ath9k_hw: remove wrapper ath9k_hw_write_regs()
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK 22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28
29 static void ar9002_hw_attach_ops(struct ath_hw *ah);
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41 return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47 return;
48 }
49 module_exit(ath9k_exit);
50
51 /* Private hardware callbacks */
52
53 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
54 {
55 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
56 }
57
58 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
59 {
60 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
61 }
62
63 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
64 {
65 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
66
67 return priv_ops->macversion_supported(ah->hw_version.macVersion);
68 }
69
70 /********************/
71 /* Helper Functions */
72 /********************/
73
74 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
75 {
76 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
77
78 if (!ah->curchan) /* should really check for CCK instead */
79 return usecs *ATH9K_CLOCK_RATE_CCK;
80 if (conf->channel->band == IEEE80211_BAND_2GHZ)
81 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
82 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
83 }
84
85 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
86 {
87 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
88
89 if (conf_is_ht40(conf))
90 return ath9k_hw_mac_clks(ah, usecs) * 2;
91 else
92 return ath9k_hw_mac_clks(ah, usecs);
93 }
94
95 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
96 {
97 int i;
98
99 BUG_ON(timeout < AH_TIME_QUANTUM);
100
101 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
102 if ((REG_READ(ah, reg) & mask) == val)
103 return true;
104
105 udelay(AH_TIME_QUANTUM);
106 }
107
108 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
109 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
110 timeout, reg, REG_READ(ah, reg), mask, val);
111
112 return false;
113 }
114 EXPORT_SYMBOL(ath9k_hw_wait);
115
116 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
117 {
118 u32 retval;
119 int i;
120
121 for (i = 0, retval = 0; i < n; i++) {
122 retval = (retval << 1) | (val & 1);
123 val >>= 1;
124 }
125 return retval;
126 }
127
128 bool ath9k_get_channel_edges(struct ath_hw *ah,
129 u16 flags, u16 *low,
130 u16 *high)
131 {
132 struct ath9k_hw_capabilities *pCap = &ah->caps;
133
134 if (flags & CHANNEL_5GHZ) {
135 *low = pCap->low_5ghz_chan;
136 *high = pCap->high_5ghz_chan;
137 return true;
138 }
139 if ((flags & CHANNEL_2GHZ)) {
140 *low = pCap->low_2ghz_chan;
141 *high = pCap->high_2ghz_chan;
142 return true;
143 }
144 return false;
145 }
146
147 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
148 u8 phy, int kbps,
149 u32 frameLen, u16 rateix,
150 bool shortPreamble)
151 {
152 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
153
154 if (kbps == 0)
155 return 0;
156
157 switch (phy) {
158 case WLAN_RC_PHY_CCK:
159 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
160 if (shortPreamble)
161 phyTime >>= 1;
162 numBits = frameLen << 3;
163 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
164 break;
165 case WLAN_RC_PHY_OFDM:
166 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
167 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
168 numBits = OFDM_PLCP_BITS + (frameLen << 3);
169 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
170 txTime = OFDM_SIFS_TIME_QUARTER
171 + OFDM_PREAMBLE_TIME_QUARTER
172 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
173 } else if (ah->curchan &&
174 IS_CHAN_HALF_RATE(ah->curchan)) {
175 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
176 numBits = OFDM_PLCP_BITS + (frameLen << 3);
177 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
178 txTime = OFDM_SIFS_TIME_HALF +
179 OFDM_PREAMBLE_TIME_HALF
180 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
181 } else {
182 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
183 numBits = OFDM_PLCP_BITS + (frameLen << 3);
184 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
185 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
186 + (numSymbols * OFDM_SYMBOL_TIME);
187 }
188 break;
189 default:
190 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
191 "Unknown phy %u (rate ix %u)\n", phy, rateix);
192 txTime = 0;
193 break;
194 }
195
196 return txTime;
197 }
198 EXPORT_SYMBOL(ath9k_hw_computetxtime);
199
200 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
201 struct ath9k_channel *chan,
202 struct chan_centers *centers)
203 {
204 int8_t extoff;
205
206 if (!IS_CHAN_HT40(chan)) {
207 centers->ctl_center = centers->ext_center =
208 centers->synth_center = chan->channel;
209 return;
210 }
211
212 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
213 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
214 centers->synth_center =
215 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
216 extoff = 1;
217 } else {
218 centers->synth_center =
219 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
220 extoff = -1;
221 }
222
223 centers->ctl_center =
224 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
225 /* 25 MHz spacing is supported by hw but not on upper layers */
226 centers->ext_center =
227 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
228 }
229
230 /******************/
231 /* Chip Revisions */
232 /******************/
233
234 static void ath9k_hw_read_revisions(struct ath_hw *ah)
235 {
236 u32 val;
237
238 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
239
240 if (val == 0xFF) {
241 val = REG_READ(ah, AR_SREV);
242 ah->hw_version.macVersion =
243 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
244 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
245 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
246 } else {
247 if (!AR_SREV_9100(ah))
248 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
249
250 ah->hw_version.macRev = val & AR_SREV_REVISION;
251
252 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
253 ah->is_pciexpress = true;
254 }
255 }
256
257 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
258 {
259 u32 val;
260 int i;
261
262 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
263
264 for (i = 0; i < 8; i++)
265 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
266 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
267 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
268
269 return ath9k_hw_reverse_bits(val, 8);
270 }
271
272 /************************************/
273 /* HW Attach, Detach, Init Routines */
274 /************************************/
275
276 static void ath9k_hw_disablepcie(struct ath_hw *ah)
277 {
278 if (AR_SREV_9100(ah))
279 return;
280
281 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
282 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
283 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
290
291 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
292 }
293
294 static bool ath9k_hw_chip_test(struct ath_hw *ah)
295 {
296 struct ath_common *common = ath9k_hw_common(ah);
297 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
298 u32 regHold[2];
299 u32 patternData[4] = { 0x55555555,
300 0xaaaaaaaa,
301 0x66666666,
302 0x99999999 };
303 int i, j;
304
305 for (i = 0; i < 2; i++) {
306 u32 addr = regAddr[i];
307 u32 wrData, rdData;
308
309 regHold[i] = REG_READ(ah, addr);
310 for (j = 0; j < 0x100; j++) {
311 wrData = (j << 16) | j;
312 REG_WRITE(ah, addr, wrData);
313 rdData = REG_READ(ah, addr);
314 if (rdData != wrData) {
315 ath_print(common, ATH_DBG_FATAL,
316 "address test failed "
317 "addr: 0x%08x - wr:0x%08x != "
318 "rd:0x%08x\n",
319 addr, wrData, rdData);
320 return false;
321 }
322 }
323 for (j = 0; j < 4; j++) {
324 wrData = patternData[j];
325 REG_WRITE(ah, addr, wrData);
326 rdData = REG_READ(ah, addr);
327 if (wrData != rdData) {
328 ath_print(common, ATH_DBG_FATAL,
329 "address test failed "
330 "addr: 0x%08x - wr:0x%08x != "
331 "rd:0x%08x\n",
332 addr, wrData, rdData);
333 return false;
334 }
335 }
336 REG_WRITE(ah, regAddr[i], regHold[i]);
337 }
338 udelay(100);
339
340 return true;
341 }
342
343 static void ath9k_hw_init_config(struct ath_hw *ah)
344 {
345 int i;
346
347 ah->config.dma_beacon_response_time = 2;
348 ah->config.sw_beacon_response_time = 10;
349 ah->config.additional_swba_backoff = 0;
350 ah->config.ack_6mb = 0x0;
351 ah->config.cwm_ignore_extcca = 0;
352 ah->config.pcie_powersave_enable = 0;
353 ah->config.pcie_clock_req = 0;
354 ah->config.pcie_waen = 0;
355 ah->config.analog_shiftreg = 1;
356 ah->config.ofdm_trig_low = 200;
357 ah->config.ofdm_trig_high = 500;
358 ah->config.cck_trig_high = 200;
359 ah->config.cck_trig_low = 100;
360 ah->config.enable_ani = 1;
361
362 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 ah->config.spurchans[i][0] = AR_NO_SPUR;
364 ah->config.spurchans[i][1] = AR_NO_SPUR;
365 }
366
367 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 ah->config.ht_enable = 1;
369 else
370 ah->config.ht_enable = 0;
371
372 ah->config.rx_intr_mitigation = true;
373
374 /*
375 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
376 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
377 * This means we use it for all AR5416 devices, and the few
378 * minor PCI AR9280 devices out there.
379 *
380 * Serialization is required because these devices do not handle
381 * well the case of two concurrent reads/writes due to the latency
382 * involved. During one read/write another read/write can be issued
383 * on another CPU while the previous read/write may still be working
384 * on our hardware, if we hit this case the hardware poops in a loop.
385 * We prevent this by serializing reads and writes.
386 *
387 * This issue is not present on PCI-Express devices or pre-AR5416
388 * devices (legacy, 802.11abg).
389 */
390 if (num_possible_cpus() > 1)
391 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
392 }
393
394 static void ath9k_hw_init_defaults(struct ath_hw *ah)
395 {
396 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
397
398 regulatory->country_code = CTRY_DEFAULT;
399 regulatory->power_limit = MAX_RATE_POWER;
400 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
401
402 ah->hw_version.magic = AR5416_MAGIC;
403 ah->hw_version.subvendorid = 0;
404
405 ah->ah_flags = 0;
406 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
407 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
408 if (!AR_SREV_9100(ah))
409 ah->ah_flags = AH_USE_EEPROM;
410
411 ah->atim_window = 0;
412 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
413 ah->beacon_interval = 100;
414 ah->enable_32kHz_clock = DONT_USE_32KHZ;
415 ah->slottime = (u32) -1;
416 ah->globaltxtimeout = (u32) -1;
417 ah->power_mode = ATH9K_PM_UNDEFINED;
418 }
419
420 static int ath9k_hw_rf_claim(struct ath_hw *ah)
421 {
422 u32 val;
423
424 REG_WRITE(ah, AR_PHY(0), 0x00000007);
425
426 val = ath9k_hw_get_radiorev(ah);
427 switch (val & AR_RADIO_SREV_MAJOR) {
428 case 0:
429 val = AR_RAD5133_SREV_MAJOR;
430 break;
431 case AR_RAD5133_SREV_MAJOR:
432 case AR_RAD5122_SREV_MAJOR:
433 case AR_RAD2133_SREV_MAJOR:
434 case AR_RAD2122_SREV_MAJOR:
435 break;
436 default:
437 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
438 "Radio Chip Rev 0x%02X not supported\n",
439 val & AR_RADIO_SREV_MAJOR);
440 return -EOPNOTSUPP;
441 }
442
443 ah->hw_version.analog5GhzRev = val;
444
445 return 0;
446 }
447
448 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
449 {
450 struct ath_common *common = ath9k_hw_common(ah);
451 u32 sum;
452 int i;
453 u16 eeval;
454
455 sum = 0;
456 for (i = 0; i < 3; i++) {
457 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
458 sum += eeval;
459 common->macaddr[2 * i] = eeval >> 8;
460 common->macaddr[2 * i + 1] = eeval & 0xff;
461 }
462 if (sum == 0 || sum == 0xffff * 3)
463 return -EADDRNOTAVAIL;
464
465 return 0;
466 }
467
468 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
469 {
470 u32 rxgain_type;
471
472 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
473 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
474
475 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
476 INIT_INI_ARRAY(&ah->iniModesRxGain,
477 ar9280Modes_backoff_13db_rxgain_9280_2,
478 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
479 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
480 INIT_INI_ARRAY(&ah->iniModesRxGain,
481 ar9280Modes_backoff_23db_rxgain_9280_2,
482 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
483 else
484 INIT_INI_ARRAY(&ah->iniModesRxGain,
485 ar9280Modes_original_rxgain_9280_2,
486 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
487 } else {
488 INIT_INI_ARRAY(&ah->iniModesRxGain,
489 ar9280Modes_original_rxgain_9280_2,
490 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
491 }
492 }
493
494 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
495 {
496 u32 txgain_type;
497
498 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
499 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
500
501 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
502 INIT_INI_ARRAY(&ah->iniModesTxGain,
503 ar9280Modes_high_power_tx_gain_9280_2,
504 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
505 else
506 INIT_INI_ARRAY(&ah->iniModesTxGain,
507 ar9280Modes_original_tx_gain_9280_2,
508 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
509 } else {
510 INIT_INI_ARRAY(&ah->iniModesTxGain,
511 ar9280Modes_original_tx_gain_9280_2,
512 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
513 }
514 }
515
516 static int ath9k_hw_post_init(struct ath_hw *ah)
517 {
518 int ecode;
519
520 if (!AR_SREV_9271(ah)) {
521 if (!ath9k_hw_chip_test(ah))
522 return -ENODEV;
523 }
524
525 ecode = ath9k_hw_rf_claim(ah);
526 if (ecode != 0)
527 return ecode;
528
529 ecode = ath9k_hw_eeprom_init(ah);
530 if (ecode != 0)
531 return ecode;
532
533 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
534 "Eeprom VER: %d, REV: %d\n",
535 ah->eep_ops->get_eeprom_ver(ah),
536 ah->eep_ops->get_eeprom_rev(ah));
537
538 if (!AR_SREV_9280_10_OR_LATER(ah)) {
539 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
540 if (ecode) {
541 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
542 "Failed allocating banks for "
543 "external radio\n");
544 return ecode;
545 }
546 }
547
548 if (!AR_SREV_9100(ah)) {
549 ath9k_hw_ani_setup(ah);
550 ath9k_hw_ani_init(ah);
551 }
552
553 return 0;
554 }
555
556 static bool ar9002_hw_macversion_supported(u32 macversion)
557 {
558 switch (macversion) {
559 case AR_SREV_VERSION_5416_PCI:
560 case AR_SREV_VERSION_5416_PCIE:
561 case AR_SREV_VERSION_9160:
562 case AR_SREV_VERSION_9100:
563 case AR_SREV_VERSION_9280:
564 case AR_SREV_VERSION_9285:
565 case AR_SREV_VERSION_9287:
566 case AR_SREV_VERSION_9271:
567 return true;
568 default:
569 break;
570 }
571 return false;
572 }
573
574 static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
575 {
576 if (AR_SREV_9160_10_OR_LATER(ah)) {
577 if (AR_SREV_9280_10_OR_LATER(ah)) {
578 ah->iq_caldata.calData = &iq_cal_single_sample;
579 ah->adcgain_caldata.calData =
580 &adc_gain_cal_single_sample;
581 ah->adcdc_caldata.calData =
582 &adc_dc_cal_single_sample;
583 ah->adcdc_calinitdata.calData =
584 &adc_init_dc_cal;
585 } else {
586 ah->iq_caldata.calData = &iq_cal_multi_sample;
587 ah->adcgain_caldata.calData =
588 &adc_gain_cal_multi_sample;
589 ah->adcdc_caldata.calData =
590 &adc_dc_cal_multi_sample;
591 ah->adcdc_calinitdata.calData =
592 &adc_init_dc_cal;
593 }
594 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
595 }
596 }
597
598 static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
599 {
600 if (AR_SREV_9271(ah)) {
601 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
602 ARRAY_SIZE(ar9271Modes_9271), 6);
603 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
604 ARRAY_SIZE(ar9271Common_9271), 2);
605 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
606 ar9271Common_normal_cck_fir_coeff_9271,
607 ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
608 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
609 ar9271Common_japan_2484_cck_fir_coeff_9271,
610 ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
611 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
612 ar9271Modes_9271_1_0_only,
613 ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
614 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
615 ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
616 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
617 ar9271Modes_high_power_tx_gain_9271,
618 ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
619 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
620 ar9271Modes_normal_power_tx_gain_9271,
621 ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
622 return;
623 }
624
625 if (AR_SREV_9287_11_OR_LATER(ah)) {
626 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
627 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
628 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
629 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
630 if (ah->config.pcie_clock_req)
631 INIT_INI_ARRAY(&ah->iniPcieSerdes,
632 ar9287PciePhy_clkreq_off_L1_9287_1_1,
633 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
634 else
635 INIT_INI_ARRAY(&ah->iniPcieSerdes,
636 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
637 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
638 2);
639 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
640 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
641 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
642 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
643 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
644
645 if (ah->config.pcie_clock_req)
646 INIT_INI_ARRAY(&ah->iniPcieSerdes,
647 ar9287PciePhy_clkreq_off_L1_9287_1_0,
648 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
649 else
650 INIT_INI_ARRAY(&ah->iniPcieSerdes,
651 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
652 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
653 2);
654 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
655
656
657 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
658 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
659 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
660 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
661
662 if (ah->config.pcie_clock_req) {
663 INIT_INI_ARRAY(&ah->iniPcieSerdes,
664 ar9285PciePhy_clkreq_off_L1_9285_1_2,
665 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
666 } else {
667 INIT_INI_ARRAY(&ah->iniPcieSerdes,
668 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
669 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
670 2);
671 }
672 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
673 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
674 ARRAY_SIZE(ar9285Modes_9285), 6);
675 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
676 ARRAY_SIZE(ar9285Common_9285), 2);
677
678 if (ah->config.pcie_clock_req) {
679 INIT_INI_ARRAY(&ah->iniPcieSerdes,
680 ar9285PciePhy_clkreq_off_L1_9285,
681 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
682 } else {
683 INIT_INI_ARRAY(&ah->iniPcieSerdes,
684 ar9285PciePhy_clkreq_always_on_L1_9285,
685 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
686 }
687 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
688 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
689 ARRAY_SIZE(ar9280Modes_9280_2), 6);
690 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
691 ARRAY_SIZE(ar9280Common_9280_2), 2);
692
693 if (ah->config.pcie_clock_req) {
694 INIT_INI_ARRAY(&ah->iniPcieSerdes,
695 ar9280PciePhy_clkreq_off_L1_9280,
696 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
697 } else {
698 INIT_INI_ARRAY(&ah->iniPcieSerdes,
699 ar9280PciePhy_clkreq_always_on_L1_9280,
700 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
701 }
702 INIT_INI_ARRAY(&ah->iniModesAdditional,
703 ar9280Modes_fast_clock_9280_2,
704 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
705 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
706 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
707 ARRAY_SIZE(ar9280Modes_9280), 6);
708 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
709 ARRAY_SIZE(ar9280Common_9280), 2);
710 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
711 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
712 ARRAY_SIZE(ar5416Modes_9160), 6);
713 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
714 ARRAY_SIZE(ar5416Common_9160), 2);
715 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
716 ARRAY_SIZE(ar5416Bank0_9160), 2);
717 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
718 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
719 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
720 ARRAY_SIZE(ar5416Bank1_9160), 2);
721 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
722 ARRAY_SIZE(ar5416Bank2_9160), 2);
723 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
724 ARRAY_SIZE(ar5416Bank3_9160), 3);
725 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
726 ARRAY_SIZE(ar5416Bank6_9160), 3);
727 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
728 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
729 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
730 ARRAY_SIZE(ar5416Bank7_9160), 2);
731 if (AR_SREV_9160_11(ah)) {
732 INIT_INI_ARRAY(&ah->iniAddac,
733 ar5416Addac_91601_1,
734 ARRAY_SIZE(ar5416Addac_91601_1), 2);
735 } else {
736 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
737 ARRAY_SIZE(ar5416Addac_9160), 2);
738 }
739 } else if (AR_SREV_9100_OR_LATER(ah)) {
740 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
741 ARRAY_SIZE(ar5416Modes_9100), 6);
742 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
743 ARRAY_SIZE(ar5416Common_9100), 2);
744 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
745 ARRAY_SIZE(ar5416Bank0_9100), 2);
746 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
747 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
748 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
749 ARRAY_SIZE(ar5416Bank1_9100), 2);
750 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
751 ARRAY_SIZE(ar5416Bank2_9100), 2);
752 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
753 ARRAY_SIZE(ar5416Bank3_9100), 3);
754 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
755 ARRAY_SIZE(ar5416Bank6_9100), 3);
756 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
757 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
758 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
759 ARRAY_SIZE(ar5416Bank7_9100), 2);
760 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
761 ARRAY_SIZE(ar5416Addac_9100), 2);
762 } else {
763 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
764 ARRAY_SIZE(ar5416Modes), 6);
765 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
766 ARRAY_SIZE(ar5416Common), 2);
767 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
768 ARRAY_SIZE(ar5416Bank0), 2);
769 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
770 ARRAY_SIZE(ar5416BB_RfGain), 3);
771 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
772 ARRAY_SIZE(ar5416Bank1), 2);
773 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
774 ARRAY_SIZE(ar5416Bank2), 2);
775 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
776 ARRAY_SIZE(ar5416Bank3), 3);
777 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
778 ARRAY_SIZE(ar5416Bank6), 3);
779 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
780 ARRAY_SIZE(ar5416Bank6TPC), 3);
781 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
782 ARRAY_SIZE(ar5416Bank7), 2);
783 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
784 ARRAY_SIZE(ar5416Addac), 2);
785 }
786 }
787
788 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
789 {
790 if (AR_SREV_9287_11_OR_LATER(ah))
791 INIT_INI_ARRAY(&ah->iniModesRxGain,
792 ar9287Modes_rx_gain_9287_1_1,
793 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
794 else if (AR_SREV_9287_10(ah))
795 INIT_INI_ARRAY(&ah->iniModesRxGain,
796 ar9287Modes_rx_gain_9287_1_0,
797 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
798 else if (AR_SREV_9280_20(ah))
799 ath9k_hw_init_rxgain_ini(ah);
800
801 if (AR_SREV_9287_11_OR_LATER(ah)) {
802 INIT_INI_ARRAY(&ah->iniModesTxGain,
803 ar9287Modes_tx_gain_9287_1_1,
804 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
805 } else if (AR_SREV_9287_10(ah)) {
806 INIT_INI_ARRAY(&ah->iniModesTxGain,
807 ar9287Modes_tx_gain_9287_1_0,
808 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
809 } else if (AR_SREV_9280_20(ah)) {
810 ath9k_hw_init_txgain_ini(ah);
811 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
812 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
813
814 /* txgain table */
815 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
816 if (AR_SREV_9285E_20(ah)) {
817 INIT_INI_ARRAY(&ah->iniModesTxGain,
818 ar9285Modes_XE2_0_high_power,
819 ARRAY_SIZE(
820 ar9285Modes_XE2_0_high_power), 6);
821 } else {
822 INIT_INI_ARRAY(&ah->iniModesTxGain,
823 ar9285Modes_high_power_tx_gain_9285_1_2,
824 ARRAY_SIZE(
825 ar9285Modes_high_power_tx_gain_9285_1_2), 6);
826 }
827 } else {
828 if (AR_SREV_9285E_20(ah)) {
829 INIT_INI_ARRAY(&ah->iniModesTxGain,
830 ar9285Modes_XE2_0_normal_power,
831 ARRAY_SIZE(
832 ar9285Modes_XE2_0_normal_power), 6);
833 } else {
834 INIT_INI_ARRAY(&ah->iniModesTxGain,
835 ar9285Modes_original_tx_gain_9285_1_2,
836 ARRAY_SIZE(
837 ar9285Modes_original_tx_gain_9285_1_2), 6);
838 }
839 }
840 }
841 }
842
843 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
844 {
845 struct base_eep_header *pBase = &(ah->eeprom.def.baseEepHeader);
846 struct ath_common *common = ath9k_hw_common(ah);
847
848 ah->need_an_top2_fixup = (ah->hw_version.devid == AR9280_DEVID_PCI) &&
849 (ah->eep_map != EEP_MAP_4KBITS) &&
850 ((pBase->version & 0xff) > 0x0a) &&
851 (pBase->pwdclkind == 0);
852
853 if (ah->need_an_top2_fixup)
854 ath_print(common, ATH_DBG_EEPROM,
855 "needs fixup for AR_AN_TOP2 register\n");
856 }
857
858 /* Called for all hardware families */
859 static int __ath9k_hw_init(struct ath_hw *ah)
860 {
861 struct ath_common *common = ath9k_hw_common(ah);
862 int r = 0;
863
864 ath9k_hw_init_defaults(ah);
865 ath9k_hw_init_config(ah);
866
867 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
868 ath_print(common, ATH_DBG_FATAL,
869 "Couldn't reset chip\n");
870 return -EIO;
871 }
872
873 ar9002_hw_attach_ops(ah);
874
875 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
876 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
877 return -EIO;
878 }
879
880 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
881 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
882 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
883 ah->config.serialize_regmode =
884 SER_REG_MODE_ON;
885 } else {
886 ah->config.serialize_regmode =
887 SER_REG_MODE_OFF;
888 }
889 }
890
891 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
892 ah->config.serialize_regmode);
893
894 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
895 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
896 else
897 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
898
899 if (!ath9k_hw_macversion_supported(ah)) {
900 ath_print(common, ATH_DBG_FATAL,
901 "Mac Chip Rev 0x%02x.%x is not supported by "
902 "this driver\n", ah->hw_version.macVersion,
903 ah->hw_version.macRev);
904 return -EOPNOTSUPP;
905 }
906
907 if (AR_SREV_9100(ah)) {
908 ah->iq_caldata.calData = &iq_cal_multi_sample;
909 ah->supp_cals = IQ_MISMATCH_CAL;
910 ah->is_pciexpress = false;
911 }
912
913 if (AR_SREV_9271(ah))
914 ah->is_pciexpress = false;
915
916 /* XXX: move this to its own hw op */
917 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
918
919 ath9k_hw_init_cal_settings(ah);
920
921 ah->ani_function = ATH9K_ANI_ALL;
922 if (AR_SREV_9280_10_OR_LATER(ah)) {
923 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
924 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
925 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
926 } else {
927 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
928 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
929 }
930
931 ath9k_hw_init_mode_regs(ah);
932
933 if (ah->is_pciexpress)
934 ath9k_hw_configpcipowersave(ah, 0, 0);
935 else
936 ath9k_hw_disablepcie(ah);
937
938 /* Support for Japan ch.14 (2484) spread */
939 if (AR_SREV_9287_11_OR_LATER(ah)) {
940 INIT_INI_ARRAY(&ah->iniCckfirNormal,
941 ar9287Common_normal_cck_fir_coeff_92871_1,
942 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
943 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
944 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
945 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
946 }
947
948 r = ath9k_hw_post_init(ah);
949 if (r)
950 return r;
951
952 ath9k_hw_init_mode_gain_regs(ah);
953 r = ath9k_hw_fill_cap_info(ah);
954 if (r)
955 return r;
956
957 ath9k_hw_init_eeprom_fix(ah);
958
959 r = ath9k_hw_init_macaddr(ah);
960 if (r) {
961 ath_print(common, ATH_DBG_FATAL,
962 "Failed to initialize MAC address\n");
963 return r;
964 }
965
966 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
967 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
968 else
969 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
970
971 ath9k_init_nfcal_hist_buffer(ah);
972
973 common->state = ATH_HW_INITIALIZED;
974
975 return 0;
976 }
977
978 int ath9k_hw_init(struct ath_hw *ah)
979 {
980 int ret;
981 struct ath_common *common = ath9k_hw_common(ah);
982
983 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
984 switch (ah->hw_version.devid) {
985 case AR5416_DEVID_PCI:
986 case AR5416_DEVID_PCIE:
987 case AR5416_AR9100_DEVID:
988 case AR9160_DEVID_PCI:
989 case AR9280_DEVID_PCI:
990 case AR9280_DEVID_PCIE:
991 case AR9285_DEVID_PCIE:
992 case AR5416_DEVID_AR9287_PCI:
993 case AR5416_DEVID_AR9287_PCIE:
994 case AR2427_DEVID_PCIE:
995 break;
996 default:
997 if (common->bus_ops->ath_bus_type == ATH_USB)
998 break;
999 ath_print(common, ATH_DBG_FATAL,
1000 "Hardware device ID 0x%04x not supported\n",
1001 ah->hw_version.devid);
1002 return -EOPNOTSUPP;
1003 }
1004
1005 ret = __ath9k_hw_init(ah);
1006 if (ret) {
1007 ath_print(common, ATH_DBG_FATAL,
1008 "Unable to initialize hardware; "
1009 "initialization status: %d\n", ret);
1010 return ret;
1011 }
1012
1013 return 0;
1014 }
1015 EXPORT_SYMBOL(ath9k_hw_init);
1016
1017 static void ath9k_hw_init_bb(struct ath_hw *ah,
1018 struct ath9k_channel *chan)
1019 {
1020 u32 synthDelay;
1021
1022 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1023 if (IS_CHAN_B(chan))
1024 synthDelay = (4 * synthDelay) / 22;
1025 else
1026 synthDelay /= 10;
1027
1028 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1029
1030 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1031 }
1032
1033 static void ath9k_hw_init_qos(struct ath_hw *ah)
1034 {
1035 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1036 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1037
1038 REG_WRITE(ah, AR_QOS_NO_ACK,
1039 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1040 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1041 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1042
1043 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1044 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1045 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1046 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1047 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1048 }
1049
1050 static void ath9k_hw_init_pll(struct ath_hw *ah,
1051 struct ath9k_channel *chan)
1052 {
1053 u32 pll;
1054
1055 if (AR_SREV_9100(ah)) {
1056 if (chan && IS_CHAN_5GHZ(chan))
1057 pll = 0x1450;
1058 else
1059 pll = 0x1458;
1060 } else {
1061 if (AR_SREV_9280_10_OR_LATER(ah)) {
1062 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1063
1064 if (chan && IS_CHAN_HALF_RATE(chan))
1065 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1066 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1067 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1068
1069 if (chan && IS_CHAN_5GHZ(chan)) {
1070 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1071
1072
1073 if (AR_SREV_9280_20(ah)) {
1074 if (((chan->channel % 20) == 0)
1075 || ((chan->channel % 10) == 0))
1076 pll = 0x2850;
1077 else
1078 pll = 0x142c;
1079 }
1080 } else {
1081 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1082 }
1083
1084 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1085
1086 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1087
1088 if (chan && IS_CHAN_HALF_RATE(chan))
1089 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1090 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1091 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1092
1093 if (chan && IS_CHAN_5GHZ(chan))
1094 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1095 else
1096 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1097 } else {
1098 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1099
1100 if (chan && IS_CHAN_HALF_RATE(chan))
1101 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1102 else if (chan && IS_CHAN_QUARTER_RATE(chan))
1103 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1104
1105 if (chan && IS_CHAN_5GHZ(chan))
1106 pll |= SM(0xa, AR_RTC_PLL_DIV);
1107 else
1108 pll |= SM(0xb, AR_RTC_PLL_DIV);
1109 }
1110 }
1111 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1112
1113 /* Switch the core clock for ar9271 to 117Mhz */
1114 if (AR_SREV_9271(ah)) {
1115 udelay(500);
1116 REG_WRITE(ah, 0x50040, 0x304);
1117 }
1118
1119 udelay(RTC_PLL_SETTLE_DELAY);
1120
1121 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1122 }
1123
1124 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1125 {
1126 int rx_chainmask, tx_chainmask;
1127
1128 rx_chainmask = ah->rxchainmask;
1129 tx_chainmask = ah->txchainmask;
1130
1131 switch (rx_chainmask) {
1132 case 0x5:
1133 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1134 AR_PHY_SWAP_ALT_CHAIN);
1135 case 0x3:
1136 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1137 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1138 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1139 break;
1140 }
1141 case 0x1:
1142 case 0x2:
1143 case 0x7:
1144 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1145 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1146 break;
1147 default:
1148 break;
1149 }
1150
1151 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1152 if (tx_chainmask == 0x5) {
1153 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1154 AR_PHY_SWAP_ALT_CHAIN);
1155 }
1156 if (AR_SREV_9100(ah))
1157 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1158 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1159 }
1160
1161 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1162 enum nl80211_iftype opmode)
1163 {
1164 u32 imr_reg = AR_IMR_TXERR |
1165 AR_IMR_TXURN |
1166 AR_IMR_RXERR |
1167 AR_IMR_RXORN |
1168 AR_IMR_BCNMISC;
1169
1170 if (ah->config.rx_intr_mitigation)
1171 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1172 else
1173 imr_reg |= AR_IMR_RXOK;
1174
1175 imr_reg |= AR_IMR_TXOK;
1176
1177 if (opmode == NL80211_IFTYPE_AP)
1178 imr_reg |= AR_IMR_MIB;
1179
1180 REG_WRITE(ah, AR_IMR, imr_reg);
1181 ah->imrs2_reg |= AR_IMR_S2_GTT;
1182 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1183
1184 if (!AR_SREV_9100(ah)) {
1185 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1186 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1187 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1188 }
1189 }
1190
1191 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1192 {
1193 u32 val = ath9k_hw_mac_to_clks(ah, us);
1194 val = min(val, (u32) 0xFFFF);
1195 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1196 }
1197
1198 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1199 {
1200 u32 val = ath9k_hw_mac_to_clks(ah, us);
1201 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1202 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1203 }
1204
1205 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1206 {
1207 u32 val = ath9k_hw_mac_to_clks(ah, us);
1208 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1209 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1210 }
1211
1212 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1213 {
1214 if (tu > 0xFFFF) {
1215 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1216 "bad global tx timeout %u\n", tu);
1217 ah->globaltxtimeout = (u32) -1;
1218 return false;
1219 } else {
1220 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1221 ah->globaltxtimeout = tu;
1222 return true;
1223 }
1224 }
1225
1226 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1227 {
1228 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1229 int acktimeout;
1230 int slottime;
1231 int sifstime;
1232
1233 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1234 ah->misc_mode);
1235
1236 if (ah->misc_mode != 0)
1237 REG_WRITE(ah, AR_PCU_MISC,
1238 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1239
1240 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1241 sifstime = 16;
1242 else
1243 sifstime = 10;
1244
1245 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1246 slottime = ah->slottime + 3 * ah->coverage_class;
1247 acktimeout = slottime + sifstime;
1248
1249 /*
1250 * Workaround for early ACK timeouts, add an offset to match the
1251 * initval's 64us ack timeout value.
1252 * This was initially only meant to work around an issue with delayed
1253 * BA frames in some implementations, but it has been found to fix ACK
1254 * timeout issues in other cases as well.
1255 */
1256 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1257 acktimeout += 64 - sifstime - ah->slottime;
1258
1259 ath9k_hw_setslottime(ah, slottime);
1260 ath9k_hw_set_ack_timeout(ah, acktimeout);
1261 ath9k_hw_set_cts_timeout(ah, acktimeout);
1262 if (ah->globaltxtimeout != (u32) -1)
1263 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1264 }
1265 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1266
1267 void ath9k_hw_deinit(struct ath_hw *ah)
1268 {
1269 struct ath_common *common = ath9k_hw_common(ah);
1270
1271 if (common->state < ATH_HW_INITIALIZED)
1272 goto free_hw;
1273
1274 if (!AR_SREV_9100(ah))
1275 ath9k_hw_ani_disable(ah);
1276
1277 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1278
1279 free_hw:
1280 if (!AR_SREV_9280_10_OR_LATER(ah))
1281 ath9k_hw_rf_free_ext_banks(ah);
1282 }
1283 EXPORT_SYMBOL(ath9k_hw_deinit);
1284
1285 /*******/
1286 /* INI */
1287 /*******/
1288
1289 static void ath9k_hw_override_ini(struct ath_hw *ah,
1290 struct ath9k_channel *chan)
1291 {
1292 u32 val;
1293
1294 /*
1295 * Set the RX_ABORT and RX_DIS and clear if off only after
1296 * RXE is set for MAC. This prevents frames with corrupted
1297 * descriptor status.
1298 */
1299 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1300
1301 if (AR_SREV_9280_10_OR_LATER(ah)) {
1302 val = REG_READ(ah, AR_PCU_MISC_MODE2);
1303
1304 if (!AR_SREV_9271(ah))
1305 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
1306
1307 if (AR_SREV_9287_10_OR_LATER(ah))
1308 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1309
1310 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1311 }
1312
1313 if (!AR_SREV_5416_20_OR_LATER(ah) ||
1314 AR_SREV_9280_10_OR_LATER(ah))
1315 return;
1316 /*
1317 * Disable BB clock gating
1318 * Necessary to avoid issues on AR5416 2.0
1319 */
1320 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1321
1322 /*
1323 * Disable RIFS search on some chips to avoid baseband
1324 * hang issues.
1325 */
1326 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1327 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1328 val &= ~AR_PHY_RIFS_INIT_DELAY;
1329 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1330 }
1331 }
1332
1333 static void ath9k_olc_init(struct ath_hw *ah)
1334 {
1335 u32 i;
1336
1337 if (OLC_FOR_AR9287_10_LATER) {
1338 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1339 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1340 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1341 AR9287_AN_TXPC0_TXPCMODE,
1342 AR9287_AN_TXPC0_TXPCMODE_S,
1343 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1344 udelay(100);
1345 } else {
1346 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1347 ah->originalGain[i] =
1348 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1349 AR_PHY_TX_GAIN);
1350 ah->PDADCdelta = 0;
1351 }
1352 }
1353
1354 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1355 struct ath9k_channel *chan)
1356 {
1357 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1358
1359 if (IS_CHAN_B(chan))
1360 ctl |= CTL_11B;
1361 else if (IS_CHAN_G(chan))
1362 ctl |= CTL_11G;
1363 else
1364 ctl |= CTL_11A;
1365
1366 return ctl;
1367 }
1368
1369 static int ath9k_hw_process_ini(struct ath_hw *ah,
1370 struct ath9k_channel *chan)
1371 {
1372 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1373 int i, regWrites = 0;
1374 struct ieee80211_channel *channel = chan->chan;
1375 u32 modesIndex, freqIndex;
1376
1377 switch (chan->chanmode) {
1378 case CHANNEL_A:
1379 case CHANNEL_A_HT20:
1380 modesIndex = 1;
1381 freqIndex = 1;
1382 break;
1383 case CHANNEL_A_HT40PLUS:
1384 case CHANNEL_A_HT40MINUS:
1385 modesIndex = 2;
1386 freqIndex = 1;
1387 break;
1388 case CHANNEL_G:
1389 case CHANNEL_G_HT20:
1390 case CHANNEL_B:
1391 modesIndex = 4;
1392 freqIndex = 2;
1393 break;
1394 case CHANNEL_G_HT40PLUS:
1395 case CHANNEL_G_HT40MINUS:
1396 modesIndex = 3;
1397 freqIndex = 2;
1398 break;
1399
1400 default:
1401 return -EINVAL;
1402 }
1403
1404 /* Set correct baseband to analog shift setting to access analog chips */
1405 REG_WRITE(ah, AR_PHY(0), 0x00000007);
1406
1407 /* Write ADDAC shifts */
1408 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1409 ah->eep_ops->set_addac(ah, chan);
1410
1411 if (AR_SREV_5416_22_OR_LATER(ah)) {
1412 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1413 } else {
1414 struct ar5416IniArray temp;
1415 u32 addacSize =
1416 sizeof(u32) * ah->iniAddac.ia_rows *
1417 ah->iniAddac.ia_columns;
1418
1419 /* For AR5416 2.0/2.1 */
1420 memcpy(ah->addac5416_21,
1421 ah->iniAddac.ia_array, addacSize);
1422
1423 /* override CLKDRV value at [row, column] = [31, 1] */
1424 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1425
1426 temp.ia_array = ah->addac5416_21;
1427 temp.ia_columns = ah->iniAddac.ia_columns;
1428 temp.ia_rows = ah->iniAddac.ia_rows;
1429 REG_WRITE_ARRAY(&temp, 1, regWrites);
1430 }
1431
1432 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1433
1434 for (i = 0; i < ah->iniModes.ia_rows; i++) {
1435 u32 reg = INI_RA(&ah->iniModes, i, 0);
1436 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1437
1438 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
1439 val &= ~AR_AN_TOP2_PWDCLKIND;
1440
1441 REG_WRITE(ah, reg, val);
1442
1443 if (reg >= 0x7800 && reg < 0x78a0
1444 && ah->config.analog_shiftreg) {
1445 udelay(100);
1446 }
1447
1448 DO_DELAY(regWrites);
1449 }
1450
1451 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1452 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1453
1454 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1455 AR_SREV_9287_10_OR_LATER(ah))
1456 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1457
1458 if (AR_SREV_9271_10(ah))
1459 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1460 modesIndex, regWrites);
1461
1462 /* Write common array parameters */
1463 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1464 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1465 u32 val = INI_RA(&ah->iniCommon, i, 1);
1466
1467 REG_WRITE(ah, reg, val);
1468
1469 if (reg >= 0x7800 && reg < 0x78a0
1470 && ah->config.analog_shiftreg) {
1471 udelay(100);
1472 }
1473
1474 DO_DELAY(regWrites);
1475 }
1476
1477 if (AR_SREV_9271(ah)) {
1478 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
1479 REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
1480 modesIndex, regWrites);
1481 else
1482 REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
1483 modesIndex, regWrites);
1484 }
1485
1486 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
1487
1488 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1489 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1490 regWrites);
1491 }
1492
1493 ath9k_hw_override_ini(ah, chan);
1494 ath9k_hw_set_regs(ah, chan);
1495 ath9k_hw_init_chain_masks(ah);
1496
1497 if (OLC_FOR_AR9280_20_LATER)
1498 ath9k_olc_init(ah);
1499
1500 /* Set TX power */
1501 ah->eep_ops->set_txpower(ah, chan,
1502 ath9k_regd_get_ctl(regulatory, chan),
1503 channel->max_antenna_gain * 2,
1504 channel->max_power * 2,
1505 min((u32) MAX_RATE_POWER,
1506 (u32) regulatory->power_limit));
1507
1508 /* Write analog registers */
1509 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1510 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1511 "ar5416SetRfRegs failed\n");
1512 return -EIO;
1513 }
1514
1515 return 0;
1516 }
1517
1518 /****************************************/
1519 /* Reset and Channel Switching Routines */
1520 /****************************************/
1521
1522 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1523 {
1524 u32 rfMode = 0;
1525
1526 if (chan == NULL)
1527 return;
1528
1529 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1530 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1531
1532 if (!AR_SREV_9280_10_OR_LATER(ah))
1533 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1534 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1535
1536 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1537 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1538
1539 REG_WRITE(ah, AR_PHY_MODE, rfMode);
1540 }
1541
1542 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1543 {
1544 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1545 }
1546
1547 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1548 {
1549 u32 regval;
1550
1551 /*
1552 * set AHB_MODE not to do cacheline prefetches
1553 */
1554 regval = REG_READ(ah, AR_AHB_MODE);
1555 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1556
1557 /*
1558 * let mac dma reads be in 128 byte chunks
1559 */
1560 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1561 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1562
1563 /*
1564 * Restore TX Trigger Level to its pre-reset value.
1565 * The initial value depends on whether aggregation is enabled, and is
1566 * adjusted whenever underruns are detected.
1567 */
1568 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1569
1570 /*
1571 * let mac dma writes be in 128 byte chunks
1572 */
1573 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1574 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1575
1576 /*
1577 * Setup receive FIFO threshold to hold off TX activities
1578 */
1579 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1580
1581 /*
1582 * reduce the number of usable entries in PCU TXBUF to avoid
1583 * wrap around issues.
1584 */
1585 if (AR_SREV_9285(ah)) {
1586 /* For AR9285 the number of Fifos are reduced to half.
1587 * So set the usable tx buf size also to half to
1588 * avoid data/delimiter underruns
1589 */
1590 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1591 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1592 } else if (!AR_SREV_9271(ah)) {
1593 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1594 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1595 }
1596 }
1597
1598 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1599 {
1600 u32 val;
1601
1602 val = REG_READ(ah, AR_STA_ID1);
1603 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1604 switch (opmode) {
1605 case NL80211_IFTYPE_AP:
1606 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1607 | AR_STA_ID1_KSRCH_MODE);
1608 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1609 break;
1610 case NL80211_IFTYPE_ADHOC:
1611 case NL80211_IFTYPE_MESH_POINT:
1612 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1613 | AR_STA_ID1_KSRCH_MODE);
1614 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1615 break;
1616 case NL80211_IFTYPE_STATION:
1617 case NL80211_IFTYPE_MONITOR:
1618 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1619 break;
1620 }
1621 }
1622
1623 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1624 u32 coef_scaled,
1625 u32 *coef_mantissa,
1626 u32 *coef_exponent)
1627 {
1628 u32 coef_exp, coef_man;
1629
1630 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1631 if ((coef_scaled >> coef_exp) & 0x1)
1632 break;
1633
1634 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1635
1636 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1637
1638 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1639 *coef_exponent = coef_exp - 16;
1640 }
1641
1642 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1643 struct ath9k_channel *chan)
1644 {
1645 u32 coef_scaled, ds_coef_exp, ds_coef_man;
1646 u32 clockMhzScaled = 0x64000000;
1647 struct chan_centers centers;
1648
1649 if (IS_CHAN_HALF_RATE(chan))
1650 clockMhzScaled = clockMhzScaled >> 1;
1651 else if (IS_CHAN_QUARTER_RATE(chan))
1652 clockMhzScaled = clockMhzScaled >> 2;
1653
1654 ath9k_hw_get_channel_centers(ah, chan, &centers);
1655 coef_scaled = clockMhzScaled / centers.synth_center;
1656
1657 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1658 &ds_coef_exp);
1659
1660 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1661 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1662 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1663 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1664
1665 coef_scaled = (9 * coef_scaled) / 10;
1666
1667 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1668 &ds_coef_exp);
1669
1670 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1671 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1672 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1673 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1674 }
1675
1676 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1677 {
1678 u32 rst_flags;
1679 u32 tmpReg;
1680
1681 if (AR_SREV_9100(ah)) {
1682 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1683 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1684 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1685 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1686 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1687 }
1688
1689 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1690 AR_RTC_FORCE_WAKE_ON_INT);
1691
1692 if (AR_SREV_9100(ah)) {
1693 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1694 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1695 } else {
1696 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1697 if (tmpReg &
1698 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1699 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1700 u32 val;
1701 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1702
1703 val = AR_RC_HOSTIF;
1704 if (!AR_SREV_9300_20_OR_LATER(ah))
1705 val |= AR_RC_AHB;
1706 REG_WRITE(ah, AR_RC, val);
1707
1708 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1709 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1710
1711 rst_flags = AR_RTC_RC_MAC_WARM;
1712 if (type == ATH9K_RESET_COLD)
1713 rst_flags |= AR_RTC_RC_MAC_COLD;
1714 }
1715
1716 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1717 udelay(50);
1718
1719 REG_WRITE(ah, AR_RTC_RC, 0);
1720 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1721 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1722 "RTC stuck in MAC reset\n");
1723 return false;
1724 }
1725
1726 if (!AR_SREV_9100(ah))
1727 REG_WRITE(ah, AR_RC, 0);
1728
1729 if (AR_SREV_9100(ah))
1730 udelay(50);
1731
1732 return true;
1733 }
1734
1735 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1736 {
1737 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1738 AR_RTC_FORCE_WAKE_ON_INT);
1739
1740 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1741 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1742
1743 REG_WRITE(ah, AR_RTC_RESET, 0);
1744 udelay(2);
1745
1746 if (!AR_SREV_9100(ah))
1747 REG_WRITE(ah, AR_RC, 0);
1748
1749 REG_WRITE(ah, AR_RTC_RESET, 1);
1750
1751 if (!ath9k_hw_wait(ah,
1752 AR_RTC_STATUS,
1753 AR_RTC_STATUS_M,
1754 AR_RTC_STATUS_ON,
1755 AH_WAIT_TIMEOUT)) {
1756 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1757 "RTC not waking up\n");
1758 return false;
1759 }
1760
1761 ath9k_hw_read_revisions(ah);
1762
1763 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1764 }
1765
1766 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1767 {
1768 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1769 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1770
1771 switch (type) {
1772 case ATH9K_RESET_POWER_ON:
1773 return ath9k_hw_set_reset_power_on(ah);
1774 case ATH9K_RESET_WARM:
1775 case ATH9K_RESET_COLD:
1776 return ath9k_hw_set_reset(ah, type);
1777 default:
1778 return false;
1779 }
1780 }
1781
1782 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1783 {
1784 u32 phymode;
1785 u32 enableDacFifo = 0;
1786
1787 if (AR_SREV_9285_10_OR_LATER(ah))
1788 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1789 AR_PHY_FC_ENABLE_DAC_FIFO);
1790
1791 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1792 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1793
1794 if (IS_CHAN_HT40(chan)) {
1795 phymode |= AR_PHY_FC_DYN2040_EN;
1796
1797 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1798 (chan->chanmode == CHANNEL_G_HT40PLUS))
1799 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1800
1801 }
1802 REG_WRITE(ah, AR_PHY_TURBO, phymode);
1803
1804 ath9k_hw_set11nmac2040(ah);
1805
1806 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1807 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1808 }
1809
1810 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1811 struct ath9k_channel *chan)
1812 {
1813 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1814 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1815 return false;
1816 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1817 return false;
1818
1819 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1820 return false;
1821
1822 ah->chip_fullsleep = false;
1823 ath9k_hw_init_pll(ah, chan);
1824 ath9k_hw_set_rfmode(ah, chan);
1825
1826 return true;
1827 }
1828
1829 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1830 struct ath9k_channel *chan)
1831 {
1832 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1833 struct ath_common *common = ath9k_hw_common(ah);
1834 struct ieee80211_channel *channel = chan->chan;
1835 u32 synthDelay, qnum;
1836 int r;
1837
1838 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1839 if (ath9k_hw_numtxpending(ah, qnum)) {
1840 ath_print(common, ATH_DBG_QUEUE,
1841 "Transmit frames pending on "
1842 "queue %d\n", qnum);
1843 return false;
1844 }
1845 }
1846
1847 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1848 if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1849 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1850 ath_print(common, ATH_DBG_FATAL,
1851 "Could not kill baseband RX\n");
1852 return false;
1853 }
1854
1855 ath9k_hw_set_regs(ah, chan);
1856
1857 r = ah->ath9k_hw_rf_set_freq(ah, chan);
1858 if (r) {
1859 ath_print(common, ATH_DBG_FATAL,
1860 "Failed to set channel\n");
1861 return false;
1862 }
1863
1864 ah->eep_ops->set_txpower(ah, chan,
1865 ath9k_regd_get_ctl(regulatory, chan),
1866 channel->max_antenna_gain * 2,
1867 channel->max_power * 2,
1868 min((u32) MAX_RATE_POWER,
1869 (u32) regulatory->power_limit));
1870
1871 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1872 if (IS_CHAN_B(chan))
1873 synthDelay = (4 * synthDelay) / 22;
1874 else
1875 synthDelay /= 10;
1876
1877 udelay(synthDelay + BASE_ACTIVATE_DELAY);
1878
1879 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1880
1881 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1882 ath9k_hw_set_delta_slope(ah, chan);
1883
1884 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1885
1886 if (!chan->oneTimeCalsDone)
1887 chan->oneTimeCalsDone = true;
1888
1889 return true;
1890 }
1891
1892 static void ath9k_enable_rfkill(struct ath_hw *ah)
1893 {
1894 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1895 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1896
1897 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1898 AR_GPIO_INPUT_MUX2_RFSILENT);
1899
1900 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1901 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1902 }
1903
1904 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1905 bool bChannelChange)
1906 {
1907 struct ath_common *common = ath9k_hw_common(ah);
1908 u32 saveLedState;
1909 struct ath9k_channel *curchan = ah->curchan;
1910 u32 saveDefAntenna;
1911 u32 macStaId1;
1912 u64 tsf = 0;
1913 int i, rx_chainmask, r;
1914
1915 ah->txchainmask = common->tx_chainmask;
1916 ah->rxchainmask = common->rx_chainmask;
1917
1918 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1919 return -EIO;
1920
1921 if (curchan && !ah->chip_fullsleep)
1922 ath9k_hw_getnf(ah, curchan);
1923
1924 if (bChannelChange &&
1925 (ah->chip_fullsleep != true) &&
1926 (ah->curchan != NULL) &&
1927 (chan->channel != ah->curchan->channel) &&
1928 ((chan->channelFlags & CHANNEL_ALL) ==
1929 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1930 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1931 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1932
1933 if (ath9k_hw_channel_change(ah, chan)) {
1934 ath9k_hw_loadnf(ah, ah->curchan);
1935 ath9k_hw_start_nfcal(ah);
1936 return 0;
1937 }
1938 }
1939
1940 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1941 if (saveDefAntenna == 0)
1942 saveDefAntenna = 1;
1943
1944 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1945
1946 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1947 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1948 tsf = ath9k_hw_gettsf64(ah);
1949
1950 saveLedState = REG_READ(ah, AR_CFG_LED) &
1951 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1952 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1953
1954 ath9k_hw_mark_phy_inactive(ah);
1955
1956 /* Only required on the first reset */
1957 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1958 REG_WRITE(ah,
1959 AR9271_RESET_POWER_DOWN_CONTROL,
1960 AR9271_RADIO_RF_RST);
1961 udelay(50);
1962 }
1963
1964 if (!ath9k_hw_chip_reset(ah, chan)) {
1965 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1966 return -EINVAL;
1967 }
1968
1969 /* Only required on the first reset */
1970 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1971 ah->htc_reset_init = false;
1972 REG_WRITE(ah,
1973 AR9271_RESET_POWER_DOWN_CONTROL,
1974 AR9271_GATE_MAC_CTL);
1975 udelay(50);
1976 }
1977
1978 /* Restore TSF */
1979 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1980 ath9k_hw_settsf64(ah, tsf);
1981
1982 if (AR_SREV_9280_10_OR_LATER(ah))
1983 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1984
1985 if (AR_SREV_9287_12_OR_LATER(ah)) {
1986 /* Enable ASYNC FIFO */
1987 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1988 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1989 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
1990 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1991 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1992 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1993 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1994 }
1995 r = ath9k_hw_process_ini(ah, chan);
1996 if (r)
1997 return r;
1998
1999 /* Setup MFP options for CCMP */
2000 if (AR_SREV_9280_20_OR_LATER(ah)) {
2001 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2002 * frames when constructing CCMP AAD. */
2003 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2004 0xc7ff);
2005 ah->sw_mgmt_crypto = false;
2006 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2007 /* Disable hardware crypto for management frames */
2008 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2009 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2010 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2011 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2012 ah->sw_mgmt_crypto = true;
2013 } else
2014 ah->sw_mgmt_crypto = true;
2015
2016 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2017 ath9k_hw_set_delta_slope(ah, chan);
2018
2019 ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2020 ah->eep_ops->set_board_values(ah, chan);
2021
2022 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2023 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2024 | macStaId1
2025 | AR_STA_ID1_RTS_USE_DEF
2026 | (ah->config.
2027 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2028 | ah->sta_id1_defaults);
2029 ath9k_hw_set_operating_mode(ah, ah->opmode);
2030
2031 ath_hw_setbssidmask(common);
2032
2033 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2034
2035 ath9k_hw_write_associd(ah);
2036
2037 REG_WRITE(ah, AR_ISR, ~0);
2038
2039 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2040
2041 r = ah->ath9k_hw_rf_set_freq(ah, chan);
2042 if (r)
2043 return r;
2044
2045 for (i = 0; i < AR_NUM_DCU; i++)
2046 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2047
2048 ah->intr_txqs = 0;
2049 for (i = 0; i < ah->caps.total_queues; i++)
2050 ath9k_hw_resettxqueue(ah, i);
2051
2052 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2053 ath9k_hw_init_qos(ah);
2054
2055 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2056 ath9k_enable_rfkill(ah);
2057
2058 ath9k_hw_init_global_settings(ah);
2059
2060 if (AR_SREV_9287_12_OR_LATER(ah)) {
2061 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2062 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2063 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2064 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2065 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2066 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2067
2068 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2069 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2070
2071 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2072 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2073 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2074 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2075 }
2076 if (AR_SREV_9287_12_OR_LATER(ah)) {
2077 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2078 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2079 }
2080
2081 REG_WRITE(ah, AR_STA_ID1,
2082 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2083
2084 ath9k_hw_set_dma(ah);
2085
2086 REG_WRITE(ah, AR_OBS, 8);
2087
2088 if (ah->config.rx_intr_mitigation) {
2089 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2090 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2091 }
2092
2093 ath9k_hw_init_bb(ah, chan);
2094
2095 if (!ath9k_hw_init_cal(ah, chan))
2096 return -EIO;
2097
2098 rx_chainmask = ah->rxchainmask;
2099 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2100 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2101 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2102 }
2103
2104 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2105
2106 /*
2107 * For big endian systems turn on swapping for descriptors
2108 */
2109 if (AR_SREV_9100(ah)) {
2110 u32 mask;
2111 mask = REG_READ(ah, AR_CFG);
2112 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2113 ath_print(common, ATH_DBG_RESET,
2114 "CFG Byte Swap Set 0x%x\n", mask);
2115 } else {
2116 mask =
2117 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2118 REG_WRITE(ah, AR_CFG, mask);
2119 ath_print(common, ATH_DBG_RESET,
2120 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2121 }
2122 } else {
2123 /* Configure AR9271 target WLAN */
2124 if (AR_SREV_9271(ah))
2125 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2126 #ifdef __BIG_ENDIAN
2127 else
2128 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2129 #endif
2130 }
2131
2132 if (ah->btcoex_hw.enabled)
2133 ath9k_hw_btcoex_enable(ah);
2134
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(ath9k_hw_reset);
2138
2139 /************************/
2140 /* Key Cache Management */
2141 /************************/
2142
2143 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2144 {
2145 u32 keyType;
2146
2147 if (entry >= ah->caps.keycache_size) {
2148 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2149 "keychache entry %u out of range\n", entry);
2150 return false;
2151 }
2152
2153 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2154
2155 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2156 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2157 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2158 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2159 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2160 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2161 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2162 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2163
2164 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2165 u16 micentry = entry + 64;
2166
2167 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2168 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2169 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2170 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2171
2172 }
2173
2174 return true;
2175 }
2176 EXPORT_SYMBOL(ath9k_hw_keyreset);
2177
2178 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2179 {
2180 u32 macHi, macLo;
2181
2182 if (entry >= ah->caps.keycache_size) {
2183 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2184 "keychache entry %u out of range\n", entry);
2185 return false;
2186 }
2187
2188 if (mac != NULL) {
2189 macHi = (mac[5] << 8) | mac[4];
2190 macLo = (mac[3] << 24) |
2191 (mac[2] << 16) |
2192 (mac[1] << 8) |
2193 mac[0];
2194 macLo >>= 1;
2195 macLo |= (macHi & 1) << 31;
2196 macHi >>= 1;
2197 } else {
2198 macLo = macHi = 0;
2199 }
2200 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2201 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2202
2203 return true;
2204 }
2205 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2206
2207 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2208 const struct ath9k_keyval *k,
2209 const u8 *mac)
2210 {
2211 const struct ath9k_hw_capabilities *pCap = &ah->caps;
2212 struct ath_common *common = ath9k_hw_common(ah);
2213 u32 key0, key1, key2, key3, key4;
2214 u32 keyType;
2215
2216 if (entry >= pCap->keycache_size) {
2217 ath_print(common, ATH_DBG_FATAL,
2218 "keycache entry %u out of range\n", entry);
2219 return false;
2220 }
2221
2222 switch (k->kv_type) {
2223 case ATH9K_CIPHER_AES_OCB:
2224 keyType = AR_KEYTABLE_TYPE_AES;
2225 break;
2226 case ATH9K_CIPHER_AES_CCM:
2227 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2228 ath_print(common, ATH_DBG_ANY,
2229 "AES-CCM not supported by mac rev 0x%x\n",
2230 ah->hw_version.macRev);
2231 return false;
2232 }
2233 keyType = AR_KEYTABLE_TYPE_CCM;
2234 break;
2235 case ATH9K_CIPHER_TKIP:
2236 keyType = AR_KEYTABLE_TYPE_TKIP;
2237 if (ATH9K_IS_MIC_ENABLED(ah)
2238 && entry + 64 >= pCap->keycache_size) {
2239 ath_print(common, ATH_DBG_ANY,
2240 "entry %u inappropriate for TKIP\n", entry);
2241 return false;
2242 }
2243 break;
2244 case ATH9K_CIPHER_WEP:
2245 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2246 ath_print(common, ATH_DBG_ANY,
2247 "WEP key length %u too small\n", k->kv_len);
2248 return false;
2249 }
2250 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2251 keyType = AR_KEYTABLE_TYPE_40;
2252 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2253 keyType = AR_KEYTABLE_TYPE_104;
2254 else
2255 keyType = AR_KEYTABLE_TYPE_128;
2256 break;
2257 case ATH9K_CIPHER_CLR:
2258 keyType = AR_KEYTABLE_TYPE_CLR;
2259 break;
2260 default:
2261 ath_print(common, ATH_DBG_FATAL,
2262 "cipher %u not supported\n", k->kv_type);
2263 return false;
2264 }
2265
2266 key0 = get_unaligned_le32(k->kv_val + 0);
2267 key1 = get_unaligned_le16(k->kv_val + 4);
2268 key2 = get_unaligned_le32(k->kv_val + 6);
2269 key3 = get_unaligned_le16(k->kv_val + 10);
2270 key4 = get_unaligned_le32(k->kv_val + 12);
2271 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2272 key4 &= 0xff;
2273
2274 /*
2275 * Note: Key cache registers access special memory area that requires
2276 * two 32-bit writes to actually update the values in the internal
2277 * memory. Consequently, the exact order and pairs used here must be
2278 * maintained.
2279 */
2280
2281 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2282 u16 micentry = entry + 64;
2283
2284 /*
2285 * Write inverted key[47:0] first to avoid Michael MIC errors
2286 * on frames that could be sent or received at the same time.
2287 * The correct key will be written in the end once everything
2288 * else is ready.
2289 */
2290 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2291 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2292
2293 /* Write key[95:48] */
2294 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2295 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2296
2297 /* Write key[127:96] and key type */
2298 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2299 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2300
2301 /* Write MAC address for the entry */
2302 (void) ath9k_hw_keysetmac(ah, entry, mac);
2303
2304 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2305 /*
2306 * TKIP uses two key cache entries:
2307 * Michael MIC TX/RX keys in the same key cache entry
2308 * (idx = main index + 64):
2309 * key0 [31:0] = RX key [31:0]
2310 * key1 [15:0] = TX key [31:16]
2311 * key1 [31:16] = reserved
2312 * key2 [31:0] = RX key [63:32]
2313 * key3 [15:0] = TX key [15:0]
2314 * key3 [31:16] = reserved
2315 * key4 [31:0] = TX key [63:32]
2316 */
2317 u32 mic0, mic1, mic2, mic3, mic4;
2318
2319 mic0 = get_unaligned_le32(k->kv_mic + 0);
2320 mic2 = get_unaligned_le32(k->kv_mic + 4);
2321 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2322 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2323 mic4 = get_unaligned_le32(k->kv_txmic + 4);
2324
2325 /* Write RX[31:0] and TX[31:16] */
2326 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2327 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2328
2329 /* Write RX[63:32] and TX[15:0] */
2330 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2331 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2332
2333 /* Write TX[63:32] and keyType(reserved) */
2334 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2335 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2336 AR_KEYTABLE_TYPE_CLR);
2337
2338 } else {
2339 /*
2340 * TKIP uses four key cache entries (two for group
2341 * keys):
2342 * Michael MIC TX/RX keys are in different key cache
2343 * entries (idx = main index + 64 for TX and
2344 * main index + 32 + 96 for RX):
2345 * key0 [31:0] = TX/RX MIC key [31:0]
2346 * key1 [31:0] = reserved
2347 * key2 [31:0] = TX/RX MIC key [63:32]
2348 * key3 [31:0] = reserved
2349 * key4 [31:0] = reserved
2350 *
2351 * Upper layer code will call this function separately
2352 * for TX and RX keys when these registers offsets are
2353 * used.
2354 */
2355 u32 mic0, mic2;
2356
2357 mic0 = get_unaligned_le32(k->kv_mic + 0);
2358 mic2 = get_unaligned_le32(k->kv_mic + 4);
2359
2360 /* Write MIC key[31:0] */
2361 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2362 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2363
2364 /* Write MIC key[63:32] */
2365 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2366 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2367
2368 /* Write TX[63:32] and keyType(reserved) */
2369 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2370 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2371 AR_KEYTABLE_TYPE_CLR);
2372 }
2373
2374 /* MAC address registers are reserved for the MIC entry */
2375 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2376 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2377
2378 /*
2379 * Write the correct (un-inverted) key[47:0] last to enable
2380 * TKIP now that all other registers are set with correct
2381 * values.
2382 */
2383 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2384 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2385 } else {
2386 /* Write key[47:0] */
2387 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2388 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2389
2390 /* Write key[95:48] */
2391 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2392 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2393
2394 /* Write key[127:96] and key type */
2395 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2396 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2397
2398 /* Write MAC address for the entry */
2399 (void) ath9k_hw_keysetmac(ah, entry, mac);
2400 }
2401
2402 return true;
2403 }
2404 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2405
2406 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2407 {
2408 if (entry < ah->caps.keycache_size) {
2409 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2410 if (val & AR_KEYTABLE_VALID)
2411 return true;
2412 }
2413 return false;
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2416
2417 /******************************/
2418 /* Power Management (Chipset) */
2419 /******************************/
2420
2421 /*
2422 * Notify Power Mgt is disabled in self-generated frames.
2423 * If requested, force chip to sleep.
2424 */
2425 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2426 {
2427 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2428 if (setChip) {
2429 /*
2430 * Clear the RTC force wake bit to allow the
2431 * mac to go to sleep.
2432 */
2433 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2434 AR_RTC_FORCE_WAKE_EN);
2435 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2436 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2437
2438 /* Shutdown chip. Active low */
2439 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2440 REG_CLR_BIT(ah, (AR_RTC_RESET),
2441 AR_RTC_RESET_EN);
2442 }
2443 }
2444
2445 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2446 {
2447 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2448 if (setChip) {
2449 struct ath9k_hw_capabilities *pCap = &ah->caps;
2450
2451 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2452 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2453 AR_RTC_FORCE_WAKE_ON_INT);
2454 } else {
2455 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2456 AR_RTC_FORCE_WAKE_EN);
2457 }
2458 }
2459 }
2460
2461 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2462 {
2463 u32 val;
2464 int i;
2465
2466 if (setChip) {
2467 if ((REG_READ(ah, AR_RTC_STATUS) &
2468 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2469 if (ath9k_hw_set_reset_reg(ah,
2470 ATH9K_RESET_POWER_ON) != true) {
2471 return false;
2472 }
2473 ath9k_hw_init_pll(ah, NULL);
2474 }
2475 if (AR_SREV_9100(ah))
2476 REG_SET_BIT(ah, AR_RTC_RESET,
2477 AR_RTC_RESET_EN);
2478
2479 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2480 AR_RTC_FORCE_WAKE_EN);
2481 udelay(50);
2482
2483 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2484 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2485 if (val == AR_RTC_STATUS_ON)
2486 break;
2487 udelay(50);
2488 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2489 AR_RTC_FORCE_WAKE_EN);
2490 }
2491 if (i == 0) {
2492 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2493 "Failed to wakeup in %uus\n",
2494 POWER_UP_TIME / 20);
2495 return false;
2496 }
2497 }
2498
2499 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2500
2501 return true;
2502 }
2503
2504 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2505 {
2506 struct ath_common *common = ath9k_hw_common(ah);
2507 int status = true, setChip = true;
2508 static const char *modes[] = {
2509 "AWAKE",
2510 "FULL-SLEEP",
2511 "NETWORK SLEEP",
2512 "UNDEFINED"
2513 };
2514
2515 if (ah->power_mode == mode)
2516 return status;
2517
2518 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2519 modes[ah->power_mode], modes[mode]);
2520
2521 switch (mode) {
2522 case ATH9K_PM_AWAKE:
2523 status = ath9k_hw_set_power_awake(ah, setChip);
2524 break;
2525 case ATH9K_PM_FULL_SLEEP:
2526 ath9k_set_power_sleep(ah, setChip);
2527 ah->chip_fullsleep = true;
2528 break;
2529 case ATH9K_PM_NETWORK_SLEEP:
2530 ath9k_set_power_network_sleep(ah, setChip);
2531 break;
2532 default:
2533 ath_print(common, ATH_DBG_FATAL,
2534 "Unknown power mode %u\n", mode);
2535 return false;
2536 }
2537 ah->power_mode = mode;
2538
2539 return status;
2540 }
2541 EXPORT_SYMBOL(ath9k_hw_setpower);
2542
2543 /*
2544 * Helper for ASPM support.
2545 *
2546 * Disable PLL when in L0s as well as receiver clock when in L1.
2547 * This power saving option must be enabled through the SerDes.
2548 *
2549 * Programming the SerDes must go through the same 288 bit serial shift
2550 * register as the other analog registers. Hence the 9 writes.
2551 */
2552 static void ar9002_hw_configpcipowersave(struct ath_hw *ah,
2553 int restore,
2554 int power_off)
2555 {
2556 u8 i;
2557 u32 val;
2558
2559 if (ah->is_pciexpress != true)
2560 return;
2561
2562 /* Do not touch SerDes registers */
2563 if (ah->config.pcie_powersave_enable == 2)
2564 return;
2565
2566 /* Nothing to do on restore for 11N */
2567 if (!restore) {
2568 if (AR_SREV_9280_20_OR_LATER(ah)) {
2569 /*
2570 * AR9280 2.0 or later chips use SerDes values from the
2571 * initvals.h initialized depending on chipset during
2572 * __ath9k_hw_init()
2573 */
2574 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2575 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2576 INI_RA(&ah->iniPcieSerdes, i, 1));
2577 }
2578 } else if (AR_SREV_9280(ah) &&
2579 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2580 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2581 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2582
2583 /* RX shut off when elecidle is asserted */
2584 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2585 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2586 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2587
2588 /* Shut off CLKREQ active in L1 */
2589 if (ah->config.pcie_clock_req)
2590 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2591 else
2592 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2593
2594 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2595 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2596 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2597
2598 /* Load the new settings */
2599 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2600
2601 } else {
2602 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2603 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2604
2605 /* RX shut off when elecidle is asserted */
2606 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2607 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2608 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2609
2610 /*
2611 * Ignore ah->ah_config.pcie_clock_req setting for
2612 * pre-AR9280 11n
2613 */
2614 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2615
2616 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2617 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2618 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2619
2620 /* Load the new settings */
2621 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2622 }
2623
2624 udelay(1000);
2625
2626 /* set bit 19 to allow forcing of pcie core into L1 state */
2627 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2628
2629 /* Several PCIe massages to ensure proper behaviour */
2630 if (ah->config.pcie_waen) {
2631 val = ah->config.pcie_waen;
2632 if (!power_off)
2633 val &= (~AR_WA_D3_L1_DISABLE);
2634 } else {
2635 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2636 AR_SREV_9287(ah)) {
2637 val = AR9285_WA_DEFAULT;
2638 if (!power_off)
2639 val &= (~AR_WA_D3_L1_DISABLE);
2640 } else if (AR_SREV_9280(ah)) {
2641 /*
2642 * On AR9280 chips bit 22 of 0x4004 needs to be
2643 * set otherwise card may disappear.
2644 */
2645 val = AR9280_WA_DEFAULT;
2646 if (!power_off)
2647 val &= (~AR_WA_D3_L1_DISABLE);
2648 } else
2649 val = AR_WA_DEFAULT;
2650 }
2651
2652 REG_WRITE(ah, AR_WA, val);
2653 }
2654
2655 if (power_off) {
2656 /*
2657 * Set PCIe workaround bits
2658 * bit 14 in WA register (disable L1) should only
2659 * be set when device enters D3 and be cleared
2660 * when device comes back to D0.
2661 */
2662 if (ah->config.pcie_waen) {
2663 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2664 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2665 } else {
2666 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2667 AR_SREV_9287(ah)) &&
2668 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2669 (AR_SREV_9280(ah) &&
2670 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2671 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2672 }
2673 }
2674 }
2675 }
2676
2677 /**********************/
2678 /* Interrupt Handling */
2679 /**********************/
2680
2681 bool ath9k_hw_intrpend(struct ath_hw *ah)
2682 {
2683 u32 host_isr;
2684
2685 if (AR_SREV_9100(ah))
2686 return true;
2687
2688 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2689 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2690 return true;
2691
2692 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2693 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2694 && (host_isr != AR_INTR_SPURIOUS))
2695 return true;
2696
2697 return false;
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_intrpend);
2700
2701 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2702 {
2703 u32 isr = 0;
2704 u32 mask2 = 0;
2705 struct ath9k_hw_capabilities *pCap = &ah->caps;
2706 u32 sync_cause = 0;
2707 bool fatal_int = false;
2708 struct ath_common *common = ath9k_hw_common(ah);
2709
2710 if (!AR_SREV_9100(ah)) {
2711 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2712 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2713 == AR_RTC_STATUS_ON) {
2714 isr = REG_READ(ah, AR_ISR);
2715 }
2716 }
2717
2718 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2719 AR_INTR_SYNC_DEFAULT;
2720
2721 *masked = 0;
2722
2723 if (!isr && !sync_cause)
2724 return false;
2725 } else {
2726 *masked = 0;
2727 isr = REG_READ(ah, AR_ISR);
2728 }
2729
2730 if (isr) {
2731 if (isr & AR_ISR_BCNMISC) {
2732 u32 isr2;
2733 isr2 = REG_READ(ah, AR_ISR_S2);
2734 if (isr2 & AR_ISR_S2_TIM)
2735 mask2 |= ATH9K_INT_TIM;
2736 if (isr2 & AR_ISR_S2_DTIM)
2737 mask2 |= ATH9K_INT_DTIM;
2738 if (isr2 & AR_ISR_S2_DTIMSYNC)
2739 mask2 |= ATH9K_INT_DTIMSYNC;
2740 if (isr2 & (AR_ISR_S2_CABEND))
2741 mask2 |= ATH9K_INT_CABEND;
2742 if (isr2 & AR_ISR_S2_GTT)
2743 mask2 |= ATH9K_INT_GTT;
2744 if (isr2 & AR_ISR_S2_CST)
2745 mask2 |= ATH9K_INT_CST;
2746 if (isr2 & AR_ISR_S2_TSFOOR)
2747 mask2 |= ATH9K_INT_TSFOOR;
2748 }
2749
2750 isr = REG_READ(ah, AR_ISR_RAC);
2751 if (isr == 0xffffffff) {
2752 *masked = 0;
2753 return false;
2754 }
2755
2756 *masked = isr & ATH9K_INT_COMMON;
2757
2758 if (ah->config.rx_intr_mitigation) {
2759 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2760 *masked |= ATH9K_INT_RX;
2761 }
2762
2763 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2764 *masked |= ATH9K_INT_RX;
2765 if (isr &
2766 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2767 AR_ISR_TXEOL)) {
2768 u32 s0_s, s1_s;
2769
2770 *masked |= ATH9K_INT_TX;
2771
2772 s0_s = REG_READ(ah, AR_ISR_S0_S);
2773 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2774 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2775
2776 s1_s = REG_READ(ah, AR_ISR_S1_S);
2777 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2778 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2779 }
2780
2781 if (isr & AR_ISR_RXORN) {
2782 ath_print(common, ATH_DBG_INTERRUPT,
2783 "receive FIFO overrun interrupt\n");
2784 }
2785
2786 if (!AR_SREV_9100(ah)) {
2787 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2788 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2789 if (isr5 & AR_ISR_S5_TIM_TIMER)
2790 *masked |= ATH9K_INT_TIM_TIMER;
2791 }
2792 }
2793
2794 *masked |= mask2;
2795 }
2796
2797 if (AR_SREV_9100(ah))
2798 return true;
2799
2800 if (isr & AR_ISR_GENTMR) {
2801 u32 s5_s;
2802
2803 s5_s = REG_READ(ah, AR_ISR_S5_S);
2804 if (isr & AR_ISR_GENTMR) {
2805 ah->intr_gen_timer_trigger =
2806 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2807
2808 ah->intr_gen_timer_thresh =
2809 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2810
2811 if (ah->intr_gen_timer_trigger)
2812 *masked |= ATH9K_INT_GENTIMER;
2813
2814 }
2815 }
2816
2817 if (sync_cause) {
2818 fatal_int =
2819 (sync_cause &
2820 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2821 ? true : false;
2822
2823 if (fatal_int) {
2824 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2825 ath_print(common, ATH_DBG_ANY,
2826 "received PCI FATAL interrupt\n");
2827 }
2828 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2829 ath_print(common, ATH_DBG_ANY,
2830 "received PCI PERR interrupt\n");
2831 }
2832 *masked |= ATH9K_INT_FATAL;
2833 }
2834 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2835 ath_print(common, ATH_DBG_INTERRUPT,
2836 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2837 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2838 REG_WRITE(ah, AR_RC, 0);
2839 *masked |= ATH9K_INT_FATAL;
2840 }
2841 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2842 ath_print(common, ATH_DBG_INTERRUPT,
2843 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2844 }
2845
2846 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2847 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2848 }
2849
2850 return true;
2851 }
2852 EXPORT_SYMBOL(ath9k_hw_getisr);
2853
2854 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2855 {
2856 enum ath9k_int omask = ah->imask;
2857 u32 mask, mask2;
2858 struct ath9k_hw_capabilities *pCap = &ah->caps;
2859 struct ath_common *common = ath9k_hw_common(ah);
2860
2861 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2862
2863 if (omask & ATH9K_INT_GLOBAL) {
2864 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2865 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2866 (void) REG_READ(ah, AR_IER);
2867 if (!AR_SREV_9100(ah)) {
2868 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2869 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2870
2871 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2872 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2873 }
2874 }
2875
2876 mask = ints & ATH9K_INT_COMMON;
2877 mask2 = 0;
2878
2879 if (ints & ATH9K_INT_TX) {
2880 if (ah->txok_interrupt_mask)
2881 mask |= AR_IMR_TXOK;
2882 if (ah->txdesc_interrupt_mask)
2883 mask |= AR_IMR_TXDESC;
2884 if (ah->txerr_interrupt_mask)
2885 mask |= AR_IMR_TXERR;
2886 if (ah->txeol_interrupt_mask)
2887 mask |= AR_IMR_TXEOL;
2888 }
2889 if (ints & ATH9K_INT_RX) {
2890 mask |= AR_IMR_RXERR;
2891 if (ah->config.rx_intr_mitigation)
2892 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2893 else
2894 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2895 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2896 mask |= AR_IMR_GENTMR;
2897 }
2898
2899 if (ints & (ATH9K_INT_BMISC)) {
2900 mask |= AR_IMR_BCNMISC;
2901 if (ints & ATH9K_INT_TIM)
2902 mask2 |= AR_IMR_S2_TIM;
2903 if (ints & ATH9K_INT_DTIM)
2904 mask2 |= AR_IMR_S2_DTIM;
2905 if (ints & ATH9K_INT_DTIMSYNC)
2906 mask2 |= AR_IMR_S2_DTIMSYNC;
2907 if (ints & ATH9K_INT_CABEND)
2908 mask2 |= AR_IMR_S2_CABEND;
2909 if (ints & ATH9K_INT_TSFOOR)
2910 mask2 |= AR_IMR_S2_TSFOOR;
2911 }
2912
2913 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2914 mask |= AR_IMR_BCNMISC;
2915 if (ints & ATH9K_INT_GTT)
2916 mask2 |= AR_IMR_S2_GTT;
2917 if (ints & ATH9K_INT_CST)
2918 mask2 |= AR_IMR_S2_CST;
2919 }
2920
2921 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2922 REG_WRITE(ah, AR_IMR, mask);
2923 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2924 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2925 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2926 ah->imrs2_reg |= mask2;
2927 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2928
2929 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2930 if (ints & ATH9K_INT_TIM_TIMER)
2931 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2932 else
2933 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2934 }
2935
2936 if (ints & ATH9K_INT_GLOBAL) {
2937 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2938 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2939 if (!AR_SREV_9100(ah)) {
2940 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2941 AR_INTR_MAC_IRQ);
2942 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2943
2944
2945 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2946 AR_INTR_SYNC_DEFAULT);
2947 REG_WRITE(ah, AR_INTR_SYNC_MASK,
2948 AR_INTR_SYNC_DEFAULT);
2949 }
2950 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2951 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2952 }
2953
2954 return omask;
2955 }
2956 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2957
2958 /*******************/
2959 /* Beacon Handling */
2960 /*******************/
2961
2962 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2963 {
2964 int flags = 0;
2965
2966 ah->beacon_interval = beacon_period;
2967
2968 switch (ah->opmode) {
2969 case NL80211_IFTYPE_STATION:
2970 case NL80211_IFTYPE_MONITOR:
2971 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2972 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2973 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2974 flags |= AR_TBTT_TIMER_EN;
2975 break;
2976 case NL80211_IFTYPE_ADHOC:
2977 case NL80211_IFTYPE_MESH_POINT:
2978 REG_SET_BIT(ah, AR_TXCFG,
2979 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2980 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2981 TU_TO_USEC(next_beacon +
2982 (ah->atim_window ? ah->
2983 atim_window : 1)));
2984 flags |= AR_NDP_TIMER_EN;
2985 case NL80211_IFTYPE_AP:
2986 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2987 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2988 TU_TO_USEC(next_beacon -
2989 ah->config.
2990 dma_beacon_response_time));
2991 REG_WRITE(ah, AR_NEXT_SWBA,
2992 TU_TO_USEC(next_beacon -
2993 ah->config.
2994 sw_beacon_response_time));
2995 flags |=
2996 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2997 break;
2998 default:
2999 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3000 "%s: unsupported opmode: %d\n",
3001 __func__, ah->opmode);
3002 return;
3003 break;
3004 }
3005
3006 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3007 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3008 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3009 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3010
3011 beacon_period &= ~ATH9K_BEACON_ENA;
3012 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3013 ath9k_hw_reset_tsf(ah);
3014 }
3015
3016 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3017 }
3018 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3019
3020 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3021 const struct ath9k_beacon_state *bs)
3022 {
3023 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3024 struct ath9k_hw_capabilities *pCap = &ah->caps;
3025 struct ath_common *common = ath9k_hw_common(ah);
3026
3027 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3028
3029 REG_WRITE(ah, AR_BEACON_PERIOD,
3030 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3031 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3032 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3033
3034 REG_RMW_FIELD(ah, AR_RSSI_THR,
3035 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3036
3037 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3038
3039 if (bs->bs_sleepduration > beaconintval)
3040 beaconintval = bs->bs_sleepduration;
3041
3042 dtimperiod = bs->bs_dtimperiod;
3043 if (bs->bs_sleepduration > dtimperiod)
3044 dtimperiod = bs->bs_sleepduration;
3045
3046 if (beaconintval == dtimperiod)
3047 nextTbtt = bs->bs_nextdtim;
3048 else
3049 nextTbtt = bs->bs_nexttbtt;
3050
3051 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3052 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3053 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3054 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3055
3056 REG_WRITE(ah, AR_NEXT_DTIM,
3057 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3058 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3059
3060 REG_WRITE(ah, AR_SLEEP1,
3061 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3062 | AR_SLEEP1_ASSUME_DTIM);
3063
3064 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3065 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3066 else
3067 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3068
3069 REG_WRITE(ah, AR_SLEEP2,
3070 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3071
3072 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3073 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3074
3075 REG_SET_BIT(ah, AR_TIMER_MODE,
3076 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3077 AR_DTIM_TIMER_EN);
3078
3079 /* TSF Out of Range Threshold */
3080 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3081 }
3082 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3083
3084 /*******************/
3085 /* HW Capabilities */
3086 /*******************/
3087
3088 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3089 {
3090 struct ath9k_hw_capabilities *pCap = &ah->caps;
3091 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3092 struct ath_common *common = ath9k_hw_common(ah);
3093 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3094
3095 u16 capField = 0, eeval;
3096
3097 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3098 regulatory->current_rd = eeval;
3099
3100 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3101 if (AR_SREV_9285_10_OR_LATER(ah))
3102 eeval |= AR9285_RDEXT_DEFAULT;
3103 regulatory->current_rd_ext = eeval;
3104
3105 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3106
3107 if (ah->opmode != NL80211_IFTYPE_AP &&
3108 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3109 if (regulatory->current_rd == 0x64 ||
3110 regulatory->current_rd == 0x65)
3111 regulatory->current_rd += 5;
3112 else if (regulatory->current_rd == 0x41)
3113 regulatory->current_rd = 0x43;
3114 ath_print(common, ATH_DBG_REGULATORY,
3115 "regdomain mapped to 0x%x\n", regulatory->current_rd);
3116 }
3117
3118 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3119 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3120 ath_print(common, ATH_DBG_FATAL,
3121 "no band has been marked as supported in EEPROM.\n");
3122 return -EINVAL;
3123 }
3124
3125 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3126
3127 if (eeval & AR5416_OPFLAGS_11A) {
3128 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3129 if (ah->config.ht_enable) {
3130 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3131 set_bit(ATH9K_MODE_11NA_HT20,
3132 pCap->wireless_modes);
3133 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3134 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3135 pCap->wireless_modes);
3136 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3137 pCap->wireless_modes);
3138 }
3139 }
3140 }
3141
3142 if (eeval & AR5416_OPFLAGS_11G) {
3143 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3144 if (ah->config.ht_enable) {
3145 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3146 set_bit(ATH9K_MODE_11NG_HT20,
3147 pCap->wireless_modes);
3148 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3149 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3150 pCap->wireless_modes);
3151 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3152 pCap->wireless_modes);
3153 }
3154 }
3155 }
3156
3157 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3158 /*
3159 * For AR9271 we will temporarilly uses the rx chainmax as read from
3160 * the EEPROM.
3161 */
3162 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3163 !(eeval & AR5416_OPFLAGS_11A) &&
3164 !(AR_SREV_9271(ah)))
3165 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3166 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3167 else
3168 /* Use rx_chainmask from EEPROM. */
3169 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3170
3171 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3172 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3173
3174 pCap->low_2ghz_chan = 2312;
3175 pCap->high_2ghz_chan = 2732;
3176
3177 pCap->low_5ghz_chan = 4920;
3178 pCap->high_5ghz_chan = 6100;
3179
3180 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3181 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3182 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3183
3184 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3185 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3186 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3187
3188 if (ah->config.ht_enable)
3189 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3190 else
3191 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3192
3193 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3194 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3195 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3196 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3197
3198 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3199 pCap->total_queues =
3200 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3201 else
3202 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3203
3204 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3205 pCap->keycache_size =
3206 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3207 else
3208 pCap->keycache_size = AR_KEYTABLE_SIZE;
3209
3210 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3211
3212 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3213 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3214 else
3215 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3216
3217 if (AR_SREV_9271(ah))
3218 pCap->num_gpio_pins = AR9271_NUM_GPIO;
3219 else if (AR_SREV_9285_10_OR_LATER(ah))
3220 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3221 else if (AR_SREV_9280_10_OR_LATER(ah))
3222 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3223 else
3224 pCap->num_gpio_pins = AR_NUM_GPIO;
3225
3226 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3227 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3228 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3229 } else {
3230 pCap->rts_aggr_limit = (8 * 1024);
3231 }
3232
3233 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3234
3235 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3236 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3237 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3238 ah->rfkill_gpio =
3239 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3240 ah->rfkill_polarity =
3241 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3242
3243 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3244 }
3245 #endif
3246 if (AR_SREV_9271(ah))
3247 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3248 else
3249 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3250
3251 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3252 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3253 else
3254 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3255
3256 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3257 pCap->reg_cap =
3258 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3259 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3260 AR_EEPROM_EEREGCAP_EN_KK_U2 |
3261 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3262 } else {
3263 pCap->reg_cap =
3264 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3265 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3266 }
3267
3268 /* Advertise midband for AR5416 with FCC midband set in eeprom */
3269 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3270 AR_SREV_5416(ah))
3271 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3272
3273 pCap->num_antcfg_5ghz =
3274 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3275 pCap->num_antcfg_2ghz =
3276 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3277
3278 if (AR_SREV_9280_10_OR_LATER(ah) &&
3279 ath9k_hw_btcoex_supported(ah)) {
3280 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3281 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3282
3283 if (AR_SREV_9285(ah)) {
3284 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3285 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3286 } else {
3287 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3288 }
3289 } else {
3290 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3291 }
3292
3293 return 0;
3294 }
3295
3296 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3297 u32 capability, u32 *result)
3298 {
3299 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3300 switch (type) {
3301 case ATH9K_CAP_CIPHER:
3302 switch (capability) {
3303 case ATH9K_CIPHER_AES_CCM:
3304 case ATH9K_CIPHER_AES_OCB:
3305 case ATH9K_CIPHER_TKIP:
3306 case ATH9K_CIPHER_WEP:
3307 case ATH9K_CIPHER_MIC:
3308 case ATH9K_CIPHER_CLR:
3309 return true;
3310 default:
3311 return false;
3312 }
3313 case ATH9K_CAP_TKIP_MIC:
3314 switch (capability) {
3315 case 0:
3316 return true;
3317 case 1:
3318 return (ah->sta_id1_defaults &
3319 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3320 false;
3321 }
3322 case ATH9K_CAP_TKIP_SPLIT:
3323 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3324 false : true;
3325 case ATH9K_CAP_DIVERSITY:
3326 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3327 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3328 true : false;
3329 case ATH9K_CAP_MCAST_KEYSRCH:
3330 switch (capability) {
3331 case 0:
3332 return true;
3333 case 1:
3334 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3335 return false;
3336 } else {
3337 return (ah->sta_id1_defaults &
3338 AR_STA_ID1_MCAST_KSRCH) ? true :
3339 false;
3340 }
3341 }
3342 return false;
3343 case ATH9K_CAP_TXPOW:
3344 switch (capability) {
3345 case 0:
3346 return 0;
3347 case 1:
3348 *result = regulatory->power_limit;
3349 return 0;
3350 case 2:
3351 *result = regulatory->max_power_level;
3352 return 0;
3353 case 3:
3354 *result = regulatory->tp_scale;
3355 return 0;
3356 }
3357 return false;
3358 case ATH9K_CAP_DS:
3359 return (AR_SREV_9280_20_OR_LATER(ah) &&
3360 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3361 ? false : true;
3362 default:
3363 return false;
3364 }
3365 }
3366 EXPORT_SYMBOL(ath9k_hw_getcapability);
3367
3368 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3369 u32 capability, u32 setting, int *status)
3370 {
3371 u32 v;
3372
3373 switch (type) {
3374 case ATH9K_CAP_TKIP_MIC:
3375 if (setting)
3376 ah->sta_id1_defaults |=
3377 AR_STA_ID1_CRPT_MIC_ENABLE;
3378 else
3379 ah->sta_id1_defaults &=
3380 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3381 return true;
3382 case ATH9K_CAP_DIVERSITY:
3383 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3384 if (setting)
3385 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3386 else
3387 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3388 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3389 return true;
3390 case ATH9K_CAP_MCAST_KEYSRCH:
3391 if (setting)
3392 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3393 else
3394 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3395 return true;
3396 default:
3397 return false;
3398 }
3399 }
3400 EXPORT_SYMBOL(ath9k_hw_setcapability);
3401
3402 /****************************/
3403 /* GPIO / RFKILL / Antennae */
3404 /****************************/
3405
3406 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3407 u32 gpio, u32 type)
3408 {
3409 int addr;
3410 u32 gpio_shift, tmp;
3411
3412 if (gpio > 11)
3413 addr = AR_GPIO_OUTPUT_MUX3;
3414 else if (gpio > 5)
3415 addr = AR_GPIO_OUTPUT_MUX2;
3416 else
3417 addr = AR_GPIO_OUTPUT_MUX1;
3418
3419 gpio_shift = (gpio % 6) * 5;
3420
3421 if (AR_SREV_9280_20_OR_LATER(ah)
3422 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3423 REG_RMW(ah, addr, (type << gpio_shift),
3424 (0x1f << gpio_shift));
3425 } else {
3426 tmp = REG_READ(ah, addr);
3427 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3428 tmp &= ~(0x1f << gpio_shift);
3429 tmp |= (type << gpio_shift);
3430 REG_WRITE(ah, addr, tmp);
3431 }
3432 }
3433
3434 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3435 {
3436 u32 gpio_shift;
3437
3438 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3439
3440 gpio_shift = gpio << 1;
3441
3442 REG_RMW(ah,
3443 AR_GPIO_OE_OUT,
3444 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3445 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3446 }
3447 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3448
3449 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3450 {
3451 #define MS_REG_READ(x, y) \
3452 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3453
3454 if (gpio >= ah->caps.num_gpio_pins)
3455 return 0xffffffff;
3456
3457 if (AR_SREV_9300_20_OR_LATER(ah))
3458 return MS_REG_READ(AR9300, gpio) != 0;
3459 else if (AR_SREV_9271(ah))
3460 return MS_REG_READ(AR9271, gpio) != 0;
3461 else if (AR_SREV_9287_10_OR_LATER(ah))
3462 return MS_REG_READ(AR9287, gpio) != 0;
3463 else if (AR_SREV_9285_10_OR_LATER(ah))
3464 return MS_REG_READ(AR9285, gpio) != 0;
3465 else if (AR_SREV_9280_10_OR_LATER(ah))
3466 return MS_REG_READ(AR928X, gpio) != 0;
3467 else
3468 return MS_REG_READ(AR, gpio) != 0;
3469 }
3470 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3471
3472 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3473 u32 ah_signal_type)
3474 {
3475 u32 gpio_shift;
3476
3477 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3478
3479 gpio_shift = 2 * gpio;
3480
3481 REG_RMW(ah,
3482 AR_GPIO_OE_OUT,
3483 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3484 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3485 }
3486 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3487
3488 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3489 {
3490 if (AR_SREV_9271(ah))
3491 val = ~val;
3492
3493 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3494 AR_GPIO_BIT(gpio));
3495 }
3496 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3497
3498 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3499 {
3500 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3501 }
3502 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3503
3504 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3505 {
3506 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3507 }
3508 EXPORT_SYMBOL(ath9k_hw_setantenna);
3509
3510 /*********************/
3511 /* General Operation */
3512 /*********************/
3513
3514 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3515 {
3516 u32 bits = REG_READ(ah, AR_RX_FILTER);
3517 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3518
3519 if (phybits & AR_PHY_ERR_RADAR)
3520 bits |= ATH9K_RX_FILTER_PHYRADAR;
3521 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3522 bits |= ATH9K_RX_FILTER_PHYERR;
3523
3524 return bits;
3525 }
3526 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3527
3528 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3529 {
3530 u32 phybits;
3531
3532 REG_WRITE(ah, AR_RX_FILTER, bits);
3533
3534 phybits = 0;
3535 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3536 phybits |= AR_PHY_ERR_RADAR;
3537 if (bits & ATH9K_RX_FILTER_PHYERR)
3538 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3539 REG_WRITE(ah, AR_PHY_ERR, phybits);
3540
3541 if (phybits)
3542 REG_WRITE(ah, AR_RXCFG,
3543 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3544 else
3545 REG_WRITE(ah, AR_RXCFG,
3546 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3547 }
3548 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3549
3550 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3551 {
3552 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3553 return false;
3554
3555 ath9k_hw_init_pll(ah, NULL);
3556 return true;
3557 }
3558 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3559
3560 bool ath9k_hw_disable(struct ath_hw *ah)
3561 {
3562 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3563 return false;
3564
3565 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3566 return false;
3567
3568 ath9k_hw_init_pll(ah, NULL);
3569 return true;
3570 }
3571 EXPORT_SYMBOL(ath9k_hw_disable);
3572
3573 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3574 {
3575 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3576 struct ath9k_channel *chan = ah->curchan;
3577 struct ieee80211_channel *channel = chan->chan;
3578
3579 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3580
3581 ah->eep_ops->set_txpower(ah, chan,
3582 ath9k_regd_get_ctl(regulatory, chan),
3583 channel->max_antenna_gain * 2,
3584 channel->max_power * 2,
3585 min((u32) MAX_RATE_POWER,
3586 (u32) regulatory->power_limit));
3587 }
3588 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3589
3590 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3591 {
3592 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3593 }
3594 EXPORT_SYMBOL(ath9k_hw_setmac);
3595
3596 void ath9k_hw_setopmode(struct ath_hw *ah)
3597 {
3598 ath9k_hw_set_operating_mode(ah, ah->opmode);
3599 }
3600 EXPORT_SYMBOL(ath9k_hw_setopmode);
3601
3602 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3603 {
3604 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3605 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3606 }
3607 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3608
3609 void ath9k_hw_write_associd(struct ath_hw *ah)
3610 {
3611 struct ath_common *common = ath9k_hw_common(ah);
3612
3613 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3614 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3615 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3616 }
3617 EXPORT_SYMBOL(ath9k_hw_write_associd);
3618
3619 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3620 {
3621 u64 tsf;
3622
3623 tsf = REG_READ(ah, AR_TSF_U32);
3624 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3625
3626 return tsf;
3627 }
3628 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3629
3630 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3631 {
3632 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3633 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3634 }
3635 EXPORT_SYMBOL(ath9k_hw_settsf64);
3636
3637 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3638 {
3639 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3640 AH_TSF_WRITE_TIMEOUT))
3641 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3642 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3643
3644 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3645 }
3646 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3647
3648 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3649 {
3650 if (setting)
3651 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3652 else
3653 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3654 }
3655 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3656
3657 /*
3658 * Extend 15-bit time stamp from rx descriptor to
3659 * a full 64-bit TSF using the current h/w TSF.
3660 */
3661 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3662 {
3663 u64 tsf;
3664
3665 tsf = ath9k_hw_gettsf64(ah);
3666 if ((tsf & 0x7fff) < rstamp)
3667 tsf -= 0x8000;
3668 return (tsf & ~0x7fff) | rstamp;
3669 }
3670 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3671
3672 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3673 {
3674 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3675 u32 macmode;
3676
3677 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3678 macmode = AR_2040_JOINED_RX_CLEAR;
3679 else
3680 macmode = 0;
3681
3682 REG_WRITE(ah, AR_2040_MODE, macmode);
3683 }
3684
3685 /* HW Generic timers configuration */
3686
3687 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3688 {
3689 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3691 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3692 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3693 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3694 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3695 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3696 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3697 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3698 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3699 AR_NDP2_TIMER_MODE, 0x0002},
3700 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3701 AR_NDP2_TIMER_MODE, 0x0004},
3702 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3703 AR_NDP2_TIMER_MODE, 0x0008},
3704 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3705 AR_NDP2_TIMER_MODE, 0x0010},
3706 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3707 AR_NDP2_TIMER_MODE, 0x0020},
3708 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3709 AR_NDP2_TIMER_MODE, 0x0040},
3710 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3711 AR_NDP2_TIMER_MODE, 0x0080}
3712 };
3713
3714 /* HW generic timer primitives */
3715
3716 /* compute and clear index of rightmost 1 */
3717 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3718 {
3719 u32 b;
3720
3721 b = *mask;
3722 b &= (0-b);
3723 *mask &= ~b;
3724 b *= debruijn32;
3725 b >>= 27;
3726
3727 return timer_table->gen_timer_index[b];
3728 }
3729
3730 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3731 {
3732 return REG_READ(ah, AR_TSF_L32);
3733 }
3734 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3735
3736 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3737 void (*trigger)(void *),
3738 void (*overflow)(void *),
3739 void *arg,
3740 u8 timer_index)
3741 {
3742 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3743 struct ath_gen_timer *timer;
3744
3745 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3746
3747 if (timer == NULL) {
3748 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3749 "Failed to allocate memory"
3750 "for hw timer[%d]\n", timer_index);
3751 return NULL;
3752 }
3753
3754 /* allocate a hardware generic timer slot */
3755 timer_table->timers[timer_index] = timer;
3756 timer->index = timer_index;
3757 timer->trigger = trigger;
3758 timer->overflow = overflow;
3759 timer->arg = arg;
3760
3761 return timer;
3762 }
3763 EXPORT_SYMBOL(ath_gen_timer_alloc);
3764
3765 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3766 struct ath_gen_timer *timer,
3767 u32 timer_next,
3768 u32 timer_period)
3769 {
3770 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3771 u32 tsf;
3772
3773 BUG_ON(!timer_period);
3774
3775 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3776
3777 tsf = ath9k_hw_gettsf32(ah);
3778
3779 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3780 "curent tsf %x period %x"
3781 "timer_next %x\n", tsf, timer_period, timer_next);
3782
3783 /*
3784 * Pull timer_next forward if the current TSF already passed it
3785 * because of software latency
3786 */
3787 if (timer_next < tsf)
3788 timer_next = tsf + timer_period;
3789
3790 /*
3791 * Program generic timer registers
3792 */
3793 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3794 timer_next);
3795 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3796 timer_period);
3797 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3798 gen_tmr_configuration[timer->index].mode_mask);
3799
3800 /* Enable both trigger and thresh interrupt masks */
3801 REG_SET_BIT(ah, AR_IMR_S5,
3802 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3803 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3804 }
3805 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3806
3807 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3808 {
3809 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3810
3811 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3812 (timer->index >= ATH_MAX_GEN_TIMER)) {
3813 return;
3814 }
3815
3816 /* Clear generic timer enable bits. */
3817 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3818 gen_tmr_configuration[timer->index].mode_mask);
3819
3820 /* Disable both trigger and thresh interrupt masks */
3821 REG_CLR_BIT(ah, AR_IMR_S5,
3822 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3823 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3824
3825 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3826 }
3827 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3828
3829 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3830 {
3831 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3832
3833 /* free the hardware generic timer slot */
3834 timer_table->timers[timer->index] = NULL;
3835 kfree(timer);
3836 }
3837 EXPORT_SYMBOL(ath_gen_timer_free);
3838
3839 /*
3840 * Generic Timer Interrupts handling
3841 */
3842 void ath_gen_timer_isr(struct ath_hw *ah)
3843 {
3844 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3845 struct ath_gen_timer *timer;
3846 struct ath_common *common = ath9k_hw_common(ah);
3847 u32 trigger_mask, thresh_mask, index;
3848
3849 /* get hardware generic timer interrupt status */
3850 trigger_mask = ah->intr_gen_timer_trigger;
3851 thresh_mask = ah->intr_gen_timer_thresh;
3852 trigger_mask &= timer_table->timer_mask.val;
3853 thresh_mask &= timer_table->timer_mask.val;
3854
3855 trigger_mask &= ~thresh_mask;
3856
3857 while (thresh_mask) {
3858 index = rightmost_index(timer_table, &thresh_mask);
3859 timer = timer_table->timers[index];
3860 BUG_ON(!timer);
3861 ath_print(common, ATH_DBG_HWTIMER,
3862 "TSF overflow for Gen timer %d\n", index);
3863 timer->overflow(timer->arg);
3864 }
3865
3866 while (trigger_mask) {
3867 index = rightmost_index(timer_table, &trigger_mask);
3868 timer = timer_table->timers[index];
3869 BUG_ON(!timer);
3870 ath_print(common, ATH_DBG_HWTIMER,
3871 "Gen timer[%d] trigger\n", index);
3872 timer->trigger(timer->arg);
3873 }
3874 }
3875 EXPORT_SYMBOL(ath_gen_timer_isr);
3876
3877 /********/
3878 /* HTC */
3879 /********/
3880
3881 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3882 {
3883 ah->htc_reset_init = true;
3884 }
3885 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3886
3887 static struct {
3888 u32 version;
3889 const char * name;
3890 } ath_mac_bb_names[] = {
3891 /* Devices with external radios */
3892 { AR_SREV_VERSION_5416_PCI, "5416" },
3893 { AR_SREV_VERSION_5416_PCIE, "5418" },
3894 { AR_SREV_VERSION_9100, "9100" },
3895 { AR_SREV_VERSION_9160, "9160" },
3896 /* Single-chip solutions */
3897 { AR_SREV_VERSION_9280, "9280" },
3898 { AR_SREV_VERSION_9285, "9285" },
3899 { AR_SREV_VERSION_9287, "9287" },
3900 { AR_SREV_VERSION_9271, "9271" },
3901 };
3902
3903 /* For devices with external radios */
3904 static struct {
3905 u16 version;
3906 const char * name;
3907 } ath_rf_names[] = {
3908 { 0, "5133" },
3909 { AR_RAD5133_SREV_MAJOR, "5133" },
3910 { AR_RAD5122_SREV_MAJOR, "5122" },
3911 { AR_RAD2133_SREV_MAJOR, "2133" },
3912 { AR_RAD2122_SREV_MAJOR, "2122" }
3913 };
3914
3915 /*
3916 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3917 */
3918 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3919 {
3920 int i;
3921
3922 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3923 if (ath_mac_bb_names[i].version == mac_bb_version) {
3924 return ath_mac_bb_names[i].name;
3925 }
3926 }
3927
3928 return "????";
3929 }
3930
3931 /*
3932 * Return the RF name. "????" is returned if the RF is unknown.
3933 * Used for devices with external radios.
3934 */
3935 static const char *ath9k_hw_rf_name(u16 rf_version)
3936 {
3937 int i;
3938
3939 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3940 if (ath_rf_names[i].version == rf_version) {
3941 return ath_rf_names[i].name;
3942 }
3943 }
3944
3945 return "????";
3946 }
3947
3948 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3949 {
3950 int used;
3951
3952 /* chipsets >= AR9280 are single-chip */
3953 if (AR_SREV_9280_10_OR_LATER(ah)) {
3954 used = snprintf(hw_name, len,
3955 "Atheros AR%s Rev:%x",
3956 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3957 ah->hw_version.macRev);
3958 }
3959 else {
3960 used = snprintf(hw_name, len,
3961 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3962 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3963 ah->hw_version.macRev,
3964 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3965 AR_RADIO_SREV_MAJOR)),
3966 ah->hw_version.phyRev);
3967 }
3968
3969 hw_name[used] = '\0';
3970 }
3971 EXPORT_SYMBOL(ath9k_hw_name);
3972
3973 /* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
3974 static void ar9002_hw_attach_ops(struct ath_hw *ah)
3975 {
3976 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3977 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
3978
3979 priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
3980 priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
3981 priv_ops->macversion_supported = ar9002_hw_macversion_supported;
3982
3983 ops->config_pci_powersave = ar9002_hw_configpcipowersave;
3984 }
This page took 0.110823 seconds and 6 git commands to generate.