Merge branch 'for-linus' of git://repo.or.cz/cris-mirror
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK 22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31 struct ar5416_eeprom_def *pEepData,
32 u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41 return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47 return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59 if (!ah->curchan) /* should really check for CCK instead */
60 return clks / ATH9K_CLOCK_RATE_CCK;
61 if (conf->channel->band == IEEE80211_BAND_2GHZ)
62 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63
64 return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70
71 if (conf_is_ht40(conf))
72 return ath9k_hw_mac_usec(ah, clks) / 2;
73 else
74 return ath9k_hw_mac_usec(ah, clks);
75 }
76
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80
81 if (!ah->curchan) /* should really check for CCK instead */
82 return usecs *ATH9K_CLOCK_RATE_CCK;
83 if (conf->channel->band == IEEE80211_BAND_2GHZ)
84 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91
92 if (conf_is_ht40(conf))
93 return ath9k_hw_mac_clks(ah, usecs) * 2;
94 else
95 return ath9k_hw_mac_clks(ah, usecs);
96 }
97
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100 int i;
101
102 BUG_ON(timeout < AH_TIME_QUANTUM);
103
104 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105 if ((REG_READ(ah, reg) & mask) == val)
106 return true;
107
108 udelay(AH_TIME_QUANTUM);
109 }
110
111 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113 timeout, reg, REG_READ(ah, reg), mask, val);
114
115 return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121 u32 retval;
122 int i;
123
124 for (i = 0, retval = 0; i < n; i++) {
125 retval = (retval << 1) | (val & 1);
126 val >>= 1;
127 }
128 return retval;
129 }
130
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132 u16 flags, u16 *low,
133 u16 *high)
134 {
135 struct ath9k_hw_capabilities *pCap = &ah->caps;
136
137 if (flags & CHANNEL_5GHZ) {
138 *low = pCap->low_5ghz_chan;
139 *high = pCap->high_5ghz_chan;
140 return true;
141 }
142 if ((flags & CHANNEL_2GHZ)) {
143 *low = pCap->low_2ghz_chan;
144 *high = pCap->high_2ghz_chan;
145 return true;
146 }
147 return false;
148 }
149
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151 u8 phy, int kbps,
152 u32 frameLen, u16 rateix,
153 bool shortPreamble)
154 {
155 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156
157 if (kbps == 0)
158 return 0;
159
160 switch (phy) {
161 case WLAN_RC_PHY_CCK:
162 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
163 if (shortPreamble)
164 phyTime >>= 1;
165 numBits = frameLen << 3;
166 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
167 break;
168 case WLAN_RC_PHY_OFDM:
169 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
170 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
171 numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 txTime = OFDM_SIFS_TIME_QUARTER
174 + OFDM_PREAMBLE_TIME_QUARTER
175 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
176 } else if (ah->curchan &&
177 IS_CHAN_HALF_RATE(ah->curchan)) {
178 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
179 numBits = OFDM_PLCP_BITS + (frameLen << 3);
180 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
181 txTime = OFDM_SIFS_TIME_HALF +
182 OFDM_PREAMBLE_TIME_HALF
183 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
184 } else {
185 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
186 numBits = OFDM_PLCP_BITS + (frameLen << 3);
187 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
188 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
189 + (numSymbols * OFDM_SYMBOL_TIME);
190 }
191 break;
192 default:
193 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
194 "Unknown phy %u (rate ix %u)\n", phy, rateix);
195 txTime = 0;
196 break;
197 }
198
199 return txTime;
200 }
201 EXPORT_SYMBOL(ath9k_hw_computetxtime);
202
203 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
204 struct ath9k_channel *chan,
205 struct chan_centers *centers)
206 {
207 int8_t extoff;
208
209 if (!IS_CHAN_HT40(chan)) {
210 centers->ctl_center = centers->ext_center =
211 centers->synth_center = chan->channel;
212 return;
213 }
214
215 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
216 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
217 centers->synth_center =
218 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
219 extoff = 1;
220 } else {
221 centers->synth_center =
222 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
223 extoff = -1;
224 }
225
226 centers->ctl_center =
227 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
228 /* 25 MHz spacing is supported by hw but not on upper layers */
229 centers->ext_center =
230 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 }
232
233 /******************/
234 /* Chip Revisions */
235 /******************/
236
237 static void ath9k_hw_read_revisions(struct ath_hw *ah)
238 {
239 u32 val;
240
241 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
242
243 if (val == 0xFF) {
244 val = REG_READ(ah, AR_SREV);
245 ah->hw_version.macVersion =
246 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
247 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
248 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
249 } else {
250 if (!AR_SREV_9100(ah))
251 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
252
253 ah->hw_version.macRev = val & AR_SREV_REVISION;
254
255 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
256 ah->is_pciexpress = true;
257 }
258 }
259
260 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
261 {
262 u32 val;
263 int i;
264
265 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
266
267 for (i = 0; i < 8; i++)
268 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
269 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
270 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
271
272 return ath9k_hw_reverse_bits(val, 8);
273 }
274
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281 if (AR_SREV_9100(ah))
282 return;
283
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293
294 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 struct ath_common *common = ath9k_hw_common(ah);
300 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
301 u32 regHold[2];
302 u32 patternData[4] = { 0x55555555,
303 0xaaaaaaaa,
304 0x66666666,
305 0x99999999 };
306 int i, j;
307
308 for (i = 0; i < 2; i++) {
309 u32 addr = regAddr[i];
310 u32 wrData, rdData;
311
312 regHold[i] = REG_READ(ah, addr);
313 for (j = 0; j < 0x100; j++) {
314 wrData = (j << 16) | j;
315 REG_WRITE(ah, addr, wrData);
316 rdData = REG_READ(ah, addr);
317 if (rdData != wrData) {
318 ath_print(common, ATH_DBG_FATAL,
319 "address test failed "
320 "addr: 0x%08x - wr:0x%08x != "
321 "rd:0x%08x\n",
322 addr, wrData, rdData);
323 return false;
324 }
325 }
326 for (j = 0; j < 4; j++) {
327 wrData = patternData[j];
328 REG_WRITE(ah, addr, wrData);
329 rdData = REG_READ(ah, addr);
330 if (wrData != rdData) {
331 ath_print(common, ATH_DBG_FATAL,
332 "address test failed "
333 "addr: 0x%08x - wr:0x%08x != "
334 "rd:0x%08x\n",
335 addr, wrData, rdData);
336 return false;
337 }
338 }
339 REG_WRITE(ah, regAddr[i], regHold[i]);
340 }
341 udelay(100);
342
343 return true;
344 }
345
346 static const char *ath9k_hw_devname(u16 devid)
347 {
348 switch (devid) {
349 case AR5416_DEVID_PCI:
350 return "Atheros 5416";
351 case AR5416_DEVID_PCIE:
352 return "Atheros 5418";
353 case AR9160_DEVID_PCI:
354 return "Atheros 9160";
355 case AR5416_AR9100_DEVID:
356 return "Atheros 9100";
357 case AR9280_DEVID_PCI:
358 case AR9280_DEVID_PCIE:
359 return "Atheros 9280";
360 case AR9285_DEVID_PCIE:
361 return "Atheros 9285";
362 case AR5416_DEVID_AR9287_PCI:
363 case AR5416_DEVID_AR9287_PCIE:
364 return "Atheros 9287";
365 }
366
367 return NULL;
368 }
369
370 static void ath9k_hw_init_config(struct ath_hw *ah)
371 {
372 int i;
373
374 ah->config.dma_beacon_response_time = 2;
375 ah->config.sw_beacon_response_time = 10;
376 ah->config.additional_swba_backoff = 0;
377 ah->config.ack_6mb = 0x0;
378 ah->config.cwm_ignore_extcca = 0;
379 ah->config.pcie_powersave_enable = 0;
380 ah->config.pcie_clock_req = 0;
381 ah->config.pcie_waen = 0;
382 ah->config.analog_shiftreg = 1;
383 ah->config.ht_enable = 1;
384 ah->config.ofdm_trig_low = 200;
385 ah->config.ofdm_trig_high = 500;
386 ah->config.cck_trig_high = 200;
387 ah->config.cck_trig_low = 100;
388 ah->config.enable_ani = 1;
389
390 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
391 ah->config.spurchans[i][0] = AR_NO_SPUR;
392 ah->config.spurchans[i][1] = AR_NO_SPUR;
393 }
394
395 ah->config.intr_mitigation = true;
396
397 /*
398 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
399 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
400 * This means we use it for all AR5416 devices, and the few
401 * minor PCI AR9280 devices out there.
402 *
403 * Serialization is required because these devices do not handle
404 * well the case of two concurrent reads/writes due to the latency
405 * involved. During one read/write another read/write can be issued
406 * on another CPU while the previous read/write may still be working
407 * on our hardware, if we hit this case the hardware poops in a loop.
408 * We prevent this by serializing reads and writes.
409 *
410 * This issue is not present on PCI-Express devices or pre-AR5416
411 * devices (legacy, 802.11abg).
412 */
413 if (num_possible_cpus() > 1)
414 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
415 }
416 EXPORT_SYMBOL(ath9k_hw_init);
417
418 static void ath9k_hw_init_defaults(struct ath_hw *ah)
419 {
420 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
421
422 regulatory->country_code = CTRY_DEFAULT;
423 regulatory->power_limit = MAX_RATE_POWER;
424 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
425
426 ah->hw_version.magic = AR5416_MAGIC;
427 ah->hw_version.subvendorid = 0;
428
429 ah->ah_flags = 0;
430 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
431 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
432 if (!AR_SREV_9100(ah))
433 ah->ah_flags = AH_USE_EEPROM;
434
435 ah->atim_window = 0;
436 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
437 ah->beacon_interval = 100;
438 ah->enable_32kHz_clock = DONT_USE_32KHZ;
439 ah->slottime = (u32) -1;
440 ah->acktimeout = (u32) -1;
441 ah->ctstimeout = (u32) -1;
442 ah->globaltxtimeout = (u32) -1;
443 ah->power_mode = ATH9K_PM_UNDEFINED;
444 }
445
446 static int ath9k_hw_rf_claim(struct ath_hw *ah)
447 {
448 u32 val;
449
450 REG_WRITE(ah, AR_PHY(0), 0x00000007);
451
452 val = ath9k_hw_get_radiorev(ah);
453 switch (val & AR_RADIO_SREV_MAJOR) {
454 case 0:
455 val = AR_RAD5133_SREV_MAJOR;
456 break;
457 case AR_RAD5133_SREV_MAJOR:
458 case AR_RAD5122_SREV_MAJOR:
459 case AR_RAD2133_SREV_MAJOR:
460 case AR_RAD2122_SREV_MAJOR:
461 break;
462 default:
463 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
464 "Radio Chip Rev 0x%02X not supported\n",
465 val & AR_RADIO_SREV_MAJOR);
466 return -EOPNOTSUPP;
467 }
468
469 ah->hw_version.analog5GhzRev = val;
470
471 return 0;
472 }
473
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 struct ath_common *common = ath9k_hw_common(ah);
477 u32 sum;
478 int i;
479 u16 eeval;
480
481 sum = 0;
482 for (i = 0; i < 3; i++) {
483 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
484 sum += eeval;
485 common->macaddr[2 * i] = eeval >> 8;
486 common->macaddr[2 * i + 1] = eeval & 0xff;
487 }
488 if (sum == 0 || sum == 0xffff * 3)
489 return -EADDRNOTAVAIL;
490
491 return 0;
492 }
493
494 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
495 {
496 u32 rxgain_type;
497
498 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
499 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
500
501 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
502 INIT_INI_ARRAY(&ah->iniModesRxGain,
503 ar9280Modes_backoff_13db_rxgain_9280_2,
504 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
505 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
506 INIT_INI_ARRAY(&ah->iniModesRxGain,
507 ar9280Modes_backoff_23db_rxgain_9280_2,
508 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
509 else
510 INIT_INI_ARRAY(&ah->iniModesRxGain,
511 ar9280Modes_original_rxgain_9280_2,
512 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
513 } else {
514 INIT_INI_ARRAY(&ah->iniModesRxGain,
515 ar9280Modes_original_rxgain_9280_2,
516 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
517 }
518 }
519
520 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
521 {
522 u32 txgain_type;
523
524 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
525 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
526
527 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
528 INIT_INI_ARRAY(&ah->iniModesTxGain,
529 ar9280Modes_high_power_tx_gain_9280_2,
530 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
531 else
532 INIT_INI_ARRAY(&ah->iniModesTxGain,
533 ar9280Modes_original_tx_gain_9280_2,
534 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
535 } else {
536 INIT_INI_ARRAY(&ah->iniModesTxGain,
537 ar9280Modes_original_tx_gain_9280_2,
538 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
539 }
540 }
541
542 static int ath9k_hw_post_init(struct ath_hw *ah)
543 {
544 int ecode;
545
546 if (!ath9k_hw_chip_test(ah))
547 return -ENODEV;
548
549 ecode = ath9k_hw_rf_claim(ah);
550 if (ecode != 0)
551 return ecode;
552
553 ecode = ath9k_hw_eeprom_init(ah);
554 if (ecode != 0)
555 return ecode;
556
557 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
558 "Eeprom VER: %d, REV: %d\n",
559 ah->eep_ops->get_eeprom_ver(ah),
560 ah->eep_ops->get_eeprom_rev(ah));
561
562 if (!AR_SREV_9280_10_OR_LATER(ah)) {
563 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
564 if (ecode) {
565 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
566 "Failed allocating banks for "
567 "external radio\n");
568 return ecode;
569 }
570 }
571
572 if (!AR_SREV_9100(ah)) {
573 ath9k_hw_ani_setup(ah);
574 ath9k_hw_ani_init(ah);
575 }
576
577 return 0;
578 }
579
580 static bool ath9k_hw_devid_supported(u16 devid)
581 {
582 switch (devid) {
583 case AR5416_DEVID_PCI:
584 case AR5416_DEVID_PCIE:
585 case AR5416_AR9100_DEVID:
586 case AR9160_DEVID_PCI:
587 case AR9280_DEVID_PCI:
588 case AR9280_DEVID_PCIE:
589 case AR9285_DEVID_PCIE:
590 case AR5416_DEVID_AR9287_PCI:
591 case AR5416_DEVID_AR9287_PCIE:
592 case AR9271_USB:
593 return true;
594 default:
595 break;
596 }
597 return false;
598 }
599
600 static bool ath9k_hw_macversion_supported(u32 macversion)
601 {
602 switch (macversion) {
603 case AR_SREV_VERSION_5416_PCI:
604 case AR_SREV_VERSION_5416_PCIE:
605 case AR_SREV_VERSION_9160:
606 case AR_SREV_VERSION_9100:
607 case AR_SREV_VERSION_9280:
608 case AR_SREV_VERSION_9285:
609 case AR_SREV_VERSION_9287:
610 case AR_SREV_VERSION_9271:
611 return true;
612 default:
613 break;
614 }
615 return false;
616 }
617
618 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
619 {
620 if (AR_SREV_9160_10_OR_LATER(ah)) {
621 if (AR_SREV_9280_10_OR_LATER(ah)) {
622 ah->iq_caldata.calData = &iq_cal_single_sample;
623 ah->adcgain_caldata.calData =
624 &adc_gain_cal_single_sample;
625 ah->adcdc_caldata.calData =
626 &adc_dc_cal_single_sample;
627 ah->adcdc_calinitdata.calData =
628 &adc_init_dc_cal;
629 } else {
630 ah->iq_caldata.calData = &iq_cal_multi_sample;
631 ah->adcgain_caldata.calData =
632 &adc_gain_cal_multi_sample;
633 ah->adcdc_caldata.calData =
634 &adc_dc_cal_multi_sample;
635 ah->adcdc_calinitdata.calData =
636 &adc_init_dc_cal;
637 }
638 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
639 }
640 }
641
642 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
643 {
644 if (AR_SREV_9271(ah)) {
645 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
646 ARRAY_SIZE(ar9271Modes_9271), 6);
647 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
648 ARRAY_SIZE(ar9271Common_9271), 2);
649 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
650 ar9271Modes_9271_1_0_only,
651 ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
652 return;
653 }
654
655 if (AR_SREV_9287_11_OR_LATER(ah)) {
656 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
657 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
658 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
659 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
660 if (ah->config.pcie_clock_req)
661 INIT_INI_ARRAY(&ah->iniPcieSerdes,
662 ar9287PciePhy_clkreq_off_L1_9287_1_1,
663 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
664 else
665 INIT_INI_ARRAY(&ah->iniPcieSerdes,
666 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
667 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
668 2);
669 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
670 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
671 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
672 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
673 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
674
675 if (ah->config.pcie_clock_req)
676 INIT_INI_ARRAY(&ah->iniPcieSerdes,
677 ar9287PciePhy_clkreq_off_L1_9287_1_0,
678 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
679 else
680 INIT_INI_ARRAY(&ah->iniPcieSerdes,
681 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
682 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
683 2);
684 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
685
686
687 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
688 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
689 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
690 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
691
692 if (ah->config.pcie_clock_req) {
693 INIT_INI_ARRAY(&ah->iniPcieSerdes,
694 ar9285PciePhy_clkreq_off_L1_9285_1_2,
695 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
696 } else {
697 INIT_INI_ARRAY(&ah->iniPcieSerdes,
698 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
699 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
700 2);
701 }
702 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
703 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
704 ARRAY_SIZE(ar9285Modes_9285), 6);
705 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
706 ARRAY_SIZE(ar9285Common_9285), 2);
707
708 if (ah->config.pcie_clock_req) {
709 INIT_INI_ARRAY(&ah->iniPcieSerdes,
710 ar9285PciePhy_clkreq_off_L1_9285,
711 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
712 } else {
713 INIT_INI_ARRAY(&ah->iniPcieSerdes,
714 ar9285PciePhy_clkreq_always_on_L1_9285,
715 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
716 }
717 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
718 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
719 ARRAY_SIZE(ar9280Modes_9280_2), 6);
720 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
721 ARRAY_SIZE(ar9280Common_9280_2), 2);
722
723 if (ah->config.pcie_clock_req) {
724 INIT_INI_ARRAY(&ah->iniPcieSerdes,
725 ar9280PciePhy_clkreq_off_L1_9280,
726 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
727 } else {
728 INIT_INI_ARRAY(&ah->iniPcieSerdes,
729 ar9280PciePhy_clkreq_always_on_L1_9280,
730 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
731 }
732 INIT_INI_ARRAY(&ah->iniModesAdditional,
733 ar9280Modes_fast_clock_9280_2,
734 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
735 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
736 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
737 ARRAY_SIZE(ar9280Modes_9280), 6);
738 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
739 ARRAY_SIZE(ar9280Common_9280), 2);
740 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
741 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
742 ARRAY_SIZE(ar5416Modes_9160), 6);
743 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
744 ARRAY_SIZE(ar5416Common_9160), 2);
745 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
746 ARRAY_SIZE(ar5416Bank0_9160), 2);
747 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
748 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
749 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
750 ARRAY_SIZE(ar5416Bank1_9160), 2);
751 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
752 ARRAY_SIZE(ar5416Bank2_9160), 2);
753 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
754 ARRAY_SIZE(ar5416Bank3_9160), 3);
755 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
756 ARRAY_SIZE(ar5416Bank6_9160), 3);
757 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
758 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
759 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
760 ARRAY_SIZE(ar5416Bank7_9160), 2);
761 if (AR_SREV_9160_11(ah)) {
762 INIT_INI_ARRAY(&ah->iniAddac,
763 ar5416Addac_91601_1,
764 ARRAY_SIZE(ar5416Addac_91601_1), 2);
765 } else {
766 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
767 ARRAY_SIZE(ar5416Addac_9160), 2);
768 }
769 } else if (AR_SREV_9100_OR_LATER(ah)) {
770 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
771 ARRAY_SIZE(ar5416Modes_9100), 6);
772 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
773 ARRAY_SIZE(ar5416Common_9100), 2);
774 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
775 ARRAY_SIZE(ar5416Bank0_9100), 2);
776 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
777 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
778 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
779 ARRAY_SIZE(ar5416Bank1_9100), 2);
780 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
781 ARRAY_SIZE(ar5416Bank2_9100), 2);
782 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
783 ARRAY_SIZE(ar5416Bank3_9100), 3);
784 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
785 ARRAY_SIZE(ar5416Bank6_9100), 3);
786 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
787 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
788 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
789 ARRAY_SIZE(ar5416Bank7_9100), 2);
790 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
791 ARRAY_SIZE(ar5416Addac_9100), 2);
792 } else {
793 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
794 ARRAY_SIZE(ar5416Modes), 6);
795 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
796 ARRAY_SIZE(ar5416Common), 2);
797 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
798 ARRAY_SIZE(ar5416Bank0), 2);
799 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
800 ARRAY_SIZE(ar5416BB_RfGain), 3);
801 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
802 ARRAY_SIZE(ar5416Bank1), 2);
803 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
804 ARRAY_SIZE(ar5416Bank2), 2);
805 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
806 ARRAY_SIZE(ar5416Bank3), 3);
807 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
808 ARRAY_SIZE(ar5416Bank6), 3);
809 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
810 ARRAY_SIZE(ar5416Bank6TPC), 3);
811 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
812 ARRAY_SIZE(ar5416Bank7), 2);
813 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
814 ARRAY_SIZE(ar5416Addac), 2);
815 }
816 }
817
818 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
819 {
820 if (AR_SREV_9287_11_OR_LATER(ah))
821 INIT_INI_ARRAY(&ah->iniModesRxGain,
822 ar9287Modes_rx_gain_9287_1_1,
823 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
824 else if (AR_SREV_9287_10(ah))
825 INIT_INI_ARRAY(&ah->iniModesRxGain,
826 ar9287Modes_rx_gain_9287_1_0,
827 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
828 else if (AR_SREV_9280_20(ah))
829 ath9k_hw_init_rxgain_ini(ah);
830
831 if (AR_SREV_9287_11_OR_LATER(ah)) {
832 INIT_INI_ARRAY(&ah->iniModesTxGain,
833 ar9287Modes_tx_gain_9287_1_1,
834 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
835 } else if (AR_SREV_9287_10(ah)) {
836 INIT_INI_ARRAY(&ah->iniModesTxGain,
837 ar9287Modes_tx_gain_9287_1_0,
838 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
839 } else if (AR_SREV_9280_20(ah)) {
840 ath9k_hw_init_txgain_ini(ah);
841 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
842 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
843
844 /* txgain table */
845 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
846 INIT_INI_ARRAY(&ah->iniModesTxGain,
847 ar9285Modes_high_power_tx_gain_9285_1_2,
848 ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
849 } else {
850 INIT_INI_ARRAY(&ah->iniModesTxGain,
851 ar9285Modes_original_tx_gain_9285_1_2,
852 ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
853 }
854
855 }
856 }
857
858 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
859 {
860 u32 i, j;
861
862 if (ah->hw_version.devid == AR9280_DEVID_PCI) {
863
864 /* EEPROM Fixup */
865 for (i = 0; i < ah->iniModes.ia_rows; i++) {
866 u32 reg = INI_RA(&ah->iniModes, i, 0);
867
868 for (j = 1; j < ah->iniModes.ia_columns; j++) {
869 u32 val = INI_RA(&ah->iniModes, i, j);
870
871 INI_RA(&ah->iniModes, i, j) =
872 ath9k_hw_ini_fixup(ah,
873 &ah->eeprom.def,
874 reg, val);
875 }
876 }
877 }
878 }
879
880 int ath9k_hw_init(struct ath_hw *ah)
881 {
882 struct ath_common *common = ath9k_hw_common(ah);
883 int r = 0;
884
885 if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
886 ath_print(common, ATH_DBG_FATAL,
887 "Unsupported device ID: 0x%0x\n",
888 ah->hw_version.devid);
889 return -EOPNOTSUPP;
890 }
891
892 ath9k_hw_init_defaults(ah);
893 ath9k_hw_init_config(ah);
894
895 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
896 ath_print(common, ATH_DBG_FATAL,
897 "Couldn't reset chip\n");
898 return -EIO;
899 }
900
901 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
902 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
903 return -EIO;
904 }
905
906 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
907 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
908 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
909 ah->config.serialize_regmode =
910 SER_REG_MODE_ON;
911 } else {
912 ah->config.serialize_regmode =
913 SER_REG_MODE_OFF;
914 }
915 }
916
917 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
918 ah->config.serialize_regmode);
919
920 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
921 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
922 else
923 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
924
925 if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
926 ath_print(common, ATH_DBG_FATAL,
927 "Mac Chip Rev 0x%02x.%x is not supported by "
928 "this driver\n", ah->hw_version.macVersion,
929 ah->hw_version.macRev);
930 return -EOPNOTSUPP;
931 }
932
933 if (AR_SREV_9100(ah)) {
934 ah->iq_caldata.calData = &iq_cal_multi_sample;
935 ah->supp_cals = IQ_MISMATCH_CAL;
936 ah->is_pciexpress = false;
937 }
938
939 if (AR_SREV_9271(ah))
940 ah->is_pciexpress = false;
941
942 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
943
944 ath9k_hw_init_cal_settings(ah);
945
946 ah->ani_function = ATH9K_ANI_ALL;
947 if (AR_SREV_9280_10_OR_LATER(ah)) {
948 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
949 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
950 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
951 } else {
952 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
953 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
954 }
955
956 ath9k_hw_init_mode_regs(ah);
957
958 if (ah->is_pciexpress)
959 ath9k_hw_configpcipowersave(ah, 0, 0);
960 else
961 ath9k_hw_disablepcie(ah);
962
963 /* Support for Japan ch.14 (2484) spread */
964 if (AR_SREV_9287_11_OR_LATER(ah)) {
965 INIT_INI_ARRAY(&ah->iniCckfirNormal,
966 ar9287Common_normal_cck_fir_coeff_92871_1,
967 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
968 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
969 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
970 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
971 }
972
973 r = ath9k_hw_post_init(ah);
974 if (r)
975 return r;
976
977 ath9k_hw_init_mode_gain_regs(ah);
978 r = ath9k_hw_fill_cap_info(ah);
979 if (r)
980 return r;
981
982 ath9k_hw_init_eeprom_fix(ah);
983
984 r = ath9k_hw_init_macaddr(ah);
985 if (r) {
986 ath_print(common, ATH_DBG_FATAL,
987 "Failed to initialize MAC address\n");
988 return r;
989 }
990
991 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
992 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
993 else
994 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
995
996 ath9k_init_nfcal_hist_buffer(ah);
997
998 common->state = ATH_HW_INITIALIZED;
999
1000 return 0;
1001 }
1002
1003 static void ath9k_hw_init_bb(struct ath_hw *ah,
1004 struct ath9k_channel *chan)
1005 {
1006 u32 synthDelay;
1007
1008 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1009 if (IS_CHAN_B(chan))
1010 synthDelay = (4 * synthDelay) / 22;
1011 else
1012 synthDelay /= 10;
1013
1014 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1015
1016 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1017 }
1018
1019 static void ath9k_hw_init_qos(struct ath_hw *ah)
1020 {
1021 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1022 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1023
1024 REG_WRITE(ah, AR_QOS_NO_ACK,
1025 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1026 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1027 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1028
1029 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1030 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1031 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1032 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1033 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1034 }
1035
1036 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1037 {
1038 u32 lcr;
1039 u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1040
1041 lcr = REG_READ(ah , 0x5100c);
1042 lcr |= 0x80;
1043
1044 REG_WRITE(ah, 0x5100c, lcr);
1045 REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1046 REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1047
1048 lcr &= ~0x80;
1049 REG_WRITE(ah, 0x5100c, lcr);
1050 }
1051
1052 static void ath9k_hw_init_pll(struct ath_hw *ah,
1053 struct ath9k_channel *chan)
1054 {
1055 u32 pll;
1056
1057 if (AR_SREV_9100(ah)) {
1058 if (chan && IS_CHAN_5GHZ(chan))
1059 pll = 0x1450;
1060 else
1061 pll = 0x1458;
1062 } else {
1063 if (AR_SREV_9280_10_OR_LATER(ah)) {
1064 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1065
1066 if (chan && IS_CHAN_HALF_RATE(chan))
1067 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1068 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1069 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1070
1071 if (chan && IS_CHAN_5GHZ(chan)) {
1072 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1073
1074
1075 if (AR_SREV_9280_20(ah)) {
1076 if (((chan->channel % 20) == 0)
1077 || ((chan->channel % 10) == 0))
1078 pll = 0x2850;
1079 else
1080 pll = 0x142c;
1081 }
1082 } else {
1083 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1084 }
1085
1086 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1087
1088 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1089
1090 if (chan && IS_CHAN_HALF_RATE(chan))
1091 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1092 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1093 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1094
1095 if (chan && IS_CHAN_5GHZ(chan))
1096 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1097 else
1098 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1099 } else {
1100 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1101
1102 if (chan && IS_CHAN_HALF_RATE(chan))
1103 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1104 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1105 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1106
1107 if (chan && IS_CHAN_5GHZ(chan))
1108 pll |= SM(0xa, AR_RTC_PLL_DIV);
1109 else
1110 pll |= SM(0xb, AR_RTC_PLL_DIV);
1111 }
1112 }
1113 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1114
1115 /* Switch the core clock for ar9271 to 117Mhz */
1116 if (AR_SREV_9271(ah)) {
1117 if ((pll == 0x142c) || (pll == 0x2850) ) {
1118 udelay(500);
1119 /* set CLKOBS to output AHB clock */
1120 REG_WRITE(ah, 0x7020, 0xe);
1121 /*
1122 * 0x304: 117Mhz, ahb_ratio: 1x1
1123 * 0x306: 40Mhz, ahb_ratio: 1x1
1124 */
1125 REG_WRITE(ah, 0x50040, 0x304);
1126 /*
1127 * makes adjustments for the baud dividor to keep the
1128 * targetted baud rate based on the used core clock.
1129 */
1130 ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1131 AR9271_TARGET_BAUD_RATE);
1132 }
1133 }
1134
1135 udelay(RTC_PLL_SETTLE_DELAY);
1136
1137 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1138 }
1139
1140 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1141 {
1142 int rx_chainmask, tx_chainmask;
1143
1144 rx_chainmask = ah->rxchainmask;
1145 tx_chainmask = ah->txchainmask;
1146
1147 switch (rx_chainmask) {
1148 case 0x5:
1149 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1150 AR_PHY_SWAP_ALT_CHAIN);
1151 case 0x3:
1152 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1153 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1154 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1155 break;
1156 }
1157 case 0x1:
1158 case 0x2:
1159 case 0x7:
1160 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1161 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1162 break;
1163 default:
1164 break;
1165 }
1166
1167 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1168 if (tx_chainmask == 0x5) {
1169 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1170 AR_PHY_SWAP_ALT_CHAIN);
1171 }
1172 if (AR_SREV_9100(ah))
1173 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1174 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1175 }
1176
1177 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1178 enum nl80211_iftype opmode)
1179 {
1180 ah->mask_reg = AR_IMR_TXERR |
1181 AR_IMR_TXURN |
1182 AR_IMR_RXERR |
1183 AR_IMR_RXORN |
1184 AR_IMR_BCNMISC;
1185
1186 if (ah->config.intr_mitigation)
1187 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1188 else
1189 ah->mask_reg |= AR_IMR_RXOK;
1190
1191 ah->mask_reg |= AR_IMR_TXOK;
1192
1193 if (opmode == NL80211_IFTYPE_AP)
1194 ah->mask_reg |= AR_IMR_MIB;
1195
1196 REG_WRITE(ah, AR_IMR, ah->mask_reg);
1197 REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1198
1199 if (!AR_SREV_9100(ah)) {
1200 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1201 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1202 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1203 }
1204 }
1205
1206 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1207 {
1208 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1209 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1210 "bad ack timeout %u\n", us);
1211 ah->acktimeout = (u32) -1;
1212 return false;
1213 } else {
1214 REG_RMW_FIELD(ah, AR_TIME_OUT,
1215 AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1216 ah->acktimeout = us;
1217 return true;
1218 }
1219 }
1220
1221 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1222 {
1223 if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1224 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1225 "bad cts timeout %u\n", us);
1226 ah->ctstimeout = (u32) -1;
1227 return false;
1228 } else {
1229 REG_RMW_FIELD(ah, AR_TIME_OUT,
1230 AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1231 ah->ctstimeout = us;
1232 return true;
1233 }
1234 }
1235
1236 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1237 {
1238 if (tu > 0xFFFF) {
1239 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1240 "bad global tx timeout %u\n", tu);
1241 ah->globaltxtimeout = (u32) -1;
1242 return false;
1243 } else {
1244 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1245 ah->globaltxtimeout = tu;
1246 return true;
1247 }
1248 }
1249
1250 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1251 {
1252 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1253 ah->misc_mode);
1254
1255 if (ah->misc_mode != 0)
1256 REG_WRITE(ah, AR_PCU_MISC,
1257 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1258 if (ah->slottime != (u32) -1)
1259 ath9k_hw_setslottime(ah, ah->slottime);
1260 if (ah->acktimeout != (u32) -1)
1261 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1262 if (ah->ctstimeout != (u32) -1)
1263 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1264 if (ah->globaltxtimeout != (u32) -1)
1265 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1266 }
1267
1268 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1269 {
1270 return vendorid == ATHEROS_VENDOR_ID ?
1271 ath9k_hw_devname(devid) : NULL;
1272 }
1273
1274 void ath9k_hw_detach(struct ath_hw *ah)
1275 {
1276 struct ath_common *common = ath9k_hw_common(ah);
1277
1278 if (common->state <= ATH_HW_INITIALIZED)
1279 goto free_hw;
1280
1281 if (!AR_SREV_9100(ah))
1282 ath9k_hw_ani_disable(ah);
1283
1284 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1285
1286 free_hw:
1287 if (!AR_SREV_9280_10_OR_LATER(ah))
1288 ath9k_hw_rf_free_ext_banks(ah);
1289 kfree(ah);
1290 ah = NULL;
1291 }
1292 EXPORT_SYMBOL(ath9k_hw_detach);
1293
1294 /*******/
1295 /* INI */
1296 /*******/
1297
1298 static void ath9k_hw_override_ini(struct ath_hw *ah,
1299 struct ath9k_channel *chan)
1300 {
1301 u32 val;
1302
1303 if (AR_SREV_9271(ah)) {
1304 /*
1305 * Enable spectral scan to solution for issues with stuck
1306 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1307 * AR9271 1.1
1308 */
1309 if (AR_SREV_9271_10(ah)) {
1310 val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1311 AR_PHY_SPECTRAL_SCAN_ENABLE;
1312 REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1313 }
1314 else if (AR_SREV_9271_11(ah))
1315 /*
1316 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1317 * present on AR9271 1.1
1318 */
1319 REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1320 return;
1321 }
1322
1323 /*
1324 * Set the RX_ABORT and RX_DIS and clear if off only after
1325 * RXE is set for MAC. This prevents frames with corrupted
1326 * descriptor status.
1327 */
1328 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1329
1330 if (AR_SREV_9280_10_OR_LATER(ah)) {
1331 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1332 (~AR_PCU_MISC_MODE2_HWWAR1);
1333
1334 if (AR_SREV_9287_10_OR_LATER(ah))
1335 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1336
1337 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1338 }
1339
1340 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1341 AR_SREV_9280_10_OR_LATER(ah))
1342 return;
1343 /*
1344 * Disable BB clock gating
1345 * Necessary to avoid issues on AR5416 2.0
1346 */
1347 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1348 }
1349
1350 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1351 struct ar5416_eeprom_def *pEepData,
1352 u32 reg, u32 value)
1353 {
1354 struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1355 struct ath_common *common = ath9k_hw_common(ah);
1356
1357 switch (ah->hw_version.devid) {
1358 case AR9280_DEVID_PCI:
1359 if (reg == 0x7894) {
1360 ath_print(common, ATH_DBG_EEPROM,
1361 "ini VAL: %x EEPROM: %x\n", value,
1362 (pBase->version & 0xff));
1363
1364 if ((pBase->version & 0xff) > 0x0a) {
1365 ath_print(common, ATH_DBG_EEPROM,
1366 "PWDCLKIND: %d\n",
1367 pBase->pwdclkind);
1368 value &= ~AR_AN_TOP2_PWDCLKIND;
1369 value |= AR_AN_TOP2_PWDCLKIND &
1370 (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1371 } else {
1372 ath_print(common, ATH_DBG_EEPROM,
1373 "PWDCLKIND Earlier Rev\n");
1374 }
1375
1376 ath_print(common, ATH_DBG_EEPROM,
1377 "final ini VAL: %x\n", value);
1378 }
1379 break;
1380 }
1381
1382 return value;
1383 }
1384
1385 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1386 struct ar5416_eeprom_def *pEepData,
1387 u32 reg, u32 value)
1388 {
1389 if (ah->eep_map == EEP_MAP_4KBITS)
1390 return value;
1391 else
1392 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1393 }
1394
1395 static void ath9k_olc_init(struct ath_hw *ah)
1396 {
1397 u32 i;
1398
1399 if (OLC_FOR_AR9287_10_LATER) {
1400 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1401 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1402 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1403 AR9287_AN_TXPC0_TXPCMODE,
1404 AR9287_AN_TXPC0_TXPCMODE_S,
1405 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1406 udelay(100);
1407 } else {
1408 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1409 ah->originalGain[i] =
1410 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1411 AR_PHY_TX_GAIN);
1412 ah->PDADCdelta = 0;
1413 }
1414 }
1415
1416 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1417 struct ath9k_channel *chan)
1418 {
1419 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1420
1421 if (IS_CHAN_B(chan))
1422 ctl |= CTL_11B;
1423 else if (IS_CHAN_G(chan))
1424 ctl |= CTL_11G;
1425 else
1426 ctl |= CTL_11A;
1427
1428 return ctl;
1429 }
1430
1431 static int ath9k_hw_process_ini(struct ath_hw *ah,
1432 struct ath9k_channel *chan)
1433 {
1434 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1435 int i, regWrites = 0;
1436 struct ieee80211_channel *channel = chan->chan;
1437 u32 modesIndex, freqIndex;
1438
1439 switch (chan->chanmode) {
1440 case CHANNEL_A:
1441 case CHANNEL_A_HT20:
1442 modesIndex = 1;
1443 freqIndex = 1;
1444 break;
1445 case CHANNEL_A_HT40PLUS:
1446 case CHANNEL_A_HT40MINUS:
1447 modesIndex = 2;
1448 freqIndex = 1;
1449 break;
1450 case CHANNEL_G:
1451 case CHANNEL_G_HT20:
1452 case CHANNEL_B:
1453 modesIndex = 4;
1454 freqIndex = 2;
1455 break;
1456 case CHANNEL_G_HT40PLUS:
1457 case CHANNEL_G_HT40MINUS:
1458 modesIndex = 3;
1459 freqIndex = 2;
1460 break;
1461
1462 default:
1463 return -EINVAL;
1464 }
1465
1466 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1467 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1468 ah->eep_ops->set_addac(ah, chan);
1469
1470 if (AR_SREV_5416_22_OR_LATER(ah)) {
1471 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1472 } else {
1473 struct ar5416IniArray temp;
1474 u32 addacSize =
1475 sizeof(u32) * ah->iniAddac.ia_rows *
1476 ah->iniAddac.ia_columns;
1477
1478 memcpy(ah->addac5416_21,
1479 ah->iniAddac.ia_array, addacSize);
1480
1481 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1482
1483 temp.ia_array = ah->addac5416_21;
1484 temp.ia_columns = ah->iniAddac.ia_columns;
1485 temp.ia_rows = ah->iniAddac.ia_rows;
1486 REG_WRITE_ARRAY(&temp, 1, regWrites);
1487 }
1488
1489 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1490
1491 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1492 u32 reg = INI_RA(&ah->iniModes, i, 0);
1493 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1494
1495 REG_WRITE(ah, reg, val);
1496
1497 if (reg >= 0x7800 && reg < 0x78a0
1498 && ah->config.analog_shiftreg) {
1499 udelay(100);
1500 }
1501
1502 DO_DELAY(regWrites);
1503 }
1504
1505 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1506 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1507
1508 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1509 AR_SREV_9287_10_OR_LATER(ah))
1510 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1511
1512 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1513 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1514 u32 val = INI_RA(&ah->iniCommon, i, 1);
1515
1516 REG_WRITE(ah, reg, val);
1517
1518 if (reg >= 0x7800 && reg < 0x78a0
1519 && ah->config.analog_shiftreg) {
1520 udelay(100);
1521 }
1522
1523 DO_DELAY(regWrites);
1524 }
1525
1526 ath9k_hw_write_regs(ah, freqIndex, regWrites);
1527
1528 if (AR_SREV_9271_10(ah))
1529 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1530 modesIndex, regWrites);
1531
1532 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1533 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1534 regWrites);
1535 }
1536
1537 ath9k_hw_override_ini(ah, chan);
1538 ath9k_hw_set_regs(ah, chan);
1539 ath9k_hw_init_chain_masks(ah);
1540
1541 if (OLC_FOR_AR9280_20_LATER)
1542 ath9k_olc_init(ah);
1543
1544 ah->eep_ops->set_txpower(ah, chan,
1545 ath9k_regd_get_ctl(regulatory, chan),
1546 channel->max_antenna_gain * 2,
1547 channel->max_power * 2,
1548 min((u32) MAX_RATE_POWER,
1549 (u32) regulatory->power_limit));
1550
1551 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1552 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1553 "ar5416SetRfRegs failed\n");
1554 return -EIO;
1555 }
1556
1557 return 0;
1558 }
1559
1560 /****************************************/
1561 /* Reset and Channel Switching Routines */
1562 /****************************************/
1563
1564 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1565 {
1566 u32 rfMode = 0;
1567
1568 if (chan == NULL)
1569 return;
1570
1571 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1572 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1573
1574 if (!AR_SREV_9280_10_OR_LATER(ah))
1575 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1576 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1577
1578 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1579 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1580
1581 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1582 }
1583
1584 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1585 {
1586 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1587 }
1588
1589 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1590 {
1591 u32 regval;
1592
1593 /*
1594 * set AHB_MODE not to do cacheline prefetches
1595 */
1596 regval = REG_READ(ah, AR_AHB_MODE);
1597 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1598
1599 /*
1600 * let mac dma reads be in 128 byte chunks
1601 */
1602 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1603 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1604
1605 /*
1606 * Restore TX Trigger Level to its pre-reset value.
1607 * The initial value depends on whether aggregation is enabled, and is
1608 * adjusted whenever underruns are detected.
1609 */
1610 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1611
1612 /*
1613 * let mac dma writes be in 128 byte chunks
1614 */
1615 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1616 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1617
1618 /*
1619 * Setup receive FIFO threshold to hold off TX activities
1620 */
1621 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1622
1623 /*
1624 * reduce the number of usable entries in PCU TXBUF to avoid
1625 * wrap around issues.
1626 */
1627 if (AR_SREV_9285(ah)) {
1628 /* For AR9285 the number of Fifos are reduced to half.
1629 * So set the usable tx buf size also to half to
1630 * avoid data/delimiter underruns
1631 */
1632 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1633 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1634 } else if (!AR_SREV_9271(ah)) {
1635 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1636 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1637 }
1638 }
1639
1640 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1641 {
1642 u32 val;
1643
1644 val = REG_READ(ah, AR_STA_ID1);
1645 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1646 switch (opmode) {
1647 case NL80211_IFTYPE_AP:
1648 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1649 | AR_STA_ID1_KSRCH_MODE);
1650 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1651 break;
1652 case NL80211_IFTYPE_ADHOC:
1653 case NL80211_IFTYPE_MESH_POINT:
1654 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1655 | AR_STA_ID1_KSRCH_MODE);
1656 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1657 break;
1658 case NL80211_IFTYPE_STATION:
1659 case NL80211_IFTYPE_MONITOR:
1660 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1661 break;
1662 }
1663 }
1664
1665 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1666 u32 coef_scaled,
1667 u32 *coef_mantissa,
1668 u32 *coef_exponent)
1669 {
1670 u32 coef_exp, coef_man;
1671
1672 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1673 if ((coef_scaled >> coef_exp) & 0x1)
1674 break;
1675
1676 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1677
1678 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1679
1680 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1681 *coef_exponent = coef_exp - 16;
1682 }
1683
1684 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1685 struct ath9k_channel *chan)
1686 {
1687 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1688 u32 clockMhzScaled = 0x64000000;
1689 struct chan_centers centers;
1690
1691 if (IS_CHAN_HALF_RATE(chan))
1692 clockMhzScaled = clockMhzScaled >> 1;
1693 else if (IS_CHAN_QUARTER_RATE(chan))
1694 clockMhzScaled = clockMhzScaled >> 2;
1695
1696 ath9k_hw_get_channel_centers(ah, chan, &centers);
1697 coef_scaled = clockMhzScaled / centers.synth_center;
1698
1699 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1700 &ds_coef_exp);
1701
1702 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1703 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1704 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1705 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1706
1707 coef_scaled = (9 * coef_scaled) / 10;
1708
1709 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1710 &ds_coef_exp);
1711
1712 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1713 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1714 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1715 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1716 }
1717
1718 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1719 {
1720 u32 rst_flags;
1721 u32 tmpReg;
1722
1723 if (AR_SREV_9100(ah)) {
1724 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1725 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1726 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1727 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1728 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1729 }
1730
1731 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1732 AR_RTC_FORCE_WAKE_ON_INT);
1733
1734 if (AR_SREV_9100(ah)) {
1735 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1736 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1737 } else {
1738 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1739 if (tmpReg &
1740 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1741 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1742 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1743 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1744 } else {
1745 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1746 }
1747
1748 rst_flags = AR_RTC_RC_MAC_WARM;
1749 if (type == ATH9K_RESET_COLD)
1750 rst_flags |= AR_RTC_RC_MAC_COLD;
1751 }
1752
1753 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1754 udelay(50);
1755
1756 REG_WRITE(ah, AR_RTC_RC, 0);
1757 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1758 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1759 "RTC stuck in MAC reset\n");
1760 return false;
1761 }
1762
1763 if (!AR_SREV_9100(ah))
1764 REG_WRITE(ah, AR_RC, 0);
1765
1766 if (AR_SREV_9100(ah))
1767 udelay(50);
1768
1769 return true;
1770 }
1771
1772 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1773 {
1774 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1775 AR_RTC_FORCE_WAKE_ON_INT);
1776
1777 if (!AR_SREV_9100(ah))
1778 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1779
1780 REG_WRITE(ah, AR_RTC_RESET, 0);
1781 udelay(2);
1782
1783 if (!AR_SREV_9100(ah))
1784 REG_WRITE(ah, AR_RC, 0);
1785
1786 REG_WRITE(ah, AR_RTC_RESET, 1);
1787
1788 if (!ath9k_hw_wait(ah,
1789 AR_RTC_STATUS,
1790 AR_RTC_STATUS_M,
1791 AR_RTC_STATUS_ON,
1792 AH_WAIT_TIMEOUT)) {
1793 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1794 "RTC not waking up\n");
1795 return false;
1796 }
1797
1798 ath9k_hw_read_revisions(ah);
1799
1800 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1801 }
1802
1803 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1804 {
1805 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1806 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1807
1808 switch (type) {
1809 case ATH9K_RESET_POWER_ON:
1810 return ath9k_hw_set_reset_power_on(ah);
1811 case ATH9K_RESET_WARM:
1812 case ATH9K_RESET_COLD:
1813 return ath9k_hw_set_reset(ah, type);
1814 default:
1815 return false;
1816 }
1817 }
1818
1819 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1820 {
1821 u32 phymode;
1822 u32 enableDacFifo = 0;
1823
1824 if (AR_SREV_9285_10_OR_LATER(ah))
1825 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1826 AR_PHY_FC_ENABLE_DAC_FIFO);
1827
1828 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1829 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1830
1831 if (IS_CHAN_HT40(chan)) {
1832 phymode |= AR_PHY_FC_DYN2040_EN;
1833
1834 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1835 (chan->chanmode == CHANNEL_G_HT40PLUS))
1836 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1837
1838 }
1839 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1840
1841 ath9k_hw_set11nmac2040(ah);
1842
1843 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1844 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1845 }
1846
1847 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1848 struct ath9k_channel *chan)
1849 {
1850 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1851 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1852 return false;
1853 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1854 return false;
1855
1856 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1857 return false;
1858
1859 ah->chip_fullsleep = false;
1860 ath9k_hw_init_pll(ah, chan);
1861 ath9k_hw_set_rfmode(ah, chan);
1862
1863 return true;
1864 }
1865
1866 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1867 struct ath9k_channel *chan)
1868 {
1869 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1870 struct ath_common *common = ath9k_hw_common(ah);
1871 struct ieee80211_channel *channel = chan->chan;
1872 u32 synthDelay, qnum;
1873 int r;
1874
1875 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1876 if (ath9k_hw_numtxpending(ah, qnum)) {
1877 ath_print(common, ATH_DBG_QUEUE,
1878 "Transmit frames pending on "
1879 "queue %d\n", qnum);
1880 return false;
1881 }
1882 }
1883
1884 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1885 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1886 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1887 ath_print(common, ATH_DBG_FATAL,
1888 "Could not kill baseband RX\n");
1889 return false;
1890 }
1891
1892 ath9k_hw_set_regs(ah, chan);
1893
1894 r = ah->ath9k_hw_rf_set_freq(ah, chan);
1895 if (r) {
1896 ath_print(common, ATH_DBG_FATAL,
1897 "Failed to set channel\n");
1898 return false;
1899 }
1900
1901 ah->eep_ops->set_txpower(ah, chan,
1902 ath9k_regd_get_ctl(regulatory, chan),
1903 channel->max_antenna_gain * 2,
1904 channel->max_power * 2,
1905 min((u32) MAX_RATE_POWER,
1906 (u32) regulatory->power_limit));
1907
1908 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1909 if (IS_CHAN_B(chan))
1910 synthDelay = (4 * synthDelay) / 22;
1911 else
1912 synthDelay /= 10;
1913
1914 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1915
1916 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1917
1918 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1919 ath9k_hw_set_delta_slope(ah, chan);
1920
1921 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1922
1923 if (!chan->oneTimeCalsDone)
1924 chan->oneTimeCalsDone = true;
1925
1926 return true;
1927 }
1928
1929 static void ath9k_enable_rfkill(struct ath_hw *ah)
1930 {
1931 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1932 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1933
1934 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1935 AR_GPIO_INPUT_MUX2_RFSILENT);
1936
1937 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1938 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1939 }
1940
1941 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1942 bool bChannelChange)
1943 {
1944 struct ath_common *common = ath9k_hw_common(ah);
1945 u32 saveLedState;
1946 struct ath9k_channel *curchan = ah->curchan;
1947 u32 saveDefAntenna;
1948 u32 macStaId1;
1949 u64 tsf = 0;
1950 int i, rx_chainmask, r;
1951
1952 ah->txchainmask = common->tx_chainmask;
1953 ah->rxchainmask = common->rx_chainmask;
1954
1955 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1956 return -EIO;
1957
1958 if (curchan && !ah->chip_fullsleep)
1959 ath9k_hw_getnf(ah, curchan);
1960
1961 if (bChannelChange &&
1962 (ah->chip_fullsleep != true) &&
1963 (ah->curchan != NULL) &&
1964 (chan->channel != ah->curchan->channel) &&
1965 ((chan->channelFlags & CHANNEL_ALL) ==
1966 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1967 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1968 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1969
1970 if (ath9k_hw_channel_change(ah, chan)) {
1971 ath9k_hw_loadnf(ah, ah->curchan);
1972 ath9k_hw_start_nfcal(ah);
1973 return 0;
1974 }
1975 }
1976
1977 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1978 if (saveDefAntenna == 0)
1979 saveDefAntenna = 1;
1980
1981 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1982
1983 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1984 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1985 tsf = ath9k_hw_gettsf64(ah);
1986
1987 saveLedState = REG_READ(ah, AR_CFG_LED) &
1988 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1989 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1990
1991 ath9k_hw_mark_phy_inactive(ah);
1992
1993 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1994 REG_WRITE(ah,
1995 AR9271_RESET_POWER_DOWN_CONTROL,
1996 AR9271_RADIO_RF_RST);
1997 udelay(50);
1998 }
1999
2000 if (!ath9k_hw_chip_reset(ah, chan)) {
2001 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2002 return -EINVAL;
2003 }
2004
2005 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2006 ah->htc_reset_init = false;
2007 REG_WRITE(ah,
2008 AR9271_RESET_POWER_DOWN_CONTROL,
2009 AR9271_GATE_MAC_CTL);
2010 udelay(50);
2011 }
2012
2013 /* Restore TSF */
2014 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2015 ath9k_hw_settsf64(ah, tsf);
2016
2017 if (AR_SREV_9280_10_OR_LATER(ah))
2018 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2019
2020 if (AR_SREV_9287_12_OR_LATER(ah)) {
2021 /* Enable ASYNC FIFO */
2022 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2023 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2024 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2025 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2026 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2027 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2028 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2029 }
2030 r = ath9k_hw_process_ini(ah, chan);
2031 if (r)
2032 return r;
2033
2034 /* Setup MFP options for CCMP */
2035 if (AR_SREV_9280_20_OR_LATER(ah)) {
2036 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2037 * frames when constructing CCMP AAD. */
2038 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2039 0xc7ff);
2040 ah->sw_mgmt_crypto = false;
2041 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2042 /* Disable hardware crypto for management frames */
2043 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2044 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2045 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2046 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2047 ah->sw_mgmt_crypto = true;
2048 } else
2049 ah->sw_mgmt_crypto = true;
2050
2051 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2052 ath9k_hw_set_delta_slope(ah, chan);
2053
2054 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2055 ah->eep_ops->set_board_values(ah, chan);
2056
2057 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2058 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2059 | macStaId1
2060 | AR_STA_ID1_RTS_USE_DEF
2061 | (ah->config.
2062 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2063 | ah->sta_id1_defaults);
2064 ath9k_hw_set_operating_mode(ah, ah->opmode);
2065
2066 ath_hw_setbssidmask(common);
2067
2068 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2069
2070 ath9k_hw_write_associd(ah);
2071
2072 REG_WRITE(ah, AR_ISR, ~0);
2073
2074 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2075
2076 r = ah->ath9k_hw_rf_set_freq(ah, chan);
2077 if (r)
2078 return r;
2079
2080 for (i = 0; i < AR_NUM_DCU; i++)
2081 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2082
2083 ah->intr_txqs = 0;
2084 for (i = 0; i < ah->caps.total_queues; i++)
2085 ath9k_hw_resettxqueue(ah, i);
2086
2087 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2088 ath9k_hw_init_qos(ah);
2089
2090 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2091 ath9k_enable_rfkill(ah);
2092
2093 ath9k_hw_init_user_settings(ah);
2094
2095 if (AR_SREV_9287_12_OR_LATER(ah)) {
2096 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2097 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2098 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2099 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2100 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2101 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2102
2103 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2104 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2105
2106 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2107 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2108 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2109 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2110 }
2111 if (AR_SREV_9287_12_OR_LATER(ah)) {
2112 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2113 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2114 }
2115
2116 REG_WRITE(ah, AR_STA_ID1,
2117 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2118
2119 ath9k_hw_set_dma(ah);
2120
2121 REG_WRITE(ah, AR_OBS, 8);
2122
2123 if (ah->config.intr_mitigation) {
2124 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2125 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2126 }
2127
2128 ath9k_hw_init_bb(ah, chan);
2129
2130 if (!ath9k_hw_init_cal(ah, chan))
2131 return -EIO;
2132
2133 rx_chainmask = ah->rxchainmask;
2134 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2135 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2136 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2137 }
2138
2139 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2140
2141 /*
2142 * For big endian systems turn on swapping for descriptors
2143 */
2144 if (AR_SREV_9100(ah)) {
2145 u32 mask;
2146 mask = REG_READ(ah, AR_CFG);
2147 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2148 ath_print(common, ATH_DBG_RESET,
2149 "CFG Byte Swap Set 0x%x\n", mask);
2150 } else {
2151 mask =
2152 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2153 REG_WRITE(ah, AR_CFG, mask);
2154 ath_print(common, ATH_DBG_RESET,
2155 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2156 }
2157 } else {
2158 /* Configure AR9271 target WLAN */
2159 if (AR_SREV_9271(ah))
2160 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2161 #ifdef __BIG_ENDIAN
2162 else
2163 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2164 #endif
2165 }
2166
2167 if (ah->btcoex_hw.enabled)
2168 ath9k_hw_btcoex_enable(ah);
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(ath9k_hw_reset);
2173
2174 /************************/
2175 /* Key Cache Management */
2176 /************************/
2177
2178 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2179 {
2180 u32 keyType;
2181
2182 if (entry >= ah->caps.keycache_size) {
2183 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2184 "keychache entry %u out of range\n", entry);
2185 return false;
2186 }
2187
2188 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2189
2190 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2191 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2192 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2193 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2194 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2195 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2196 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2197 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2198
2199 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2200 u16 micentry = entry + 64;
2201
2202 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2203 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2204 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2205 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2206
2207 }
2208
2209 return true;
2210 }
2211 EXPORT_SYMBOL(ath9k_hw_keyreset);
2212
2213 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2214 {
2215 u32 macHi, macLo;
2216
2217 if (entry >= ah->caps.keycache_size) {
2218 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2219 "keychache entry %u out of range\n", entry);
2220 return false;
2221 }
2222
2223 if (mac != NULL) {
2224 macHi = (mac[5] << 8) | mac[4];
2225 macLo = (mac[3] << 24) |
2226 (mac[2] << 16) |
2227 (mac[1] << 8) |
2228 mac[0];
2229 macLo >>= 1;
2230 macLo |= (macHi & 1) << 31;
2231 macHi >>= 1;
2232 } else {
2233 macLo = macHi = 0;
2234 }
2235 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2236 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2237
2238 return true;
2239 }
2240 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2241
2242 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2243 const struct ath9k_keyval *k,
2244 const u8 *mac)
2245 {
2246 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2247 struct ath_common *common = ath9k_hw_common(ah);
2248 u32 key0, key1, key2, key3, key4;
2249 u32 keyType;
2250
2251 if (entry >= pCap->keycache_size) {
2252 ath_print(common, ATH_DBG_FATAL,
2253 "keycache entry %u out of range\n", entry);
2254 return false;
2255 }
2256
2257 switch (k->kv_type) {
2258 case ATH9K_CIPHER_AES_OCB:
2259 keyType = AR_KEYTABLE_TYPE_AES;
2260 break;
2261 case ATH9K_CIPHER_AES_CCM:
2262 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2263 ath_print(common, ATH_DBG_ANY,
2264 "AES-CCM not supported by mac rev 0x%x\n",
2265 ah->hw_version.macRev);
2266 return false;
2267 }
2268 keyType = AR_KEYTABLE_TYPE_CCM;
2269 break;
2270 case ATH9K_CIPHER_TKIP:
2271 keyType = AR_KEYTABLE_TYPE_TKIP;
2272 if (ATH9K_IS_MIC_ENABLED(ah)
2273 && entry + 64 >= pCap->keycache_size) {
2274 ath_print(common, ATH_DBG_ANY,
2275 "entry %u inappropriate for TKIP\n", entry);
2276 return false;
2277 }
2278 break;
2279 case ATH9K_CIPHER_WEP:
2280 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2281 ath_print(common, ATH_DBG_ANY,
2282 "WEP key length %u too small\n", k->kv_len);
2283 return false;
2284 }
2285 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2286 keyType = AR_KEYTABLE_TYPE_40;
2287 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2288 keyType = AR_KEYTABLE_TYPE_104;
2289 else
2290 keyType = AR_KEYTABLE_TYPE_128;
2291 break;
2292 case ATH9K_CIPHER_CLR:
2293 keyType = AR_KEYTABLE_TYPE_CLR;
2294 break;
2295 default:
2296 ath_print(common, ATH_DBG_FATAL,
2297 "cipher %u not supported\n", k->kv_type);
2298 return false;
2299 }
2300
2301 key0 = get_unaligned_le32(k->kv_val + 0);
2302 key1 = get_unaligned_le16(k->kv_val + 4);
2303 key2 = get_unaligned_le32(k->kv_val + 6);
2304 key3 = get_unaligned_le16(k->kv_val + 10);
2305 key4 = get_unaligned_le32(k->kv_val + 12);
2306 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2307 key4 &= 0xff;
2308
2309 /*
2310 * Note: Key cache registers access special memory area that requires
2311 * two 32-bit writes to actually update the values in the internal
2312 * memory. Consequently, the exact order and pairs used here must be
2313 * maintained.
2314 */
2315
2316 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2317 u16 micentry = entry + 64;
2318
2319 /*
2320 * Write inverted key[47:0] first to avoid Michael MIC errors
2321 * on frames that could be sent or received at the same time.
2322 * The correct key will be written in the end once everything
2323 * else is ready.
2324 */
2325 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2326 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2327
2328 /* Write key[95:48] */
2329 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2330 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2331
2332 /* Write key[127:96] and key type */
2333 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2334 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2335
2336 /* Write MAC address for the entry */
2337 (void) ath9k_hw_keysetmac(ah, entry, mac);
2338
2339 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2340 /*
2341 * TKIP uses two key cache entries:
2342 * Michael MIC TX/RX keys in the same key cache entry
2343 * (idx = main index + 64):
2344 * key0 [31:0] = RX key [31:0]
2345 * key1 [15:0] = TX key [31:16]
2346 * key1 [31:16] = reserved
2347 * key2 [31:0] = RX key [63:32]
2348 * key3 [15:0] = TX key [15:0]
2349 * key3 [31:16] = reserved
2350 * key4 [31:0] = TX key [63:32]
2351 */
2352 u32 mic0, mic1, mic2, mic3, mic4;
2353
2354 mic0 = get_unaligned_le32(k->kv_mic + 0);
2355 mic2 = get_unaligned_le32(k->kv_mic + 4);
2356 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2357 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2358 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2359
2360 /* Write RX[31:0] and TX[31:16] */
2361 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2362 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2363
2364 /* Write RX[63:32] and TX[15:0] */
2365 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2366 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2367
2368 /* Write TX[63:32] and keyType(reserved) */
2369 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2370 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2371 AR_KEYTABLE_TYPE_CLR);
2372
2373 } else {
2374 /*
2375 * TKIP uses four key cache entries (two for group
2376 * keys):
2377 * Michael MIC TX/RX keys are in different key cache
2378 * entries (idx = main index + 64 for TX and
2379 * main index + 32 + 96 for RX):
2380 * key0 [31:0] = TX/RX MIC key [31:0]
2381 * key1 [31:0] = reserved
2382 * key2 [31:0] = TX/RX MIC key [63:32]
2383 * key3 [31:0] = reserved
2384 * key4 [31:0] = reserved
2385 *
2386 * Upper layer code will call this function separately
2387 * for TX and RX keys when these registers offsets are
2388 * used.
2389 */
2390 u32 mic0, mic2;
2391
2392 mic0 = get_unaligned_le32(k->kv_mic + 0);
2393 mic2 = get_unaligned_le32(k->kv_mic + 4);
2394
2395 /* Write MIC key[31:0] */
2396 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2397 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2398
2399 /* Write MIC key[63:32] */
2400 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2401 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2402
2403 /* Write TX[63:32] and keyType(reserved) */
2404 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2405 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2406 AR_KEYTABLE_TYPE_CLR);
2407 }
2408
2409 /* MAC address registers are reserved for the MIC entry */
2410 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2411 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2412
2413 /*
2414 * Write the correct (un-inverted) key[47:0] last to enable
2415 * TKIP now that all other registers are set with correct
2416 * values.
2417 */
2418 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2419 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2420 } else {
2421 /* Write key[47:0] */
2422 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2423 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2424
2425 /* Write key[95:48] */
2426 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2427 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2428
2429 /* Write key[127:96] and key type */
2430 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2431 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2432
2433 /* Write MAC address for the entry */
2434 (void) ath9k_hw_keysetmac(ah, entry, mac);
2435 }
2436
2437 return true;
2438 }
2439 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2440
2441 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2442 {
2443 if (entry < ah->caps.keycache_size) {
2444 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2445 if (val & AR_KEYTABLE_VALID)
2446 return true;
2447 }
2448 return false;
2449 }
2450 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2451
2452 /******************************/
2453 /* Power Management (Chipset) */
2454 /******************************/
2455
2456 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2457 {
2458 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2459 if (setChip) {
2460 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2461 AR_RTC_FORCE_WAKE_EN);
2462 if (!AR_SREV_9100(ah))
2463 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2464
2465 if(!AR_SREV_5416(ah))
2466 REG_CLR_BIT(ah, (AR_RTC_RESET),
2467 AR_RTC_RESET_EN);
2468 }
2469 }
2470
2471 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2472 {
2473 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2474 if (setChip) {
2475 struct ath9k_hw_capabilities *pCap = &ah->caps;
2476
2477 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2478 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2479 AR_RTC_FORCE_WAKE_ON_INT);
2480 } else {
2481 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2482 AR_RTC_FORCE_WAKE_EN);
2483 }
2484 }
2485 }
2486
2487 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2488 {
2489 u32 val;
2490 int i;
2491
2492 if (setChip) {
2493 if ((REG_READ(ah, AR_RTC_STATUS) &
2494 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2495 if (ath9k_hw_set_reset_reg(ah,
2496 ATH9K_RESET_POWER_ON) != true) {
2497 return false;
2498 }
2499 ath9k_hw_init_pll(ah, NULL);
2500 }
2501 if (AR_SREV_9100(ah))
2502 REG_SET_BIT(ah, AR_RTC_RESET,
2503 AR_RTC_RESET_EN);
2504
2505 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2506 AR_RTC_FORCE_WAKE_EN);
2507 udelay(50);
2508
2509 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2510 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2511 if (val == AR_RTC_STATUS_ON)
2512 break;
2513 udelay(50);
2514 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2515 AR_RTC_FORCE_WAKE_EN);
2516 }
2517 if (i == 0) {
2518 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2519 "Failed to wakeup in %uus\n",
2520 POWER_UP_TIME / 20);
2521 return false;
2522 }
2523 }
2524
2525 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2526
2527 return true;
2528 }
2529
2530 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2531 {
2532 struct ath_common *common = ath9k_hw_common(ah);
2533 int status = true, setChip = true;
2534 static const char *modes[] = {
2535 "AWAKE",
2536 "FULL-SLEEP",
2537 "NETWORK SLEEP",
2538 "UNDEFINED"
2539 };
2540
2541 if (ah->power_mode == mode)
2542 return status;
2543
2544 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2545 modes[ah->power_mode], modes[mode]);
2546
2547 switch (mode) {
2548 case ATH9K_PM_AWAKE:
2549 status = ath9k_hw_set_power_awake(ah, setChip);
2550 break;
2551 case ATH9K_PM_FULL_SLEEP:
2552 ath9k_set_power_sleep(ah, setChip);
2553 ah->chip_fullsleep = true;
2554 break;
2555 case ATH9K_PM_NETWORK_SLEEP:
2556 ath9k_set_power_network_sleep(ah, setChip);
2557 break;
2558 default:
2559 ath_print(common, ATH_DBG_FATAL,
2560 "Unknown power mode %u\n", mode);
2561 return false;
2562 }
2563 ah->power_mode = mode;
2564
2565 return status;
2566 }
2567 EXPORT_SYMBOL(ath9k_hw_setpower);
2568
2569 /*
2570 * Helper for ASPM support.
2571 *
2572 * Disable PLL when in L0s as well as receiver clock when in L1.
2573 * This power saving option must be enabled through the SerDes.
2574 *
2575 * Programming the SerDes must go through the same 288 bit serial shift
2576 * register as the other analog registers. Hence the 9 writes.
2577 */
2578 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2579 {
2580 u8 i;
2581 u32 val;
2582
2583 if (ah->is_pciexpress != true)
2584 return;
2585
2586 /* Do not touch SerDes registers */
2587 if (ah->config.pcie_powersave_enable == 2)
2588 return;
2589
2590 /* Nothing to do on restore for 11N */
2591 if (!restore) {
2592 if (AR_SREV_9280_20_OR_LATER(ah)) {
2593 /*
2594 * AR9280 2.0 or later chips use SerDes values from the
2595 * initvals.h initialized depending on chipset during
2596 * ath9k_hw_init()
2597 */
2598 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2599 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2600 INI_RA(&ah->iniPcieSerdes, i, 1));
2601 }
2602 } else if (AR_SREV_9280(ah) &&
2603 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2604 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2605 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2606
2607 /* RX shut off when elecidle is asserted */
2608 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2609 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2610 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2611
2612 /* Shut off CLKREQ active in L1 */
2613 if (ah->config.pcie_clock_req)
2614 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2615 else
2616 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2617
2618 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2619 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2620 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2621
2622 /* Load the new settings */
2623 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2624
2625 } else {
2626 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2627 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2628
2629 /* RX shut off when elecidle is asserted */
2630 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2631 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2632 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2633
2634 /*
2635 * Ignore ah->ah_config.pcie_clock_req setting for
2636 * pre-AR9280 11n
2637 */
2638 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2639
2640 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2641 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2642 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2643
2644 /* Load the new settings */
2645 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2646 }
2647
2648 udelay(1000);
2649
2650 /* set bit 19 to allow forcing of pcie core into L1 state */
2651 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2652
2653 /* Several PCIe massages to ensure proper behaviour */
2654 if (ah->config.pcie_waen) {
2655 val = ah->config.pcie_waen;
2656 if (!power_off)
2657 val &= (~AR_WA_D3_L1_DISABLE);
2658 } else {
2659 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2660 AR_SREV_9287(ah)) {
2661 val = AR9285_WA_DEFAULT;
2662 if (!power_off)
2663 val &= (~AR_WA_D3_L1_DISABLE);
2664 } else if (AR_SREV_9280(ah)) {
2665 /*
2666 * On AR9280 chips bit 22 of 0x4004 needs to be
2667 * set otherwise card may disappear.
2668 */
2669 val = AR9280_WA_DEFAULT;
2670 if (!power_off)
2671 val &= (~AR_WA_D3_L1_DISABLE);
2672 } else
2673 val = AR_WA_DEFAULT;
2674 }
2675
2676 REG_WRITE(ah, AR_WA, val);
2677 }
2678
2679 if (power_off) {
2680 /*
2681 * Set PCIe workaround bits
2682 * bit 14 in WA register (disable L1) should only
2683 * be set when device enters D3 and be cleared
2684 * when device comes back to D0.
2685 */
2686 if (ah->config.pcie_waen) {
2687 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2688 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2689 } else {
2690 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2691 AR_SREV_9287(ah)) &&
2692 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2693 (AR_SREV_9280(ah) &&
2694 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2695 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2696 }
2697 }
2698 }
2699 }
2700 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2701
2702 /**********************/
2703 /* Interrupt Handling */
2704 /**********************/
2705
2706 bool ath9k_hw_intrpend(struct ath_hw *ah)
2707 {
2708 u32 host_isr;
2709
2710 if (AR_SREV_9100(ah))
2711 return true;
2712
2713 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2714 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2715 return true;
2716
2717 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2718 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2719 && (host_isr != AR_INTR_SPURIOUS))
2720 return true;
2721
2722 return false;
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_intrpend);
2725
2726 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2727 {
2728 u32 isr = 0;
2729 u32 mask2 = 0;
2730 struct ath9k_hw_capabilities *pCap = &ah->caps;
2731 u32 sync_cause = 0;
2732 bool fatal_int = false;
2733 struct ath_common *common = ath9k_hw_common(ah);
2734
2735 if (!AR_SREV_9100(ah)) {
2736 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2737 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2738 == AR_RTC_STATUS_ON) {
2739 isr = REG_READ(ah, AR_ISR);
2740 }
2741 }
2742
2743 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2744 AR_INTR_SYNC_DEFAULT;
2745
2746 *masked = 0;
2747
2748 if (!isr && !sync_cause)
2749 return false;
2750 } else {
2751 *masked = 0;
2752 isr = REG_READ(ah, AR_ISR);
2753 }
2754
2755 if (isr) {
2756 if (isr & AR_ISR_BCNMISC) {
2757 u32 isr2;
2758 isr2 = REG_READ(ah, AR_ISR_S2);
2759 if (isr2 & AR_ISR_S2_TIM)
2760 mask2 |= ATH9K_INT_TIM;
2761 if (isr2 & AR_ISR_S2_DTIM)
2762 mask2 |= ATH9K_INT_DTIM;
2763 if (isr2 & AR_ISR_S2_DTIMSYNC)
2764 mask2 |= ATH9K_INT_DTIMSYNC;
2765 if (isr2 & (AR_ISR_S2_CABEND))
2766 mask2 |= ATH9K_INT_CABEND;
2767 if (isr2 & AR_ISR_S2_GTT)
2768 mask2 |= ATH9K_INT_GTT;
2769 if (isr2 & AR_ISR_S2_CST)
2770 mask2 |= ATH9K_INT_CST;
2771 if (isr2 & AR_ISR_S2_TSFOOR)
2772 mask2 |= ATH9K_INT_TSFOOR;
2773 }
2774
2775 isr = REG_READ(ah, AR_ISR_RAC);
2776 if (isr == 0xffffffff) {
2777 *masked = 0;
2778 return false;
2779 }
2780
2781 *masked = isr & ATH9K_INT_COMMON;
2782
2783 if (ah->config.intr_mitigation) {
2784 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2785 *masked |= ATH9K_INT_RX;
2786 }
2787
2788 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2789 *masked |= ATH9K_INT_RX;
2790 if (isr &
2791 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2792 AR_ISR_TXEOL)) {
2793 u32 s0_s, s1_s;
2794
2795 *masked |= ATH9K_INT_TX;
2796
2797 s0_s = REG_READ(ah, AR_ISR_S0_S);
2798 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2799 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2800
2801 s1_s = REG_READ(ah, AR_ISR_S1_S);
2802 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2803 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2804 }
2805
2806 if (isr & AR_ISR_RXORN) {
2807 ath_print(common, ATH_DBG_INTERRUPT,
2808 "receive FIFO overrun interrupt\n");
2809 }
2810
2811 if (!AR_SREV_9100(ah)) {
2812 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2813 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2814 if (isr5 & AR_ISR_S5_TIM_TIMER)
2815 *masked |= ATH9K_INT_TIM_TIMER;
2816 }
2817 }
2818
2819 *masked |= mask2;
2820 }
2821
2822 if (AR_SREV_9100(ah))
2823 return true;
2824
2825 if (isr & AR_ISR_GENTMR) {
2826 u32 s5_s;
2827
2828 s5_s = REG_READ(ah, AR_ISR_S5_S);
2829 if (isr & AR_ISR_GENTMR) {
2830 ah->intr_gen_timer_trigger =
2831 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2832
2833 ah->intr_gen_timer_thresh =
2834 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2835
2836 if (ah->intr_gen_timer_trigger)
2837 *masked |= ATH9K_INT_GENTIMER;
2838
2839 }
2840 }
2841
2842 if (sync_cause) {
2843 fatal_int =
2844 (sync_cause &
2845 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2846 ? true : false;
2847
2848 if (fatal_int) {
2849 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2850 ath_print(common, ATH_DBG_ANY,
2851 "received PCI FATAL interrupt\n");
2852 }
2853 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2854 ath_print(common, ATH_DBG_ANY,
2855 "received PCI PERR interrupt\n");
2856 }
2857 *masked |= ATH9K_INT_FATAL;
2858 }
2859 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2860 ath_print(common, ATH_DBG_INTERRUPT,
2861 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2862 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2863 REG_WRITE(ah, AR_RC, 0);
2864 *masked |= ATH9K_INT_FATAL;
2865 }
2866 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2867 ath_print(common, ATH_DBG_INTERRUPT,
2868 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2869 }
2870
2871 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2872 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2873 }
2874
2875 return true;
2876 }
2877 EXPORT_SYMBOL(ath9k_hw_getisr);
2878
2879 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2880 {
2881 u32 omask = ah->mask_reg;
2882 u32 mask, mask2;
2883 struct ath9k_hw_capabilities *pCap = &ah->caps;
2884 struct ath_common *common = ath9k_hw_common(ah);
2885
2886 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2887
2888 if (omask & ATH9K_INT_GLOBAL) {
2889 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2890 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2891 (void) REG_READ(ah, AR_IER);
2892 if (!AR_SREV_9100(ah)) {
2893 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2894 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2895
2896 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2897 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2898 }
2899 }
2900
2901 mask = ints & ATH9K_INT_COMMON;
2902 mask2 = 0;
2903
2904 if (ints & ATH9K_INT_TX) {
2905 if (ah->txok_interrupt_mask)
2906 mask |= AR_IMR_TXOK;
2907 if (ah->txdesc_interrupt_mask)
2908 mask |= AR_IMR_TXDESC;
2909 if (ah->txerr_interrupt_mask)
2910 mask |= AR_IMR_TXERR;
2911 if (ah->txeol_interrupt_mask)
2912 mask |= AR_IMR_TXEOL;
2913 }
2914 if (ints & ATH9K_INT_RX) {
2915 mask |= AR_IMR_RXERR;
2916 if (ah->config.intr_mitigation)
2917 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2918 else
2919 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2920 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2921 mask |= AR_IMR_GENTMR;
2922 }
2923
2924 if (ints & (ATH9K_INT_BMISC)) {
2925 mask |= AR_IMR_BCNMISC;
2926 if (ints & ATH9K_INT_TIM)
2927 mask2 |= AR_IMR_S2_TIM;
2928 if (ints & ATH9K_INT_DTIM)
2929 mask2 |= AR_IMR_S2_DTIM;
2930 if (ints & ATH9K_INT_DTIMSYNC)
2931 mask2 |= AR_IMR_S2_DTIMSYNC;
2932 if (ints & ATH9K_INT_CABEND)
2933 mask2 |= AR_IMR_S2_CABEND;
2934 if (ints & ATH9K_INT_TSFOOR)
2935 mask2 |= AR_IMR_S2_TSFOOR;
2936 }
2937
2938 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2939 mask |= AR_IMR_BCNMISC;
2940 if (ints & ATH9K_INT_GTT)
2941 mask2 |= AR_IMR_S2_GTT;
2942 if (ints & ATH9K_INT_CST)
2943 mask2 |= AR_IMR_S2_CST;
2944 }
2945
2946 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2947 REG_WRITE(ah, AR_IMR, mask);
2948 mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2949 AR_IMR_S2_DTIM |
2950 AR_IMR_S2_DTIMSYNC |
2951 AR_IMR_S2_CABEND |
2952 AR_IMR_S2_CABTO |
2953 AR_IMR_S2_TSFOOR |
2954 AR_IMR_S2_GTT | AR_IMR_S2_CST);
2955 REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2956 ah->mask_reg = ints;
2957
2958 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2959 if (ints & ATH9K_INT_TIM_TIMER)
2960 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2961 else
2962 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2963 }
2964
2965 if (ints & ATH9K_INT_GLOBAL) {
2966 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2967 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2968 if (!AR_SREV_9100(ah)) {
2969 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2970 AR_INTR_MAC_IRQ);
2971 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2972
2973
2974 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2975 AR_INTR_SYNC_DEFAULT);
2976 REG_WRITE(ah, AR_INTR_SYNC_MASK,
2977 AR_INTR_SYNC_DEFAULT);
2978 }
2979 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2980 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2981 }
2982
2983 return omask;
2984 }
2985 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2986
2987 /*******************/
2988 /* Beacon Handling */
2989 /*******************/
2990
2991 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2992 {
2993 int flags = 0;
2994
2995 ah->beacon_interval = beacon_period;
2996
2997 switch (ah->opmode) {
2998 case NL80211_IFTYPE_STATION:
2999 case NL80211_IFTYPE_MONITOR:
3000 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3001 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3002 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3003 flags |= AR_TBTT_TIMER_EN;
3004 break;
3005 case NL80211_IFTYPE_ADHOC:
3006 case NL80211_IFTYPE_MESH_POINT:
3007 REG_SET_BIT(ah, AR_TXCFG,
3008 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3009 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3010 TU_TO_USEC(next_beacon +
3011 (ah->atim_window ? ah->
3012 atim_window : 1)));
3013 flags |= AR_NDP_TIMER_EN;
3014 case NL80211_IFTYPE_AP:
3015 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3016 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3017 TU_TO_USEC(next_beacon -
3018 ah->config.
3019 dma_beacon_response_time));
3020 REG_WRITE(ah, AR_NEXT_SWBA,
3021 TU_TO_USEC(next_beacon -
3022 ah->config.
3023 sw_beacon_response_time));
3024 flags |=
3025 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3026 break;
3027 default:
3028 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3029 "%s: unsupported opmode: %d\n",
3030 __func__, ah->opmode);
3031 return;
3032 break;
3033 }
3034
3035 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3036 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3037 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3038 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3039
3040 beacon_period &= ~ATH9K_BEACON_ENA;
3041 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3042 ath9k_hw_reset_tsf(ah);
3043 }
3044
3045 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3046 }
3047 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3048
3049 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3050 const struct ath9k_beacon_state *bs)
3051 {
3052 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3053 struct ath9k_hw_capabilities *pCap = &ah->caps;
3054 struct ath_common *common = ath9k_hw_common(ah);
3055
3056 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3057
3058 REG_WRITE(ah, AR_BEACON_PERIOD,
3059 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3060 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3061 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3062
3063 REG_RMW_FIELD(ah, AR_RSSI_THR,
3064 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3065
3066 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3067
3068 if (bs->bs_sleepduration > beaconintval)
3069 beaconintval = bs->bs_sleepduration;
3070
3071 dtimperiod = bs->bs_dtimperiod;
3072 if (bs->bs_sleepduration > dtimperiod)
3073 dtimperiod = bs->bs_sleepduration;
3074
3075 if (beaconintval == dtimperiod)
3076 nextTbtt = bs->bs_nextdtim;
3077 else
3078 nextTbtt = bs->bs_nexttbtt;
3079
3080 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3081 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3082 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3083 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3084
3085 REG_WRITE(ah, AR_NEXT_DTIM,
3086 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3087 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3088
3089 REG_WRITE(ah, AR_SLEEP1,
3090 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3091 | AR_SLEEP1_ASSUME_DTIM);
3092
3093 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3094 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3095 else
3096 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3097
3098 REG_WRITE(ah, AR_SLEEP2,
3099 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3100
3101 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3102 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3103
3104 REG_SET_BIT(ah, AR_TIMER_MODE,
3105 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3106 AR_DTIM_TIMER_EN);
3107
3108 /* TSF Out of Range Threshold */
3109 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3110 }
3111 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3112
3113 /*******************/
3114 /* HW Capabilities */
3115 /*******************/
3116
3117 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3118 {
3119 struct ath9k_hw_capabilities *pCap = &ah->caps;
3120 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3121 struct ath_common *common = ath9k_hw_common(ah);
3122 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3123
3124 u16 capField = 0, eeval;
3125
3126 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3127 regulatory->current_rd = eeval;
3128
3129 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3130 if (AR_SREV_9285_10_OR_LATER(ah))
3131 eeval |= AR9285_RDEXT_DEFAULT;
3132 regulatory->current_rd_ext = eeval;
3133
3134 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3135
3136 if (ah->opmode != NL80211_IFTYPE_AP &&
3137 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3138 if (regulatory->current_rd == 0x64 ||
3139 regulatory->current_rd == 0x65)
3140 regulatory->current_rd += 5;
3141 else if (regulatory->current_rd == 0x41)
3142 regulatory->current_rd = 0x43;
3143 ath_print(common, ATH_DBG_REGULATORY,
3144 "regdomain mapped to 0x%x\n", regulatory->current_rd);
3145 }
3146
3147 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3148 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3149 ath_print(common, ATH_DBG_FATAL,
3150 "no band has been marked as supported in EEPROM.\n");
3151 return -EINVAL;
3152 }
3153
3154 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3155
3156 if (eeval & AR5416_OPFLAGS_11A) {
3157 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3158 if (ah->config.ht_enable) {
3159 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3160 set_bit(ATH9K_MODE_11NA_HT20,
3161 pCap->wireless_modes);
3162 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3163 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3164 pCap->wireless_modes);
3165 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3166 pCap->wireless_modes);
3167 }
3168 }
3169 }
3170
3171 if (eeval & AR5416_OPFLAGS_11G) {
3172 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3173 if (ah->config.ht_enable) {
3174 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3175 set_bit(ATH9K_MODE_11NG_HT20,
3176 pCap->wireless_modes);
3177 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3178 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3179 pCap->wireless_modes);
3180 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3181 pCap->wireless_modes);
3182 }
3183 }
3184 }
3185
3186 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3187 /*
3188 * For AR9271 we will temporarilly uses the rx chainmax as read from
3189 * the EEPROM.
3190 */
3191 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3192 !(eeval & AR5416_OPFLAGS_11A) &&
3193 !(AR_SREV_9271(ah)))
3194 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3195 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3196 else
3197 /* Use rx_chainmask from EEPROM. */
3198 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3199
3200 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3201 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3202
3203 pCap->low_2ghz_chan = 2312;
3204 pCap->high_2ghz_chan = 2732;
3205
3206 pCap->low_5ghz_chan = 4920;
3207 pCap->high_5ghz_chan = 6100;
3208
3209 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3210 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3211 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3212
3213 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3214 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3215 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3216
3217 if (ah->config.ht_enable)
3218 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3219 else
3220 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3221
3222 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3223 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3224 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3225 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3226
3227 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3228 pCap->total_queues =
3229 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3230 else
3231 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3232
3233 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3234 pCap->keycache_size =
3235 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3236 else
3237 pCap->keycache_size = AR_KEYTABLE_SIZE;
3238
3239 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3240
3241 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3242 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3243 else
3244 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3245
3246 if (AR_SREV_9285_10_OR_LATER(ah))
3247 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3248 else if (AR_SREV_9280_10_OR_LATER(ah))
3249 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3250 else
3251 pCap->num_gpio_pins = AR_NUM_GPIO;
3252
3253 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3254 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3255 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3256 } else {
3257 pCap->rts_aggr_limit = (8 * 1024);
3258 }
3259
3260 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3261
3262 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3263 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3264 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3265 ah->rfkill_gpio =
3266 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3267 ah->rfkill_polarity =
3268 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3269
3270 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3271 }
3272 #endif
3273
3274 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3275
3276 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3277 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3278 else
3279 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3280
3281 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3282 pCap->reg_cap =
3283 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3284 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3285 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3286 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3287 } else {
3288 pCap->reg_cap =
3289 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3290 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3291 }
3292
3293 /* Advertise midband for AR5416 with FCC midband set in eeprom */
3294 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3295 AR_SREV_5416(ah))
3296 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3297
3298 pCap->num_antcfg_5ghz =
3299 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3300 pCap->num_antcfg_2ghz =
3301 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3302
3303 if (AR_SREV_9280_10_OR_LATER(ah) &&
3304 ath9k_hw_btcoex_supported(ah)) {
3305 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3306 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3307
3308 if (AR_SREV_9285(ah)) {
3309 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3310 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3311 } else {
3312 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3313 }
3314 } else {
3315 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3316 }
3317
3318 return 0;
3319 }
3320
3321 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3322 u32 capability, u32 *result)
3323 {
3324 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3325 switch (type) {
3326 case ATH9K_CAP_CIPHER:
3327 switch (capability) {
3328 case ATH9K_CIPHER_AES_CCM:
3329 case ATH9K_CIPHER_AES_OCB:
3330 case ATH9K_CIPHER_TKIP:
3331 case ATH9K_CIPHER_WEP:
3332 case ATH9K_CIPHER_MIC:
3333 case ATH9K_CIPHER_CLR:
3334 return true;
3335 default:
3336 return false;
3337 }
3338 case ATH9K_CAP_TKIP_MIC:
3339 switch (capability) {
3340 case 0:
3341 return true;
3342 case 1:
3343 return (ah->sta_id1_defaults &
3344 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3345 false;
3346 }
3347 case ATH9K_CAP_TKIP_SPLIT:
3348 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3349 false : true;
3350 case ATH9K_CAP_DIVERSITY:
3351 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3352 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3353 true : false;
3354 case ATH9K_CAP_MCAST_KEYSRCH:
3355 switch (capability) {
3356 case 0:
3357 return true;
3358 case 1:
3359 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3360 return false;
3361 } else {
3362 return (ah->sta_id1_defaults &
3363 AR_STA_ID1_MCAST_KSRCH) ? true :
3364 false;
3365 }
3366 }
3367 return false;
3368 case ATH9K_CAP_TXPOW:
3369 switch (capability) {
3370 case 0:
3371 return 0;
3372 case 1:
3373 *result = regulatory->power_limit;
3374 return 0;
3375 case 2:
3376 *result = regulatory->max_power_level;
3377 return 0;
3378 case 3:
3379 *result = regulatory->tp_scale;
3380 return 0;
3381 }
3382 return false;
3383 case ATH9K_CAP_DS:
3384 return (AR_SREV_9280_20_OR_LATER(ah) &&
3385 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3386 ? false : true;
3387 default:
3388 return false;
3389 }
3390 }
3391 EXPORT_SYMBOL(ath9k_hw_getcapability);
3392
3393 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3394 u32 capability, u32 setting, int *status)
3395 {
3396 u32 v;
3397
3398 switch (type) {
3399 case ATH9K_CAP_TKIP_MIC:
3400 if (setting)
3401 ah->sta_id1_defaults |=
3402 AR_STA_ID1_CRPT_MIC_ENABLE;
3403 else
3404 ah->sta_id1_defaults &=
3405 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3406 return true;
3407 case ATH9K_CAP_DIVERSITY:
3408 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3409 if (setting)
3410 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3411 else
3412 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3413 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3414 return true;
3415 case ATH9K_CAP_MCAST_KEYSRCH:
3416 if (setting)
3417 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3418 else
3419 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3420 return true;
3421 default:
3422 return false;
3423 }
3424 }
3425 EXPORT_SYMBOL(ath9k_hw_setcapability);
3426
3427 /****************************/
3428 /* GPIO / RFKILL / Antennae */
3429 /****************************/
3430
3431 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3432 u32 gpio, u32 type)
3433 {
3434 int addr;
3435 u32 gpio_shift, tmp;
3436
3437 if (gpio > 11)
3438 addr = AR_GPIO_OUTPUT_MUX3;
3439 else if (gpio > 5)
3440 addr = AR_GPIO_OUTPUT_MUX2;
3441 else
3442 addr = AR_GPIO_OUTPUT_MUX1;
3443
3444 gpio_shift = (gpio % 6) * 5;
3445
3446 if (AR_SREV_9280_20_OR_LATER(ah)
3447 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3448 REG_RMW(ah, addr, (type << gpio_shift),
3449 (0x1f << gpio_shift));
3450 } else {
3451 tmp = REG_READ(ah, addr);
3452 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3453 tmp &= ~(0x1f << gpio_shift);
3454 tmp |= (type << gpio_shift);
3455 REG_WRITE(ah, addr, tmp);
3456 }
3457 }
3458
3459 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3460 {
3461 u32 gpio_shift;
3462
3463 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3464
3465 gpio_shift = gpio << 1;
3466
3467 REG_RMW(ah,
3468 AR_GPIO_OE_OUT,
3469 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3470 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3471 }
3472 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3473
3474 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3475 {
3476 #define MS_REG_READ(x, y) \
3477 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3478
3479 if (gpio >= ah->caps.num_gpio_pins)
3480 return 0xffffffff;
3481
3482 if (AR_SREV_9287_10_OR_LATER(ah))
3483 return MS_REG_READ(AR9287, gpio) != 0;
3484 else if (AR_SREV_9285_10_OR_LATER(ah))
3485 return MS_REG_READ(AR9285, gpio) != 0;
3486 else if (AR_SREV_9280_10_OR_LATER(ah))
3487 return MS_REG_READ(AR928X, gpio) != 0;
3488 else
3489 return MS_REG_READ(AR, gpio) != 0;
3490 }
3491 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3492
3493 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3494 u32 ah_signal_type)
3495 {
3496 u32 gpio_shift;
3497
3498 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3499
3500 gpio_shift = 2 * gpio;
3501
3502 REG_RMW(ah,
3503 AR_GPIO_OE_OUT,
3504 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3505 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3506 }
3507 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3508
3509 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3510 {
3511 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3512 AR_GPIO_BIT(gpio));
3513 }
3514 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3515
3516 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3517 {
3518 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3519 }
3520 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3521
3522 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3523 {
3524 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3525 }
3526 EXPORT_SYMBOL(ath9k_hw_setantenna);
3527
3528 /*********************/
3529 /* General Operation */
3530 /*********************/
3531
3532 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3533 {
3534 u32 bits = REG_READ(ah, AR_RX_FILTER);
3535 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3536
3537 if (phybits & AR_PHY_ERR_RADAR)
3538 bits |= ATH9K_RX_FILTER_PHYRADAR;
3539 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3540 bits |= ATH9K_RX_FILTER_PHYERR;
3541
3542 return bits;
3543 }
3544 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3545
3546 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3547 {
3548 u32 phybits;
3549
3550 REG_WRITE(ah, AR_RX_FILTER, bits);
3551
3552 phybits = 0;
3553 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3554 phybits |= AR_PHY_ERR_RADAR;
3555 if (bits & ATH9K_RX_FILTER_PHYERR)
3556 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3557 REG_WRITE(ah, AR_PHY_ERR, phybits);
3558
3559 if (phybits)
3560 REG_WRITE(ah, AR_RXCFG,
3561 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3562 else
3563 REG_WRITE(ah, AR_RXCFG,
3564 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3565 }
3566 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3567
3568 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3569 {
3570 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3571 return false;
3572
3573 ath9k_hw_init_pll(ah, NULL);
3574 return true;
3575 }
3576 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3577
3578 bool ath9k_hw_disable(struct ath_hw *ah)
3579 {
3580 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3581 return false;
3582
3583 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3584 return false;
3585
3586 ath9k_hw_init_pll(ah, NULL);
3587 return true;
3588 }
3589 EXPORT_SYMBOL(ath9k_hw_disable);
3590
3591 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3592 {
3593 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3594 struct ath9k_channel *chan = ah->curchan;
3595 struct ieee80211_channel *channel = chan->chan;
3596
3597 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3598
3599 ah->eep_ops->set_txpower(ah, chan,
3600 ath9k_regd_get_ctl(regulatory, chan),
3601 channel->max_antenna_gain * 2,
3602 channel->max_power * 2,
3603 min((u32) MAX_RATE_POWER,
3604 (u32) regulatory->power_limit));
3605 }
3606 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3607
3608 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3609 {
3610 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3611 }
3612 EXPORT_SYMBOL(ath9k_hw_setmac);
3613
3614 void ath9k_hw_setopmode(struct ath_hw *ah)
3615 {
3616 ath9k_hw_set_operating_mode(ah, ah->opmode);
3617 }
3618 EXPORT_SYMBOL(ath9k_hw_setopmode);
3619
3620 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3621 {
3622 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3623 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3624 }
3625 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3626
3627 void ath9k_hw_write_associd(struct ath_hw *ah)
3628 {
3629 struct ath_common *common = ath9k_hw_common(ah);
3630
3631 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3632 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3633 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3634 }
3635 EXPORT_SYMBOL(ath9k_hw_write_associd);
3636
3637 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3638 {
3639 u64 tsf;
3640
3641 tsf = REG_READ(ah, AR_TSF_U32);
3642 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3643
3644 return tsf;
3645 }
3646 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3647
3648 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3649 {
3650 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3651 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3652 }
3653 EXPORT_SYMBOL(ath9k_hw_settsf64);
3654
3655 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3656 {
3657 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3658 AH_TSF_WRITE_TIMEOUT))
3659 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3660 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3661
3662 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3663 }
3664 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3665
3666 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3667 {
3668 if (setting)
3669 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3670 else
3671 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3672 }
3673 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3674
3675 /*
3676 * Extend 15-bit time stamp from rx descriptor to
3677 * a full 64-bit TSF using the current h/w TSF.
3678 */
3679 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3680 {
3681 u64 tsf;
3682
3683 tsf = ath9k_hw_gettsf64(ah);
3684 if ((tsf & 0x7fff) < rstamp)
3685 tsf -= 0x8000;
3686 return (tsf & ~0x7fff) | rstamp;
3687 }
3688 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3689
3690 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3691 {
3692 if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3693 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3694 "bad slot time %u\n", us);
3695 ah->slottime = (u32) -1;
3696 return false;
3697 } else {
3698 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3699 ah->slottime = us;
3700 return true;
3701 }
3702 }
3703 EXPORT_SYMBOL(ath9k_hw_setslottime);
3704
3705 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3706 {
3707 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3708 u32 macmode;
3709
3710 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3711 macmode = AR_2040_JOINED_RX_CLEAR;
3712 else
3713 macmode = 0;
3714
3715 REG_WRITE(ah, AR_2040_MODE, macmode);
3716 }
3717
3718 /* HW Generic timers configuration */
3719
3720 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3721 {
3722 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3723 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3724 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3725 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3726 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3727 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3728 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3729 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3730 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3731 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3732 AR_NDP2_TIMER_MODE, 0x0002},
3733 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3734 AR_NDP2_TIMER_MODE, 0x0004},
3735 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3736 AR_NDP2_TIMER_MODE, 0x0008},
3737 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3738 AR_NDP2_TIMER_MODE, 0x0010},
3739 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3740 AR_NDP2_TIMER_MODE, 0x0020},
3741 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3742 AR_NDP2_TIMER_MODE, 0x0040},
3743 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3744 AR_NDP2_TIMER_MODE, 0x0080}
3745 };
3746
3747 /* HW generic timer primitives */
3748
3749 /* compute and clear index of rightmost 1 */
3750 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3751 {
3752 u32 b;
3753
3754 b = *mask;
3755 b &= (0-b);
3756 *mask &= ~b;
3757 b *= debruijn32;
3758 b >>= 27;
3759
3760 return timer_table->gen_timer_index[b];
3761 }
3762
3763 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3764 {
3765 return REG_READ(ah, AR_TSF_L32);
3766 }
3767 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3768
3769 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3770 void (*trigger)(void *),
3771 void (*overflow)(void *),
3772 void *arg,
3773 u8 timer_index)
3774 {
3775 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3776 struct ath_gen_timer *timer;
3777
3778 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3779
3780 if (timer == NULL) {
3781 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3782 "Failed to allocate memory"
3783 "for hw timer[%d]\n", timer_index);
3784 return NULL;
3785 }
3786
3787 /* allocate a hardware generic timer slot */
3788 timer_table->timers[timer_index] = timer;
3789 timer->index = timer_index;
3790 timer->trigger = trigger;
3791 timer->overflow = overflow;
3792 timer->arg = arg;
3793
3794 return timer;
3795 }
3796 EXPORT_SYMBOL(ath_gen_timer_alloc);
3797
3798 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3799 struct ath_gen_timer *timer,
3800 u32 timer_next,
3801 u32 timer_period)
3802 {
3803 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3804 u32 tsf;
3805
3806 BUG_ON(!timer_period);
3807
3808 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3809
3810 tsf = ath9k_hw_gettsf32(ah);
3811
3812 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3813 "curent tsf %x period %x"
3814 "timer_next %x\n", tsf, timer_period, timer_next);
3815
3816 /*
3817 * Pull timer_next forward if the current TSF already passed it
3818 * because of software latency
3819 */
3820 if (timer_next < tsf)
3821 timer_next = tsf + timer_period;
3822
3823 /*
3824 * Program generic timer registers
3825 */
3826 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3827 timer_next);
3828 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3829 timer_period);
3830 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3831 gen_tmr_configuration[timer->index].mode_mask);
3832
3833 /* Enable both trigger and thresh interrupt masks */
3834 REG_SET_BIT(ah, AR_IMR_S5,
3835 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3836 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3837 }
3838 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3839
3840 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3841 {
3842 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3843
3844 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3845 (timer->index >= ATH_MAX_GEN_TIMER)) {
3846 return;
3847 }
3848
3849 /* Clear generic timer enable bits. */
3850 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3851 gen_tmr_configuration[timer->index].mode_mask);
3852
3853 /* Disable both trigger and thresh interrupt masks */
3854 REG_CLR_BIT(ah, AR_IMR_S5,
3855 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3856 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3857
3858 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3859 }
3860 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3861
3862 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3863 {
3864 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3865
3866 /* free the hardware generic timer slot */
3867 timer_table->timers[timer->index] = NULL;
3868 kfree(timer);
3869 }
3870 EXPORT_SYMBOL(ath_gen_timer_free);
3871
3872 /*
3873 * Generic Timer Interrupts handling
3874 */
3875 void ath_gen_timer_isr(struct ath_hw *ah)
3876 {
3877 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3878 struct ath_gen_timer *timer;
3879 struct ath_common *common = ath9k_hw_common(ah);
3880 u32 trigger_mask, thresh_mask, index;
3881
3882 /* get hardware generic timer interrupt status */
3883 trigger_mask = ah->intr_gen_timer_trigger;
3884 thresh_mask = ah->intr_gen_timer_thresh;
3885 trigger_mask &= timer_table->timer_mask.val;
3886 thresh_mask &= timer_table->timer_mask.val;
3887
3888 trigger_mask &= ~thresh_mask;
3889
3890 while (thresh_mask) {
3891 index = rightmost_index(timer_table, &thresh_mask);
3892 timer = timer_table->timers[index];
3893 BUG_ON(!timer);
3894 ath_print(common, ATH_DBG_HWTIMER,
3895 "TSF overflow for Gen timer %d\n", index);
3896 timer->overflow(timer->arg);
3897 }
3898
3899 while (trigger_mask) {
3900 index = rightmost_index(timer_table, &trigger_mask);
3901 timer = timer_table->timers[index];
3902 BUG_ON(!timer);
3903 ath_print(common, ATH_DBG_HWTIMER,
3904 "Gen timer[%d] trigger\n", index);
3905 timer->trigger(timer->arg);
3906 }
3907 }
3908 EXPORT_SYMBOL(ath_gen_timer_isr);
3909
3910 static struct {
3911 u32 version;
3912 const char * name;
3913 } ath_mac_bb_names[] = {
3914 /* Devices with external radios */
3915 { AR_SREV_VERSION_5416_PCI, "5416" },
3916 { AR_SREV_VERSION_5416_PCIE, "5418" },
3917 { AR_SREV_VERSION_9100, "9100" },
3918 { AR_SREV_VERSION_9160, "9160" },
3919 /* Single-chip solutions */
3920 { AR_SREV_VERSION_9280, "9280" },
3921 { AR_SREV_VERSION_9285, "9285" },
3922 { AR_SREV_VERSION_9287, "9287" },
3923 { AR_SREV_VERSION_9271, "9271" },
3924 };
3925
3926 /* For devices with external radios */
3927 static struct {
3928 u16 version;
3929 const char * name;
3930 } ath_rf_names[] = {
3931 { 0, "5133" },
3932 { AR_RAD5133_SREV_MAJOR, "5133" },
3933 { AR_RAD5122_SREV_MAJOR, "5122" },
3934 { AR_RAD2133_SREV_MAJOR, "2133" },
3935 { AR_RAD2122_SREV_MAJOR, "2122" }
3936 };
3937
3938 /*
3939 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3940 */
3941 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3942 {
3943 int i;
3944
3945 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3946 if (ath_mac_bb_names[i].version == mac_bb_version) {
3947 return ath_mac_bb_names[i].name;
3948 }
3949 }
3950
3951 return "????";
3952 }
3953
3954 /*
3955 * Return the RF name. "????" is returned if the RF is unknown.
3956 * Used for devices with external radios.
3957 */
3958 static const char *ath9k_hw_rf_name(u16 rf_version)
3959 {
3960 int i;
3961
3962 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3963 if (ath_rf_names[i].version == rf_version) {
3964 return ath_rf_names[i].name;
3965 }
3966 }
3967
3968 return "????";
3969 }
3970
3971 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3972 {
3973 int used;
3974
3975 /* chipsets >= AR9280 are single-chip */
3976 if (AR_SREV_9280_10_OR_LATER(ah)) {
3977 used = snprintf(hw_name, len,
3978 "Atheros AR%s Rev:%x",
3979 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3980 ah->hw_version.macRev);
3981 }
3982 else {
3983 used = snprintf(hw_name, len,
3984 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3985 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3986 ah->hw_version.macRev,
3987 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3988 AR_RADIO_SREV_MAJOR)),
3989 ah->hw_version.phyRev);
3990 }
3991
3992 hw_name[used] = '\0';
3993 }
3994 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.162905 seconds and 6 git commands to generate.