Merge tag 'renesas-dt-fixes2-for-v3.14' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "rc.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "debug.h"
31 #include "ath9k.h"
32
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 struct ath_common *common = ath9k_hw_common(ah);
43 struct ath9k_channel *chan = ah->curchan;
44 unsigned int clockrate;
45
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 clockrate = 117;
49 else if (!chan) /* should really check for CCK instead */
50 clockrate = ATH9K_CLOCK_RATE_CCK;
51 else if (IS_CHAN_2GHZ(chan))
52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 else
56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57
58 if (chan) {
59 if (IS_CHAN_HT40(chan))
60 clockrate *= 2;
61 if (IS_CHAN_HALF_RATE(chan))
62 clockrate /= 2;
63 if (IS_CHAN_QUARTER_RATE(chan))
64 clockrate /= 4;
65 }
66
67 common->clockrate = clockrate;
68 }
69
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 struct ath_common *common = ath9k_hw_common(ah);
73
74 return usecs * common->clockrate;
75 }
76
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 int i;
80
81 BUG_ON(timeout < AH_TIME_QUANTUM);
82
83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 if ((REG_READ(ah, reg) & mask) == val)
85 return true;
86
87 udelay(AH_TIME_QUANTUM);
88 }
89
90 ath_dbg(ath9k_hw_common(ah), ANY,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout, reg, REG_READ(ah, reg), mask, val);
93
94 return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 int hw_delay)
100 {
101 hw_delay /= 10;
102
103 if (IS_CHAN_HALF_RATE(chan))
104 hw_delay *= 2;
105 else if (IS_CHAN_QUARTER_RATE(chan))
106 hw_delay *= 4;
107
108 udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 int column, unsigned int *writecnt)
113 {
114 int r;
115
116 ENABLE_REGWRITE_BUFFER(ah);
117 for (r = 0; r < array->ia_rows; r++) {
118 REG_WRITE(ah, INI_RA(array, r, 0),
119 INI_RA(array, r, column));
120 DO_DELAY(*writecnt);
121 }
122 REGWRITE_BUFFER_FLUSH(ah);
123 }
124
125 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
126 {
127 u32 retval;
128 int i;
129
130 for (i = 0, retval = 0; i < n; i++) {
131 retval = (retval << 1) | (val & 1);
132 val >>= 1;
133 }
134 return retval;
135 }
136
137 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
138 u8 phy, int kbps,
139 u32 frameLen, u16 rateix,
140 bool shortPreamble)
141 {
142 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
143
144 if (kbps == 0)
145 return 0;
146
147 switch (phy) {
148 case WLAN_RC_PHY_CCK:
149 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
150 if (shortPreamble)
151 phyTime >>= 1;
152 numBits = frameLen << 3;
153 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
154 break;
155 case WLAN_RC_PHY_OFDM:
156 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
157 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
158 numBits = OFDM_PLCP_BITS + (frameLen << 3);
159 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160 txTime = OFDM_SIFS_TIME_QUARTER
161 + OFDM_PREAMBLE_TIME_QUARTER
162 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
163 } else if (ah->curchan &&
164 IS_CHAN_HALF_RATE(ah->curchan)) {
165 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
166 numBits = OFDM_PLCP_BITS + (frameLen << 3);
167 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
168 txTime = OFDM_SIFS_TIME_HALF +
169 OFDM_PREAMBLE_TIME_HALF
170 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
171 } else {
172 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
173 numBits = OFDM_PLCP_BITS + (frameLen << 3);
174 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
175 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
176 + (numSymbols * OFDM_SYMBOL_TIME);
177 }
178 break;
179 default:
180 ath_err(ath9k_hw_common(ah),
181 "Unknown phy %u (rate ix %u)\n", phy, rateix);
182 txTime = 0;
183 break;
184 }
185
186 return txTime;
187 }
188 EXPORT_SYMBOL(ath9k_hw_computetxtime);
189
190 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
191 struct ath9k_channel *chan,
192 struct chan_centers *centers)
193 {
194 int8_t extoff;
195
196 if (!IS_CHAN_HT40(chan)) {
197 centers->ctl_center = centers->ext_center =
198 centers->synth_center = chan->channel;
199 return;
200 }
201
202 if (IS_CHAN_HT40PLUS(chan)) {
203 centers->synth_center =
204 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
205 extoff = 1;
206 } else {
207 centers->synth_center =
208 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
209 extoff = -1;
210 }
211
212 centers->ctl_center =
213 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
214 /* 25 MHz spacing is supported by hw but not on upper layers */
215 centers->ext_center =
216 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
217 }
218
219 /******************/
220 /* Chip Revisions */
221 /******************/
222
223 static void ath9k_hw_read_revisions(struct ath_hw *ah)
224 {
225 u32 val;
226
227 switch (ah->hw_version.devid) {
228 case AR5416_AR9100_DEVID:
229 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
230 break;
231 case AR9300_DEVID_AR9330:
232 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
233 if (ah->get_mac_revision) {
234 ah->hw_version.macRev = ah->get_mac_revision();
235 } else {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 }
239 return;
240 case AR9300_DEVID_AR9340:
241 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 val = REG_READ(ah, AR_SREV);
243 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
244 return;
245 case AR9300_DEVID_QCA955X:
246 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
247 return;
248 case AR9300_DEVID_AR953X:
249 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
250 return;
251 }
252
253 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254
255 if (val == 0xFF) {
256 val = REG_READ(ah, AR_SREV);
257 ah->hw_version.macVersion =
258 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260
261 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 ah->is_pciexpress = true;
263 else
264 ah->is_pciexpress = (val &
265 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 } else {
267 if (!AR_SREV_9100(ah))
268 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269
270 ah->hw_version.macRev = val & AR_SREV_REVISION;
271
272 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 ah->is_pciexpress = true;
274 }
275 }
276
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
280
281 static void ath9k_hw_disablepcie(struct ath_hw *ah)
282 {
283 if (!AR_SREV_5416(ah))
284 return;
285
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295
296 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297 }
298
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302 struct ath_common *common = ath9k_hw_common(ah);
303 u32 regAddr[2] = { AR_STA_ID0 };
304 u32 regHold[2];
305 static const u32 patternData[4] = {
306 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 };
308 int i, j, loop_max;
309
310 if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 loop_max = 2;
312 regAddr[1] = AR_PHY_BASE + (8 << 2);
313 } else
314 loop_max = 1;
315
316 for (i = 0; i < loop_max; i++) {
317 u32 addr = regAddr[i];
318 u32 wrData, rdData;
319
320 regHold[i] = REG_READ(ah, addr);
321 for (j = 0; j < 0x100; j++) {
322 wrData = (j << 16) | j;
323 REG_WRITE(ah, addr, wrData);
324 rdData = REG_READ(ah, addr);
325 if (rdData != wrData) {
326 ath_err(common,
327 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 addr, wrData, rdData);
329 return false;
330 }
331 }
332 for (j = 0; j < 4; j++) {
333 wrData = patternData[j];
334 REG_WRITE(ah, addr, wrData);
335 rdData = REG_READ(ah, addr);
336 if (wrData != rdData) {
337 ath_err(common,
338 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 addr, wrData, rdData);
340 return false;
341 }
342 }
343 REG_WRITE(ah, regAddr[i], regHold[i]);
344 }
345 udelay(100);
346
347 return true;
348 }
349
350 static void ath9k_hw_init_config(struct ath_hw *ah)
351 {
352 struct ath_common *common = ath9k_hw_common(ah);
353
354 ah->config.dma_beacon_response_time = 1;
355 ah->config.sw_beacon_response_time = 6;
356 ah->config.cwm_ignore_extcca = 0;
357 ah->config.analog_shiftreg = 1;
358
359 ah->config.rx_intr_mitigation = true;
360
361 if (AR_SREV_9300_20_OR_LATER(ah)) {
362 ah->config.rimt_last = 500;
363 ah->config.rimt_first = 2000;
364 } else {
365 ah->config.rimt_last = 250;
366 ah->config.rimt_first = 700;
367 }
368
369 /*
370 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 * This means we use it for all AR5416 devices, and the few
373 * minor PCI AR9280 devices out there.
374 *
375 * Serialization is required because these devices do not handle
376 * well the case of two concurrent reads/writes due to the latency
377 * involved. During one read/write another read/write can be issued
378 * on another CPU while the previous read/write may still be working
379 * on our hardware, if we hit this case the hardware poops in a loop.
380 * We prevent this by serializing reads and writes.
381 *
382 * This issue is not present on PCI-Express devices or pre-AR5416
383 * devices (legacy, 802.11abg).
384 */
385 if (num_possible_cpus() > 1)
386 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387
388 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 !ah->is_pciexpress)) {
392 ah->config.serialize_regmode = SER_REG_MODE_ON;
393 } else {
394 ah->config.serialize_regmode = SER_REG_MODE_OFF;
395 }
396 }
397
398 ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 ah->config.serialize_regmode);
400
401 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 else
404 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405 }
406
407 static void ath9k_hw_init_defaults(struct ath_hw *ah)
408 {
409 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410
411 regulatory->country_code = CTRY_DEFAULT;
412 regulatory->power_limit = MAX_RATE_POWER;
413
414 ah->hw_version.magic = AR5416_MAGIC;
415 ah->hw_version.subvendorid = 0;
416
417 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 AR_STA_ID1_MCAST_KSRCH;
419 if (AR_SREV_9100(ah))
420 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421
422 ah->slottime = ATH9K_SLOT_TIME_9;
423 ah->globaltxtimeout = (u32) -1;
424 ah->power_mode = ATH9K_PM_UNDEFINED;
425 ah->htc_reset_init = true;
426
427 ah->ani_function = ATH9K_ANI_ALL;
428 if (!AR_SREV_9300_20_OR_LATER(ah))
429 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
430
431 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
432 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
433 else
434 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
435 }
436
437 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438 {
439 struct ath_common *common = ath9k_hw_common(ah);
440 u32 sum;
441 int i;
442 u16 eeval;
443 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444
445 sum = 0;
446 for (i = 0; i < 3; i++) {
447 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448 sum += eeval;
449 common->macaddr[2 * i] = eeval >> 8;
450 common->macaddr[2 * i + 1] = eeval & 0xff;
451 }
452 if (sum == 0 || sum == 0xffff * 3)
453 return -EADDRNOTAVAIL;
454
455 return 0;
456 }
457
458 static int ath9k_hw_post_init(struct ath_hw *ah)
459 {
460 struct ath_common *common = ath9k_hw_common(ah);
461 int ecode;
462
463 if (common->bus_ops->ath_bus_type != ATH_USB) {
464 if (!ath9k_hw_chip_test(ah))
465 return -ENODEV;
466 }
467
468 if (!AR_SREV_9300_20_OR_LATER(ah)) {
469 ecode = ar9002_hw_rf_claim(ah);
470 if (ecode != 0)
471 return ecode;
472 }
473
474 ecode = ath9k_hw_eeprom_init(ah);
475 if (ecode != 0)
476 return ecode;
477
478 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
479 ah->eep_ops->get_eeprom_ver(ah),
480 ah->eep_ops->get_eeprom_rev(ah));
481
482 ath9k_hw_ani_init(ah);
483
484 /*
485 * EEPROM needs to be initialized before we do this.
486 * This is required for regulatory compliance.
487 */
488 if (AR_SREV_9300_20_OR_LATER(ah)) {
489 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
490 if ((regdmn & 0xF0) == CTL_FCC) {
491 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
492 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
493 }
494 }
495
496 return 0;
497 }
498
499 static int ath9k_hw_attach_ops(struct ath_hw *ah)
500 {
501 if (!AR_SREV_9300_20_OR_LATER(ah))
502 return ar9002_hw_attach_ops(ah);
503
504 ar9003_hw_attach_ops(ah);
505 return 0;
506 }
507
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511 struct ath_common *common = ath9k_hw_common(ah);
512 int r = 0;
513
514 ath9k_hw_read_revisions(ah);
515
516 switch (ah->hw_version.macVersion) {
517 case AR_SREV_VERSION_5416_PCI:
518 case AR_SREV_VERSION_5416_PCIE:
519 case AR_SREV_VERSION_9160:
520 case AR_SREV_VERSION_9100:
521 case AR_SREV_VERSION_9280:
522 case AR_SREV_VERSION_9285:
523 case AR_SREV_VERSION_9287:
524 case AR_SREV_VERSION_9271:
525 case AR_SREV_VERSION_9300:
526 case AR_SREV_VERSION_9330:
527 case AR_SREV_VERSION_9485:
528 case AR_SREV_VERSION_9340:
529 case AR_SREV_VERSION_9462:
530 case AR_SREV_VERSION_9550:
531 case AR_SREV_VERSION_9565:
532 case AR_SREV_VERSION_9531:
533 break;
534 default:
535 ath_err(common,
536 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537 ah->hw_version.macVersion, ah->hw_version.macRev);
538 return -EOPNOTSUPP;
539 }
540
541 /*
542 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543 * We need to do this to avoid RMW of this register. We cannot
544 * read the reg when chip is asleep.
545 */
546 if (AR_SREV_9300_20_OR_LATER(ah)) {
547 ah->WARegVal = REG_READ(ah, AR_WA);
548 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
549 AR_WA_ASPM_TIMER_BASED_DISABLE);
550 }
551
552 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
553 ath_err(common, "Couldn't reset chip\n");
554 return -EIO;
555 }
556
557 if (AR_SREV_9565(ah)) {
558 ah->WARegVal |= AR_WA_BIT22;
559 REG_WRITE(ah, AR_WA, ah->WARegVal);
560 }
561
562 ath9k_hw_init_defaults(ah);
563 ath9k_hw_init_config(ah);
564
565 r = ath9k_hw_attach_ops(ah);
566 if (r)
567 return r;
568
569 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
570 ath_err(common, "Couldn't wakeup chip\n");
571 return -EIO;
572 }
573
574 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
575 AR_SREV_9330(ah) || AR_SREV_9550(ah))
576 ah->is_pciexpress = false;
577
578 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
579 ath9k_hw_init_cal_settings(ah);
580
581 if (!ah->is_pciexpress)
582 ath9k_hw_disablepcie(ah);
583
584 r = ath9k_hw_post_init(ah);
585 if (r)
586 return r;
587
588 ath9k_hw_init_mode_gain_regs(ah);
589 r = ath9k_hw_fill_cap_info(ah);
590 if (r)
591 return r;
592
593 r = ath9k_hw_init_macaddr(ah);
594 if (r) {
595 ath_err(common, "Failed to initialize MAC address\n");
596 return r;
597 }
598
599 ath9k_hw_init_hang_checks(ah);
600
601 common->state = ATH_HW_INITIALIZED;
602
603 return 0;
604 }
605
606 int ath9k_hw_init(struct ath_hw *ah)
607 {
608 int ret;
609 struct ath_common *common = ath9k_hw_common(ah);
610
611 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612 switch (ah->hw_version.devid) {
613 case AR5416_DEVID_PCI:
614 case AR5416_DEVID_PCIE:
615 case AR5416_AR9100_DEVID:
616 case AR9160_DEVID_PCI:
617 case AR9280_DEVID_PCI:
618 case AR9280_DEVID_PCIE:
619 case AR9285_DEVID_PCIE:
620 case AR9287_DEVID_PCI:
621 case AR9287_DEVID_PCIE:
622 case AR2427_DEVID_PCIE:
623 case AR9300_DEVID_PCIE:
624 case AR9300_DEVID_AR9485_PCIE:
625 case AR9300_DEVID_AR9330:
626 case AR9300_DEVID_AR9340:
627 case AR9300_DEVID_QCA955X:
628 case AR9300_DEVID_AR9580:
629 case AR9300_DEVID_AR9462:
630 case AR9485_DEVID_AR1111:
631 case AR9300_DEVID_AR9565:
632 case AR9300_DEVID_AR953X:
633 break;
634 default:
635 if (common->bus_ops->ath_bus_type == ATH_USB)
636 break;
637 ath_err(common, "Hardware device ID 0x%04x not supported\n",
638 ah->hw_version.devid);
639 return -EOPNOTSUPP;
640 }
641
642 ret = __ath9k_hw_init(ah);
643 if (ret) {
644 ath_err(common,
645 "Unable to initialize hardware; initialization status: %d\n",
646 ret);
647 return ret;
648 }
649
650 return 0;
651 }
652 EXPORT_SYMBOL(ath9k_hw_init);
653
654 static void ath9k_hw_init_qos(struct ath_hw *ah)
655 {
656 ENABLE_REGWRITE_BUFFER(ah);
657
658 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
659 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
660
661 REG_WRITE(ah, AR_QOS_NO_ACK,
662 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
663 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
664 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
665
666 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
667 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
668 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
669 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
670 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
671
672 REGWRITE_BUFFER_FLUSH(ah);
673 }
674
675 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
676 {
677 struct ath_common *common = ath9k_hw_common(ah);
678 int i = 0;
679
680 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681 udelay(100);
682 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
683
684 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
685
686 udelay(100);
687
688 if (WARN_ON_ONCE(i >= 100)) {
689 ath_err(common, "PLL4 meaurement not done\n");
690 break;
691 }
692
693 i++;
694 }
695
696 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
697 }
698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
699
700 static void ath9k_hw_init_pll(struct ath_hw *ah,
701 struct ath9k_channel *chan)
702 {
703 u32 pll;
704
705 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
706 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
707 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
708 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
709 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
710 AR_CH0_DPLL2_KD, 0x40);
711 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712 AR_CH0_DPLL2_KI, 0x4);
713
714 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
715 AR_CH0_BB_DPLL1_REFDIV, 0x5);
716 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
717 AR_CH0_BB_DPLL1_NINI, 0x58);
718 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
719 AR_CH0_BB_DPLL1_NFRAC, 0x0);
720
721 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
723 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
725 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
727
728 /* program BB PLL phase_shift to 0x6 */
729 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
730 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
731
732 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
733 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
734 udelay(1000);
735 } else if (AR_SREV_9330(ah)) {
736 u32 ddr_dpll2, pll_control2, kd;
737
738 if (ah->is_clk_25mhz) {
739 ddr_dpll2 = 0x18e82f01;
740 pll_control2 = 0xe04a3d;
741 kd = 0x1d;
742 } else {
743 ddr_dpll2 = 0x19e82f01;
744 pll_control2 = 0x886666;
745 kd = 0x3d;
746 }
747
748 /* program DDR PLL ki and kd value */
749 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
750
751 /* program DDR PLL phase_shift */
752 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
753 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
754
755 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
756 udelay(1000);
757
758 /* program refdiv, nint, frac to RTC register */
759 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
760
761 /* program BB PLL kd and ki value */
762 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
764
765 /* program BB PLL phase_shift */
766 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
767 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
768 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
769 u32 regval, pll2_divint, pll2_divfrac, refdiv;
770
771 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
772 udelay(1000);
773
774 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
775 udelay(100);
776
777 if (ah->is_clk_25mhz) {
778 if (AR_SREV_9531(ah)) {
779 pll2_divint = 0x1c;
780 pll2_divfrac = 0xa3d2;
781 refdiv = 1;
782 } else {
783 pll2_divint = 0x54;
784 pll2_divfrac = 0x1eb85;
785 refdiv = 3;
786 }
787 } else {
788 if (AR_SREV_9340(ah)) {
789 pll2_divint = 88;
790 pll2_divfrac = 0;
791 refdiv = 5;
792 } else {
793 pll2_divint = 0x11;
794 pll2_divfrac = 0x26666;
795 refdiv = 1;
796 }
797 }
798
799 regval = REG_READ(ah, AR_PHY_PLL_MODE);
800 if (AR_SREV_9531(ah))
801 regval |= (0x1 << 22);
802 else
803 regval |= (0x1 << 16);
804 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
805 udelay(100);
806
807 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
808 (pll2_divint << 18) | pll2_divfrac);
809 udelay(100);
810
811 regval = REG_READ(ah, AR_PHY_PLL_MODE);
812 if (AR_SREV_9340(ah))
813 regval = (regval & 0x80071fff) |
814 (0x1 << 30) |
815 (0x1 << 13) |
816 (0x4 << 26) |
817 (0x18 << 19);
818 else if (AR_SREV_9531(ah))
819 regval = (regval & 0x01c00fff) |
820 (0x1 << 31) |
821 (0x2 << 29) |
822 (0xa << 25) |
823 (0x1 << 19) |
824 (0x6 << 12);
825 else
826 regval = (regval & 0x80071fff) |
827 (0x3 << 30) |
828 (0x1 << 13) |
829 (0x4 << 26) |
830 (0x60 << 19);
831 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
832
833 if (AR_SREV_9531(ah))
834 REG_WRITE(ah, AR_PHY_PLL_MODE,
835 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
836 else
837 REG_WRITE(ah, AR_PHY_PLL_MODE,
838 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
839
840 udelay(1000);
841 }
842
843 pll = ath9k_hw_compute_pll_control(ah, chan);
844 if (AR_SREV_9565(ah))
845 pll |= 0x40000;
846 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
847
848 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
849 AR_SREV_9550(ah))
850 udelay(1000);
851
852 /* Switch the core clock for ar9271 to 117Mhz */
853 if (AR_SREV_9271(ah)) {
854 udelay(500);
855 REG_WRITE(ah, 0x50040, 0x304);
856 }
857
858 udelay(RTC_PLL_SETTLE_DELAY);
859
860 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
861
862 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
863 if (ah->is_clk_25mhz) {
864 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
865 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
866 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
867 } else {
868 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
869 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
870 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
871 }
872 udelay(100);
873 }
874 }
875
876 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
877 enum nl80211_iftype opmode)
878 {
879 u32 sync_default = AR_INTR_SYNC_DEFAULT;
880 u32 imr_reg = AR_IMR_TXERR |
881 AR_IMR_TXURN |
882 AR_IMR_RXERR |
883 AR_IMR_RXORN |
884 AR_IMR_BCNMISC;
885
886 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
887 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
888
889 if (AR_SREV_9300_20_OR_LATER(ah)) {
890 imr_reg |= AR_IMR_RXOK_HP;
891 if (ah->config.rx_intr_mitigation)
892 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
893 else
894 imr_reg |= AR_IMR_RXOK_LP;
895
896 } else {
897 if (ah->config.rx_intr_mitigation)
898 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
899 else
900 imr_reg |= AR_IMR_RXOK;
901 }
902
903 if (ah->config.tx_intr_mitigation)
904 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
905 else
906 imr_reg |= AR_IMR_TXOK;
907
908 ENABLE_REGWRITE_BUFFER(ah);
909
910 REG_WRITE(ah, AR_IMR, imr_reg);
911 ah->imrs2_reg |= AR_IMR_S2_GTT;
912 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
913
914 if (!AR_SREV_9100(ah)) {
915 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
916 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
917 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
918 }
919
920 REGWRITE_BUFFER_FLUSH(ah);
921
922 if (AR_SREV_9300_20_OR_LATER(ah)) {
923 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
924 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
925 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
926 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
927 }
928 }
929
930 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
931 {
932 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
933 val = min(val, (u32) 0xFFFF);
934 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
935 }
936
937 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
938 {
939 u32 val = ath9k_hw_mac_to_clks(ah, us);
940 val = min(val, (u32) 0xFFFF);
941 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
942 }
943
944 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
945 {
946 u32 val = ath9k_hw_mac_to_clks(ah, us);
947 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
948 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
949 }
950
951 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
952 {
953 u32 val = ath9k_hw_mac_to_clks(ah, us);
954 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
955 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
956 }
957
958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
959 {
960 if (tu > 0xFFFF) {
961 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
962 tu);
963 ah->globaltxtimeout = (u32) -1;
964 return false;
965 } else {
966 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
967 ah->globaltxtimeout = tu;
968 return true;
969 }
970 }
971
972 void ath9k_hw_init_global_settings(struct ath_hw *ah)
973 {
974 struct ath_common *common = ath9k_hw_common(ah);
975 const struct ath9k_channel *chan = ah->curchan;
976 int acktimeout, ctstimeout, ack_offset = 0;
977 int slottime;
978 int sifstime;
979 int rx_lat = 0, tx_lat = 0, eifs = 0;
980 u32 reg;
981
982 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 ah->misc_mode);
984
985 if (!chan)
986 return;
987
988 if (ah->misc_mode != 0)
989 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990
991 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 rx_lat = 41;
993 else
994 rx_lat = 37;
995 tx_lat = 54;
996
997 if (IS_CHAN_5GHZ(chan))
998 sifstime = 16;
999 else
1000 sifstime = 10;
1001
1002 if (IS_CHAN_HALF_RATE(chan)) {
1003 eifs = 175;
1004 rx_lat *= 2;
1005 tx_lat *= 2;
1006 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 tx_lat += 11;
1008
1009 sifstime = 32;
1010 ack_offset = 16;
1011 slottime = 13;
1012 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1013 eifs = 340;
1014 rx_lat = (rx_lat * 4) - 1;
1015 tx_lat *= 4;
1016 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 tx_lat += 22;
1018
1019 sifstime = 64;
1020 ack_offset = 32;
1021 slottime = 21;
1022 } else {
1023 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1024 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1025 reg = AR_USEC_ASYNC_FIFO;
1026 } else {
1027 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1028 common->clockrate;
1029 reg = REG_READ(ah, AR_USEC);
1030 }
1031 rx_lat = MS(reg, AR_USEC_RX_LAT);
1032 tx_lat = MS(reg, AR_USEC_TX_LAT);
1033
1034 slottime = ah->slottime;
1035 }
1036
1037 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1038 slottime += 3 * ah->coverage_class;
1039 acktimeout = slottime + sifstime + ack_offset;
1040 ctstimeout = acktimeout;
1041
1042 /*
1043 * Workaround for early ACK timeouts, add an offset to match the
1044 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1045 * This was initially only meant to work around an issue with delayed
1046 * BA frames in some implementations, but it has been found to fix ACK
1047 * timeout issues in other cases as well.
1048 */
1049 if (IS_CHAN_2GHZ(chan) &&
1050 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1051 acktimeout += 64 - sifstime - ah->slottime;
1052 ctstimeout += 48 - sifstime - ah->slottime;
1053 }
1054
1055 ath9k_hw_set_sifs_time(ah, sifstime);
1056 ath9k_hw_setslottime(ah, slottime);
1057 ath9k_hw_set_ack_timeout(ah, acktimeout);
1058 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1059 if (ah->globaltxtimeout != (u32) -1)
1060 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1061
1062 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1063 REG_RMW(ah, AR_USEC,
1064 (common->clockrate - 1) |
1065 SM(rx_lat, AR_USEC_RX_LAT) |
1066 SM(tx_lat, AR_USEC_TX_LAT),
1067 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1068
1069 }
1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1071
1072 void ath9k_hw_deinit(struct ath_hw *ah)
1073 {
1074 struct ath_common *common = ath9k_hw_common(ah);
1075
1076 if (common->state < ATH_HW_INITIALIZED)
1077 return;
1078
1079 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1080 }
1081 EXPORT_SYMBOL(ath9k_hw_deinit);
1082
1083 /*******/
1084 /* INI */
1085 /*******/
1086
1087 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1088 {
1089 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1090
1091 if (IS_CHAN_2GHZ(chan))
1092 ctl |= CTL_11G;
1093 else
1094 ctl |= CTL_11A;
1095
1096 return ctl;
1097 }
1098
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1102
1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1104 {
1105 struct ath_common *common = ath9k_hw_common(ah);
1106 int txbuf_size;
1107
1108 ENABLE_REGWRITE_BUFFER(ah);
1109
1110 /*
1111 * set AHB_MODE not to do cacheline prefetches
1112 */
1113 if (!AR_SREV_9300_20_OR_LATER(ah))
1114 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115
1116 /*
1117 * let mac dma reads be in 128 byte chunks
1118 */
1119 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120
1121 REGWRITE_BUFFER_FLUSH(ah);
1122
1123 /*
1124 * Restore TX Trigger Level to its pre-reset value.
1125 * The initial value depends on whether aggregation is enabled, and is
1126 * adjusted whenever underruns are detected.
1127 */
1128 if (!AR_SREV_9300_20_OR_LATER(ah))
1129 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130
1131 ENABLE_REGWRITE_BUFFER(ah);
1132
1133 /*
1134 * let mac dma writes be in 128 byte chunks
1135 */
1136 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137
1138 /*
1139 * Setup receive FIFO threshold to hold off TX activities
1140 */
1141 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142
1143 if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146
1147 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 ah->caps.rx_status_len);
1149 }
1150
1151 /*
1152 * reduce the number of usable entries in PCU TXBUF to avoid
1153 * wrap around issues.
1154 */
1155 if (AR_SREV_9285(ah)) {
1156 /* For AR9285 the number of Fifos are reduced to half.
1157 * So set the usable tx buf size also to half to
1158 * avoid data/delimiter underruns
1159 */
1160 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1161 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1162 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1163 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 } else {
1165 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1166 }
1167
1168 if (!AR_SREV_9271(ah))
1169 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1170
1171 REGWRITE_BUFFER_FLUSH(ah);
1172
1173 if (AR_SREV_9300_20_OR_LATER(ah))
1174 ath9k_hw_reset_txstatus_ring(ah);
1175 }
1176
1177 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1178 {
1179 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1180 u32 set = AR_STA_ID1_KSRCH_MODE;
1181
1182 switch (opmode) {
1183 case NL80211_IFTYPE_ADHOC:
1184 set |= AR_STA_ID1_ADHOC;
1185 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1186 break;
1187 case NL80211_IFTYPE_MESH_POINT:
1188 case NL80211_IFTYPE_AP:
1189 set |= AR_STA_ID1_STA_AP;
1190 /* fall through */
1191 case NL80211_IFTYPE_STATION:
1192 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1193 break;
1194 default:
1195 if (!ah->is_monitoring)
1196 set = 0;
1197 break;
1198 }
1199 REG_RMW(ah, AR_STA_ID1, set, mask);
1200 }
1201
1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1203 u32 *coef_mantissa, u32 *coef_exponent)
1204 {
1205 u32 coef_exp, coef_man;
1206
1207 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1208 if ((coef_scaled >> coef_exp) & 0x1)
1209 break;
1210
1211 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1212
1213 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1214
1215 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1216 *coef_exponent = coef_exp - 16;
1217 }
1218
1219 /* AR9330 WAR:
1220 * call external reset function to reset WMAC if:
1221 * - doing a cold reset
1222 * - we have pending frames in the TX queues.
1223 */
1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1225 {
1226 int i, npend = 0;
1227
1228 for (i = 0; i < AR_NUM_QCU; i++) {
1229 npend = ath9k_hw_numtxpending(ah, i);
1230 if (npend)
1231 break;
1232 }
1233
1234 if (ah->external_reset &&
1235 (npend || type == ATH9K_RESET_COLD)) {
1236 int reset_err = 0;
1237
1238 ath_dbg(ath9k_hw_common(ah), RESET,
1239 "reset MAC via external reset\n");
1240
1241 reset_err = ah->external_reset();
1242 if (reset_err) {
1243 ath_err(ath9k_hw_common(ah),
1244 "External reset failed, err=%d\n",
1245 reset_err);
1246 return false;
1247 }
1248
1249 REG_WRITE(ah, AR_RTC_RESET, 1);
1250 }
1251
1252 return true;
1253 }
1254
1255 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1256 {
1257 u32 rst_flags;
1258 u32 tmpReg;
1259
1260 if (AR_SREV_9100(ah)) {
1261 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1262 AR_RTC_DERIVED_CLK_PERIOD, 1);
1263 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1264 }
1265
1266 ENABLE_REGWRITE_BUFFER(ah);
1267
1268 if (AR_SREV_9300_20_OR_LATER(ah)) {
1269 REG_WRITE(ah, AR_WA, ah->WARegVal);
1270 udelay(10);
1271 }
1272
1273 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1274 AR_RTC_FORCE_WAKE_ON_INT);
1275
1276 if (AR_SREV_9100(ah)) {
1277 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1278 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1279 } else {
1280 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1281 if (AR_SREV_9340(ah))
1282 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1283 else
1284 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1285 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1286
1287 if (tmpReg) {
1288 u32 val;
1289 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1290
1291 val = AR_RC_HOSTIF;
1292 if (!AR_SREV_9300_20_OR_LATER(ah))
1293 val |= AR_RC_AHB;
1294 REG_WRITE(ah, AR_RC, val);
1295
1296 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1297 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1298
1299 rst_flags = AR_RTC_RC_MAC_WARM;
1300 if (type == ATH9K_RESET_COLD)
1301 rst_flags |= AR_RTC_RC_MAC_COLD;
1302 }
1303
1304 if (AR_SREV_9330(ah)) {
1305 if (!ath9k_hw_ar9330_reset_war(ah, type))
1306 return false;
1307 }
1308
1309 if (ath9k_hw_mci_is_enabled(ah))
1310 ar9003_mci_check_gpm_offset(ah);
1311
1312 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1313
1314 REGWRITE_BUFFER_FLUSH(ah);
1315
1316 if (AR_SREV_9300_20_OR_LATER(ah))
1317 udelay(50);
1318 else if (AR_SREV_9100(ah))
1319 udelay(10000);
1320 else
1321 udelay(100);
1322
1323 REG_WRITE(ah, AR_RTC_RC, 0);
1324 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1325 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1326 return false;
1327 }
1328
1329 if (!AR_SREV_9100(ah))
1330 REG_WRITE(ah, AR_RC, 0);
1331
1332 if (AR_SREV_9100(ah))
1333 udelay(50);
1334
1335 return true;
1336 }
1337
1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1339 {
1340 ENABLE_REGWRITE_BUFFER(ah);
1341
1342 if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 udelay(10);
1345 }
1346
1347 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 AR_RTC_FORCE_WAKE_ON_INT);
1349
1350 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1351 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1352
1353 REG_WRITE(ah, AR_RTC_RESET, 0);
1354
1355 REGWRITE_BUFFER_FLUSH(ah);
1356
1357 udelay(2);
1358
1359 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1360 REG_WRITE(ah, AR_RC, 0);
1361
1362 REG_WRITE(ah, AR_RTC_RESET, 1);
1363
1364 if (!ath9k_hw_wait(ah,
1365 AR_RTC_STATUS,
1366 AR_RTC_STATUS_M,
1367 AR_RTC_STATUS_ON,
1368 AH_WAIT_TIMEOUT)) {
1369 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1370 return false;
1371 }
1372
1373 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1374 }
1375
1376 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1377 {
1378 bool ret = false;
1379
1380 if (AR_SREV_9300_20_OR_LATER(ah)) {
1381 REG_WRITE(ah, AR_WA, ah->WARegVal);
1382 udelay(10);
1383 }
1384
1385 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1386 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1387
1388 if (!ah->reset_power_on)
1389 type = ATH9K_RESET_POWER_ON;
1390
1391 switch (type) {
1392 case ATH9K_RESET_POWER_ON:
1393 ret = ath9k_hw_set_reset_power_on(ah);
1394 if (ret)
1395 ah->reset_power_on = true;
1396 break;
1397 case ATH9K_RESET_WARM:
1398 case ATH9K_RESET_COLD:
1399 ret = ath9k_hw_set_reset(ah, type);
1400 break;
1401 default:
1402 break;
1403 }
1404
1405 return ret;
1406 }
1407
1408 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1409 struct ath9k_channel *chan)
1410 {
1411 int reset_type = ATH9K_RESET_WARM;
1412
1413 if (AR_SREV_9280(ah)) {
1414 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1415 reset_type = ATH9K_RESET_POWER_ON;
1416 else
1417 reset_type = ATH9K_RESET_COLD;
1418 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1419 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1420 reset_type = ATH9K_RESET_COLD;
1421
1422 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1423 return false;
1424
1425 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1426 return false;
1427
1428 ah->chip_fullsleep = false;
1429
1430 if (AR_SREV_9330(ah))
1431 ar9003_hw_internal_regulator_apply(ah);
1432 ath9k_hw_init_pll(ah, chan);
1433
1434 return true;
1435 }
1436
1437 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1438 struct ath9k_channel *chan)
1439 {
1440 struct ath_common *common = ath9k_hw_common(ah);
1441 struct ath9k_hw_capabilities *pCap = &ah->caps;
1442 bool band_switch = false, mode_diff = false;
1443 u8 ini_reloaded = 0;
1444 u32 qnum;
1445 int r;
1446
1447 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1448 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1449 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1450 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1451 }
1452
1453 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1454 if (ath9k_hw_numtxpending(ah, qnum)) {
1455 ath_dbg(common, QUEUE,
1456 "Transmit frames pending on queue %d\n", qnum);
1457 return false;
1458 }
1459 }
1460
1461 if (!ath9k_hw_rfbus_req(ah)) {
1462 ath_err(common, "Could not kill baseband RX\n");
1463 return false;
1464 }
1465
1466 if (band_switch || mode_diff) {
1467 ath9k_hw_mark_phy_inactive(ah);
1468 udelay(5);
1469
1470 if (band_switch)
1471 ath9k_hw_init_pll(ah, chan);
1472
1473 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1474 ath_err(common, "Failed to do fast channel change\n");
1475 return false;
1476 }
1477 }
1478
1479 ath9k_hw_set_channel_regs(ah, chan);
1480
1481 r = ath9k_hw_rf_set_freq(ah, chan);
1482 if (r) {
1483 ath_err(common, "Failed to set channel\n");
1484 return false;
1485 }
1486 ath9k_hw_set_clockrate(ah);
1487 ath9k_hw_apply_txpower(ah, chan, false);
1488
1489 ath9k_hw_set_delta_slope(ah, chan);
1490 ath9k_hw_spur_mitigate_freq(ah, chan);
1491
1492 if (band_switch || ini_reloaded)
1493 ah->eep_ops->set_board_values(ah, chan);
1494
1495 ath9k_hw_init_bb(ah, chan);
1496 ath9k_hw_rfbus_done(ah);
1497
1498 if (band_switch || ini_reloaded) {
1499 ah->ah_flags |= AH_FASTCC;
1500 ath9k_hw_init_cal(ah, chan);
1501 ah->ah_flags &= ~AH_FASTCC;
1502 }
1503
1504 return true;
1505 }
1506
1507 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1508 {
1509 u32 gpio_mask = ah->gpio_mask;
1510 int i;
1511
1512 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1513 if (!(gpio_mask & 1))
1514 continue;
1515
1516 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1517 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1518 }
1519 }
1520
1521 void ath9k_hw_check_nav(struct ath_hw *ah)
1522 {
1523 struct ath_common *common = ath9k_hw_common(ah);
1524 u32 val;
1525
1526 val = REG_READ(ah, AR_NAV);
1527 if (val != 0xdeadbeef && val > 0x7fff) {
1528 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1529 REG_WRITE(ah, AR_NAV, 0);
1530 }
1531 }
1532 EXPORT_SYMBOL(ath9k_hw_check_nav);
1533
1534 bool ath9k_hw_check_alive(struct ath_hw *ah)
1535 {
1536 int count = 50;
1537 u32 reg;
1538
1539 if (AR_SREV_9300(ah))
1540 return !ath9k_hw_detect_mac_hang(ah);
1541
1542 if (AR_SREV_9285_12_OR_LATER(ah))
1543 return true;
1544
1545 do {
1546 reg = REG_READ(ah, AR_OBS_BUS_1);
1547
1548 if ((reg & 0x7E7FFFEF) == 0x00702400)
1549 continue;
1550
1551 switch (reg & 0x7E000B00) {
1552 case 0x1E000000:
1553 case 0x52000B00:
1554 case 0x18000B00:
1555 continue;
1556 default:
1557 return true;
1558 }
1559 } while (count-- > 0);
1560
1561 return false;
1562 }
1563 EXPORT_SYMBOL(ath9k_hw_check_alive);
1564
1565 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1566 {
1567 /* Setup MFP options for CCMP */
1568 if (AR_SREV_9280_20_OR_LATER(ah)) {
1569 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1570 * frames when constructing CCMP AAD. */
1571 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1572 0xc7ff);
1573 ah->sw_mgmt_crypto = false;
1574 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1575 /* Disable hardware crypto for management frames */
1576 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1577 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1578 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1579 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1580 ah->sw_mgmt_crypto = true;
1581 } else {
1582 ah->sw_mgmt_crypto = true;
1583 }
1584 }
1585
1586 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1587 u32 macStaId1, u32 saveDefAntenna)
1588 {
1589 struct ath_common *common = ath9k_hw_common(ah);
1590
1591 ENABLE_REGWRITE_BUFFER(ah);
1592
1593 REG_RMW(ah, AR_STA_ID1, macStaId1
1594 | AR_STA_ID1_RTS_USE_DEF
1595 | ah->sta_id1_defaults,
1596 ~AR_STA_ID1_SADH_MASK);
1597 ath_hw_setbssidmask(common);
1598 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1599 ath9k_hw_write_associd(ah);
1600 REG_WRITE(ah, AR_ISR, ~0);
1601 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1602
1603 REGWRITE_BUFFER_FLUSH(ah);
1604
1605 ath9k_hw_set_operating_mode(ah, ah->opmode);
1606 }
1607
1608 static void ath9k_hw_init_queues(struct ath_hw *ah)
1609 {
1610 int i;
1611
1612 ENABLE_REGWRITE_BUFFER(ah);
1613
1614 for (i = 0; i < AR_NUM_DCU; i++)
1615 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1616
1617 REGWRITE_BUFFER_FLUSH(ah);
1618
1619 ah->intr_txqs = 0;
1620 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1621 ath9k_hw_resettxqueue(ah, i);
1622 }
1623
1624 /*
1625 * For big endian systems turn on swapping for descriptors
1626 */
1627 static void ath9k_hw_init_desc(struct ath_hw *ah)
1628 {
1629 struct ath_common *common = ath9k_hw_common(ah);
1630
1631 if (AR_SREV_9100(ah)) {
1632 u32 mask;
1633 mask = REG_READ(ah, AR_CFG);
1634 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1635 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1636 mask);
1637 } else {
1638 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1639 REG_WRITE(ah, AR_CFG, mask);
1640 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1641 REG_READ(ah, AR_CFG));
1642 }
1643 } else {
1644 if (common->bus_ops->ath_bus_type == ATH_USB) {
1645 /* Configure AR9271 target WLAN */
1646 if (AR_SREV_9271(ah))
1647 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1648 else
1649 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1650 }
1651 #ifdef __BIG_ENDIAN
1652 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1653 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1654 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1655 else
1656 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1657 #endif
1658 }
1659 }
1660
1661 /*
1662 * Fast channel change:
1663 * (Change synthesizer based on channel freq without resetting chip)
1664 */
1665 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1666 {
1667 struct ath_common *common = ath9k_hw_common(ah);
1668 struct ath9k_hw_capabilities *pCap = &ah->caps;
1669 int ret;
1670
1671 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1672 goto fail;
1673
1674 if (ah->chip_fullsleep)
1675 goto fail;
1676
1677 if (!ah->curchan)
1678 goto fail;
1679
1680 if (chan->channel == ah->curchan->channel)
1681 goto fail;
1682
1683 if ((ah->curchan->channelFlags | chan->channelFlags) &
1684 (CHANNEL_HALF | CHANNEL_QUARTER))
1685 goto fail;
1686
1687 /*
1688 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1689 */
1690 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1691 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1692 goto fail;
1693
1694 if (!ath9k_hw_check_alive(ah))
1695 goto fail;
1696
1697 /*
1698 * For AR9462, make sure that calibration data for
1699 * re-using are present.
1700 */
1701 if (AR_SREV_9462(ah) && (ah->caldata &&
1702 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1703 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1704 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1705 goto fail;
1706
1707 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1708 ah->curchan->channel, chan->channel);
1709
1710 ret = ath9k_hw_channel_change(ah, chan);
1711 if (!ret)
1712 goto fail;
1713
1714 if (ath9k_hw_mci_is_enabled(ah))
1715 ar9003_mci_2g5g_switch(ah, false);
1716
1717 ath9k_hw_loadnf(ah, ah->curchan);
1718 ath9k_hw_start_nfcal(ah, true);
1719
1720 if (AR_SREV_9271(ah))
1721 ar9002_hw_load_ani_reg(ah, chan);
1722
1723 return 0;
1724 fail:
1725 return -EINVAL;
1726 }
1727
1728 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1729 struct ath9k_hw_cal_data *caldata, bool fastcc)
1730 {
1731 struct ath_common *common = ath9k_hw_common(ah);
1732 struct timespec ts;
1733 u32 saveLedState;
1734 u32 saveDefAntenna;
1735 u32 macStaId1;
1736 u64 tsf = 0;
1737 s64 usec = 0;
1738 int r;
1739 bool start_mci_reset = false;
1740 bool save_fullsleep = ah->chip_fullsleep;
1741
1742 if (ath9k_hw_mci_is_enabled(ah)) {
1743 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1744 if (start_mci_reset)
1745 return 0;
1746 }
1747
1748 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1749 return -EIO;
1750
1751 if (ah->curchan && !ah->chip_fullsleep)
1752 ath9k_hw_getnf(ah, ah->curchan);
1753
1754 ah->caldata = caldata;
1755 if (caldata && (chan->channel != caldata->channel ||
1756 chan->channelFlags != caldata->channelFlags)) {
1757 /* Operating channel changed, reset channel calibration data */
1758 memset(caldata, 0, sizeof(*caldata));
1759 ath9k_init_nfcal_hist_buffer(ah, chan);
1760 } else if (caldata) {
1761 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1762 }
1763 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1764
1765 if (fastcc) {
1766 r = ath9k_hw_do_fastcc(ah, chan);
1767 if (!r)
1768 return r;
1769 }
1770
1771 if (ath9k_hw_mci_is_enabled(ah))
1772 ar9003_mci_stop_bt(ah, save_fullsleep);
1773
1774 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1775 if (saveDefAntenna == 0)
1776 saveDefAntenna = 1;
1777
1778 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1779
1780 /* Save TSF before chip reset, a cold reset clears it */
1781 tsf = ath9k_hw_gettsf64(ah);
1782 getrawmonotonic(&ts);
1783 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1784
1785 saveLedState = REG_READ(ah, AR_CFG_LED) &
1786 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1787 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1788
1789 ath9k_hw_mark_phy_inactive(ah);
1790
1791 ah->paprd_table_write_done = false;
1792
1793 /* Only required on the first reset */
1794 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1795 REG_WRITE(ah,
1796 AR9271_RESET_POWER_DOWN_CONTROL,
1797 AR9271_RADIO_RF_RST);
1798 udelay(50);
1799 }
1800
1801 if (!ath9k_hw_chip_reset(ah, chan)) {
1802 ath_err(common, "Chip reset failed\n");
1803 return -EINVAL;
1804 }
1805
1806 /* Only required on the first reset */
1807 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1808 ah->htc_reset_init = false;
1809 REG_WRITE(ah,
1810 AR9271_RESET_POWER_DOWN_CONTROL,
1811 AR9271_GATE_MAC_CTL);
1812 udelay(50);
1813 }
1814
1815 /* Restore TSF */
1816 getrawmonotonic(&ts);
1817 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1818 ath9k_hw_settsf64(ah, tsf + usec);
1819
1820 if (AR_SREV_9280_20_OR_LATER(ah))
1821 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1822
1823 if (!AR_SREV_9300_20_OR_LATER(ah))
1824 ar9002_hw_enable_async_fifo(ah);
1825
1826 r = ath9k_hw_process_ini(ah, chan);
1827 if (r)
1828 return r;
1829
1830 ath9k_hw_set_rfmode(ah, chan);
1831
1832 if (ath9k_hw_mci_is_enabled(ah))
1833 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1834
1835 /*
1836 * Some AR91xx SoC devices frequently fail to accept TSF writes
1837 * right after the chip reset. When that happens, write a new
1838 * value after the initvals have been applied, with an offset
1839 * based on measured time difference
1840 */
1841 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1842 tsf += 1500;
1843 ath9k_hw_settsf64(ah, tsf);
1844 }
1845
1846 ath9k_hw_init_mfp(ah);
1847
1848 ath9k_hw_set_delta_slope(ah, chan);
1849 ath9k_hw_spur_mitigate_freq(ah, chan);
1850 ah->eep_ops->set_board_values(ah, chan);
1851
1852 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1853
1854 r = ath9k_hw_rf_set_freq(ah, chan);
1855 if (r)
1856 return r;
1857
1858 ath9k_hw_set_clockrate(ah);
1859
1860 ath9k_hw_init_queues(ah);
1861 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1862 ath9k_hw_ani_cache_ini_regs(ah);
1863 ath9k_hw_init_qos(ah);
1864
1865 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1866 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1867
1868 ath9k_hw_init_global_settings(ah);
1869
1870 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1871 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1872 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1873 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1874 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1875 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1876 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1877 }
1878
1879 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1880
1881 ath9k_hw_set_dma(ah);
1882
1883 if (!ath9k_hw_mci_is_enabled(ah))
1884 REG_WRITE(ah, AR_OBS, 8);
1885
1886 if (ah->config.rx_intr_mitigation) {
1887 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1888 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1889 }
1890
1891 if (ah->config.tx_intr_mitigation) {
1892 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1893 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1894 }
1895
1896 ath9k_hw_init_bb(ah, chan);
1897
1898 if (caldata) {
1899 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1900 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1901 }
1902 if (!ath9k_hw_init_cal(ah, chan))
1903 return -EIO;
1904
1905 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1906 return -EIO;
1907
1908 ENABLE_REGWRITE_BUFFER(ah);
1909
1910 ath9k_hw_restore_chainmask(ah);
1911 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1912
1913 REGWRITE_BUFFER_FLUSH(ah);
1914
1915 ath9k_hw_init_desc(ah);
1916
1917 if (ath9k_hw_btcoex_is_enabled(ah))
1918 ath9k_hw_btcoex_enable(ah);
1919
1920 if (ath9k_hw_mci_is_enabled(ah))
1921 ar9003_mci_check_bt(ah);
1922
1923 ath9k_hw_loadnf(ah, chan);
1924 ath9k_hw_start_nfcal(ah, true);
1925
1926 if (AR_SREV_9300_20_OR_LATER(ah))
1927 ar9003_hw_bb_watchdog_config(ah);
1928
1929 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1930 ar9003_hw_disable_phy_restart(ah);
1931
1932 ath9k_hw_apply_gpio_override(ah);
1933
1934 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1935 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1936
1937 return 0;
1938 }
1939 EXPORT_SYMBOL(ath9k_hw_reset);
1940
1941 /******************************/
1942 /* Power Management (Chipset) */
1943 /******************************/
1944
1945 /*
1946 * Notify Power Mgt is disabled in self-generated frames.
1947 * If requested, force chip to sleep.
1948 */
1949 static void ath9k_set_power_sleep(struct ath_hw *ah)
1950 {
1951 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1952
1953 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1954 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1955 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1956 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1957 /* xxx Required for WLAN only case ? */
1958 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1959 udelay(100);
1960 }
1961
1962 /*
1963 * Clear the RTC force wake bit to allow the
1964 * mac to go to sleep.
1965 */
1966 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1967
1968 if (ath9k_hw_mci_is_enabled(ah))
1969 udelay(100);
1970
1971 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1972 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1973
1974 /* Shutdown chip. Active low */
1975 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1976 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1977 udelay(2);
1978 }
1979
1980 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1981 if (AR_SREV_9300_20_OR_LATER(ah))
1982 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1983 }
1984
1985 /*
1986 * Notify Power Management is enabled in self-generating
1987 * frames. If request, set power mode of chip to
1988 * auto/normal. Duration in units of 128us (1/8 TU).
1989 */
1990 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1991 {
1992 struct ath9k_hw_capabilities *pCap = &ah->caps;
1993
1994 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1995
1996 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1997 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1998 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1999 AR_RTC_FORCE_WAKE_ON_INT);
2000 } else {
2001
2002 /* When chip goes into network sleep, it could be waken
2003 * up by MCI_INT interrupt caused by BT's HW messages
2004 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2005 * rate (~100us). This will cause chip to leave and
2006 * re-enter network sleep mode frequently, which in
2007 * consequence will have WLAN MCI HW to generate lots of
2008 * SYS_WAKING and SYS_SLEEPING messages which will make
2009 * BT CPU to busy to process.
2010 */
2011 if (ath9k_hw_mci_is_enabled(ah))
2012 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2013 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2014 /*
2015 * Clear the RTC force wake bit to allow the
2016 * mac to go to sleep.
2017 */
2018 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2019
2020 if (ath9k_hw_mci_is_enabled(ah))
2021 udelay(30);
2022 }
2023
2024 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2025 if (AR_SREV_9300_20_OR_LATER(ah))
2026 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2027 }
2028
2029 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2030 {
2031 u32 val;
2032 int i;
2033
2034 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2035 if (AR_SREV_9300_20_OR_LATER(ah)) {
2036 REG_WRITE(ah, AR_WA, ah->WARegVal);
2037 udelay(10);
2038 }
2039
2040 if ((REG_READ(ah, AR_RTC_STATUS) &
2041 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2042 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2043 return false;
2044 }
2045 if (!AR_SREV_9300_20_OR_LATER(ah))
2046 ath9k_hw_init_pll(ah, NULL);
2047 }
2048 if (AR_SREV_9100(ah))
2049 REG_SET_BIT(ah, AR_RTC_RESET,
2050 AR_RTC_RESET_EN);
2051
2052 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2053 AR_RTC_FORCE_WAKE_EN);
2054
2055 if (AR_SREV_9100(ah))
2056 udelay(10000);
2057 else
2058 udelay(50);
2059
2060 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2061 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2062 if (val == AR_RTC_STATUS_ON)
2063 break;
2064 udelay(50);
2065 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2066 AR_RTC_FORCE_WAKE_EN);
2067 }
2068 if (i == 0) {
2069 ath_err(ath9k_hw_common(ah),
2070 "Failed to wakeup in %uus\n",
2071 POWER_UP_TIME / 20);
2072 return false;
2073 }
2074
2075 if (ath9k_hw_mci_is_enabled(ah))
2076 ar9003_mci_set_power_awake(ah);
2077
2078 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2079
2080 return true;
2081 }
2082
2083 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2084 {
2085 struct ath_common *common = ath9k_hw_common(ah);
2086 int status = true;
2087 static const char *modes[] = {
2088 "AWAKE",
2089 "FULL-SLEEP",
2090 "NETWORK SLEEP",
2091 "UNDEFINED"
2092 };
2093
2094 if (ah->power_mode == mode)
2095 return status;
2096
2097 ath_dbg(common, RESET, "%s -> %s\n",
2098 modes[ah->power_mode], modes[mode]);
2099
2100 switch (mode) {
2101 case ATH9K_PM_AWAKE:
2102 status = ath9k_hw_set_power_awake(ah);
2103 break;
2104 case ATH9K_PM_FULL_SLEEP:
2105 if (ath9k_hw_mci_is_enabled(ah))
2106 ar9003_mci_set_full_sleep(ah);
2107
2108 ath9k_set_power_sleep(ah);
2109 ah->chip_fullsleep = true;
2110 break;
2111 case ATH9K_PM_NETWORK_SLEEP:
2112 ath9k_set_power_network_sleep(ah);
2113 break;
2114 default:
2115 ath_err(common, "Unknown power mode %u\n", mode);
2116 return false;
2117 }
2118 ah->power_mode = mode;
2119
2120 /*
2121 * XXX: If this warning never comes up after a while then
2122 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2123 * ath9k_hw_setpower() return type void.
2124 */
2125
2126 if (!(ah->ah_flags & AH_UNPLUGGED))
2127 ATH_DBG_WARN_ON_ONCE(!status);
2128
2129 return status;
2130 }
2131 EXPORT_SYMBOL(ath9k_hw_setpower);
2132
2133 /*******************/
2134 /* Beacon Handling */
2135 /*******************/
2136
2137 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2138 {
2139 int flags = 0;
2140
2141 ENABLE_REGWRITE_BUFFER(ah);
2142
2143 switch (ah->opmode) {
2144 case NL80211_IFTYPE_ADHOC:
2145 REG_SET_BIT(ah, AR_TXCFG,
2146 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2147 case NL80211_IFTYPE_MESH_POINT:
2148 case NL80211_IFTYPE_AP:
2149 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2150 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2151 TU_TO_USEC(ah->config.dma_beacon_response_time));
2152 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2153 TU_TO_USEC(ah->config.sw_beacon_response_time));
2154 flags |=
2155 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2156 break;
2157 default:
2158 ath_dbg(ath9k_hw_common(ah), BEACON,
2159 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2160 return;
2161 break;
2162 }
2163
2164 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2165 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2166 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2167
2168 REGWRITE_BUFFER_FLUSH(ah);
2169
2170 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2171 }
2172 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2173
2174 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2175 const struct ath9k_beacon_state *bs)
2176 {
2177 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2178 struct ath9k_hw_capabilities *pCap = &ah->caps;
2179 struct ath_common *common = ath9k_hw_common(ah);
2180
2181 ENABLE_REGWRITE_BUFFER(ah);
2182
2183 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2184 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2185 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2186
2187 REGWRITE_BUFFER_FLUSH(ah);
2188
2189 REG_RMW_FIELD(ah, AR_RSSI_THR,
2190 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2191
2192 beaconintval = bs->bs_intval;
2193
2194 if (bs->bs_sleepduration > beaconintval)
2195 beaconintval = bs->bs_sleepduration;
2196
2197 dtimperiod = bs->bs_dtimperiod;
2198 if (bs->bs_sleepduration > dtimperiod)
2199 dtimperiod = bs->bs_sleepduration;
2200
2201 if (beaconintval == dtimperiod)
2202 nextTbtt = bs->bs_nextdtim;
2203 else
2204 nextTbtt = bs->bs_nexttbtt;
2205
2206 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2207 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2208 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2209 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2210
2211 ENABLE_REGWRITE_BUFFER(ah);
2212
2213 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2214 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2215
2216 REG_WRITE(ah, AR_SLEEP1,
2217 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2218 | AR_SLEEP1_ASSUME_DTIM);
2219
2220 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2221 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2222 else
2223 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2224
2225 REG_WRITE(ah, AR_SLEEP2,
2226 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2227
2228 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2229 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2230
2231 REGWRITE_BUFFER_FLUSH(ah);
2232
2233 REG_SET_BIT(ah, AR_TIMER_MODE,
2234 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2235 AR_DTIM_TIMER_EN);
2236
2237 /* TSF Out of Range Threshold */
2238 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2239 }
2240 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2241
2242 /*******************/
2243 /* HW Capabilities */
2244 /*******************/
2245
2246 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2247 {
2248 eeprom_chainmask &= chip_chainmask;
2249 if (eeprom_chainmask)
2250 return eeprom_chainmask;
2251 else
2252 return chip_chainmask;
2253 }
2254
2255 /**
2256 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2257 * @ah: the atheros hardware data structure
2258 *
2259 * We enable DFS support upstream on chipsets which have passed a series
2260 * of tests. The testing requirements are going to be documented. Desired
2261 * test requirements are documented at:
2262 *
2263 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2264 *
2265 * Once a new chipset gets properly tested an individual commit can be used
2266 * to document the testing for DFS for that chipset.
2267 */
2268 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2269 {
2270
2271 switch (ah->hw_version.macVersion) {
2272 /* for temporary testing DFS with 9280 */
2273 case AR_SREV_VERSION_9280:
2274 /* AR9580 will likely be our first target to get testing on */
2275 case AR_SREV_VERSION_9580:
2276 return true;
2277 default:
2278 return false;
2279 }
2280 }
2281
2282 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2283 {
2284 struct ath9k_hw_capabilities *pCap = &ah->caps;
2285 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2286 struct ath_common *common = ath9k_hw_common(ah);
2287 unsigned int chip_chainmask;
2288
2289 u16 eeval;
2290 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2291
2292 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2293 regulatory->current_rd = eeval;
2294
2295 if (ah->opmode != NL80211_IFTYPE_AP &&
2296 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2297 if (regulatory->current_rd == 0x64 ||
2298 regulatory->current_rd == 0x65)
2299 regulatory->current_rd += 5;
2300 else if (regulatory->current_rd == 0x41)
2301 regulatory->current_rd = 0x43;
2302 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2303 regulatory->current_rd);
2304 }
2305
2306 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2307 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2308 ath_err(common,
2309 "no band has been marked as supported in EEPROM\n");
2310 return -EINVAL;
2311 }
2312
2313 if (eeval & AR5416_OPFLAGS_11A)
2314 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2315
2316 if (eeval & AR5416_OPFLAGS_11G)
2317 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2318
2319 if (AR_SREV_9485(ah) ||
2320 AR_SREV_9285(ah) ||
2321 AR_SREV_9330(ah) ||
2322 AR_SREV_9565(ah))
2323 chip_chainmask = 1;
2324 else if (AR_SREV_9462(ah))
2325 chip_chainmask = 3;
2326 else if (!AR_SREV_9280_20_OR_LATER(ah))
2327 chip_chainmask = 7;
2328 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2329 chip_chainmask = 3;
2330 else
2331 chip_chainmask = 7;
2332
2333 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2334 /*
2335 * For AR9271 we will temporarilly uses the rx chainmax as read from
2336 * the EEPROM.
2337 */
2338 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2339 !(eeval & AR5416_OPFLAGS_11A) &&
2340 !(AR_SREV_9271(ah)))
2341 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2342 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2343 else if (AR_SREV_9100(ah))
2344 pCap->rx_chainmask = 0x7;
2345 else
2346 /* Use rx_chainmask from EEPROM. */
2347 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2348
2349 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2350 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2351 ah->txchainmask = pCap->tx_chainmask;
2352 ah->rxchainmask = pCap->rx_chainmask;
2353
2354 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2355
2356 /* enable key search for every frame in an aggregate */
2357 if (AR_SREV_9300_20_OR_LATER(ah))
2358 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2359
2360 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2361
2362 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2363 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2364 else
2365 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2366
2367 if (AR_SREV_9271(ah))
2368 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2369 else if (AR_DEVID_7010(ah))
2370 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2371 else if (AR_SREV_9300_20_OR_LATER(ah))
2372 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2373 else if (AR_SREV_9287_11_OR_LATER(ah))
2374 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2375 else if (AR_SREV_9285_12_OR_LATER(ah))
2376 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2377 else if (AR_SREV_9280_20_OR_LATER(ah))
2378 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2379 else
2380 pCap->num_gpio_pins = AR_NUM_GPIO;
2381
2382 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2383 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2384 else
2385 pCap->rts_aggr_limit = (8 * 1024);
2386
2387 #ifdef CONFIG_ATH9K_RFKILL
2388 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2389 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2390 ah->rfkill_gpio =
2391 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2392 ah->rfkill_polarity =
2393 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2394
2395 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2396 }
2397 #endif
2398 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2399 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2400 else
2401 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2402
2403 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2404 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2405 else
2406 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2407
2408 if (AR_SREV_9300_20_OR_LATER(ah)) {
2409 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2410 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2411 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2412
2413 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2414 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2415 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2416 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2417 pCap->txs_len = sizeof(struct ar9003_txs);
2418 } else {
2419 pCap->tx_desc_len = sizeof(struct ath_desc);
2420 if (AR_SREV_9280_20(ah))
2421 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2422 }
2423
2424 if (AR_SREV_9300_20_OR_LATER(ah))
2425 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2426
2427 if (AR_SREV_9300_20_OR_LATER(ah))
2428 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2429
2430 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2431 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2432
2433 if (AR_SREV_9285(ah)) {
2434 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2435 ant_div_ctl1 =
2436 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2437 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2438 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2439 ath_info(common, "Enable LNA combining\n");
2440 }
2441 }
2442 }
2443
2444 if (AR_SREV_9300_20_OR_LATER(ah)) {
2445 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2446 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2447 }
2448
2449 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2450 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2451 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2452 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2453 ath_info(common, "Enable LNA combining\n");
2454 }
2455 }
2456
2457 if (ath9k_hw_dfs_tested(ah))
2458 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2459
2460 tx_chainmask = pCap->tx_chainmask;
2461 rx_chainmask = pCap->rx_chainmask;
2462 while (tx_chainmask || rx_chainmask) {
2463 if (tx_chainmask & BIT(0))
2464 pCap->max_txchains++;
2465 if (rx_chainmask & BIT(0))
2466 pCap->max_rxchains++;
2467
2468 tx_chainmask >>= 1;
2469 rx_chainmask >>= 1;
2470 }
2471
2472 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2473 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2474 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2475
2476 if (AR_SREV_9462_20_OR_LATER(ah))
2477 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2478 }
2479
2480 if (AR_SREV_9462(ah))
2481 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2482
2483 if (AR_SREV_9300_20_OR_LATER(ah) &&
2484 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2485 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2486
2487 return 0;
2488 }
2489
2490 /****************************/
2491 /* GPIO / RFKILL / Antennae */
2492 /****************************/
2493
2494 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2495 u32 gpio, u32 type)
2496 {
2497 int addr;
2498 u32 gpio_shift, tmp;
2499
2500 if (gpio > 11)
2501 addr = AR_GPIO_OUTPUT_MUX3;
2502 else if (gpio > 5)
2503 addr = AR_GPIO_OUTPUT_MUX2;
2504 else
2505 addr = AR_GPIO_OUTPUT_MUX1;
2506
2507 gpio_shift = (gpio % 6) * 5;
2508
2509 if (AR_SREV_9280_20_OR_LATER(ah)
2510 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2511 REG_RMW(ah, addr, (type << gpio_shift),
2512 (0x1f << gpio_shift));
2513 } else {
2514 tmp = REG_READ(ah, addr);
2515 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2516 tmp &= ~(0x1f << gpio_shift);
2517 tmp |= (type << gpio_shift);
2518 REG_WRITE(ah, addr, tmp);
2519 }
2520 }
2521
2522 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2523 {
2524 u32 gpio_shift;
2525
2526 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2527
2528 if (AR_DEVID_7010(ah)) {
2529 gpio_shift = gpio;
2530 REG_RMW(ah, AR7010_GPIO_OE,
2531 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2532 (AR7010_GPIO_OE_MASK << gpio_shift));
2533 return;
2534 }
2535
2536 gpio_shift = gpio << 1;
2537 REG_RMW(ah,
2538 AR_GPIO_OE_OUT,
2539 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2540 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2541 }
2542 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2543
2544 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2545 {
2546 #define MS_REG_READ(x, y) \
2547 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2548
2549 if (gpio >= ah->caps.num_gpio_pins)
2550 return 0xffffffff;
2551
2552 if (AR_DEVID_7010(ah)) {
2553 u32 val;
2554 val = REG_READ(ah, AR7010_GPIO_IN);
2555 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2556 } else if (AR_SREV_9300_20_OR_LATER(ah))
2557 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2558 AR_GPIO_BIT(gpio)) != 0;
2559 else if (AR_SREV_9271(ah))
2560 return MS_REG_READ(AR9271, gpio) != 0;
2561 else if (AR_SREV_9287_11_OR_LATER(ah))
2562 return MS_REG_READ(AR9287, gpio) != 0;
2563 else if (AR_SREV_9285_12_OR_LATER(ah))
2564 return MS_REG_READ(AR9285, gpio) != 0;
2565 else if (AR_SREV_9280_20_OR_LATER(ah))
2566 return MS_REG_READ(AR928X, gpio) != 0;
2567 else
2568 return MS_REG_READ(AR, gpio) != 0;
2569 }
2570 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2571
2572 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2573 u32 ah_signal_type)
2574 {
2575 u32 gpio_shift;
2576
2577 if (AR_DEVID_7010(ah)) {
2578 gpio_shift = gpio;
2579 REG_RMW(ah, AR7010_GPIO_OE,
2580 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2581 (AR7010_GPIO_OE_MASK << gpio_shift));
2582 return;
2583 }
2584
2585 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2586 gpio_shift = 2 * gpio;
2587 REG_RMW(ah,
2588 AR_GPIO_OE_OUT,
2589 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2590 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2591 }
2592 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2593
2594 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2595 {
2596 if (AR_DEVID_7010(ah)) {
2597 val = val ? 0 : 1;
2598 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2599 AR_GPIO_BIT(gpio));
2600 return;
2601 }
2602
2603 if (AR_SREV_9271(ah))
2604 val = ~val;
2605
2606 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2607 AR_GPIO_BIT(gpio));
2608 }
2609 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2610
2611 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2612 {
2613 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2614 }
2615 EXPORT_SYMBOL(ath9k_hw_setantenna);
2616
2617 /*********************/
2618 /* General Operation */
2619 /*********************/
2620
2621 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2622 {
2623 u32 bits = REG_READ(ah, AR_RX_FILTER);
2624 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2625
2626 if (phybits & AR_PHY_ERR_RADAR)
2627 bits |= ATH9K_RX_FILTER_PHYRADAR;
2628 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2629 bits |= ATH9K_RX_FILTER_PHYERR;
2630
2631 return bits;
2632 }
2633 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2634
2635 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2636 {
2637 u32 phybits;
2638
2639 ENABLE_REGWRITE_BUFFER(ah);
2640
2641 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2642 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2643
2644 REG_WRITE(ah, AR_RX_FILTER, bits);
2645
2646 phybits = 0;
2647 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2648 phybits |= AR_PHY_ERR_RADAR;
2649 if (bits & ATH9K_RX_FILTER_PHYERR)
2650 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2651 REG_WRITE(ah, AR_PHY_ERR, phybits);
2652
2653 if (phybits)
2654 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2655 else
2656 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2657
2658 REGWRITE_BUFFER_FLUSH(ah);
2659 }
2660 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2661
2662 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2663 {
2664 if (ath9k_hw_mci_is_enabled(ah))
2665 ar9003_mci_bt_gain_ctrl(ah);
2666
2667 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2668 return false;
2669
2670 ath9k_hw_init_pll(ah, NULL);
2671 ah->htc_reset_init = true;
2672 return true;
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2675
2676 bool ath9k_hw_disable(struct ath_hw *ah)
2677 {
2678 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2679 return false;
2680
2681 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2682 return false;
2683
2684 ath9k_hw_init_pll(ah, NULL);
2685 return true;
2686 }
2687 EXPORT_SYMBOL(ath9k_hw_disable);
2688
2689 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2690 {
2691 enum eeprom_param gain_param;
2692
2693 if (IS_CHAN_2GHZ(chan))
2694 gain_param = EEP_ANTENNA_GAIN_2G;
2695 else
2696 gain_param = EEP_ANTENNA_GAIN_5G;
2697
2698 return ah->eep_ops->get_eeprom(ah, gain_param);
2699 }
2700
2701 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2702 bool test)
2703 {
2704 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2705 struct ieee80211_channel *channel;
2706 int chan_pwr, new_pwr, max_gain;
2707 int ant_gain, ant_reduction = 0;
2708
2709 if (!chan)
2710 return;
2711
2712 channel = chan->chan;
2713 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2714 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2715 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2716
2717 ant_gain = get_antenna_gain(ah, chan);
2718 if (ant_gain > max_gain)
2719 ant_reduction = ant_gain - max_gain;
2720
2721 ah->eep_ops->set_txpower(ah, chan,
2722 ath9k_regd_get_ctl(reg, chan),
2723 ant_reduction, new_pwr, test);
2724 }
2725
2726 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2727 {
2728 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2729 struct ath9k_channel *chan = ah->curchan;
2730 struct ieee80211_channel *channel = chan->chan;
2731
2732 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2733 if (test)
2734 channel->max_power = MAX_RATE_POWER / 2;
2735
2736 ath9k_hw_apply_txpower(ah, chan, test);
2737
2738 if (test)
2739 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2742
2743 void ath9k_hw_setopmode(struct ath_hw *ah)
2744 {
2745 ath9k_hw_set_operating_mode(ah, ah->opmode);
2746 }
2747 EXPORT_SYMBOL(ath9k_hw_setopmode);
2748
2749 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2750 {
2751 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2752 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2753 }
2754 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2755
2756 void ath9k_hw_write_associd(struct ath_hw *ah)
2757 {
2758 struct ath_common *common = ath9k_hw_common(ah);
2759
2760 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2761 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2762 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2763 }
2764 EXPORT_SYMBOL(ath9k_hw_write_associd);
2765
2766 #define ATH9K_MAX_TSF_READ 10
2767
2768 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2769 {
2770 u32 tsf_lower, tsf_upper1, tsf_upper2;
2771 int i;
2772
2773 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2774 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2775 tsf_lower = REG_READ(ah, AR_TSF_L32);
2776 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2777 if (tsf_upper2 == tsf_upper1)
2778 break;
2779 tsf_upper1 = tsf_upper2;
2780 }
2781
2782 WARN_ON( i == ATH9K_MAX_TSF_READ );
2783
2784 return (((u64)tsf_upper1 << 32) | tsf_lower);
2785 }
2786 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2787
2788 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2789 {
2790 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2791 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2792 }
2793 EXPORT_SYMBOL(ath9k_hw_settsf64);
2794
2795 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2796 {
2797 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2798 AH_TSF_WRITE_TIMEOUT))
2799 ath_dbg(ath9k_hw_common(ah), RESET,
2800 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2801
2802 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2803 }
2804 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2805
2806 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2807 {
2808 if (set)
2809 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2810 else
2811 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2812 }
2813 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2814
2815 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2816 {
2817 u32 macmode;
2818
2819 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2820 macmode = AR_2040_JOINED_RX_CLEAR;
2821 else
2822 macmode = 0;
2823
2824 REG_WRITE(ah, AR_2040_MODE, macmode);
2825 }
2826
2827 /* HW Generic timers configuration */
2828
2829 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2830 {
2831 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2832 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2833 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2834 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2835 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2836 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2840 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2841 AR_NDP2_TIMER_MODE, 0x0002},
2842 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2843 AR_NDP2_TIMER_MODE, 0x0004},
2844 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2845 AR_NDP2_TIMER_MODE, 0x0008},
2846 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2847 AR_NDP2_TIMER_MODE, 0x0010},
2848 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2849 AR_NDP2_TIMER_MODE, 0x0020},
2850 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2851 AR_NDP2_TIMER_MODE, 0x0040},
2852 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2853 AR_NDP2_TIMER_MODE, 0x0080}
2854 };
2855
2856 /* HW generic timer primitives */
2857
2858 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2859 {
2860 return REG_READ(ah, AR_TSF_L32);
2861 }
2862 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2863
2864 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2865 void (*trigger)(void *),
2866 void (*overflow)(void *),
2867 void *arg,
2868 u8 timer_index)
2869 {
2870 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2871 struct ath_gen_timer *timer;
2872
2873 if ((timer_index < AR_FIRST_NDP_TIMER) ||
2874 (timer_index >= ATH_MAX_GEN_TIMER))
2875 return NULL;
2876
2877 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2878 if (timer == NULL)
2879 return NULL;
2880
2881 /* allocate a hardware generic timer slot */
2882 timer_table->timers[timer_index] = timer;
2883 timer->index = timer_index;
2884 timer->trigger = trigger;
2885 timer->overflow = overflow;
2886 timer->arg = arg;
2887
2888 return timer;
2889 }
2890 EXPORT_SYMBOL(ath_gen_timer_alloc);
2891
2892 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2893 struct ath_gen_timer *timer,
2894 u32 timer_next,
2895 u32 timer_period)
2896 {
2897 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2898 u32 mask = 0;
2899
2900 timer_table->timer_mask |= BIT(timer->index);
2901
2902 /*
2903 * Program generic timer registers
2904 */
2905 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2906 timer_next);
2907 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2908 timer_period);
2909 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2910 gen_tmr_configuration[timer->index].mode_mask);
2911
2912 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2913 /*
2914 * Starting from AR9462, each generic timer can select which tsf
2915 * to use. But we still follow the old rule, 0 - 7 use tsf and
2916 * 8 - 15 use tsf2.
2917 */
2918 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2919 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2920 (1 << timer->index));
2921 else
2922 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2923 (1 << timer->index));
2924 }
2925
2926 if (timer->trigger)
2927 mask |= SM(AR_GENTMR_BIT(timer->index),
2928 AR_IMR_S5_GENTIMER_TRIG);
2929 if (timer->overflow)
2930 mask |= SM(AR_GENTMR_BIT(timer->index),
2931 AR_IMR_S5_GENTIMER_THRESH);
2932
2933 REG_SET_BIT(ah, AR_IMR_S5, mask);
2934
2935 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2936 ah->imask |= ATH9K_INT_GENTIMER;
2937 ath9k_hw_set_interrupts(ah);
2938 }
2939 }
2940 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2941
2942 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2943 {
2944 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2945
2946 /* Clear generic timer enable bits. */
2947 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2948 gen_tmr_configuration[timer->index].mode_mask);
2949
2950 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2951 /*
2952 * Need to switch back to TSF if it was using TSF2.
2953 */
2954 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2955 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2956 (1 << timer->index));
2957 }
2958 }
2959
2960 /* Disable both trigger and thresh interrupt masks */
2961 REG_CLR_BIT(ah, AR_IMR_S5,
2962 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2963 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2964
2965 timer_table->timer_mask &= ~BIT(timer->index);
2966
2967 if (timer_table->timer_mask == 0) {
2968 ah->imask &= ~ATH9K_INT_GENTIMER;
2969 ath9k_hw_set_interrupts(ah);
2970 }
2971 }
2972 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2973
2974 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2975 {
2976 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2977
2978 /* free the hardware generic timer slot */
2979 timer_table->timers[timer->index] = NULL;
2980 kfree(timer);
2981 }
2982 EXPORT_SYMBOL(ath_gen_timer_free);
2983
2984 /*
2985 * Generic Timer Interrupts handling
2986 */
2987 void ath_gen_timer_isr(struct ath_hw *ah)
2988 {
2989 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2990 struct ath_gen_timer *timer;
2991 unsigned long trigger_mask, thresh_mask;
2992 unsigned int index;
2993
2994 /* get hardware generic timer interrupt status */
2995 trigger_mask = ah->intr_gen_timer_trigger;
2996 thresh_mask = ah->intr_gen_timer_thresh;
2997 trigger_mask &= timer_table->timer_mask;
2998 thresh_mask &= timer_table->timer_mask;
2999
3000 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3001 timer = timer_table->timers[index];
3002 if (!timer)
3003 continue;
3004 if (!timer->overflow)
3005 continue;
3006
3007 trigger_mask &= ~BIT(index);
3008 timer->overflow(timer->arg);
3009 }
3010
3011 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3012 timer = timer_table->timers[index];
3013 if (!timer)
3014 continue;
3015 if (!timer->trigger)
3016 continue;
3017 timer->trigger(timer->arg);
3018 }
3019 }
3020 EXPORT_SYMBOL(ath_gen_timer_isr);
3021
3022 /********/
3023 /* HTC */
3024 /********/
3025
3026 static struct {
3027 u32 version;
3028 const char * name;
3029 } ath_mac_bb_names[] = {
3030 /* Devices with external radios */
3031 { AR_SREV_VERSION_5416_PCI, "5416" },
3032 { AR_SREV_VERSION_5416_PCIE, "5418" },
3033 { AR_SREV_VERSION_9100, "9100" },
3034 { AR_SREV_VERSION_9160, "9160" },
3035 /* Single-chip solutions */
3036 { AR_SREV_VERSION_9280, "9280" },
3037 { AR_SREV_VERSION_9285, "9285" },
3038 { AR_SREV_VERSION_9287, "9287" },
3039 { AR_SREV_VERSION_9271, "9271" },
3040 { AR_SREV_VERSION_9300, "9300" },
3041 { AR_SREV_VERSION_9330, "9330" },
3042 { AR_SREV_VERSION_9340, "9340" },
3043 { AR_SREV_VERSION_9485, "9485" },
3044 { AR_SREV_VERSION_9462, "9462" },
3045 { AR_SREV_VERSION_9550, "9550" },
3046 { AR_SREV_VERSION_9565, "9565" },
3047 };
3048
3049 /* For devices with external radios */
3050 static struct {
3051 u16 version;
3052 const char * name;
3053 } ath_rf_names[] = {
3054 { 0, "5133" },
3055 { AR_RAD5133_SREV_MAJOR, "5133" },
3056 { AR_RAD5122_SREV_MAJOR, "5122" },
3057 { AR_RAD2133_SREV_MAJOR, "2133" },
3058 { AR_RAD2122_SREV_MAJOR, "2122" }
3059 };
3060
3061 /*
3062 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3063 */
3064 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3065 {
3066 int i;
3067
3068 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3069 if (ath_mac_bb_names[i].version == mac_bb_version) {
3070 return ath_mac_bb_names[i].name;
3071 }
3072 }
3073
3074 return "????";
3075 }
3076
3077 /*
3078 * Return the RF name. "????" is returned if the RF is unknown.
3079 * Used for devices with external radios.
3080 */
3081 static const char *ath9k_hw_rf_name(u16 rf_version)
3082 {
3083 int i;
3084
3085 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3086 if (ath_rf_names[i].version == rf_version) {
3087 return ath_rf_names[i].name;
3088 }
3089 }
3090
3091 return "????";
3092 }
3093
3094 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3095 {
3096 int used;
3097
3098 /* chipsets >= AR9280 are single-chip */
3099 if (AR_SREV_9280_20_OR_LATER(ah)) {
3100 used = scnprintf(hw_name, len,
3101 "Atheros AR%s Rev:%x",
3102 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3103 ah->hw_version.macRev);
3104 }
3105 else {
3106 used = scnprintf(hw_name, len,
3107 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3108 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3109 ah->hw_version.macRev,
3110 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3111 & AR_RADIO_SREV_MAJOR)),
3112 ah->hw_version.phyRev);
3113 }
3114
3115 hw_name[used] = '\0';
3116 }
3117 EXPORT_SYMBOL(ath9k_hw_name);
This page took 0.12518 seconds and 6 git commands to generate.