ah)) {
828 INIT_INI_ARRAY(&ah->iniModesTxGain,
829 ar9287Modes_tx_gain_9287_1_1,
830 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
831 } else if (AR_SREV_9287_10(ah)) {
832 INIT_INI_ARRAY(&ah->iniModesTxGain,
833 ar9287Modes_tx_gain_9287_1_0,
834 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
835 } else if (AR_SREV_9280_20(ah)) {
836 ath9k_hw_init_txgain_ini(ah);
837 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
838 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
839
840 /* txgain table */
841 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
842 if (AR_SREV_9285E_20(ah)) {
843 INIT_INI_ARRAY(&ah->iniModesTxGain,
844 ar9285Modes_XE2_0_high_power,
845 ARRAY_SIZE(
846 ar9285Modes_XE2_0_high_power), 6);
847 } else {
848 INIT_INI_ARRAY(&ah->iniModesTxGain,
849 ar9285Modes_high_power_tx_gain_9285_1_2,
850 ARRAY_SIZE(
851 ar9285Modes_high_power_tx_gain_9285_1_2), 6);
852 }
853 } else {
854 if (AR_SREV_9285E_20(ah)) {
855 INIT_INI_ARRAY(&ah->iniModesTxGain,
856 ar9285Modes_XE2_0_normal_power,
857 ARRAY_SIZE(
858 ar9285Modes_XE2_0_normal_power), 6);
859 } else {
860 INIT_INI_ARRAY(&ah->iniModesTxGain,
861 ar9285Modes_original_tx_gain_9285_1_2,
862 ARRAY_SIZE(
863 ar9285Modes_original_tx_gain_9285_1_2), 6);
864 }
865 }
866 }
867 }
868
869 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
870 {
871 struct base_eep_header *pBase = &(ah->eeprom.def.baseEepHeader);
872 struct ath_common *common = ath9k_hw_common(ah);
873
874 ah->need_an_top2_fixup = (ah->hw_version.devid == AR9280_DEVID_PCI) &&
875 (ah->eep_map != EEP_MAP_4KBITS) &&
876 ((pBase->version & 0xff) > 0x0a) &&
877 (pBase->pwdclkind == 0);
878
879 if (ah->need_an_top2_fixup)
880 ath_print(common, ATH_DBG_EEPROM,
881 "needs fixup for AR_AN_TOP2 register\n");
882 }
883
884 static void ath9k_hw_attach_ops(struct ath_hw *ah)
885 {
886 if (AR_SREV_9300_20_OR_LATER(ah))
887 ar9003_hw_attach_ops(ah);
888 else
889 ar9002_hw_attach_ops(ah);
890 }
891
892 /* Called for all hardware families */
893 static int __ath9k_hw_init(struct ath_hw *ah)
894 {
895 struct ath_common *common = ath9k_hw_common(ah);
896 int r = 0;
897
898 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
899 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
900
901 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
902 ath_print(common, ATH_DBG_FATAL,
903 "Couldn't reset chip\n");
904 return -EIO;
905 }
906
907 ath9k_hw_init_defaults(ah);
908 ath9k_hw_init_config(ah);
909
910 ath9k_hw_attach_ops(ah);
911
912 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
913 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
914 return -EIO;
915 }
916
917 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
918 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
919 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
920 ah->config.serialize_regmode =
921 SER_REG_MODE_ON;
922 } else {
923 ah->config.serialize_regmode =
924 SER_REG_MODE_OFF;
925 }
926 }
927
928 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
929 ah->config.serialize_regmode);
930
931 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
932 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
933 else
934 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
935
936 if (!ath9k_hw_macversion_supported(ah)) {
937 ath_print(common, ATH_DBG_FATAL,
938 "Mac Chip Rev 0x%02x.%x is not supported by "
939 "this driver\n", ah->hw_version.macVersion,
940 ah->hw_version.macRev);
941 return -EOPNOTSUPP;
942 }
943
944 if (AR_SREV_9100(ah)) {
945 ah->iq_caldata.calData = &iq_cal_multi_sample;
946 ah->supp_cals = IQ_MISMATCH_CAL;
947 ah->is_pciexpress = false;
948 }
949
950 if (AR_SREV_9271(ah))
951 ah->is_pciexpress = false;
952
953 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
954 ath9k_hw_init_cal_settings(ah);
955
956 ah->ani_function = ATH9K_ANI_ALL;
957 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
958 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
959
960 ath9k_hw_init_mode_regs(ah);
961
962 if (ah->is_pciexpress)
963 ath9k_hw_configpcipowersave(ah, 0, 0);
964 else
965 ath9k_hw_disablepcie(ah);
966
967 /* Support for Japan ch.14 (2484) spread */
968 if (AR_SREV_9287_11_OR_LATER(ah)) {
969 INIT_INI_ARRAY(&ah->iniCckfirNormal,
970 ar9287Common_normal_cck_fir_coeff_92871_1,
971 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
972 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
973 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
974 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
975 }
976
977 r = ath9k_hw_post_init(ah);
978 if (r)
979 return r;
980
981 ath9k_hw_init_mode_gain_regs(ah);
982 r = ath9k_hw_fill_cap_info(ah);
983 if (r)
984 return r;
985
986 ath9k_hw_init_eeprom_fix(ah);
987
988 r = ath9k_hw_init_macaddr(ah);
989 if (r) {
990 ath_print(common, ATH_DBG_FATAL,
991 "Failed to initialize MAC address\n");
992 return r;
993 }
994
995 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
996 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
997 else
998 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
999
1000 ath9k_init_nfcal_hist_buffer(ah);
1001
1002 common->state = ATH_HW_INITIALIZED;
1003
1004 return 0;
1005 }
1006
1007 int ath9k_hw_init(struct ath_hw *ah)
1008 {
1009 int ret;
1010 struct ath_common *common = ath9k_hw_common(ah);
1011
1012 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
1013 switch (ah->hw_version.devid) {
1014 case AR5416_DEVID_PCI:
1015 case AR5416_DEVID_PCIE:
1016 case AR5416_AR9100_DEVID:
1017 case AR9160_DEVID_PCI:
1018 case AR9280_DEVID_PCI:
1019 case AR9280_DEVID_PCIE:
1020 case AR9285_DEVID_PCIE:
1021 case AR9287_DEVID_PCI:
1022 case AR9287_DEVID_PCIE:
1023 case AR2427_DEVID_PCIE:
1024 case AR9300_DEVID_PCIE:
1025 break;
1026 default:
1027 if (common->bus_ops->ath_bus_type == ATH_USB)
1028 break;
1029 ath_print(common, ATH_DBG_FATAL,
1030 "Hardware device ID 0x%04x not supported\n",
1031 ah->hw_version.devid);
1032 return -EOPNOTSUPP;
1033 }
1034
1035 ret = __ath9k_hw_init(ah);
1036 if (ret) {
1037 ath_print(common, ATH_DBG_FATAL,
1038 "Unable to initialize hardware; "
1039 "initialization status: %d\n", ret);
1040 return ret;
1041 }
1042
1043 return 0;
1044 }
1045 EXPORT_SYMBOL(ath9k_hw_init);
1046
1047 static void ath9k_hw_init_qos(struct ath_hw *ah)
1048 {
1049 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1050 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1051
1052 REG_WRITE(ah, AR_QOS_NO_ACK,
1053 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1054 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1055 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1056
1057 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1058 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1059 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1060 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1061 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1062 }
1063
1064 static void ath9k_hw_init_pll(struct ath_hw *ah,
1065 struct ath9k_channel *chan)
1066 {
1067 u32 pll = ath9k_hw_compute_pll_control(ah, chan);
1068
1069 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1070
1071 /* Switch the core clock for ar9271 to 117Mhz */
1072 if (AR_SREV_9271(ah)) {
1073 udelay(500);
1074 REG_WRITE(ah, 0x50040, 0x304);
1075 }
1076
1077 udelay(RTC_PLL_SETTLE_DELAY);
1078
1079 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1080 }
1081
1082 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1083 enum nl80211_iftype opmode)
1084 {
1085 u32 imr_reg = AR_IMR_TXERR |
1086 AR_IMR_TXURN |
1087 AR_IMR_RXERR |
1088 AR_IMR_RXORN |
1089 AR_IMR_BCNMISC;
1090
1091 if (ah->config.rx_intr_mitigation)
1092 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1093 else
1094 imr_reg |= AR_IMR_RXOK;
1095
1096 imr_reg |= AR_IMR_TXOK;
1097
1098 if (opmode == NL80211_IFTYPE_AP)
1099 imr_reg |= AR_IMR_MIB;
1100
1101 REG_WRITE(ah, AR_IMR, imr_reg);
1102 ah->imrs2_reg |= AR_IMR_S2_GTT;
1103 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1104
1105 if (!AR_SREV_9100(ah)) {
1106 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1107 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1108 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1109 }
1110 }
1111
1112 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1113 {
1114 u32 val = ath9k_hw_mac_to_clks(ah, us);
1115 val = min(val, (u32) 0xFFFF);
1116 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1117 }
1118
1119 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1120 {
1121 u32 val = ath9k_hw_mac_to_clks(ah, us);
1122 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1123 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1124 }
1125
1126 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1127 {
1128 u32 val = ath9k_hw_mac_to_clks(ah, us);
1129 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1130 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1131 }
1132
1133 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1134 {
1135 if (tu > 0xFFFF) {
1136 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1137 "bad global tx timeout %u\n", tu);
1138 ah->globaltxtimeout = (u32) -1;
1139 return false;
1140 } else {
1141 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1142 ah->globaltxtimeout = tu;
1143 return true;
1144 }
1145 }
1146
1147 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1148 {
1149 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1150 int acktimeout;
1151 int slottime;
1152 int sifstime;
1153
1154 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1155 ah->misc_mode);
1156
1157 if (ah->misc_mode != 0)
1158 REG_WRITE(ah, AR_PCU_MISC,
1159 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1160
1161 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1162 sifstime = 16;
1163 else
1164 sifstime = 10;
1165
1166 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1167 slottime = ah->slottime + 3 * ah->coverage_class;
1168 acktimeout = slottime + sifstime;
1169
1170 /*
1171 * Workaround for early ACK timeouts, add an offset to match the
1172 * initval's 64us ack timeout value.
1173 * This was initially only meant to work around an issue with delayed
1174 * BA frames in some implementations, but it has been found to fix ACK
1175 * timeout issues in other cases as well.
1176 */
1177 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1178 acktimeout += 64 - sifstime - ah->slottime;
1179
1180 ath9k_hw_setslottime(ah, slottime);
1181 ath9k_hw_set_ack_timeout(ah, acktimeout);
1182 ath9k_hw_set_cts_timeout(ah, acktimeout);
1183 if (ah->globaltxtimeout != (u32) -1)
1184 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1185 }
1186 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1187
1188 void ath9k_hw_deinit(struct ath_hw *ah)
1189 {
1190 struct ath_common *common = ath9k_hw_common(ah);
1191
1192 if (common->state < ATH_HW_INITIALIZED)
1193 goto free_hw;
1194
1195 if (!AR_SREV_9100(ah))
1196 ath9k_hw_ani_disable(ah);
1197
1198 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1199
1200 free_hw:
1201 ath9k_hw_rf_free_ext_banks(ah);
1202 }
1203 EXPORT_SYMBOL(ath9k_hw_deinit);
1204
1205 /*******/
1206 /* INI */
1207 /*******/
1208
1209 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1210 {
1211 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1212
1213 if (IS_CHAN_B(chan))
1214 ctl |= CTL_11B;
1215 else if (IS_CHAN_G(chan))
1216 ctl |= CTL_11G;
1217 else
1218 ctl |= CTL_11A;
1219
1220 return ctl;
1221 }
1222
1223 /****************************************/
1224 /* Reset and Channel Switching Routines */
1225 /****************************************/
1226
1227 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1228 {
1229 u32 regval;
1230
1231 /*
1232 * set AHB_MODE not to do cacheline prefetches
1233 */
1234 regval = REG_READ(ah, AR_AHB_MODE);
1235 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1236
1237 /*
1238 * let mac dma reads be in 128 byte chunks
1239 */
1240 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1241 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1242
1243 /*
1244 * Restore TX Trigger Level to its pre-reset value.
1245 * The initial value depends on whether aggregation is enabled, and is
1246 * adjusted whenever underruns are detected.
1247 */
1248 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1249
1250 /*
1251 * let mac dma writes be in 128 byte chunks
1252 */
1253 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1254 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1255
1256 /*
1257 * Setup receive FIFO threshold to hold off TX activities
1258 */
1259 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1260
1261 /*
1262 * reduce the number of usable entries in PCU TXBUF to avoid
1263 * wrap around issues.
1264 */
1265 if (AR_SREV_9285(ah)) {
1266 /* For AR9285 the number of Fifos are reduced to half.
1267 * So set the usable tx buf size also to half to
1268 * avoid data/delimiter underruns
1269 */
1270 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1271 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1272 } else if (!AR_SREV_9271(ah)) {
1273 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1274 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1275 }
1276 }
1277
1278 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1279 {
1280 u32 val;
1281
1282 val = REG_READ(ah, AR_STA_ID1);
1283 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1284 switch (opmode) {
1285 case NL80211_IFTYPE_AP:
1286 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1287 | AR_STA_ID1_KSRCH_MODE);
1288 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1289 break;
1290 case NL80211_IFTYPE_ADHOC:
1291 case NL80211_IFTYPE_MESH_POINT:
1292 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1293 | AR_STA_ID1_KSRCH_MODE);
1294 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1295 break;
1296 case NL80211_IFTYPE_STATION:
1297 case NL80211_IFTYPE_MONITOR:
1298 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1299 break;
1300 }
1301 }
1302
1303 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1304 u32 *coef_mantissa, u32 *coef_exponent)
1305 {
1306 u32 coef_exp, coef_man;
1307
1308 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1309 if ((coef_scaled >> coef_exp) & 0x1)
1310 break;
1311
1312 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1313
1314 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1315
1316 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1317 *coef_exponent = coef_exp - 16;
1318 }
1319
1320 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1321 {
1322 u32 rst_flags;
1323 u32 tmpReg;
1324
1325 if (AR_SREV_9100(ah)) {
1326 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1327 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1328 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1329 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1330 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1331 }
1332
1333 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1334 AR_RTC_FORCE_WAKE_ON_INT);
1335
1336 if (AR_SREV_9100(ah)) {
1337 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1338 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1339 } else {
1340 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1341 if (tmpReg &
1342 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1343 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1344 u32 val;
1345 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1346
1347 val = AR_RC_HOSTIF;
1348 if (!AR_SREV_9300_20_OR_LATER(ah))
1349 val |= AR_RC_AHB;
1350 REG_WRITE(ah, AR_RC, val);
1351
1352 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1353 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1354
1355 rst_flags = AR_RTC_RC_MAC_WARM;
1356 if (type == ATH9K_RESET_COLD)
1357 rst_flags |= AR_RTC_RC_MAC_COLD;
1358 }
1359
1360 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1361 udelay(50);
1362
1363 REG_WRITE(ah, AR_RTC_RC, 0);
1364 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1365 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1366 "RTC stuck in MAC reset\n");
1367 return false;
1368 }
1369
1370 if (!AR_SREV_9100(ah))
1371 REG_WRITE(ah, AR_RC, 0);
1372
1373 if (AR_SREV_9100(ah))
1374 udelay(50);
1375
1376 return true;
1377 }
1378
1379 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1380 {
1381 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1382 AR_RTC_FORCE_WAKE_ON_INT);
1383
1384 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1385 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1386
1387 REG_WRITE(ah, AR_RTC_RESET, 0);
1388 udelay(2);
1389
1390 if (!AR_SREV_9100(ah))
1391 REG_WRITE(ah, AR_RC, 0);
1392
1393 REG_WRITE(ah, AR_RTC_RESET, 1);
1394
1395 if (!ath9k_hw_wait(ah,
1396 AR_RTC_STATUS,
1397 AR_RTC_STATUS_M,
1398 AR_RTC_STATUS_ON,
1399 AH_WAIT_TIMEOUT)) {
1400 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1401 "RTC not waking up\n");
1402 return false;
1403 }
1404
1405 ath9k_hw_read_revisions(ah);
1406
1407 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1408 }
1409
1410 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1411 {
1412 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1413 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1414
1415 switch (type) {
1416 case ATH9K_RESET_POWER_ON:
1417 return ath9k_hw_set_reset_power_on(ah);
1418 case ATH9K_RESET_WARM:
1419 case ATH9K_RESET_COLD:
1420 return ath9k_hw_set_reset(ah, type);
1421 default:
1422 return false;
1423 }
1424 }
1425
1426 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1427 struct ath9k_channel *chan)
1428 {
1429 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1430 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1431 return false;
1432 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1433 return false;
1434
1435 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1436 return false;
1437
1438 ah->chip_fullsleep = false;
1439 ath9k_hw_init_pll(ah, chan);
1440 ath9k_hw_set_rfmode(ah, chan);
1441
1442 return true;
1443 }
1444
1445 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1446 struct ath9k_channel *chan)
1447 {
1448 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1449 struct ath_common *common = ath9k_hw_common(ah);
1450 struct ieee80211_channel *channel = chan->chan;
1451 u32 qnum;
1452 int r;
1453
1454 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1455 if (ath9k_hw_numtxpending(ah, qnum)) {
1456 ath_print(common, ATH_DBG_QUEUE,
1457 "Transmit frames pending on "
1458 "queue %d\n", qnum);
1459 return false;
1460 }
1461 }
1462
1463 if (!ath9k_hw_rfbus_req(ah)) {
1464 ath_print(common, ATH_DBG_FATAL,
1465 "Could not kill baseband RX\n");
1466 return false;
1467 }
1468
1469 ath9k_hw_set_channel_regs(ah, chan);
1470
1471 r = ath9k_hw_rf_set_freq(ah, chan);
1472 if (r) {
1473 ath_print(common, ATH_DBG_FATAL,
1474 "Failed to set channel\n");
1475 return false;
1476 }
1477
1478 ah->eep_ops->set_txpower(ah, chan,
1479 ath9k_regd_get_ctl(regulatory, chan),
1480 channel->max_antenna_gain * 2,
1481 channel->max_power * 2,
1482 min((u32) MAX_RATE_POWER,
1483 (u32) regulatory->power_limit));
1484
1485 ath9k_hw_rfbus_done(ah);
1486
1487 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1488 ath9k_hw_set_delta_slope(ah, chan);
1489
1490 ath9k_hw_spur_mitigate_freq(ah, chan);
1491
1492 if (!chan->oneTimeCalsDone)
1493 chan->oneTimeCalsDone = true;
1494
1495 return true;
1496 }
1497
1498 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1499 bool bChannelChange)
1500 {
1501 struct ath_common *common = ath9k_hw_common(ah);
1502 u32 saveLedState;
1503 struct ath9k_channel *curchan = ah->curchan;
1504 u32 saveDefAntenna;
1505 u32 macStaId1;
1506 u64 tsf = 0;
1507 int i, r;
1508
1509 ah->txchainmask = common->tx_chainmask;
1510 ah->rxchainmask = common->rx_chainmask;
1511
1512 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1513 return -EIO;
1514
1515 if (curchan && !ah->chip_fullsleep)
1516 ath9k_hw_getnf(ah, curchan);
1517
1518 if (bChannelChange &&
1519 (ah->chip_fullsleep != true) &&
1520 (ah->curchan != NULL) &&
1521 (chan->channel != ah->curchan->channel) &&
1522 ((chan->channelFlags & CHANNEL_ALL) ==
1523 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1524 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1525 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1526
1527 if (ath9k_hw_channel_change(ah, chan)) {
1528 ath9k_hw_loadnf(ah, ah->curchan);
1529 ath9k_hw_start_nfcal(ah);
1530 return 0;
1531 }
1532 }
1533
1534 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1535 if (saveDefAntenna == 0)
1536 saveDefAntenna = 1;
1537
1538 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1539
1540 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1541 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1542 tsf = ath9k_hw_gettsf64(ah);
1543
1544 saveLedState = REG_READ(ah, AR_CFG_LED) &
1545 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1546 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1547
1548 ath9k_hw_mark_phy_inactive(ah);
1549
1550 /* Only required on the first reset */
1551 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1552 REG_WRITE(ah,
1553 AR9271_RESET_POWER_DOWN_CONTROL,
1554 AR9271_RADIO_RF_RST);
1555 udelay(50);
1556 }
1557
1558 if (!ath9k_hw_chip_reset(ah, chan)) {
1559 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1560 return -EINVAL;
1561 }
1562
1563 /* Only required on the first reset */
1564 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1565 ah->htc_reset_init = false;
1566 REG_WRITE(ah,
1567 AR9271_RESET_POWER_DOWN_CONTROL,
1568 AR9271_GATE_MAC_CTL);
1569 udelay(50);
1570 }
1571
1572 /* Restore TSF */
1573 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1574 ath9k_hw_settsf64(ah, tsf);
1575
1576 if (AR_SREV_9280_10_OR_LATER(ah))
1577 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1578
1579 r = ath9k_hw_process_ini(ah, chan);
1580 if (r)
1581 return r;
1582
1583 /* Setup MFP options for CCMP */
1584 if (AR_SREV_9280_20_OR_LATER(ah)) {
1585 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1586 * frames when constructing CCMP AAD. */
1587 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1588 0xc7ff);
1589 ah->sw_mgmt_crypto = false;
1590 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1591 /* Disable hardware crypto for management frames */
1592 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1593 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1594 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1595 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1596 ah->sw_mgmt_crypto = true;
1597 } else
1598 ah->sw_mgmt_crypto = true;
1599
1600 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1601 ath9k_hw_set_delta_slope(ah, chan);
1602
1603 ath9k_hw_spur_mitigate_freq(ah, chan);
1604 ah->eep_ops->set_board_values(ah, chan);
1605
1606 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1607 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1608 | macStaId1
1609 | AR_STA_ID1_RTS_USE_DEF
1610 | (ah->config.
1611 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1612 | ah->sta_id1_defaults);
1613 ath9k_hw_set_operating_mode(ah, ah->opmode);
1614
1615 ath_hw_setbssidmask(common);
1616
1617 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1618
1619 ath9k_hw_write_associd(ah);
1620
1621 REG_WRITE(ah, AR_ISR, ~0);
1622
1623 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1624
1625 r = ath9k_hw_rf_set_freq(ah, chan);
1626 if (r)
1627 return r;
1628
1629 for (i = 0; i < AR_NUM_DCU; i++)
1630 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1631
1632 ah->intr_txqs = 0;
1633 for (i = 0; i < ah->caps.total_queues; i++)
1634 ath9k_hw_resettxqueue(ah, i);
1635
1636 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1637 ath9k_hw_init_qos(ah);
1638
1639 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1640 ath9k_enable_rfkill(ah);
1641
1642 ath9k_hw_init_global_settings(ah);
1643
1644 if (AR_SREV_9287_12_OR_LATER(ah)) {
1645 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
1646 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
1647 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
1648 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
1649 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
1650 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
1651
1652 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
1653 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
1654
1655 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1656 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1657 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1658 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1659 }
1660 if (AR_SREV_9287_12_OR_LATER(ah)) {
1661 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1662 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1663 }
1664
1665 REG_WRITE(ah, AR_STA_ID1,
1666 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1667
1668 ath9k_hw_set_dma(ah);
1669
1670 REG_WRITE(ah, AR_OBS, 8);
1671
1672 if (ah->config.rx_intr_mitigation) {
1673 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1674 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1675 }
1676
1677 ath9k_hw_init_bb(ah, chan);
1678
1679 if (!ath9k_hw_init_cal(ah, chan))
1680 return -EIO;
1681
1682 ath9k_hw_restore_chainmask(ah);
1683 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1684
1685 /*
1686 * For big endian systems turn on swapping for descriptors
1687 */
1688 if (AR_SREV_9100(ah)) {
1689 u32 mask;
1690 mask = REG_READ(ah, AR_CFG);
1691 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1692 ath_print(common, ATH_DBG_RESET,
1693 "CFG Byte Swap Set 0x%x\n", mask);
1694 } else {
1695 mask =
1696 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1697 REG_WRITE(ah, AR_CFG, mask);
1698 ath_print(common, ATH_DBG_RESET,
1699 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1700 }
1701 } else {
1702 /* Configure AR9271 target WLAN */
1703 if (AR_SREV_9271(ah))
1704 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1705 #ifdef __BIG_ENDIAN
1706 else
1707 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1708 #endif
1709 }
1710
1711 if (ah->btcoex_hw.enabled)
1712 ath9k_hw_btcoex_enable(ah);
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(ath9k_hw_reset);
1717
1718 /************************/
1719 /* Key Cache Management */
1720 /************************/
1721
1722 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1723 {
1724 u32 keyType;
1725
1726 if (entry >= ah->caps.keycache_size) {
1727 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1728 "keychache entry %u out of range\n", entry);
1729 return false;
1730 }
1731
1732 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1733
1734 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1735 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1736 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1737 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1738 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1739 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1740 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1741 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1742
1743 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1744 u16 micentry = entry + 64;
1745
1746 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1747 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1748 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1749 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1750
1751 }
1752
1753 return true;
1754 }
1755 EXPORT_SYMBOL(ath9k_hw_keyreset);
1756
1757 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1758 {
1759 u32 macHi, macLo;
1760
1761 if (entry >= ah->caps.keycache_size) {
1762 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1763 "keychache entry %u out of range\n", entry);
1764 return false;
1765 }
1766
1767 if (mac != NULL) {
1768 macHi = (mac[5] << 8) | mac[4];
1769 macLo = (mac[3] << 24) |
1770 (mac[2] << 16) |
1771 (mac[1] << 8) |
1772 mac[0];
1773 macLo >>= 1;
1774 macLo |= (macHi & 1) << 31;
1775 macHi >>= 1;
1776 } else {
1777 macLo = macHi = 0;
1778 }
1779 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1780 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
1781
1782 return true;
1783 }
1784 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1785
1786 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1787 const struct ath9k_keyval *k,
1788 const u8 *mac)
1789 {
1790 const struct ath9k_hw_capabilities *pCap = &ah->caps;
1791 struct ath_common *common = ath9k_hw_common(ah);
1792 u32 key0, key1, key2, key3, key4;
1793 u32 keyType;
1794
1795 if (entry >= pCap->keycache_size) {
1796 ath_print(common, ATH_DBG_FATAL,
1797 "keycache entry %u out of range\n", entry);
1798 return false;
1799 }
1800
1801 switch (k->kv_type) {
1802 case ATH9K_CIPHER_AES_OCB:
1803 keyType = AR_KEYTABLE_TYPE_AES;
1804 break;
1805 case ATH9K_CIPHER_AES_CCM:
1806 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1807 ath_print(common, ATH_DBG_ANY,
1808 "AES-CCM not supported by mac rev 0x%x\n",
1809 ah->hw_version.macRev);
1810 return false;
1811 }
1812 keyType = AR_KEYTABLE_TYPE_CCM;
1813 break;
1814 case ATH9K_CIPHER_TKIP:
1815 keyType = AR_KEYTABLE_TYPE_TKIP;
1816 if (ATH9K_IS_MIC_ENABLED(ah)
1817 && entry + 64 >= pCap->keycache_size) {
1818 ath_print(common, ATH_DBG_ANY,
1819 "entry %u inappropriate for TKIP\n", entry);
1820 return false;
1821 }
1822 break;
1823 case ATH9K_CIPHER_WEP:
1824 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1825 ath_print(common, ATH_DBG_ANY,
1826 "WEP key length %u too small\n", k->kv_len);
1827 return false;
1828 }
1829 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1830 keyType = AR_KEYTABLE_TYPE_40;
1831 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1832 keyType = AR_KEYTABLE_TYPE_104;
1833 else
1834 keyType = AR_KEYTABLE_TYPE_128;
1835 break;
1836 case ATH9K_CIPHER_CLR:
1837 keyType = AR_KEYTABLE_TYPE_CLR;
1838 break;
1839 default:
1840 ath_print(common, ATH_DBG_FATAL,
1841 "cipher %u not supported\n", k->kv_type);
1842 return false;
1843 }
1844
1845 key0 = get_unaligned_le32(k->kv_val + 0);
1846 key1 = get_unaligned_le16(k->kv_val + 4);
1847 key2 = get_unaligned_le32(k->kv_val + 6);
1848 key3 = get_unaligned_le16(k->kv_val + 10);
1849 key4 = get_unaligned_le32(k->kv_val + 12);
1850 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1851 key4 &= 0xff;
1852
1853 /*
1854 * Note: Key cache registers access special memory area that requires
1855 * two 32-bit writes to actually update the values in the internal
1856 * memory. Consequently, the exact order and pairs used here must be
1857 * maintained.
1858 */
1859
1860 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1861 u16 micentry = entry + 64;
1862
1863 /*
1864 * Write inverted key[47:0] first to avoid Michael MIC errors
1865 * on frames that could be sent or received at the same time.
1866 * The correct key will be written in the end once everything
1867 * else is ready.
1868 */
1869 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1870 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1871
1872 /* Write key[95:48] */
1873 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1874 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1875
1876 /* Write key[127:96] and key type */
1877 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1878 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1879
1880 /* Write MAC address for the entry */
1881 (void) ath9k_hw_keysetmac(ah, entry, mac);
1882
1883 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1884 /*
1885 * TKIP uses two key cache entries:
1886 * Michael MIC TX/RX keys in the same key cache entry
1887 * (idx = main index + 64):
1888 * key0 [31:0] = RX key [31:0]
1889 * key1 [15:0] = TX key [31:16]
1890 * key1 [31:16] = reserved
1891 * key2 [31:0] = RX key [63:32]
1892 * key3 [15:0] = TX key [15:0]
1893 * key3 [31:16] = reserved
1894 * key4 [31:0] = TX key [63:32]
1895 */
1896 u32 mic0, mic1, mic2, mic3, mic4;
1897
1898 mic0 = get_unaligned_le32(k->kv_mic + 0);
1899 mic2 = get_unaligned_le32(k->kv_mic + 4);
1900 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1901 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1902 mic4 = get_unaligned_le32(k->kv_txmic + 4);
1903
1904 /* Write RX[31:0] and TX[31:16] */
1905 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1906 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1907
1908 /* Write RX[63:32] and TX[15:0] */
1909 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1910 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1911
1912 /* Write TX[63:32] and keyType(reserved) */
1913 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1914 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1915 AR_KEYTABLE_TYPE_CLR);
1916
1917 } else {
1918 /*
1919 * TKIP uses four key cache entries (two for group
1920 * keys):
1921 * Michael MIC TX/RX keys are in different key cache
1922 * entries (idx = main index + 64 for TX and
1923 * main index + 32 + 96 for RX):
1924 * key0 [31:0] = TX/RX MIC key [31:0]
1925 * key1 [31:0] = reserved
1926 * key2 [31:0] = TX/RX MIC key [63:32]
1927 * key3 [31:0] = reserved
1928 * key4 [31:0] = reserved
1929 *
1930 * Upper layer code will call this function separately
1931 * for TX and RX keys when these registers offsets are
1932 * used.
1933 */
1934 u32 mic0, mic2;
1935
1936 mic0 = get_unaligned_le32(k->kv_mic + 0);
1937 mic2 = get_unaligned_le32(k->kv_mic + 4);
1938
1939 /* Write MIC key[31:0] */
1940 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1941 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1942
1943 /* Write MIC key[63:32] */
1944 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1945 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1946
1947 /* Write TX[63:32] and keyType(reserved) */
1948 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1949 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1950 AR_KEYTABLE_TYPE_CLR);
1951 }
1952
1953 /* MAC address registers are reserved for the MIC entry */
1954 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1955 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1956
1957 /*
1958 * Write the correct (un-inverted) key[47:0] last to enable
1959 * TKIP now that all other registers are set with correct
1960 * values.
1961 */
1962 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1963 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1964 } else {
1965 /* Write key[47:0] */
1966 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1967 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1968
1969 /* Write key[95:48] */
1970 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1971 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1972
1973 /* Write key[127:96] and key type */
1974 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1975 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1976
1977 /* Write MAC address for the entry */
1978 (void) ath9k_hw_keysetmac(ah, entry, mac);
1979 }
1980
1981 return true;
1982 }
1983 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1984
1985 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1986 {
1987 if (entry < ah->caps.keycache_size) {
1988 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1989 if (val & AR_KEYTABLE_VALID)
1990 return true;
1991 }
1992 return false;
1993 }
1994 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1995
1996 /******************************/
1997 /* Power Management (Chipset) */
1998 /******************************/
1999
2000 /*
2001 * Notify Power Mgt is disabled in self-generated frames.
2002 * If requested, force chip to sleep.
2003 */
2004 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2005 {
2006 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2007 if (setChip) {
2008 /*
2009 * Clear the RTC force wake bit to allow the
2010 * mac to go to sleep.
2011 */
2012 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2013 AR_RTC_FORCE_WAKE_EN);
2014 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2015 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2016
2017 /* Shutdown chip. Active low */
2018 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2019 REG_CLR_BIT(ah, (AR_RTC_RESET),
2020 AR_RTC_RESET_EN);
2021 }
2022 }
2023
2024 /*
2025 * Notify Power Management is enabled in self-generating
2026 * frames. If request, set power mode of chip to
2027 * auto/normal. Duration in units of 128us (1/8 TU).
2028 */
2029 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2030 {
2031 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2032 if (setChip) {
2033 struct ath9k_hw_capabilities *pCap = &ah->caps;
2034
2035 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2036 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2037 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2038 AR_RTC_FORCE_WAKE_ON_INT);
2039 } else {
2040 /*
2041 * Clear the RTC force wake bit to allow the
2042 * mac to go to sleep.
2043 */
2044 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2045 AR_RTC_FORCE_WAKE_EN);
2046 }
2047 }
2048 }
2049
2050 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2051 {
2052 u32 val;
2053 int i;
2054
2055 if (setChip) {
2056 if ((REG_READ(ah, AR_RTC_STATUS) &
2057 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2058 if (ath9k_hw_set_reset_reg(ah,
2059 ATH9K_RESET_POWER_ON) != true) {
2060 return false;
2061 }
2062 if (!AR_SREV_9300_20_OR_LATER(ah))
2063 ath9k_hw_init_pll(ah, NULL);
2064 }
2065 if (AR_SREV_9100(ah))
2066 REG_SET_BIT(ah, AR_RTC_RESET,
2067 AR_RTC_RESET_EN);
2068
2069 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2070 AR_RTC_FORCE_WAKE_EN);
2071 udelay(50);
2072
2073 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2074 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2075 if (val == AR_RTC_STATUS_ON)
2076 break;
2077 udelay(50);
2078 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2079 AR_RTC_FORCE_WAKE_EN);
2080 }
2081 if (i == 0) {
2082 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2083 "Failed to wakeup in %uus\n",
2084 POWER_UP_TIME / 20);
2085 return false;
2086 }
2087 }
2088
2089 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2090
2091 return true;
2092 }
2093
2094 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2095 {
2096 struct ath_common *common = ath9k_hw_common(ah);
2097 int status = true, setChip = true;
2098 static const char *modes[] = {
2099 "AWAKE",
2100 "FULL-SLEEP",
2101 "NETWORK SLEEP",
2102 "UNDEFINED"
2103 };
2104
2105 if (ah->power_mode == mode)
2106 return status;
2107
2108 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2109 modes[ah->power_mode], modes[mode]);
2110
2111 switch (mode) {
2112 case ATH9K_PM_AWAKE:
2113 status = ath9k_hw_set_power_awake(ah, setChip);
2114 break;
2115 case ATH9K_PM_FULL_SLEEP:
2116 ath9k_set_power_sleep(ah, setChip);
2117 ah->chip_fullsleep = true;
2118 break;
2119 case ATH9K_PM_NETWORK_SLEEP:
2120 ath9k_set_power_network_sleep(ah, setChip);
2121 break;
2122 default:
2123 ath_print(common, ATH_DBG_FATAL,
2124 "Unknown power mode %u\n", mode);
2125 return false;
2126 }
2127 ah->power_mode = mode;
2128
2129 return status;
2130 }
2131 EXPORT_SYMBOL(ath9k_hw_setpower);
2132
2133 /*
2134 * Helper for ASPM support.
2135 *
2136 * Disable PLL when in L0s as well as receiver clock when in L1.
2137 * This power saving option must be enabled through the SerDes.
2138 *
2139 * Programming the SerDes must go through the same 288 bit serial shift
2140 * register as the other analog registers. Hence the 9 writes.
2141 */
2142 static void ar9002_hw_configpcipowersave(struct ath_hw *ah,
2143 int restore,
2144 int power_off)
2145 {
2146 u8 i;
2147 u32 val;
2148
2149 if (ah->is_pciexpress != true)
2150 return;
2151
2152 /* Do not touch SerDes registers */
2153 if (ah->config.pcie_powersave_enable == 2)
2154 return;
2155
2156 /* Nothing to do on restore for 11N */
2157 if (!restore) {
2158 if (AR_SREV_9280_20_OR_LATER(ah)) {
2159 /*
2160 * AR9280 2.0 or later chips use SerDes values from the
2161 * initvals.h initialized depending on chipset during
2162 * __ath9k_hw_init()
2163 */
2164 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2165 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2166 INI_RA(&ah->iniPcieSerdes, i, 1));
2167 }
2168 } else if (AR_SREV_9280(ah) &&
2169 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2170 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2171 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2172
2173 /* RX shut off when elecidle is asserted */
2174 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2175 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2176 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2177
2178 /* Shut off CLKREQ active in L1 */
2179 if (ah->config.pcie_clock_req)
2180 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2181 else
2182 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2183
2184 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2185 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2186 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2187
2188 /* Load the new settings */
2189 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2190
2191 } else {
2192 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2193 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2194
2195 /* RX shut off when elecidle is asserted */
2196 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2197 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2198 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2199
2200 /*
2201 * Ignore ah->ah_config.pcie_clock_req setting for
2202 * pre-AR9280 11n
2203 */
2204 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2205
2206 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2207 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2208 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2209
2210 /* Load the new settings */
2211 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2212 }
2213
2214 udelay(1000);
2215
2216 /* set bit 19 to allow forcing of pcie core into L1 state */
2217 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2218
2219 /* Several PCIe massages to ensure proper behaviour */
2220 if (ah->config.pcie_waen) {
2221 val = ah->config.pcie_waen;
2222 if (!power_off)
2223 val &= (~AR_WA_D3_L1_DISABLE);
2224 } else {
2225 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2226 AR_SREV_9287(ah)) {
2227 val = AR9285_WA_DEFAULT;
2228 if (!power_off)
2229 val &= (~AR_WA_D3_L1_DISABLE);
2230 } else if (AR_SREV_9280(ah)) {
2231 /*
2232 * On AR9280 chips bit 22 of 0x4004 needs to be
2233 * set otherwise card may disappear.
2234 */
2235 val = AR9280_WA_DEFAULT;
2236 if (!power_off)
2237 val &= (~AR_WA_D3_L1_DISABLE);
2238 } else
2239 val = AR_WA_DEFAULT;
2240 }
2241
2242 REG_WRITE(ah, AR_WA, val);
2243 }
2244
2245 if (power_off) {
2246 /*
2247 * Set PCIe workaround bits
2248 * bit 14 in WA register (disable L1) should only
2249 * be set when device enters D3 and be cleared
2250 * when device comes back to D0.
2251 */
2252 if (ah->config.pcie_waen) {
2253 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2254 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2255 } else {
2256 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2257 AR_SREV_9287(ah)) &&
2258 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2259 (AR_SREV_9280(ah) &&
2260 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2261 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2262 }
2263 }
2264 }
2265 }
2266
2267 /**********************/
2268 /* Interrupt Handling */
2269 /**********************/
2270
2271 bool ath9k_hw_intrpend(struct ath_hw *ah)
2272 {
2273 u32 host_isr;
2274
2275 if (AR_SREV_9100(ah))
2276 return true;
2277
2278 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2279 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2280 return true;
2281
2282 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2283 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2284 && (host_isr != AR_INTR_SPURIOUS))
2285 return true;
2286
2287 return false;
2288 }
2289 EXPORT_SYMBOL(ath9k_hw_intrpend);
2290
2291 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2292 {
2293 u32 isr = 0;
2294 u32 mask2 = 0;
2295 struct ath9k_hw_capabilities *pCap = &ah->caps;
2296 u32 sync_cause = 0;
2297 bool fatal_int = false;
2298 struct ath_common *common = ath9k_hw_common(ah);
2299
2300 if (!AR_SREV_9100(ah)) {
2301 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2302 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2303 == AR_RTC_STATUS_ON) {
2304 isr = REG_READ(ah, AR_ISR);
2305 }
2306 }
2307
2308 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2309 AR_INTR_SYNC_DEFAULT;
2310
2311 *masked = 0;
2312
2313 if (!isr && !sync_cause)
2314 return false;
2315 } else {
2316 *masked = 0;
2317 isr = REG_READ(ah, AR_ISR);
2318 }
2319
2320 if (isr) {
2321 if (isr & AR_ISR_BCNMISC) {
2322 u32 isr2;
2323 isr2 = REG_READ(ah, AR_ISR_S2);
2324 if (isr2 & AR_ISR_S2_TIM)
2325 mask2 |= ATH9K_INT_TIM;
2326 if (isr2 & AR_ISR_S2_DTIM)
2327 mask2 |= ATH9K_INT_DTIM;
2328 if (isr2 & AR_ISR_S2_DTIMSYNC)
2329 mask2 |= ATH9K_INT_DTIMSYNC;
2330 if (isr2 & (AR_ISR_S2_CABEND))
2331 mask2 |= ATH9K_INT_CABEND;
2332 if (isr2 & AR_ISR_S2_GTT)
2333 mask2 |= ATH9K_INT_GTT;
2334 if (isr2 & AR_ISR_S2_CST)
2335 mask2 |= ATH9K_INT_CST;
2336 if (isr2 & AR_ISR_S2_TSFOOR)
2337 mask2 |= ATH9K_INT_TSFOOR;
2338 }
2339
2340 isr = REG_READ(ah, AR_ISR_RAC);
2341 if (isr == 0xffffffff) {
2342 *masked = 0;
2343 return false;
2344 }
2345
2346 *masked = isr & ATH9K_INT_COMMON;
2347
2348 if (ah->config.rx_intr_mitigation) {
2349 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2350 *masked |= ATH9K_INT_RX;
2351 }
2352
2353 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2354 *masked |= ATH9K_INT_RX;
2355 if (isr &
2356 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2357 AR_ISR_TXEOL)) {
2358 u32 s0_s, s1_s;
2359
2360 *masked |= ATH9K_INT_TX;
2361
2362 s0_s = REG_READ(ah, AR_ISR_S0_S);
2363 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2364 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2365
2366 s1_s = REG_READ(ah, AR_ISR_S1_S);
2367 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2368 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2369 }
2370
2371 if (isr & AR_ISR_RXORN) {
2372 ath_print(common, ATH_DBG_INTERRUPT,
2373 "receive FIFO overrun interrupt\n");
2374 }
2375
2376 if (!AR_SREV_9100(ah)) {
2377 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2378 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2379 if (isr5 & AR_ISR_S5_TIM_TIMER)
2380 *masked |= ATH9K_INT_TIM_TIMER;
2381 }
2382 }
2383
2384 *masked |= mask2;
2385 }
2386
2387 if (AR_SREV_9100(ah))
2388 return true;
2389
2390 if (isr & AR_ISR_GENTMR) {
2391 u32 s5_s;
2392
2393 s5_s = REG_READ(ah, AR_ISR_S5_S);
2394 if (isr & AR_ISR_GENTMR) {
2395 ah->intr_gen_timer_trigger =
2396 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2397
2398 ah->intr_gen_timer_thresh =
2399 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2400
2401 if (ah->intr_gen_timer_trigger)
2402 *masked |= ATH9K_INT_GENTIMER;
2403
2404 }
2405 }
2406
2407 if (sync_cause) {
2408 fatal_int =
2409 (sync_cause &
2410 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2411 ? true : false;
2412
2413 if (fatal_int) {
2414 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2415 ath_print(common, ATH_DBG_ANY,
2416 "received PCI FATAL interrupt\n");
2417 }
2418 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2419 ath_print(common, ATH_DBG_ANY,
2420 "received PCI PERR interrupt\n");
2421 }
2422 *masked |= ATH9K_INT_FATAL;
2423 }
2424 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2425 ath_print(common, ATH_DBG_INTERRUPT,
2426 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2427 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2428 REG_WRITE(ah, AR_RC, 0);
2429 *masked |= ATH9K_INT_FATAL;
2430 }
2431 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2432 ath_print(common, ATH_DBG_INTERRUPT,
2433 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2434 }
2435
2436 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2437 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2438 }
2439
2440 return true;
2441 }
2442 EXPORT_SYMBOL(ath9k_hw_getisr);
2443
2444 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2445 {
2446 enum ath9k_int omask = ah->imask;
2447 u32 mask, mask2;
2448 struct ath9k_hw_capabilities *pCap = &ah->caps;
2449 struct ath_common *common = ath9k_hw_common(ah);
2450
2451 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2452
2453 if (omask & ATH9K_INT_GLOBAL) {
2454 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2455 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2456 (void) REG_READ(ah, AR_IER);
2457 if (!AR_SREV_9100(ah)) {
2458 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2459 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2460
2461 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2462 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2463 }
2464 }
2465
2466 mask = ints & ATH9K_INT_COMMON;
2467 mask2 = 0;
2468
2469 if (ints & ATH9K_INT_TX) {
2470 if (ah->txok_interrupt_mask)
2471 mask |= AR_IMR_TXOK;
2472 if (ah->txdesc_interrupt_mask)
2473 mask |= AR_IMR_TXDESC;
2474 if (ah->txerr_interrupt_mask)
2475 mask |= AR_IMR_TXERR;
2476 if (ah->txeol_interrupt_mask)
2477 mask |= AR_IMR_TXEOL;
2478 }
2479 if (ints & ATH9K_INT_RX) {
2480 mask |= AR_IMR_RXERR;
2481 if (ah->config.rx_intr_mitigation)
2482 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2483 else
2484 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2485 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2486 mask |= AR_IMR_GENTMR;
2487 }
2488
2489 if (ints & (ATH9K_INT_BMISC)) {
2490 mask |= AR_IMR_BCNMISC;
2491 if (ints & ATH9K_INT_TIM)
2492 mask2 |= AR_IMR_S2_TIM;
2493 if (ints & ATH9K_INT_DTIM)
2494 mask2 |= AR_IMR_S2_DTIM;
2495 if (ints & ATH9K_INT_DTIMSYNC)
2496 mask2 |= AR_IMR_S2_DTIMSYNC;
2497 if (ints & ATH9K_INT_CABEND)
2498 mask2 |= AR_IMR_S2_CABEND;
2499 if (ints & ATH9K_INT_TSFOOR)
2500 mask2 |= AR_IMR_S2_TSFOOR;
2501 }
2502
2503 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2504 mask |= AR_IMR_BCNMISC;
2505 if (ints & ATH9K_INT_GTT)
2506 mask2 |= AR_IMR_S2_GTT;
2507 if (ints & ATH9K_INT_CST)
2508 mask2 |= AR_IMR_S2_CST;
2509 }
2510
2511 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2512 REG_WRITE(ah, AR_IMR, mask);
2513 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2514 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2515 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2516 ah->imrs2_reg |= mask2;
2517 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2518
2519 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2520 if (ints & ATH9K_INT_TIM_TIMER)
2521 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2522 else
2523 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2524 }
2525
2526 if (ints & ATH9K_INT_GLOBAL) {
2527 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2528 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2529 if (!AR_SREV_9100(ah)) {
2530 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2531 AR_INTR_MAC_IRQ);
2532 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2533
2534
2535 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2536 AR_INTR_SYNC_DEFAULT);
2537 REG_WRITE(ah, AR_INTR_SYNC_MASK,
2538 AR_INTR_SYNC_DEFAULT);
2539 }
2540 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2541 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2542 }
2543
2544 return omask;
2545 }
2546 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2547
2548 /*******************/
2549 /* Beacon Handling */
2550 /*******************/
2551
2552 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2553 {
2554 int flags = 0;
2555
2556 ah->beacon_interval = beacon_period;
2557
2558 switch (ah->opmode) {
2559 case NL80211_IFTYPE_STATION:
2560 case NL80211_IFTYPE_MONITOR:
2561 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2562 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2563 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2564 flags |= AR_TBTT_TIMER_EN;
2565 break;
2566 case NL80211_IFTYPE_ADHOC:
2567 case NL80211_IFTYPE_MESH_POINT:
2568 REG_SET_BIT(ah, AR_TXCFG,
2569 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2570 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2571 TU_TO_USEC(next_beacon +
2572 (ah->atim_window ? ah->
2573 atim_window : 1)));
2574 flags |= AR_NDP_TIMER_EN;
2575 case NL80211_IFTYPE_AP:
2576 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2577 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2578 TU_TO_USEC(next_beacon -
2579 ah->config.
2580 dma_beacon_response_time));
2581 REG_WRITE(ah, AR_NEXT_SWBA,
2582 TU_TO_USEC(next_beacon -
2583 ah->config.
2584 sw_beacon_response_time));
2585 flags |=
2586 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2587 break;
2588 default:
2589 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2590 "%s: unsupported opmode: %d\n",
2591 __func__, ah->opmode);
2592 return;
2593 break;
2594 }
2595
2596 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2597 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2598 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2599 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2600
2601 beacon_period &= ~ATH9K_BEACON_ENA;
2602 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
2603 ath9k_hw_reset_tsf(ah);
2604 }
2605
2606 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2607 }
2608 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2609
2610 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2611 const struct ath9k_beacon_state *bs)
2612 {
2613 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2614 struct ath9k_hw_capabilities *pCap = &ah->caps;
2615 struct ath_common *common = ath9k_hw_common(ah);
2616
2617 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2618
2619 REG_WRITE(ah, AR_BEACON_PERIOD,
2620 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2621 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2622 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2623
2624 REG_RMW_FIELD(ah, AR_RSSI_THR,
2625 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2626
2627 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
2628
2629 if (bs->bs_sleepduration > beaconintval)
2630 beaconintval = bs->bs_sleepduration;
2631
2632 dtimperiod = bs->bs_dtimperiod;
2633 if (bs->bs_sleepduration > dtimperiod)
2634 dtimperiod = bs->bs_sleepduration;
2635
2636 if (beaconintval == dtimperiod)
2637 nextTbtt = bs->bs_nextdtim;
2638 else
2639 nextTbtt = bs->bs_nexttbtt;
2640
2641 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2642 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2643 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2644 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2645
2646 REG_WRITE(ah, AR_NEXT_DTIM,
2647 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2648 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2649
2650 REG_WRITE(ah, AR_SLEEP1,
2651 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2652 | AR_SLEEP1_ASSUME_DTIM);
2653
2654 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2655 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2656 else
2657 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2658
2659 REG_WRITE(ah, AR_SLEEP2,
2660 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2661
2662 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2663 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2664
2665 REG_SET_BIT(ah, AR_TIMER_MODE,
2666 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2667 AR_DTIM_TIMER_EN);
2668
2669 /* TSF Out of Range Threshold */
2670 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2671 }
2672 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2673
2674 /*******************/
2675 /* HW Capabilities */
2676 /*******************/
2677
2678 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2679 {
2680 struct ath9k_hw_capabilities *pCap = &ah->caps;
2681 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2682 struct ath_common *common = ath9k_hw_common(ah);
2683 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2684
2685 u16 capField = 0, eeval;
2686
2687 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2688 regulatory->current_rd = eeval;
2689
2690 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2691 if (AR_SREV_9285_10_OR_LATER(ah))
2692 eeval |= AR9285_RDEXT_DEFAULT;
2693 regulatory->current_rd_ext = eeval;
2694
2695 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2696
2697 if (ah->opmode != NL80211_IFTYPE_AP &&
2698 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2699 if (regulatory->current_rd == 0x64 ||
2700 regulatory->current_rd == 0x65)
2701 regulatory->current_rd += 5;
2702 else if (regulatory->current_rd == 0x41)
2703 regulatory->current_rd = 0x43;
2704 ath_print(common, ATH_DBG_REGULATORY,
2705 "regdomain mapped to 0x%x\n", regulatory->current_rd);
2706 }
2707
2708 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2709 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2710 ath_print(common, ATH_DBG_FATAL,
2711 "no band has been marked as supported in EEPROM.\n");
2712 return -EINVAL;
2713 }
2714
2715 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2716
2717 if (eeval & AR5416_OPFLAGS_11A) {
2718 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2719 if (ah->config.ht_enable) {
2720 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2721 set_bit(ATH9K_MODE_11NA_HT20,
2722 pCap->wireless_modes);
2723 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2724 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2725 pCap->wireless_modes);
2726 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2727 pCap->wireless_modes);
2728 }
2729 }
2730 }
2731
2732 if (eeval & AR5416_OPFLAGS_11G) {
2733 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2734 if (ah->config.ht_enable) {
2735 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2736 set_bit(ATH9K_MODE_11NG_HT20,
2737 pCap->wireless_modes);
2738 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2739 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2740 pCap->wireless_modes);
2741 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2742 pCap->wireless_modes);
2743 }
2744 }
2745 }
2746
2747 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2748 /*
2749 * For AR9271 we will temporarilly uses the rx chainmax as read from
2750 * the EEPROM.
2751 */
2752 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2753 !(eeval & AR5416_OPFLAGS_11A) &&
2754 !(AR_SREV_9271(ah)))
2755 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2756 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2757 else
2758 /* Use rx_chainmask from EEPROM. */
2759 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2760
2761 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2762 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2763
2764 pCap->low_2ghz_chan = 2312;
2765 pCap->high_2ghz_chan = 2732;
2766
2767 pCap->low_5ghz_chan = 4920;
2768 pCap->high_5ghz_chan = 6100;
2769
2770 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2771 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2772 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2773
2774 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2775 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2776 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2777
2778 if (ah->config.ht_enable)
2779 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2780 else
2781 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2782
2783 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2784 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2785 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2786 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2787
2788 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2789 pCap->total_queues =
2790 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2791 else
2792 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2793
2794 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2795 pCap->keycache_size =
2796 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2797 else
2798 pCap->keycache_size = AR_KEYTABLE_SIZE;
2799
2800 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2801
2802 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2803 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2804 else
2805 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2806
2807 if (AR_SREV_9271(ah))
2808 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2809 else if (AR_SREV_9285_10_OR_LATER(ah))
2810 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2811 else if (AR_SREV_9280_10_OR_LATER(ah))
2812 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2813 else
2814 pCap->num_gpio_pins = AR_NUM_GPIO;
2815
2816 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2817 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2818 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2819 } else {
2820 pCap->rts_aggr_limit = (8 * 1024);
2821 }
2822
2823 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2824
2825 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2826 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2827 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2828 ah->rfkill_gpio =
2829 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2830 ah->rfkill_polarity =
2831 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2832
2833 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2834 }
2835 #endif
2836 if (AR_SREV_9271(ah))
2837 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2838 else
2839 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2840
2841 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2842 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2843 else
2844 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2845
2846 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2847 pCap->reg_cap =
2848 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2849 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2850 AR_EEPROM_EEREGCAP_EN_KK_U2 |
2851 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2852 } else {
2853 pCap->reg_cap =
2854 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2855 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2856 }
2857
2858 /* Advertise midband for AR5416 with FCC midband set in eeprom */
2859 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2860 AR_SREV_5416(ah))
2861 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2862
2863 pCap->num_antcfg_5ghz =
2864 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2865 pCap->num_antcfg_2ghz =
2866 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2867
2868 if (AR_SREV_9280_10_OR_LATER(ah) &&
2869 ath9k_hw_btcoex_supported(ah)) {
2870 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2871 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2872
2873 if (AR_SREV_9285(ah)) {
2874 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2875 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2876 } else {
2877 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2878 }
2879 } else {
2880 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2881 }
2882
2883 if (AR_SREV_9300_20_OR_LATER(ah)) {
2884 pCap->hw_caps |= ATH9K_HW_CAP_EDMA;
2885 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2886 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2887 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2888 }
2889
2890 return 0;
2891 }
2892
2893 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2894 u32 capability, u32 *result)
2895 {
2896 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2897 switch (type) {
2898 case ATH9K_CAP_CIPHER:
2899 switch (capability) {
2900 case ATH9K_CIPHER_AES_CCM:
2901 case ATH9K_CIPHER_AES_OCB:
2902 case ATH9K_CIPHER_TKIP:
2903 case ATH9K_CIPHER_WEP:
2904 case ATH9K_CIPHER_MIC:
2905 case ATH9K_CIPHER_CLR:
2906 return true;
2907 default:
2908 return false;
2909 }
2910 case ATH9K_CAP_TKIP_MIC:
2911 switch (capability) {
2912 case 0:
2913 return true;
2914 case 1:
2915 return (ah->sta_id1_defaults &
2916 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2917 false;
2918 }
2919 case ATH9K_CAP_TKIP_SPLIT:
2920 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2921 false : true;
2922 case ATH9K_CAP_MCAST_KEYSRCH:
2923 switch (capability) {
2924 case 0:
2925 return true;
2926 case 1:
2927 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2928 return false;
2929 } else {
2930 return (ah->sta_id1_defaults &
2931 AR_STA_ID1_MCAST_KSRCH) ? true :
2932 false;
2933 }
2934 }
2935 return false;
2936 case ATH9K_CAP_TXPOW:
2937 switch (capability) {
2938 case 0:
2939 return 0;
2940 case 1:
2941 *result = regulatory->power_limit;
2942 return 0;
2943 case 2:
2944 *result = regulatory->max_power_level;
2945 return 0;
2946 case 3:
2947 *result = regulatory->tp_scale;
2948 return 0;
2949 }
2950 return false;
2951 case ATH9K_CAP_DS:
2952 return (AR_SREV_9280_20_OR_LATER(ah) &&
2953 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2954 ? false : true;
2955 default:
2956 return false;
2957 }
2958 }
2959 EXPORT_SYMBOL(ath9k_hw_getcapability);
2960
2961 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2962 u32 capability, u32 setting, int *status)
2963 {
2964 switch (type) {
2965 case ATH9K_CAP_TKIP_MIC:
2966 if (setting)
2967 ah->sta_id1_defaults |=
2968 AR_STA_ID1_CRPT_MIC_ENABLE;
2969 else
2970 ah->sta_id1_defaults &=
2971 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2972 return true;
2973 case ATH9K_CAP_MCAST_KEYSRCH:
2974 if (setting)
2975 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2976 else
2977 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2978 return true;
2979 default:
2980 return false;
2981 }
2982 }
2983 EXPORT_SYMBOL(ath9k_hw_setcapability);
2984
2985 /****************************/
2986 /* GPIO / RFKILL / Antennae */
2987 /****************************/
2988
2989 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2990 u32 gpio, u32 type)
2991 {
2992 int addr;
2993 u32 gpio_shift, tmp;
2994
2995 if (gpio > 11)
2996 addr = AR_GPIO_OUTPUT_MUX3;
2997 else if (gpio > 5)
2998 addr = AR_GPIO_OUTPUT_MUX2;
2999 else
3000 addr = AR_GPIO_OUTPUT_MUX1;
3001
3002 gpio_shift = (gpio % 6) * 5;
3003
3004 if (AR_SREV_9280_20_OR_LATER(ah)
3005 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3006 REG_RMW(ah, addr, (type << gpio_shift),
3007 (0x1f << gpio_shift));
3008 } else {
3009 tmp = REG_READ(ah, addr);
3010 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3011 tmp &= ~(0x1f << gpio_shift);
3012 tmp |= (type << gpio_shift);
3013 REG_WRITE(ah, addr, tmp);
3014 }
3015 }
3016
3017 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3018 {
3019 u32 gpio_shift;
3020
3021 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3022
3023 gpio_shift = gpio << 1;
3024
3025 REG_RMW(ah,
3026 AR_GPIO_OE_OUT,
3027 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3028 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3029 }
3030 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3031
3032 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3033 {
3034 #define MS_REG_READ(x, y) \
3035 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3036
3037 if (gpio >= ah->caps.num_gpio_pins)
3038 return 0xffffffff;
3039
3040 if (AR_SREV_9300_20_OR_LATER(ah))
3041 return MS_REG_READ(AR9300, gpio) != 0;
3042 else if (AR_SREV_9271(ah))
3043 return MS_REG_READ(AR9271, gpio) != 0;
3044 else if (AR_SREV_9287_10_OR_LATER(ah))
3045 return MS_REG_READ(AR9287, gpio) != 0;
3046 else if (AR_SREV_9285_10_OR_LATER(ah))
3047 return MS_REG_READ(AR9285, gpio) != 0;
3048 else if (AR_SREV_9280_10_OR_LATER(ah))
3049 return MS_REG_READ(AR928X, gpio) != 0;
3050 else
3051 return MS_REG_READ(AR, gpio) != 0;
3052 }
3053 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3054
3055 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3056 u32 ah_signal_type)
3057 {
3058 u32 gpio_shift;
3059
3060 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3061
3062 gpio_shift = 2 * gpio;
3063
3064 REG_RMW(ah,
3065 AR_GPIO_OE_OUT,
3066 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3067 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3068 }
3069 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3070
3071 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3072 {
3073 if (AR_SREV_9271(ah))
3074 val = ~val;
3075
3076 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3077 AR_GPIO_BIT(gpio));
3078 }
3079 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3080
3081 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3082 {
3083 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3084 }
3085 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3086
3087 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3088 {
3089 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3090 }
3091 EXPORT_SYMBOL(ath9k_hw_setantenna);
3092
3093 /*********************/
3094 /* General Operation */
3095 /*********************/
3096
3097 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3098 {
3099 u32 bits = REG_READ(ah, AR_RX_FILTER);
3100 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3101
3102 if (phybits & AR_PHY_ERR_RADAR)
3103 bits |= ATH9K_RX_FILTER_PHYRADAR;
3104 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3105 bits |= ATH9K_RX_FILTER_PHYERR;
3106
3107 return bits;
3108 }
3109 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3110
3111 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3112 {
3113 u32 phybits;
3114
3115 REG_WRITE(ah, AR_RX_FILTER, bits);
3116
3117 phybits = 0;
3118 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3119 phybits |= AR_PHY_ERR_RADAR;
3120 if (bits & ATH9K_RX_FILTER_PHYERR)
3121 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3122 REG_WRITE(ah, AR_PHY_ERR, phybits);
3123
3124 if (phybits)
3125 REG_WRITE(ah, AR_RXCFG,
3126 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3127 else
3128 REG_WRITE(ah, AR_RXCFG,
3129 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3130 }
3131 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3132
3133 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3134 {
3135 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3136 return false;
3137
3138 ath9k_hw_init_pll(ah, NULL);
3139 return true;
3140 }
3141 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3142
3143 bool ath9k_hw_disable(struct ath_hw *ah)
3144 {
3145 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3146 return false;
3147
3148 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3149 return false;
3150
3151 ath9k_hw_init_pll(ah, NULL);
3152 return true;
3153 }
3154 EXPORT_SYMBOL(ath9k_hw_disable);
3155
3156 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3157 {
3158 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3159 struct ath9k_channel *chan = ah->curchan;
3160 struct ieee80211_channel *channel = chan->chan;
3161
3162 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3163
3164 ah->eep_ops->set_txpower(ah, chan,
3165 ath9k_regd_get_ctl(regulatory, chan),
3166 channel->max_antenna_gain * 2,
3167 channel->max_power * 2,
3168 min((u32) MAX_RATE_POWER,
3169 (u32) regulatory->power_limit));
3170 }
3171 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3172
3173 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3174 {
3175 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3176 }
3177 EXPORT_SYMBOL(ath9k_hw_setmac);
3178
3179 void ath9k_hw_setopmode(struct ath_hw *ah)
3180 {
3181 ath9k_hw_set_operating_mode(ah, ah->opmode);
3182 }
3183 EXPORT_SYMBOL(ath9k_hw_setopmode);
3184
3185 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3186 {
3187 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3188 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3189 }
3190 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3191
3192 void ath9k_hw_write_associd(struct ath_hw *ah)
3193 {
3194 struct ath_common *common = ath9k_hw_common(ah);
3195
3196 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3197 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3198 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3199 }
3200 EXPORT_SYMBOL(ath9k_hw_write_associd);
3201
3202 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3203 {
3204 u64 tsf;
3205
3206 tsf = REG_READ(ah, AR_TSF_U32);
3207 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3208
3209 return tsf;
3210 }
3211 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3212
3213 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3214 {
3215 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3216 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3217 }
3218 EXPORT_SYMBOL(ath9k_hw_settsf64);
3219
3220 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3221 {
3222 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3223 AH_TSF_WRITE_TIMEOUT))
3224 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3225 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3226
3227 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3228 }
3229 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3230
3231 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3232 {
3233 if (setting)
3234 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3235 else
3236 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3237 }
3238 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3239
3240 /*
3241 * Extend 15-bit time stamp from rx descriptor to
3242 * a full 64-bit TSF using the current h/w TSF.
3243 */
3244 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3245 {
3246 u64 tsf;
3247
3248 tsf = ath9k_hw_gettsf64(ah);
3249 if ((tsf & 0x7fff) < rstamp)
3250 tsf -= 0x8000;
3251 return (tsf & ~0x7fff) | rstamp;
3252 }
3253 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3254
3255 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3256 {
3257 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3258 u32 macmode;
3259
3260 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3261 macmode = AR_2040_JOINED_RX_CLEAR;
3262 else
3263 macmode = 0;
3264
3265 REG_WRITE(ah, AR_2040_MODE, macmode);
3266 }
3267
3268 /* HW Generic timers configuration */
3269
3270 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3271 {
3272 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3273 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3274 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3275 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3276 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3277 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3278 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3279 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3280 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3281 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3282 AR_NDP2_TIMER_MODE, 0x0002},
3283 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3284 AR_NDP2_TIMER_MODE, 0x0004},
3285 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3286 AR_NDP2_TIMER_MODE, 0x0008},
3287 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3288 AR_NDP2_TIMER_MODE, 0x0010},
3289 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3290 AR_NDP2_TIMER_MODE, 0x0020},
3291 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3292 AR_NDP2_TIMER_MODE, 0x0040},
3293 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3294 AR_NDP2_TIMER_MODE, 0x0080}
3295 };
3296
3297 /* HW generic timer primitives */
3298
3299 /* compute and clear index of rightmost 1 */
3300 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3301 {
3302 u32 b;
3303
3304 b = *mask;
3305 b &= (0-b);
3306 *mask &= ~b;
3307 b *= debruijn32;
3308 b >>= 27;
3309
3310 return timer_table->gen_timer_index[b];
3311 }
3312
3313 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3314 {
3315 return REG_READ(ah, AR_TSF_L32);
3316 }
3317 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3318
3319 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3320 void (*trigger)(void *),
3321 void (*overflow)(void *),
3322 void *arg,
3323 u8 timer_index)
3324 {
3325 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3326 struct ath_gen_timer *timer;
3327
3328 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3329
3330 if (timer == NULL) {
3331 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3332 "Failed to allocate memory"
3333 "for hw timer[%d]\n", timer_index);
3334 return NULL;
3335 }
3336
3337 /* allocate a hardware generic timer slot */
3338 timer_table->timers[timer_index] = timer;
3339 timer->index = timer_index;
3340 timer->trigger = trigger;
3341 timer->overflow = overflow;
3342 timer->arg = arg;
3343
3344 return timer;
3345 }
3346 EXPORT_SYMBOL(ath_gen_timer_alloc);
3347
3348 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3349 struct ath_gen_timer *timer,
3350 u32 timer_next,
3351 u32 timer_period)
3352 {
3353 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3354 u32 tsf;
3355
3356 BUG_ON(!timer_period);
3357
3358 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3359
3360 tsf = ath9k_hw_gettsf32(ah);
3361
3362 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3363 "curent tsf %x period %x"
3364 "timer_next %x\n", tsf, timer_period, timer_next);
3365
3366 /*
3367 * Pull timer_next forward if the current TSF already passed it
3368 * because of software latency
3369 */
3370 if (timer_next < tsf)
3371 timer_next = tsf + timer_period;
3372
3373 /*
3374 * Program generic timer registers
3375 */
3376 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3377 timer_next);
3378 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3379 timer_period);
3380 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3381 gen_tmr_configuration[timer->index].mode_mask);
3382
3383 /* Enable both trigger and thresh interrupt masks */
3384 REG_SET_BIT(ah, AR_IMR_S5,
3385 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3386 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3387 }
3388 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3389
3390 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3391 {
3392 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3393
3394 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3395 (timer->index >= ATH_MAX_GEN_TIMER)) {
3396 return;
3397 }
3398
3399 /* Clear generic timer enable bits. */
3400 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3401 gen_tmr_configuration[timer->index].mode_mask);
3402
3403 /* Disable both trigger and thresh interrupt masks */
3404 REG_CLR_BIT(ah, AR_IMR_S5,
3405 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3406 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3407
3408 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3409 }
3410 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3411
3412 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3413 {
3414 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3415
3416 /* free the hardware generic timer slot */
3417 timer_table->timers[timer->index] = NULL;
3418 kfree(timer);
3419 }
3420 EXPORT_SYMBOL(ath_gen_timer_free);
3421
3422 /*
3423 * Generic Timer Interrupts handling
3424 */
3425 void ath_gen_timer_isr(struct ath_hw *ah)
3426 {
3427 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3428 struct ath_gen_timer *timer;
3429 struct ath_common *common = ath9k_hw_common(ah);
3430 u32 trigger_mask, thresh_mask, index;
3431
3432 /* get hardware generic timer interrupt status */
3433 trigger_mask = ah->intr_gen_timer_trigger;
3434 thresh_mask = ah->intr_gen_timer_thresh;
3435 trigger_mask &= timer_table->timer_mask.val;
3436 thresh_mask &= timer_table->timer_mask.val;
3437
3438 trigger_mask &= ~thresh_mask;
3439
3440 while (thresh_mask) {
3441 index = rightmost_index(timer_table, &thresh_mask);
3442 timer = timer_table->timers[index];
3443 BUG_ON(!timer);
3444 ath_print(common, ATH_DBG_HWTIMER,
3445 "TSF overflow for Gen timer %d\n", index);
3446 timer->overflow(timer->arg);
3447 }
3448
3449 while (trigger_mask) {
3450 index = rightmost_index(timer_table, &trigger_mask);
3451 timer = timer_table->timers[index];
3452 BUG_ON(!timer);
3453 ath_print(common, ATH_DBG_HWTIMER,
3454 "Gen timer[%d] trigger\n", index);
3455 timer->trigger(timer->arg);
3456 }
3457 }
3458 EXPORT_SYMBOL(ath_gen_timer_isr);
3459
3460 /********/
3461 /* HTC */
3462 /********/
3463
3464 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3465 {
3466 ah->htc_reset_init = true;
3467 }
3468 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3469
3470 static struct {
3471 u32 version;
3472 const char * name;
3473 } ath_mac_bb_names[] = {
3474 /* Devices with external radios */
3475 { AR_SREV_VERSION_5416_PCI, "5416" },
3476 { AR_SREV_VERSION_5416_PCIE, "5418" },
3477 { AR_SREV_VERSION_9100, "9100" },
3478 { AR_SREV_VERSION_9160, "9160" },
3479 /* Single-chip solutions */
3480 { AR_SREV_VERSION_9280, "9280" },
3481 { AR_SREV_VERSION_9285, "9285" },
3482 { AR_SREV_VERSION_9287, "9287" },
3483 { AR_SREV_VERSION_9271, "9271" },
3484 };
3485
3486 /* For devices with external radios */
3487 static struct {
3488 u16 version;
3489 const char * name;
3490 } ath_rf_names[] = {
3491 { 0, "5133" },
3492 { AR_RAD5133_SREV_MAJOR, "5133" },
3493 { AR_RAD5122_SREV_MAJOR, "5122" },
3494 { AR_RAD2133_SREV_MAJOR, "2133" },
3495 { AR_RAD2122_SREV_MAJOR, "2122" }
3496 };
3497
3498 /*
3499 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3500 */
3501 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3502 {
3503 int i;
3504
3505 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3506 if (ath_mac_bb_names[i].version == mac_bb_version) {
3507 return ath_mac_bb_names[i].name;
3508 }
3509 }
3510
3511 return "????";
3512 }
3513
3514 /*
3515 * Return the RF name. "????" is returned if the RF is unknown.
3516 * Used for devices with external radios.
3517 */
3518 static const char *ath9k_hw_rf_name(u16 rf_version)
3519 {
3520 int i;
3521
3522 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3523 if (ath_rf_names[i].version == rf_version) {
3524 return ath_rf_names[i].name;
3525 }
3526 }
3527
3528 return "????";
3529 }
3530
3531 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3532 {
3533 int used;
3534
3535 /* chipsets >= AR9280 are single-chip */
3536 if (AR_SREV_9280_10_OR_LATER(ah)) {
3537 used = snprintf(hw_name, len,
3538 "Atheros AR%s Rev:%x",
3539 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3540 ah->hw_version.macRev);
3541 }
3542 else {
3543 used = snprintf(hw_name, len,
3544 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3545 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3546 ah->hw_version.macRev,
3547 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3548 AR_RADIO_SREV_MAJOR)),
3549 ah->hw_version.phyRev);
3550 }
3551
3552 hw_name[used] = '\0';
3553 }
3554 EXPORT_SYMBOL(ath9k_hw_name);
3555
3556 /* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
3557 static void ar9002_hw_attach_ops(struct ath_hw *ah)
3558 {
3559 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3560 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
3561
3562 priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
3563 priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
3564 priv_ops->macversion_supported = ar9002_hw_macversion_supported;
3565
3566 ops->config_pci_powersave = ar9002_hw_configpcipowersave;
3567
3568 ar5008_hw_attach_phy_ops(ah);
3569 if (AR_SREV_9280_10_OR_LATER(ah))
3570 ar9002_hw_attach_phy_ops(ah);
3571
3572 ar9002_hw_attach_mac_ops(ah);
3573 }
3574
3575 /* Sets up the AR9003 hardware familiy callbacks */
3576 static void ar9003_hw_attach_ops(struct ath_hw *ah)
3577 {
3578 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3579
3580 priv_ops->macversion_supported = ar9003_hw_macversion_supported;
3581
3582 ar9003_hw_attach_phy_ops(ah);
3583
3584 ar9003_hw_attach_mac_ops(ah);
3585 }
This page took 0.11408 seconds and 6 git commands to generate.