ath9k_hw: Add abstraction for rx enable
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK 22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
28
29 static void ar9002_hw_attach_ops(struct ath_hw *ah);
30 static void ar9003_hw_attach_ops(struct ath_hw *ah);
31
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41 return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47 return;
48 }
49 module_exit(ath9k_exit);
50
51 /* Private hardware callbacks */
52
53 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
54 {
55 ath9k_hw_private_ops(ah)->init_cal_settings(ah);
56 }
57
58 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
59 {
60 ath9k_hw_private_ops(ah)->init_mode_regs(ah);
61 }
62
63 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
64 {
65 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
66
67 return priv_ops->macversion_supported(ah->hw_version.macVersion);
68 }
69
70 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
71 struct ath9k_channel *chan)
72 {
73 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
74 }
75
76 /********************/
77 /* Helper Functions */
78 /********************/
79
80 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
81 {
82 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
83
84 if (!ah->curchan) /* should really check for CCK instead */
85 return usecs *ATH9K_CLOCK_RATE_CCK;
86 if (conf->channel->band == IEEE80211_BAND_2GHZ)
87 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
88 return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
89 }
90
91 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
92 {
93 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95 if (conf_is_ht40(conf))
96 return ath9k_hw_mac_clks(ah, usecs) * 2;
97 else
98 return ath9k_hw_mac_clks(ah, usecs);
99 }
100
101 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
102 {
103 int i;
104
105 BUG_ON(timeout < AH_TIME_QUANTUM);
106
107 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
108 if ((REG_READ(ah, reg) & mask) == val)
109 return true;
110
111 udelay(AH_TIME_QUANTUM);
112 }
113
114 ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
115 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
116 timeout, reg, REG_READ(ah, reg), mask, val);
117
118 return false;
119 }
120 EXPORT_SYMBOL(ath9k_hw_wait);
121
122 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
123 {
124 u32 retval;
125 int i;
126
127 for (i = 0, retval = 0; i < n; i++) {
128 retval = (retval << 1) | (val & 1);
129 val >>= 1;
130 }
131 return retval;
132 }
133
134 bool ath9k_get_channel_edges(struct ath_hw *ah,
135 u16 flags, u16 *low,
136 u16 *high)
137 {
138 struct ath9k_hw_capabilities *pCap = &ah->caps;
139
140 if (flags & CHANNEL_5GHZ) {
141 *low = pCap->low_5ghz_chan;
142 *high = pCap->high_5ghz_chan;
143 return true;
144 }
145 if ((flags & CHANNEL_2GHZ)) {
146 *low = pCap->low_2ghz_chan;
147 *high = pCap->high_2ghz_chan;
148 return true;
149 }
150 return false;
151 }
152
153 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
154 u8 phy, int kbps,
155 u32 frameLen, u16 rateix,
156 bool shortPreamble)
157 {
158 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
159
160 if (kbps == 0)
161 return 0;
162
163 switch (phy) {
164 case WLAN_RC_PHY_CCK:
165 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166 if (shortPreamble)
167 phyTime >>= 1;
168 numBits = frameLen << 3;
169 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
170 break;
171 case WLAN_RC_PHY_OFDM:
172 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
173 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
174 numBits = OFDM_PLCP_BITS + (frameLen << 3);
175 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176 txTime = OFDM_SIFS_TIME_QUARTER
177 + OFDM_PREAMBLE_TIME_QUARTER
178 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
179 } else if (ah->curchan &&
180 IS_CHAN_HALF_RATE(ah->curchan)) {
181 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
182 numBits = OFDM_PLCP_BITS + (frameLen << 3);
183 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184 txTime = OFDM_SIFS_TIME_HALF +
185 OFDM_PREAMBLE_TIME_HALF
186 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
187 } else {
188 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
189 numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
192 + (numSymbols * OFDM_SYMBOL_TIME);
193 }
194 break;
195 default:
196 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
197 "Unknown phy %u (rate ix %u)\n", phy, rateix);
198 txTime = 0;
199 break;
200 }
201
202 return txTime;
203 }
204 EXPORT_SYMBOL(ath9k_hw_computetxtime);
205
206 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
207 struct ath9k_channel *chan,
208 struct chan_centers *centers)
209 {
210 int8_t extoff;
211
212 if (!IS_CHAN_HT40(chan)) {
213 centers->ctl_center = centers->ext_center =
214 centers->synth_center = chan->channel;
215 return;
216 }
217
218 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
219 (chan->chanmode == CHANNEL_G_HT40PLUS)) {
220 centers->synth_center =
221 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
222 extoff = 1;
223 } else {
224 centers->synth_center =
225 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
226 extoff = -1;
227 }
228
229 centers->ctl_center =
230 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 /* 25 MHz spacing is supported by hw but not on upper layers */
232 centers->ext_center =
233 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
234 }
235
236 /******************/
237 /* Chip Revisions */
238 /******************/
239
240 static void ath9k_hw_read_revisions(struct ath_hw *ah)
241 {
242 u32 val;
243
244 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
245
246 if (val == 0xFF) {
247 val = REG_READ(ah, AR_SREV);
248 ah->hw_version.macVersion =
249 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
250 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
251 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
252 } else {
253 if (!AR_SREV_9100(ah))
254 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
255
256 ah->hw_version.macRev = val & AR_SREV_REVISION;
257
258 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
259 ah->is_pciexpress = true;
260 }
261 }
262
263 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
264 {
265 u32 val;
266 int i;
267
268 REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
269
270 for (i = 0; i < 8; i++)
271 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
272 val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
273 val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
274
275 return ath9k_hw_reverse_bits(val, 8);
276 }
277
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284 if (AR_SREV_9100(ah))
285 return;
286
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
295 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
296
297 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
298 }
299
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302 struct ath_common *common = ath9k_hw_common(ah);
303 u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
304 u32 regHold[2];
305 u32 patternData[4] = { 0x55555555,
306 0xaaaaaaaa,
307 0x66666666,
308 0x99999999 };
309 int i, j;
310
311 for (i = 0; i < 2; i++) {
312 u32 addr = regAddr[i];
313 u32 wrData, rdData;
314
315 regHold[i] = REG_READ(ah, addr);
316 for (j = 0; j < 0x100; j++) {
317 wrData = (j << 16) | j;
318 REG_WRITE(ah, addr, wrData);
319 rdData = REG_READ(ah, addr);
320 if (rdData != wrData) {
321 ath_print(common, ATH_DBG_FATAL,
322 "address test failed "
323 "addr: 0x%08x - wr:0x%08x != "
324 "rd:0x%08x\n",
325 addr, wrData, rdData);
326 return false;
327 }
328 }
329 for (j = 0; j < 4; j++) {
330 wrData = patternData[j];
331 REG_WRITE(ah, addr, wrData);
332 rdData = REG_READ(ah, addr);
333 if (wrData != rdData) {
334 ath_print(common, ATH_DBG_FATAL,
335 "address test failed "
336 "addr: 0x%08x - wr:0x%08x != "
337 "rd:0x%08x\n",
338 addr, wrData, rdData);
339 return false;
340 }
341 }
342 REG_WRITE(ah, regAddr[i], regHold[i]);
343 }
344 udelay(100);
345
346 return true;
347 }
348
349 static void ath9k_hw_init_config(struct ath_hw *ah)
350 {
351 int i;
352
353 ah->config.dma_beacon_response_time = 2;
354 ah->config.sw_beacon_response_time = 10;
355 ah->config.additional_swba_backoff = 0;
356 ah->config.ack_6mb = 0x0;
357 ah->config.cwm_ignore_extcca = 0;
358 ah->config.pcie_powersave_enable = 0;
359 ah->config.pcie_clock_req = 0;
360 ah->config.pcie_waen = 0;
361 ah->config.analog_shiftreg = 1;
362 ah->config.ofdm_trig_low = 200;
363 ah->config.ofdm_trig_high = 500;
364 ah->config.cck_trig_high = 200;
365 ah->config.cck_trig_low = 100;
366
367 /*
368 * For now ANI is disabled for AR9003, it is still
369 * being tested.
370 */
371 if (!AR_SREV_9300_20_OR_LATER(ah))
372 ah->config.enable_ani = 1;
373
374 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
375 ah->config.spurchans[i][0] = AR_NO_SPUR;
376 ah->config.spurchans[i][1] = AR_NO_SPUR;
377 }
378
379 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
380 ah->config.ht_enable = 1;
381 else
382 ah->config.ht_enable = 0;
383
384 ah->config.rx_intr_mitigation = true;
385
386 /*
387 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
388 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
389 * This means we use it for all AR5416 devices, and the few
390 * minor PCI AR9280 devices out there.
391 *
392 * Serialization is required because these devices do not handle
393 * well the case of two concurrent reads/writes due to the latency
394 * involved. During one read/write another read/write can be issued
395 * on another CPU while the previous read/write may still be working
396 * on our hardware, if we hit this case the hardware poops in a loop.
397 * We prevent this by serializing reads and writes.
398 *
399 * This issue is not present on PCI-Express devices or pre-AR5416
400 * devices (legacy, 802.11abg).
401 */
402 if (num_possible_cpus() > 1)
403 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
404 }
405
406 static void ath9k_hw_init_defaults(struct ath_hw *ah)
407 {
408 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
409
410 regulatory->country_code = CTRY_DEFAULT;
411 regulatory->power_limit = MAX_RATE_POWER;
412 regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
413
414 ah->hw_version.magic = AR5416_MAGIC;
415 ah->hw_version.subvendorid = 0;
416
417 ah->ah_flags = 0;
418 if (!AR_SREV_9100(ah))
419 ah->ah_flags = AH_USE_EEPROM;
420
421 ah->atim_window = 0;
422 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
423 ah->beacon_interval = 100;
424 ah->enable_32kHz_clock = DONT_USE_32KHZ;
425 ah->slottime = (u32) -1;
426 ah->globaltxtimeout = (u32) -1;
427 ah->power_mode = ATH9K_PM_UNDEFINED;
428 }
429
430 static int ath9k_hw_rf_claim(struct ath_hw *ah)
431 {
432 u32 val;
433
434 REG_WRITE(ah, AR_PHY(0), 0x00000007);
435
436 val = ath9k_hw_get_radiorev(ah);
437 switch (val & AR_RADIO_SREV_MAJOR) {
438 case 0:
439 val = AR_RAD5133_SREV_MAJOR;
440 break;
441 case AR_RAD5133_SREV_MAJOR:
442 case AR_RAD5122_SREV_MAJOR:
443 case AR_RAD2133_SREV_MAJOR:
444 case AR_RAD2122_SREV_MAJOR:
445 break;
446 default:
447 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
448 "Radio Chip Rev 0x%02X not supported\n",
449 val & AR_RADIO_SREV_MAJOR);
450 return -EOPNOTSUPP;
451 }
452
453 ah->hw_version.analog5GhzRev = val;
454
455 return 0;
456 }
457
458 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
459 {
460 struct ath_common *common = ath9k_hw_common(ah);
461 u32 sum;
462 int i;
463 u16 eeval;
464
465 sum = 0;
466 for (i = 0; i < 3; i++) {
467 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
468 sum += eeval;
469 common->macaddr[2 * i] = eeval >> 8;
470 common->macaddr[2 * i + 1] = eeval & 0xff;
471 }
472 if (sum == 0 || sum == 0xffff * 3)
473 return -EADDRNOTAVAIL;
474
475 return 0;
476 }
477
478 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
479 {
480 u32 rxgain_type;
481
482 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
483 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
484
485 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
486 INIT_INI_ARRAY(&ah->iniModesRxGain,
487 ar9280Modes_backoff_13db_rxgain_9280_2,
488 ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
489 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
490 INIT_INI_ARRAY(&ah->iniModesRxGain,
491 ar9280Modes_backoff_23db_rxgain_9280_2,
492 ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
493 else
494 INIT_INI_ARRAY(&ah->iniModesRxGain,
495 ar9280Modes_original_rxgain_9280_2,
496 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
497 } else {
498 INIT_INI_ARRAY(&ah->iniModesRxGain,
499 ar9280Modes_original_rxgain_9280_2,
500 ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
501 }
502 }
503
504 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
505 {
506 u32 txgain_type;
507
508 if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
509 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
510
511 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
512 INIT_INI_ARRAY(&ah->iniModesTxGain,
513 ar9280Modes_high_power_tx_gain_9280_2,
514 ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
515 else
516 INIT_INI_ARRAY(&ah->iniModesTxGain,
517 ar9280Modes_original_tx_gain_9280_2,
518 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
519 } else {
520 INIT_INI_ARRAY(&ah->iniModesTxGain,
521 ar9280Modes_original_tx_gain_9280_2,
522 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
523 }
524 }
525
526 static int ath9k_hw_post_init(struct ath_hw *ah)
527 {
528 int ecode;
529
530 if (!AR_SREV_9271(ah)) {
531 if (!ath9k_hw_chip_test(ah))
532 return -ENODEV;
533 }
534
535 ecode = ath9k_hw_rf_claim(ah);
536 if (ecode != 0)
537 return ecode;
538
539 ecode = ath9k_hw_eeprom_init(ah);
540 if (ecode != 0)
541 return ecode;
542
543 ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
544 "Eeprom VER: %d, REV: %d\n",
545 ah->eep_ops->get_eeprom_ver(ah),
546 ah->eep_ops->get_eeprom_rev(ah));
547
548 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
549 if (ecode) {
550 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
551 "Failed allocating banks for "
552 "external radio\n");
553 return ecode;
554 }
555
556 if (!AR_SREV_9100(ah)) {
557 ath9k_hw_ani_setup(ah);
558 ath9k_hw_ani_init(ah);
559 }
560
561 return 0;
562 }
563
564 static bool ar9002_hw_macversion_supported(u32 macversion)
565 {
566 switch (macversion) {
567 case AR_SREV_VERSION_5416_PCI:
568 case AR_SREV_VERSION_5416_PCIE:
569 case AR_SREV_VERSION_9160:
570 case AR_SREV_VERSION_9100:
571 case AR_SREV_VERSION_9280:
572 case AR_SREV_VERSION_9285:
573 case AR_SREV_VERSION_9287:
574 case AR_SREV_VERSION_9271:
575 return true;
576 default:
577 break;
578 }
579 return false;
580 }
581
582 static bool ar9003_hw_macversion_supported(u32 macversion)
583 {
584 switch (macversion) {
585 case AR_SREV_VERSION_9300:
586 return true;
587 default:
588 break;
589 }
590 return false;
591 }
592
593 static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
594 {
595 if (AR_SREV_9160_10_OR_LATER(ah)) {
596 if (AR_SREV_9280_10_OR_LATER(ah)) {
597 ah->iq_caldata.calData = &iq_cal_single_sample;
598 ah->adcgain_caldata.calData =
599 &adc_gain_cal_single_sample;
600 ah->adcdc_caldata.calData =
601 &adc_dc_cal_single_sample;
602 ah->adcdc_calinitdata.calData =
603 &adc_init_dc_cal;
604 } else {
605 ah->iq_caldata.calData = &iq_cal_multi_sample;
606 ah->adcgain_caldata.calData =
607 &adc_gain_cal_multi_sample;
608 ah->adcdc_caldata.calData =
609 &adc_dc_cal_multi_sample;
610 ah->adcdc_calinitdata.calData =
611 &adc_init_dc_cal;
612 }
613 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
614 }
615 }
616
617 static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
618 {
619 if (AR_SREV_9271(ah)) {
620 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
621 ARRAY_SIZE(ar9271Modes_9271), 6);
622 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
623 ARRAY_SIZE(ar9271Common_9271), 2);
624 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
625 ar9271Common_normal_cck_fir_coeff_9271,
626 ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
627 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
628 ar9271Common_japan_2484_cck_fir_coeff_9271,
629 ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
630 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
631 ar9271Modes_9271_1_0_only,
632 ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
633 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
634 ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
635 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
636 ar9271Modes_high_power_tx_gain_9271,
637 ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
638 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
639 ar9271Modes_normal_power_tx_gain_9271,
640 ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
641 return;
642 }
643
644 if (AR_SREV_9287_11_OR_LATER(ah)) {
645 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
646 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
647 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
648 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
649 if (ah->config.pcie_clock_req)
650 INIT_INI_ARRAY(&ah->iniPcieSerdes,
651 ar9287PciePhy_clkreq_off_L1_9287_1_1,
652 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
653 else
654 INIT_INI_ARRAY(&ah->iniPcieSerdes,
655 ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
656 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
657 2);
658 } else if (AR_SREV_9287_10_OR_LATER(ah)) {
659 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
660 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
661 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
662 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
663
664 if (ah->config.pcie_clock_req)
665 INIT_INI_ARRAY(&ah->iniPcieSerdes,
666 ar9287PciePhy_clkreq_off_L1_9287_1_0,
667 ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
668 else
669 INIT_INI_ARRAY(&ah->iniPcieSerdes,
670 ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
671 ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
672 2);
673 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
674
675
676 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
677 ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
678 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
679 ARRAY_SIZE(ar9285Common_9285_1_2), 2);
680
681 if (ah->config.pcie_clock_req) {
682 INIT_INI_ARRAY(&ah->iniPcieSerdes,
683 ar9285PciePhy_clkreq_off_L1_9285_1_2,
684 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
685 } else {
686 INIT_INI_ARRAY(&ah->iniPcieSerdes,
687 ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
688 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
689 2);
690 }
691 } else if (AR_SREV_9285_10_OR_LATER(ah)) {
692 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
693 ARRAY_SIZE(ar9285Modes_9285), 6);
694 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
695 ARRAY_SIZE(ar9285Common_9285), 2);
696
697 if (ah->config.pcie_clock_req) {
698 INIT_INI_ARRAY(&ah->iniPcieSerdes,
699 ar9285PciePhy_clkreq_off_L1_9285,
700 ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
701 } else {
702 INIT_INI_ARRAY(&ah->iniPcieSerdes,
703 ar9285PciePhy_clkreq_always_on_L1_9285,
704 ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
705 }
706 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
707 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
708 ARRAY_SIZE(ar9280Modes_9280_2), 6);
709 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
710 ARRAY_SIZE(ar9280Common_9280_2), 2);
711
712 if (ah->config.pcie_clock_req) {
713 INIT_INI_ARRAY(&ah->iniPcieSerdes,
714 ar9280PciePhy_clkreq_off_L1_9280,
715 ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
716 } else {
717 INIT_INI_ARRAY(&ah->iniPcieSerdes,
718 ar9280PciePhy_clkreq_always_on_L1_9280,
719 ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
720 }
721 INIT_INI_ARRAY(&ah->iniModesAdditional,
722 ar9280Modes_fast_clock_9280_2,
723 ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
724 } else if (AR_SREV_9280_10_OR_LATER(ah)) {
725 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
726 ARRAY_SIZE(ar9280Modes_9280), 6);
727 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
728 ARRAY_SIZE(ar9280Common_9280), 2);
729 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
730 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
731 ARRAY_SIZE(ar5416Modes_9160), 6);
732 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
733 ARRAY_SIZE(ar5416Common_9160), 2);
734 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
735 ARRAY_SIZE(ar5416Bank0_9160), 2);
736 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
737 ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
738 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
739 ARRAY_SIZE(ar5416Bank1_9160), 2);
740 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
741 ARRAY_SIZE(ar5416Bank2_9160), 2);
742 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
743 ARRAY_SIZE(ar5416Bank3_9160), 3);
744 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
745 ARRAY_SIZE(ar5416Bank6_9160), 3);
746 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
747 ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
748 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
749 ARRAY_SIZE(ar5416Bank7_9160), 2);
750 if (AR_SREV_9160_11(ah)) {
751 INIT_INI_ARRAY(&ah->iniAddac,
752 ar5416Addac_91601_1,
753 ARRAY_SIZE(ar5416Addac_91601_1), 2);
754 } else {
755 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
756 ARRAY_SIZE(ar5416Addac_9160), 2);
757 }
758 } else if (AR_SREV_9100_OR_LATER(ah)) {
759 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
760 ARRAY_SIZE(ar5416Modes_9100), 6);
761 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
762 ARRAY_SIZE(ar5416Common_9100), 2);
763 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
764 ARRAY_SIZE(ar5416Bank0_9100), 2);
765 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
766 ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
767 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
768 ARRAY_SIZE(ar5416Bank1_9100), 2);
769 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
770 ARRAY_SIZE(ar5416Bank2_9100), 2);
771 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
772 ARRAY_SIZE(ar5416Bank3_9100), 3);
773 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
774 ARRAY_SIZE(ar5416Bank6_9100), 3);
775 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
776 ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
777 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
778 ARRAY_SIZE(ar5416Bank7_9100), 2);
779 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
780 ARRAY_SIZE(ar5416Addac_9100), 2);
781 } else {
782 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
783 ARRAY_SIZE(ar5416Modes), 6);
784 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
785 ARRAY_SIZE(ar5416Common), 2);
786 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
787 ARRAY_SIZE(ar5416Bank0), 2);
788 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
789 ARRAY_SIZE(ar5416BB_RfGain), 3);
790 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
791 ARRAY_SIZE(ar5416Bank1), 2);
792 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
793 ARRAY_SIZE(ar5416Bank2), 2);
794 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
795 ARRAY_SIZE(ar5416Bank3), 3);
796 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
797 ARRAY_SIZE(ar5416Bank6), 3);
798 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
799 ARRAY_SIZE(ar5416Bank6TPC), 3);
800 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
801 ARRAY_SIZE(ar5416Bank7), 2);
802 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
803 ARRAY_SIZE(ar5416Addac), 2);
804 }
805 }
806
807 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
808 {
809 if (AR_SREV_9287_11_OR_LATER(ah))
810 INIT_INI_ARRAY(&ah->iniModesRxGain,
811 ar9287Modes_rx_gain_9287_1_1,
812 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
813 else if (AR_SREV_9287_10(ah))
814 INIT_INI_ARRAY(&ah->iniModesRxGain,
815 ar9287Modes_rx_gain_9287_1_0,
816 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
817 else if (AR_SREV_9280_20(ah))
818 ath9k_hw_init_rxgain_ini(ah);
819
820 if (AR_SREV_9287_11_OR_LATER(ah)) {
821 INIT_INI_ARRAY(&ah->iniModesTxGain,
822 ar9287Modes_tx_gain_9287_1_1,
823 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
824 } else if (AR_SREV_9287_10(ah)) {
825 INIT_INI_ARRAY(&ah->iniModesTxGain,
826 ar9287Modes_tx_gain_9287_1_0,
827 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
828 } else if (AR_SREV_9280_20(ah)) {
829 ath9k_hw_init_txgain_ini(ah);
830 } else if (AR_SREV_9285_12_OR_LATER(ah)) {
831 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
832
833 /* txgain table */
834 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
835 if (AR_SREV_9285E_20(ah)) {
836 INIT_INI_ARRAY(&ah->iniModesTxGain,
837 ar9285Modes_XE2_0_high_power,
838 ARRAY_SIZE(
839 ar9285Modes_XE2_0_high_power), 6);
840 } else {
841 INIT_INI_ARRAY(&ah->iniModesTxGain,
842 ar9285Modes_high_power_tx_gain_9285_1_2,
843 ARRAY_SIZE(
844 ar9285Modes_high_power_tx_gain_9285_1_2), 6);
845 }
846 } else {
847 if (AR_SREV_9285E_20(ah)) {
848 INIT_INI_ARRAY(&ah->iniModesTxGain,
849 ar9285Modes_XE2_0_normal_power,
850 ARRAY_SIZE(
851 ar9285Modes_XE2_0_normal_power), 6);
852 } else {
853 INIT_INI_ARRAY(&ah->iniModesTxGain,
854 ar9285Modes_original_tx_gain_9285_1_2,
855 ARRAY_SIZE(
856 ar9285Modes_original_tx_gain_9285_1_2), 6);
857 }
858 }
859 }
860 }
861
862 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
863 {
864 struct base_eep_header *pBase = &(ah->eeprom.def.baseEepHeader);
865 struct ath_common *common = ath9k_hw_common(ah);
866
867 ah->need_an_top2_fixup = (ah->hw_version.devid == AR9280_DEVID_PCI) &&
868 (ah->eep_map != EEP_MAP_4KBITS) &&
869 ((pBase->version & 0xff) > 0x0a) &&
870 (pBase->pwdclkind == 0);
871
872 if (ah->need_an_top2_fixup)
873 ath_print(common, ATH_DBG_EEPROM,
874 "needs fixup for AR_AN_TOP2 register\n");
875 }
876
877 static void ath9k_hw_attach_ops(struct ath_hw *ah)
878 {
879 if (AR_SREV_9300_20_OR_LATER(ah))
880 ar9003_hw_attach_ops(ah);
881 else
882 ar9002_hw_attach_ops(ah);
883 }
884
885 /* Called for all hardware families */
886 static int __ath9k_hw_init(struct ath_hw *ah)
887 {
888 struct ath_common *common = ath9k_hw_common(ah);
889 int r = 0;
890
891 if (ah->hw_version.devid == AR5416_AR9100_DEVID)
892 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
893
894 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
895 ath_print(common, ATH_DBG_FATAL,
896 "Couldn't reset chip\n");
897 return -EIO;
898 }
899
900 ath9k_hw_init_defaults(ah);
901 ath9k_hw_init_config(ah);
902
903 ath9k_hw_attach_ops(ah);
904
905 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
906 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
907 return -EIO;
908 }
909
910 if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
911 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
912 (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
913 ah->config.serialize_regmode =
914 SER_REG_MODE_ON;
915 } else {
916 ah->config.serialize_regmode =
917 SER_REG_MODE_OFF;
918 }
919 }
920
921 ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
922 ah->config.serialize_regmode);
923
924 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
925 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
926 else
927 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
928
929 if (!ath9k_hw_macversion_supported(ah)) {
930 ath_print(common, ATH_DBG_FATAL,
931 "Mac Chip Rev 0x%02x.%x is not supported by "
932 "this driver\n", ah->hw_version.macVersion,
933 ah->hw_version.macRev);
934 return -EOPNOTSUPP;
935 }
936
937 if (AR_SREV_9100(ah)) {
938 ah->iq_caldata.calData = &iq_cal_multi_sample;
939 ah->supp_cals = IQ_MISMATCH_CAL;
940 ah->is_pciexpress = false;
941 }
942
943 if (AR_SREV_9271(ah))
944 ah->is_pciexpress = false;
945
946 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
947 ath9k_hw_init_cal_settings(ah);
948
949 ah->ani_function = ATH9K_ANI_ALL;
950 if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
951 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
952
953 ath9k_hw_init_mode_regs(ah);
954
955 if (ah->is_pciexpress)
956 ath9k_hw_configpcipowersave(ah, 0, 0);
957 else
958 ath9k_hw_disablepcie(ah);
959
960 /* Support for Japan ch.14 (2484) spread */
961 if (AR_SREV_9287_11_OR_LATER(ah)) {
962 INIT_INI_ARRAY(&ah->iniCckfirNormal,
963 ar9287Common_normal_cck_fir_coeff_92871_1,
964 ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
965 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
966 ar9287Common_japan_2484_cck_fir_coeff_92871_1,
967 ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
968 }
969
970 r = ath9k_hw_post_init(ah);
971 if (r)
972 return r;
973
974 ath9k_hw_init_mode_gain_regs(ah);
975 r = ath9k_hw_fill_cap_info(ah);
976 if (r)
977 return r;
978
979 ath9k_hw_init_eeprom_fix(ah);
980
981 r = ath9k_hw_init_macaddr(ah);
982 if (r) {
983 ath_print(common, ATH_DBG_FATAL,
984 "Failed to initialize MAC address\n");
985 return r;
986 }
987
988 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
989 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
990 else
991 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
992
993 ath9k_init_nfcal_hist_buffer(ah);
994
995 common->state = ATH_HW_INITIALIZED;
996
997 return 0;
998 }
999
1000 int ath9k_hw_init(struct ath_hw *ah)
1001 {
1002 int ret;
1003 struct ath_common *common = ath9k_hw_common(ah);
1004
1005 /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
1006 switch (ah->hw_version.devid) {
1007 case AR5416_DEVID_PCI:
1008 case AR5416_DEVID_PCIE:
1009 case AR5416_AR9100_DEVID:
1010 case AR9160_DEVID_PCI:
1011 case AR9280_DEVID_PCI:
1012 case AR9280_DEVID_PCIE:
1013 case AR9285_DEVID_PCIE:
1014 case AR9287_DEVID_PCI:
1015 case AR9287_DEVID_PCIE:
1016 case AR2427_DEVID_PCIE:
1017 case AR9300_DEVID_PCIE:
1018 break;
1019 default:
1020 if (common->bus_ops->ath_bus_type == ATH_USB)
1021 break;
1022 ath_print(common, ATH_DBG_FATAL,
1023 "Hardware device ID 0x%04x not supported\n",
1024 ah->hw_version.devid);
1025 return -EOPNOTSUPP;
1026 }
1027
1028 ret = __ath9k_hw_init(ah);
1029 if (ret) {
1030 ath_print(common, ATH_DBG_FATAL,
1031 "Unable to initialize hardware; "
1032 "initialization status: %d\n", ret);
1033 return ret;
1034 }
1035
1036 return 0;
1037 }
1038 EXPORT_SYMBOL(ath9k_hw_init);
1039
1040 static void ath9k_hw_init_qos(struct ath_hw *ah)
1041 {
1042 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1043 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1044
1045 REG_WRITE(ah, AR_QOS_NO_ACK,
1046 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1047 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1048 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1049
1050 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1051 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1052 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1053 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1054 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1055 }
1056
1057 static void ath9k_hw_init_pll(struct ath_hw *ah,
1058 struct ath9k_channel *chan)
1059 {
1060 u32 pll = ath9k_hw_compute_pll_control(ah, chan);
1061
1062 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1063
1064 /* Switch the core clock for ar9271 to 117Mhz */
1065 if (AR_SREV_9271(ah)) {
1066 udelay(500);
1067 REG_WRITE(ah, 0x50040, 0x304);
1068 }
1069
1070 udelay(RTC_PLL_SETTLE_DELAY);
1071
1072 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1073 }
1074
1075 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1076 enum nl80211_iftype opmode)
1077 {
1078 u32 imr_reg = AR_IMR_TXERR |
1079 AR_IMR_TXURN |
1080 AR_IMR_RXERR |
1081 AR_IMR_RXORN |
1082 AR_IMR_BCNMISC;
1083
1084 if (ah->config.rx_intr_mitigation)
1085 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1086 else
1087 imr_reg |= AR_IMR_RXOK;
1088
1089 imr_reg |= AR_IMR_TXOK;
1090
1091 if (opmode == NL80211_IFTYPE_AP)
1092 imr_reg |= AR_IMR_MIB;
1093
1094 REG_WRITE(ah, AR_IMR, imr_reg);
1095 ah->imrs2_reg |= AR_IMR_S2_GTT;
1096 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1097
1098 if (!AR_SREV_9100(ah)) {
1099 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1100 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1101 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1102 }
1103 }
1104
1105 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1106 {
1107 u32 val = ath9k_hw_mac_to_clks(ah, us);
1108 val = min(val, (u32) 0xFFFF);
1109 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1110 }
1111
1112 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1113 {
1114 u32 val = ath9k_hw_mac_to_clks(ah, us);
1115 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1116 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1117 }
1118
1119 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1120 {
1121 u32 val = ath9k_hw_mac_to_clks(ah, us);
1122 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1123 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1124 }
1125
1126 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1127 {
1128 if (tu > 0xFFFF) {
1129 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1130 "bad global tx timeout %u\n", tu);
1131 ah->globaltxtimeout = (u32) -1;
1132 return false;
1133 } else {
1134 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1135 ah->globaltxtimeout = tu;
1136 return true;
1137 }
1138 }
1139
1140 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1141 {
1142 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1143 int acktimeout;
1144 int slottime;
1145 int sifstime;
1146
1147 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1148 ah->misc_mode);
1149
1150 if (ah->misc_mode != 0)
1151 REG_WRITE(ah, AR_PCU_MISC,
1152 REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1153
1154 if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1155 sifstime = 16;
1156 else
1157 sifstime = 10;
1158
1159 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1160 slottime = ah->slottime + 3 * ah->coverage_class;
1161 acktimeout = slottime + sifstime;
1162
1163 /*
1164 * Workaround for early ACK timeouts, add an offset to match the
1165 * initval's 64us ack timeout value.
1166 * This was initially only meant to work around an issue with delayed
1167 * BA frames in some implementations, but it has been found to fix ACK
1168 * timeout issues in other cases as well.
1169 */
1170 if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1171 acktimeout += 64 - sifstime - ah->slottime;
1172
1173 ath9k_hw_setslottime(ah, slottime);
1174 ath9k_hw_set_ack_timeout(ah, acktimeout);
1175 ath9k_hw_set_cts_timeout(ah, acktimeout);
1176 if (ah->globaltxtimeout != (u32) -1)
1177 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1178 }
1179 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1180
1181 void ath9k_hw_deinit(struct ath_hw *ah)
1182 {
1183 struct ath_common *common = ath9k_hw_common(ah);
1184
1185 if (common->state < ATH_HW_INITIALIZED)
1186 goto free_hw;
1187
1188 if (!AR_SREV_9100(ah))
1189 ath9k_hw_ani_disable(ah);
1190
1191 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1192
1193 free_hw:
1194 ath9k_hw_rf_free_ext_banks(ah);
1195 }
1196 EXPORT_SYMBOL(ath9k_hw_deinit);
1197
1198 /*******/
1199 /* INI */
1200 /*******/
1201
1202 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1203 {
1204 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1205
1206 if (IS_CHAN_B(chan))
1207 ctl |= CTL_11B;
1208 else if (IS_CHAN_G(chan))
1209 ctl |= CTL_11G;
1210 else
1211 ctl |= CTL_11A;
1212
1213 return ctl;
1214 }
1215
1216 /****************************************/
1217 /* Reset and Channel Switching Routines */
1218 /****************************************/
1219
1220 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1221 {
1222 u32 regval;
1223
1224 /*
1225 * set AHB_MODE not to do cacheline prefetches
1226 */
1227 regval = REG_READ(ah, AR_AHB_MODE);
1228 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1229
1230 /*
1231 * let mac dma reads be in 128 byte chunks
1232 */
1233 regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1234 REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1235
1236 /*
1237 * Restore TX Trigger Level to its pre-reset value.
1238 * The initial value depends on whether aggregation is enabled, and is
1239 * adjusted whenever underruns are detected.
1240 */
1241 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1242
1243 /*
1244 * let mac dma writes be in 128 byte chunks
1245 */
1246 regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1247 REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1248
1249 /*
1250 * Setup receive FIFO threshold to hold off TX activities
1251 */
1252 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1253
1254 /*
1255 * reduce the number of usable entries in PCU TXBUF to avoid
1256 * wrap around issues.
1257 */
1258 if (AR_SREV_9285(ah)) {
1259 /* For AR9285 the number of Fifos are reduced to half.
1260 * So set the usable tx buf size also to half to
1261 * avoid data/delimiter underruns
1262 */
1263 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1264 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1265 } else if (!AR_SREV_9271(ah)) {
1266 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1267 AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1268 }
1269 }
1270
1271 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1272 {
1273 u32 val;
1274
1275 val = REG_READ(ah, AR_STA_ID1);
1276 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1277 switch (opmode) {
1278 case NL80211_IFTYPE_AP:
1279 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1280 | AR_STA_ID1_KSRCH_MODE);
1281 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1282 break;
1283 case NL80211_IFTYPE_ADHOC:
1284 case NL80211_IFTYPE_MESH_POINT:
1285 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1286 | AR_STA_ID1_KSRCH_MODE);
1287 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1288 break;
1289 case NL80211_IFTYPE_STATION:
1290 case NL80211_IFTYPE_MONITOR:
1291 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1292 break;
1293 }
1294 }
1295
1296 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1297 u32 *coef_mantissa, u32 *coef_exponent)
1298 {
1299 u32 coef_exp, coef_man;
1300
1301 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1302 if ((coef_scaled >> coef_exp) & 0x1)
1303 break;
1304
1305 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1306
1307 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1308
1309 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1310 *coef_exponent = coef_exp - 16;
1311 }
1312
1313 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1314 {
1315 u32 rst_flags;
1316 u32 tmpReg;
1317
1318 if (AR_SREV_9100(ah)) {
1319 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1320 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1321 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1322 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1323 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1324 }
1325
1326 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1327 AR_RTC_FORCE_WAKE_ON_INT);
1328
1329 if (AR_SREV_9100(ah)) {
1330 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1331 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1332 } else {
1333 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1334 if (tmpReg &
1335 (AR_INTR_SYNC_LOCAL_TIMEOUT |
1336 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1337 u32 val;
1338 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1339
1340 val = AR_RC_HOSTIF;
1341 if (!AR_SREV_9300_20_OR_LATER(ah))
1342 val |= AR_RC_AHB;
1343 REG_WRITE(ah, AR_RC, val);
1344
1345 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1346 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1347
1348 rst_flags = AR_RTC_RC_MAC_WARM;
1349 if (type == ATH9K_RESET_COLD)
1350 rst_flags |= AR_RTC_RC_MAC_COLD;
1351 }
1352
1353 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1354 udelay(50);
1355
1356 REG_WRITE(ah, AR_RTC_RC, 0);
1357 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1358 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1359 "RTC stuck in MAC reset\n");
1360 return false;
1361 }
1362
1363 if (!AR_SREV_9100(ah))
1364 REG_WRITE(ah, AR_RC, 0);
1365
1366 if (AR_SREV_9100(ah))
1367 udelay(50);
1368
1369 return true;
1370 }
1371
1372 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1373 {
1374 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1375 AR_RTC_FORCE_WAKE_ON_INT);
1376
1377 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1378 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1379
1380 REG_WRITE(ah, AR_RTC_RESET, 0);
1381 udelay(2);
1382
1383 if (!AR_SREV_9100(ah))
1384 REG_WRITE(ah, AR_RC, 0);
1385
1386 REG_WRITE(ah, AR_RTC_RESET, 1);
1387
1388 if (!ath9k_hw_wait(ah,
1389 AR_RTC_STATUS,
1390 AR_RTC_STATUS_M,
1391 AR_RTC_STATUS_ON,
1392 AH_WAIT_TIMEOUT)) {
1393 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1394 "RTC not waking up\n");
1395 return false;
1396 }
1397
1398 ath9k_hw_read_revisions(ah);
1399
1400 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1401 }
1402
1403 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1404 {
1405 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1406 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1407
1408 switch (type) {
1409 case ATH9K_RESET_POWER_ON:
1410 return ath9k_hw_set_reset_power_on(ah);
1411 case ATH9K_RESET_WARM:
1412 case ATH9K_RESET_COLD:
1413 return ath9k_hw_set_reset(ah, type);
1414 default:
1415 return false;
1416 }
1417 }
1418
1419 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1420 struct ath9k_channel *chan)
1421 {
1422 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1423 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1424 return false;
1425 } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1426 return false;
1427
1428 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1429 return false;
1430
1431 ah->chip_fullsleep = false;
1432 ath9k_hw_init_pll(ah, chan);
1433 ath9k_hw_set_rfmode(ah, chan);
1434
1435 return true;
1436 }
1437
1438 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1439 struct ath9k_channel *chan)
1440 {
1441 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1442 struct ath_common *common = ath9k_hw_common(ah);
1443 struct ieee80211_channel *channel = chan->chan;
1444 u32 qnum;
1445 int r;
1446
1447 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1448 if (ath9k_hw_numtxpending(ah, qnum)) {
1449 ath_print(common, ATH_DBG_QUEUE,
1450 "Transmit frames pending on "
1451 "queue %d\n", qnum);
1452 return false;
1453 }
1454 }
1455
1456 if (!ath9k_hw_rfbus_req(ah)) {
1457 ath_print(common, ATH_DBG_FATAL,
1458 "Could not kill baseband RX\n");
1459 return false;
1460 }
1461
1462 ath9k_hw_set_channel_regs(ah, chan);
1463
1464 r = ath9k_hw_rf_set_freq(ah, chan);
1465 if (r) {
1466 ath_print(common, ATH_DBG_FATAL,
1467 "Failed to set channel\n");
1468 return false;
1469 }
1470
1471 ah->eep_ops->set_txpower(ah, chan,
1472 ath9k_regd_get_ctl(regulatory, chan),
1473 channel->max_antenna_gain * 2,
1474 channel->max_power * 2,
1475 min((u32) MAX_RATE_POWER,
1476 (u32) regulatory->power_limit));
1477
1478 ath9k_hw_rfbus_done(ah);
1479
1480 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1481 ath9k_hw_set_delta_slope(ah, chan);
1482
1483 ath9k_hw_spur_mitigate_freq(ah, chan);
1484
1485 if (!chan->oneTimeCalsDone)
1486 chan->oneTimeCalsDone = true;
1487
1488 return true;
1489 }
1490
1491 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1492 bool bChannelChange)
1493 {
1494 struct ath_common *common = ath9k_hw_common(ah);
1495 u32 saveLedState;
1496 struct ath9k_channel *curchan = ah->curchan;
1497 u32 saveDefAntenna;
1498 u32 macStaId1;
1499 u64 tsf = 0;
1500 int i, r;
1501
1502 ah->txchainmask = common->tx_chainmask;
1503 ah->rxchainmask = common->rx_chainmask;
1504
1505 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1506 return -EIO;
1507
1508 if (curchan && !ah->chip_fullsleep)
1509 ath9k_hw_getnf(ah, curchan);
1510
1511 if (bChannelChange &&
1512 (ah->chip_fullsleep != true) &&
1513 (ah->curchan != NULL) &&
1514 (chan->channel != ah->curchan->channel) &&
1515 ((chan->channelFlags & CHANNEL_ALL) ==
1516 (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1517 !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1518 IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1519
1520 if (ath9k_hw_channel_change(ah, chan)) {
1521 ath9k_hw_loadnf(ah, ah->curchan);
1522 ath9k_hw_start_nfcal(ah);
1523 return 0;
1524 }
1525 }
1526
1527 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1528 if (saveDefAntenna == 0)
1529 saveDefAntenna = 1;
1530
1531 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1532
1533 /* For chips on which RTC reset is done, save TSF before it gets cleared */
1534 if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1535 tsf = ath9k_hw_gettsf64(ah);
1536
1537 saveLedState = REG_READ(ah, AR_CFG_LED) &
1538 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1539 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1540
1541 ath9k_hw_mark_phy_inactive(ah);
1542
1543 /* Only required on the first reset */
1544 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1545 REG_WRITE(ah,
1546 AR9271_RESET_POWER_DOWN_CONTROL,
1547 AR9271_RADIO_RF_RST);
1548 udelay(50);
1549 }
1550
1551 if (!ath9k_hw_chip_reset(ah, chan)) {
1552 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1553 return -EINVAL;
1554 }
1555
1556 /* Only required on the first reset */
1557 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1558 ah->htc_reset_init = false;
1559 REG_WRITE(ah,
1560 AR9271_RESET_POWER_DOWN_CONTROL,
1561 AR9271_GATE_MAC_CTL);
1562 udelay(50);
1563 }
1564
1565 /* Restore TSF */
1566 if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1567 ath9k_hw_settsf64(ah, tsf);
1568
1569 ar9002_hw_attach_mac_ops(ah);
1570
1571 if (AR_SREV_9280_10_OR_LATER(ah))
1572 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1573
1574 r = ath9k_hw_process_ini(ah, chan);
1575 if (r)
1576 return r;
1577
1578 /* Setup MFP options for CCMP */
1579 if (AR_SREV_9280_20_OR_LATER(ah)) {
1580 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1581 * frames when constructing CCMP AAD. */
1582 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1583 0xc7ff);
1584 ah->sw_mgmt_crypto = false;
1585 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1586 /* Disable hardware crypto for management frames */
1587 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1588 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1589 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1590 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1591 ah->sw_mgmt_crypto = true;
1592 } else
1593 ah->sw_mgmt_crypto = true;
1594
1595 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1596 ath9k_hw_set_delta_slope(ah, chan);
1597
1598 ath9k_hw_spur_mitigate_freq(ah, chan);
1599 ah->eep_ops->set_board_values(ah, chan);
1600
1601 REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1602 REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1603 | macStaId1
1604 | AR_STA_ID1_RTS_USE_DEF
1605 | (ah->config.
1606 ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1607 | ah->sta_id1_defaults);
1608 ath9k_hw_set_operating_mode(ah, ah->opmode);
1609
1610 ath_hw_setbssidmask(common);
1611
1612 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1613
1614 ath9k_hw_write_associd(ah);
1615
1616 REG_WRITE(ah, AR_ISR, ~0);
1617
1618 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1619
1620 r = ath9k_hw_rf_set_freq(ah, chan);
1621 if (r)
1622 return r;
1623
1624 for (i = 0; i < AR_NUM_DCU; i++)
1625 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1626
1627 ah->intr_txqs = 0;
1628 for (i = 0; i < ah->caps.total_queues; i++)
1629 ath9k_hw_resettxqueue(ah, i);
1630
1631 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1632 ath9k_hw_init_qos(ah);
1633
1634 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1635 ath9k_enable_rfkill(ah);
1636
1637 ath9k_hw_init_global_settings(ah);
1638
1639 if (AR_SREV_9287_12_OR_LATER(ah)) {
1640 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
1641 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
1642 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
1643 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
1644 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
1645 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
1646
1647 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
1648 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
1649
1650 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1651 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1652 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1653 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1654 }
1655 if (AR_SREV_9287_12_OR_LATER(ah)) {
1656 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1657 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1658 }
1659
1660 REG_WRITE(ah, AR_STA_ID1,
1661 REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1662
1663 ath9k_hw_set_dma(ah);
1664
1665 REG_WRITE(ah, AR_OBS, 8);
1666
1667 if (ah->config.rx_intr_mitigation) {
1668 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1669 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1670 }
1671
1672 ath9k_hw_init_bb(ah, chan);
1673
1674 if (!ath9k_hw_init_cal(ah, chan))
1675 return -EIO;
1676
1677 ath9k_hw_restore_chainmask(ah);
1678 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1679
1680 /*
1681 * For big endian systems turn on swapping for descriptors
1682 */
1683 if (AR_SREV_9100(ah)) {
1684 u32 mask;
1685 mask = REG_READ(ah, AR_CFG);
1686 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1687 ath_print(common, ATH_DBG_RESET,
1688 "CFG Byte Swap Set 0x%x\n", mask);
1689 } else {
1690 mask =
1691 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1692 REG_WRITE(ah, AR_CFG, mask);
1693 ath_print(common, ATH_DBG_RESET,
1694 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1695 }
1696 } else {
1697 /* Configure AR9271 target WLAN */
1698 if (AR_SREV_9271(ah))
1699 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1700 #ifdef __BIG_ENDIAN
1701 else
1702 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1703 #endif
1704 }
1705
1706 if (ah->btcoex_hw.enabled)
1707 ath9k_hw_btcoex_enable(ah);
1708
1709 return 0;
1710 }
1711 EXPORT_SYMBOL(ath9k_hw_reset);
1712
1713 /************************/
1714 /* Key Cache Management */
1715 /************************/
1716
1717 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1718 {
1719 u32 keyType;
1720
1721 if (entry >= ah->caps.keycache_size) {
1722 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1723 "keychache entry %u out of range\n", entry);
1724 return false;
1725 }
1726
1727 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1728
1729 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1730 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1731 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1732 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1733 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1734 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1735 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1736 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1737
1738 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1739 u16 micentry = entry + 64;
1740
1741 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1742 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1743 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1744 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1745
1746 }
1747
1748 return true;
1749 }
1750 EXPORT_SYMBOL(ath9k_hw_keyreset);
1751
1752 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1753 {
1754 u32 macHi, macLo;
1755
1756 if (entry >= ah->caps.keycache_size) {
1757 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1758 "keychache entry %u out of range\n", entry);
1759 return false;
1760 }
1761
1762 if (mac != NULL) {
1763 macHi = (mac[5] << 8) | mac[4];
1764 macLo = (mac[3] << 24) |
1765 (mac[2] << 16) |
1766 (mac[1] << 8) |
1767 mac[0];
1768 macLo >>= 1;
1769 macLo |= (macHi & 1) << 31;
1770 macHi >>= 1;
1771 } else {
1772 macLo = macHi = 0;
1773 }
1774 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1775 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
1776
1777 return true;
1778 }
1779 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1780
1781 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1782 const struct ath9k_keyval *k,
1783 const u8 *mac)
1784 {
1785 const struct ath9k_hw_capabilities *pCap = &ah->caps;
1786 struct ath_common *common = ath9k_hw_common(ah);
1787 u32 key0, key1, key2, key3, key4;
1788 u32 keyType;
1789
1790 if (entry >= pCap->keycache_size) {
1791 ath_print(common, ATH_DBG_FATAL,
1792 "keycache entry %u out of range\n", entry);
1793 return false;
1794 }
1795
1796 switch (k->kv_type) {
1797 case ATH9K_CIPHER_AES_OCB:
1798 keyType = AR_KEYTABLE_TYPE_AES;
1799 break;
1800 case ATH9K_CIPHER_AES_CCM:
1801 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1802 ath_print(common, ATH_DBG_ANY,
1803 "AES-CCM not supported by mac rev 0x%x\n",
1804 ah->hw_version.macRev);
1805 return false;
1806 }
1807 keyType = AR_KEYTABLE_TYPE_CCM;
1808 break;
1809 case ATH9K_CIPHER_TKIP:
1810 keyType = AR_KEYTABLE_TYPE_TKIP;
1811 if (ATH9K_IS_MIC_ENABLED(ah)
1812 && entry + 64 >= pCap->keycache_size) {
1813 ath_print(common, ATH_DBG_ANY,
1814 "entry %u inappropriate for TKIP\n", entry);
1815 return false;
1816 }
1817 break;
1818 case ATH9K_CIPHER_WEP:
1819 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1820 ath_print(common, ATH_DBG_ANY,
1821 "WEP key length %u too small\n", k->kv_len);
1822 return false;
1823 }
1824 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1825 keyType = AR_KEYTABLE_TYPE_40;
1826 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1827 keyType = AR_KEYTABLE_TYPE_104;
1828 else
1829 keyType = AR_KEYTABLE_TYPE_128;
1830 break;
1831 case ATH9K_CIPHER_CLR:
1832 keyType = AR_KEYTABLE_TYPE_CLR;
1833 break;
1834 default:
1835 ath_print(common, ATH_DBG_FATAL,
1836 "cipher %u not supported\n", k->kv_type);
1837 return false;
1838 }
1839
1840 key0 = get_unaligned_le32(k->kv_val + 0);
1841 key1 = get_unaligned_le16(k->kv_val + 4);
1842 key2 = get_unaligned_le32(k->kv_val + 6);
1843 key3 = get_unaligned_le16(k->kv_val + 10);
1844 key4 = get_unaligned_le32(k->kv_val + 12);
1845 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1846 key4 &= 0xff;
1847
1848 /*
1849 * Note: Key cache registers access special memory area that requires
1850 * two 32-bit writes to actually update the values in the internal
1851 * memory. Consequently, the exact order and pairs used here must be
1852 * maintained.
1853 */
1854
1855 if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1856 u16 micentry = entry + 64;
1857
1858 /*
1859 * Write inverted key[47:0] first to avoid Michael MIC errors
1860 * on frames that could be sent or received at the same time.
1861 * The correct key will be written in the end once everything
1862 * else is ready.
1863 */
1864 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1865 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1866
1867 /* Write key[95:48] */
1868 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1869 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1870
1871 /* Write key[127:96] and key type */
1872 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1873 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1874
1875 /* Write MAC address for the entry */
1876 (void) ath9k_hw_keysetmac(ah, entry, mac);
1877
1878 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1879 /*
1880 * TKIP uses two key cache entries:
1881 * Michael MIC TX/RX keys in the same key cache entry
1882 * (idx = main index + 64):
1883 * key0 [31:0] = RX key [31:0]
1884 * key1 [15:0] = TX key [31:16]
1885 * key1 [31:16] = reserved
1886 * key2 [31:0] = RX key [63:32]
1887 * key3 [15:0] = TX key [15:0]
1888 * key3 [31:16] = reserved
1889 * key4 [31:0] = TX key [63:32]
1890 */
1891 u32 mic0, mic1, mic2, mic3, mic4;
1892
1893 mic0 = get_unaligned_le32(k->kv_mic + 0);
1894 mic2 = get_unaligned_le32(k->kv_mic + 4);
1895 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1896 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1897 mic4 = get_unaligned_le32(k->kv_txmic + 4);
1898
1899 /* Write RX[31:0] and TX[31:16] */
1900 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1901 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1902
1903 /* Write RX[63:32] and TX[15:0] */
1904 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1905 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1906
1907 /* Write TX[63:32] and keyType(reserved) */
1908 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1909 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1910 AR_KEYTABLE_TYPE_CLR);
1911
1912 } else {
1913 /*
1914 * TKIP uses four key cache entries (two for group
1915 * keys):
1916 * Michael MIC TX/RX keys are in different key cache
1917 * entries (idx = main index + 64 for TX and
1918 * main index + 32 + 96 for RX):
1919 * key0 [31:0] = TX/RX MIC key [31:0]
1920 * key1 [31:0] = reserved
1921 * key2 [31:0] = TX/RX MIC key [63:32]
1922 * key3 [31:0] = reserved
1923 * key4 [31:0] = reserved
1924 *
1925 * Upper layer code will call this function separately
1926 * for TX and RX keys when these registers offsets are
1927 * used.
1928 */
1929 u32 mic0, mic2;
1930
1931 mic0 = get_unaligned_le32(k->kv_mic + 0);
1932 mic2 = get_unaligned_le32(k->kv_mic + 4);
1933
1934 /* Write MIC key[31:0] */
1935 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1936 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1937
1938 /* Write MIC key[63:32] */
1939 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1940 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1941
1942 /* Write TX[63:32] and keyType(reserved) */
1943 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1944 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1945 AR_KEYTABLE_TYPE_CLR);
1946 }
1947
1948 /* MAC address registers are reserved for the MIC entry */
1949 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1950 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1951
1952 /*
1953 * Write the correct (un-inverted) key[47:0] last to enable
1954 * TKIP now that all other registers are set with correct
1955 * values.
1956 */
1957 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1958 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1959 } else {
1960 /* Write key[47:0] */
1961 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1962 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1963
1964 /* Write key[95:48] */
1965 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1966 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1967
1968 /* Write key[127:96] and key type */
1969 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1970 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1971
1972 /* Write MAC address for the entry */
1973 (void) ath9k_hw_keysetmac(ah, entry, mac);
1974 }
1975
1976 return true;
1977 }
1978 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1979
1980 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1981 {
1982 if (entry < ah->caps.keycache_size) {
1983 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1984 if (val & AR_KEYTABLE_VALID)
1985 return true;
1986 }
1987 return false;
1988 }
1989 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1990
1991 /******************************/
1992 /* Power Management (Chipset) */
1993 /******************************/
1994
1995 /*
1996 * Notify Power Mgt is disabled in self-generated frames.
1997 * If requested, force chip to sleep.
1998 */
1999 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2000 {
2001 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2002 if (setChip) {
2003 /*
2004 * Clear the RTC force wake bit to allow the
2005 * mac to go to sleep.
2006 */
2007 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2008 AR_RTC_FORCE_WAKE_EN);
2009 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2010 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2011
2012 /* Shutdown chip. Active low */
2013 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2014 REG_CLR_BIT(ah, (AR_RTC_RESET),
2015 AR_RTC_RESET_EN);
2016 }
2017 }
2018
2019 /*
2020 * Notify Power Management is enabled in self-generating
2021 * frames. If request, set power mode of chip to
2022 * auto/normal. Duration in units of 128us (1/8 TU).
2023 */
2024 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2025 {
2026 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2027 if (setChip) {
2028 struct ath9k_hw_capabilities *pCap = &ah->caps;
2029
2030 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2031 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2032 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2033 AR_RTC_FORCE_WAKE_ON_INT);
2034 } else {
2035 /*
2036 * Clear the RTC force wake bit to allow the
2037 * mac to go to sleep.
2038 */
2039 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2040 AR_RTC_FORCE_WAKE_EN);
2041 }
2042 }
2043 }
2044
2045 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2046 {
2047 u32 val;
2048 int i;
2049
2050 if (setChip) {
2051 if ((REG_READ(ah, AR_RTC_STATUS) &
2052 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2053 if (ath9k_hw_set_reset_reg(ah,
2054 ATH9K_RESET_POWER_ON) != true) {
2055 return false;
2056 }
2057 if (!AR_SREV_9300_20_OR_LATER(ah))
2058 ath9k_hw_init_pll(ah, NULL);
2059 }
2060 if (AR_SREV_9100(ah))
2061 REG_SET_BIT(ah, AR_RTC_RESET,
2062 AR_RTC_RESET_EN);
2063
2064 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2065 AR_RTC_FORCE_WAKE_EN);
2066 udelay(50);
2067
2068 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2069 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2070 if (val == AR_RTC_STATUS_ON)
2071 break;
2072 udelay(50);
2073 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2074 AR_RTC_FORCE_WAKE_EN);
2075 }
2076 if (i == 0) {
2077 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2078 "Failed to wakeup in %uus\n",
2079 POWER_UP_TIME / 20);
2080 return false;
2081 }
2082 }
2083
2084 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2085
2086 return true;
2087 }
2088
2089 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2090 {
2091 struct ath_common *common = ath9k_hw_common(ah);
2092 int status = true, setChip = true;
2093 static const char *modes[] = {
2094 "AWAKE",
2095 "FULL-SLEEP",
2096 "NETWORK SLEEP",
2097 "UNDEFINED"
2098 };
2099
2100 if (ah->power_mode == mode)
2101 return status;
2102
2103 ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2104 modes[ah->power_mode], modes[mode]);
2105
2106 switch (mode) {
2107 case ATH9K_PM_AWAKE:
2108 status = ath9k_hw_set_power_awake(ah, setChip);
2109 break;
2110 case ATH9K_PM_FULL_SLEEP:
2111 ath9k_set_power_sleep(ah, setChip);
2112 ah->chip_fullsleep = true;
2113 break;
2114 case ATH9K_PM_NETWORK_SLEEP:
2115 ath9k_set_power_network_sleep(ah, setChip);
2116 break;
2117 default:
2118 ath_print(common, ATH_DBG_FATAL,
2119 "Unknown power mode %u\n", mode);
2120 return false;
2121 }
2122 ah->power_mode = mode;
2123
2124 return status;
2125 }
2126 EXPORT_SYMBOL(ath9k_hw_setpower);
2127
2128 /*
2129 * Helper for ASPM support.
2130 *
2131 * Disable PLL when in L0s as well as receiver clock when in L1.
2132 * This power saving option must be enabled through the SerDes.
2133 *
2134 * Programming the SerDes must go through the same 288 bit serial shift
2135 * register as the other analog registers. Hence the 9 writes.
2136 */
2137 static void ar9002_hw_configpcipowersave(struct ath_hw *ah,
2138 int restore,
2139 int power_off)
2140 {
2141 u8 i;
2142 u32 val;
2143
2144 if (ah->is_pciexpress != true)
2145 return;
2146
2147 /* Do not touch SerDes registers */
2148 if (ah->config.pcie_powersave_enable == 2)
2149 return;
2150
2151 /* Nothing to do on restore for 11N */
2152 if (!restore) {
2153 if (AR_SREV_9280_20_OR_LATER(ah)) {
2154 /*
2155 * AR9280 2.0 or later chips use SerDes values from the
2156 * initvals.h initialized depending on chipset during
2157 * __ath9k_hw_init()
2158 */
2159 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2160 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2161 INI_RA(&ah->iniPcieSerdes, i, 1));
2162 }
2163 } else if (AR_SREV_9280(ah) &&
2164 (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2165 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2166 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2167
2168 /* RX shut off when elecidle is asserted */
2169 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2170 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2171 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2172
2173 /* Shut off CLKREQ active in L1 */
2174 if (ah->config.pcie_clock_req)
2175 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2176 else
2177 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2178
2179 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2180 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2181 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2182
2183 /* Load the new settings */
2184 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2185
2186 } else {
2187 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2188 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2189
2190 /* RX shut off when elecidle is asserted */
2191 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2192 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2193 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2194
2195 /*
2196 * Ignore ah->ah_config.pcie_clock_req setting for
2197 * pre-AR9280 11n
2198 */
2199 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2200
2201 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2202 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2203 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2204
2205 /* Load the new settings */
2206 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2207 }
2208
2209 udelay(1000);
2210
2211 /* set bit 19 to allow forcing of pcie core into L1 state */
2212 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2213
2214 /* Several PCIe massages to ensure proper behaviour */
2215 if (ah->config.pcie_waen) {
2216 val = ah->config.pcie_waen;
2217 if (!power_off)
2218 val &= (~AR_WA_D3_L1_DISABLE);
2219 } else {
2220 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2221 AR_SREV_9287(ah)) {
2222 val = AR9285_WA_DEFAULT;
2223 if (!power_off)
2224 val &= (~AR_WA_D3_L1_DISABLE);
2225 } else if (AR_SREV_9280(ah)) {
2226 /*
2227 * On AR9280 chips bit 22 of 0x4004 needs to be
2228 * set otherwise card may disappear.
2229 */
2230 val = AR9280_WA_DEFAULT;
2231 if (!power_off)
2232 val &= (~AR_WA_D3_L1_DISABLE);
2233 } else
2234 val = AR_WA_DEFAULT;
2235 }
2236
2237 REG_WRITE(ah, AR_WA, val);
2238 }
2239
2240 if (power_off) {
2241 /*
2242 * Set PCIe workaround bits
2243 * bit 14 in WA register (disable L1) should only
2244 * be set when device enters D3 and be cleared
2245 * when device comes back to D0.
2246 */
2247 if (ah->config.pcie_waen) {
2248 if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2249 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2250 } else {
2251 if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2252 AR_SREV_9287(ah)) &&
2253 (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2254 (AR_SREV_9280(ah) &&
2255 (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2256 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2257 }
2258 }
2259 }
2260 }
2261
2262 /**********************/
2263 /* Interrupt Handling */
2264 /**********************/
2265
2266 bool ath9k_hw_intrpend(struct ath_hw *ah)
2267 {
2268 u32 host_isr;
2269
2270 if (AR_SREV_9100(ah))
2271 return true;
2272
2273 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2274 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2275 return true;
2276
2277 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2278 if ((host_isr & AR_INTR_SYNC_DEFAULT)
2279 && (host_isr != AR_INTR_SPURIOUS))
2280 return true;
2281
2282 return false;
2283 }
2284 EXPORT_SYMBOL(ath9k_hw_intrpend);
2285
2286 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2287 {
2288 u32 isr = 0;
2289 u32 mask2 = 0;
2290 struct ath9k_hw_capabilities *pCap = &ah->caps;
2291 u32 sync_cause = 0;
2292 bool fatal_int = false;
2293 struct ath_common *common = ath9k_hw_common(ah);
2294
2295 if (!AR_SREV_9100(ah)) {
2296 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2297 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2298 == AR_RTC_STATUS_ON) {
2299 isr = REG_READ(ah, AR_ISR);
2300 }
2301 }
2302
2303 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2304 AR_INTR_SYNC_DEFAULT;
2305
2306 *masked = 0;
2307
2308 if (!isr && !sync_cause)
2309 return false;
2310 } else {
2311 *masked = 0;
2312 isr = REG_READ(ah, AR_ISR);
2313 }
2314
2315 if (isr) {
2316 if (isr & AR_ISR_BCNMISC) {
2317 u32 isr2;
2318 isr2 = REG_READ(ah, AR_ISR_S2);
2319 if (isr2 & AR_ISR_S2_TIM)
2320 mask2 |= ATH9K_INT_TIM;
2321 if (isr2 & AR_ISR_S2_DTIM)
2322 mask2 |= ATH9K_INT_DTIM;
2323 if (isr2 & AR_ISR_S2_DTIMSYNC)
2324 mask2 |= ATH9K_INT_DTIMSYNC;
2325 if (isr2 & (AR_ISR_S2_CABEND))
2326 mask2 |= ATH9K_INT_CABEND;
2327 if (isr2 & AR_ISR_S2_GTT)
2328 mask2 |= ATH9K_INT_GTT;
2329 if (isr2 & AR_ISR_S2_CST)
2330 mask2 |= ATH9K_INT_CST;
2331 if (isr2 & AR_ISR_S2_TSFOOR)
2332 mask2 |= ATH9K_INT_TSFOOR;
2333 }
2334
2335 isr = REG_READ(ah, AR_ISR_RAC);
2336 if (isr == 0xffffffff) {
2337 *masked = 0;
2338 return false;
2339 }
2340
2341 *masked = isr & ATH9K_INT_COMMON;
2342
2343 if (ah->config.rx_intr_mitigation) {
2344 if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2345 *masked |= ATH9K_INT_RX;
2346 }
2347
2348 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2349 *masked |= ATH9K_INT_RX;
2350 if (isr &
2351 (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2352 AR_ISR_TXEOL)) {
2353 u32 s0_s, s1_s;
2354
2355 *masked |= ATH9K_INT_TX;
2356
2357 s0_s = REG_READ(ah, AR_ISR_S0_S);
2358 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2359 ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2360
2361 s1_s = REG_READ(ah, AR_ISR_S1_S);
2362 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2363 ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2364 }
2365
2366 if (isr & AR_ISR_RXORN) {
2367 ath_print(common, ATH_DBG_INTERRUPT,
2368 "receive FIFO overrun interrupt\n");
2369 }
2370
2371 if (!AR_SREV_9100(ah)) {
2372 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2373 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2374 if (isr5 & AR_ISR_S5_TIM_TIMER)
2375 *masked |= ATH9K_INT_TIM_TIMER;
2376 }
2377 }
2378
2379 *masked |= mask2;
2380 }
2381
2382 if (AR_SREV_9100(ah))
2383 return true;
2384
2385 if (isr & AR_ISR_GENTMR) {
2386 u32 s5_s;
2387
2388 s5_s = REG_READ(ah, AR_ISR_S5_S);
2389 if (isr & AR_ISR_GENTMR) {
2390 ah->intr_gen_timer_trigger =
2391 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2392
2393 ah->intr_gen_timer_thresh =
2394 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2395
2396 if (ah->intr_gen_timer_trigger)
2397 *masked |= ATH9K_INT_GENTIMER;
2398
2399 }
2400 }
2401
2402 if (sync_cause) {
2403 fatal_int =
2404 (sync_cause &
2405 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2406 ? true : false;
2407
2408 if (fatal_int) {
2409 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2410 ath_print(common, ATH_DBG_ANY,
2411 "received PCI FATAL interrupt\n");
2412 }
2413 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2414 ath_print(common, ATH_DBG_ANY,
2415 "received PCI PERR interrupt\n");
2416 }
2417 *masked |= ATH9K_INT_FATAL;
2418 }
2419 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2420 ath_print(common, ATH_DBG_INTERRUPT,
2421 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2422 REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2423 REG_WRITE(ah, AR_RC, 0);
2424 *masked |= ATH9K_INT_FATAL;
2425 }
2426 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2427 ath_print(common, ATH_DBG_INTERRUPT,
2428 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2429 }
2430
2431 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2432 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2433 }
2434
2435 return true;
2436 }
2437 EXPORT_SYMBOL(ath9k_hw_getisr);
2438
2439 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2440 {
2441 enum ath9k_int omask = ah->imask;
2442 u32 mask, mask2;
2443 struct ath9k_hw_capabilities *pCap = &ah->caps;
2444 struct ath_common *common = ath9k_hw_common(ah);
2445
2446 ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2447
2448 if (omask & ATH9K_INT_GLOBAL) {
2449 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2450 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2451 (void) REG_READ(ah, AR_IER);
2452 if (!AR_SREV_9100(ah)) {
2453 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2454 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2455
2456 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2457 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2458 }
2459 }
2460
2461 mask = ints & ATH9K_INT_COMMON;
2462 mask2 = 0;
2463
2464 if (ints & ATH9K_INT_TX) {
2465 if (ah->txok_interrupt_mask)
2466 mask |= AR_IMR_TXOK;
2467 if (ah->txdesc_interrupt_mask)
2468 mask |= AR_IMR_TXDESC;
2469 if (ah->txerr_interrupt_mask)
2470 mask |= AR_IMR_TXERR;
2471 if (ah->txeol_interrupt_mask)
2472 mask |= AR_IMR_TXEOL;
2473 }
2474 if (ints & ATH9K_INT_RX) {
2475 mask |= AR_IMR_RXERR;
2476 if (ah->config.rx_intr_mitigation)
2477 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2478 else
2479 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2480 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2481 mask |= AR_IMR_GENTMR;
2482 }
2483
2484 if (ints & (ATH9K_INT_BMISC)) {
2485 mask |= AR_IMR_BCNMISC;
2486 if (ints & ATH9K_INT_TIM)
2487 mask2 |= AR_IMR_S2_TIM;
2488 if (ints & ATH9K_INT_DTIM)
2489 mask2 |= AR_IMR_S2_DTIM;
2490 if (ints & ATH9K_INT_DTIMSYNC)
2491 mask2 |= AR_IMR_S2_DTIMSYNC;
2492 if (ints & ATH9K_INT_CABEND)
2493 mask2 |= AR_IMR_S2_CABEND;
2494 if (ints & ATH9K_INT_TSFOOR)
2495 mask2 |= AR_IMR_S2_TSFOOR;
2496 }
2497
2498 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2499 mask |= AR_IMR_BCNMISC;
2500 if (ints & ATH9K_INT_GTT)
2501 mask2 |= AR_IMR_S2_GTT;
2502 if (ints & ATH9K_INT_CST)
2503 mask2 |= AR_IMR_S2_CST;
2504 }
2505
2506 ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2507 REG_WRITE(ah, AR_IMR, mask);
2508 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2509 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2510 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2511 ah->imrs2_reg |= mask2;
2512 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2513
2514 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2515 if (ints & ATH9K_INT_TIM_TIMER)
2516 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2517 else
2518 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2519 }
2520
2521 if (ints & ATH9K_INT_GLOBAL) {
2522 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2523 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2524 if (!AR_SREV_9100(ah)) {
2525 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2526 AR_INTR_MAC_IRQ);
2527 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2528
2529
2530 REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2531 AR_INTR_SYNC_DEFAULT);
2532 REG_WRITE(ah, AR_INTR_SYNC_MASK,
2533 AR_INTR_SYNC_DEFAULT);
2534 }
2535 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2536 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2537 }
2538
2539 return omask;
2540 }
2541 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2542
2543 /*******************/
2544 /* Beacon Handling */
2545 /*******************/
2546
2547 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2548 {
2549 int flags = 0;
2550
2551 ah->beacon_interval = beacon_period;
2552
2553 switch (ah->opmode) {
2554 case NL80211_IFTYPE_STATION:
2555 case NL80211_IFTYPE_MONITOR:
2556 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2557 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2558 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2559 flags |= AR_TBTT_TIMER_EN;
2560 break;
2561 case NL80211_IFTYPE_ADHOC:
2562 case NL80211_IFTYPE_MESH_POINT:
2563 REG_SET_BIT(ah, AR_TXCFG,
2564 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2565 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2566 TU_TO_USEC(next_beacon +
2567 (ah->atim_window ? ah->
2568 atim_window : 1)));
2569 flags |= AR_NDP_TIMER_EN;
2570 case NL80211_IFTYPE_AP:
2571 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2572 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2573 TU_TO_USEC(next_beacon -
2574 ah->config.
2575 dma_beacon_response_time));
2576 REG_WRITE(ah, AR_NEXT_SWBA,
2577 TU_TO_USEC(next_beacon -
2578 ah->config.
2579 sw_beacon_response_time));
2580 flags |=
2581 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2582 break;
2583 default:
2584 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2585 "%s: unsupported opmode: %d\n",
2586 __func__, ah->opmode);
2587 return;
2588 break;
2589 }
2590
2591 REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2592 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2593 REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2594 REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2595
2596 beacon_period &= ~ATH9K_BEACON_ENA;
2597 if (beacon_period & ATH9K_BEACON_RESET_TSF) {
2598 ath9k_hw_reset_tsf(ah);
2599 }
2600
2601 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2602 }
2603 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2604
2605 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2606 const struct ath9k_beacon_state *bs)
2607 {
2608 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2609 struct ath9k_hw_capabilities *pCap = &ah->caps;
2610 struct ath_common *common = ath9k_hw_common(ah);
2611
2612 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2613
2614 REG_WRITE(ah, AR_BEACON_PERIOD,
2615 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2616 REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2617 TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2618
2619 REG_RMW_FIELD(ah, AR_RSSI_THR,
2620 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2621
2622 beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
2623
2624 if (bs->bs_sleepduration > beaconintval)
2625 beaconintval = bs->bs_sleepduration;
2626
2627 dtimperiod = bs->bs_dtimperiod;
2628 if (bs->bs_sleepduration > dtimperiod)
2629 dtimperiod = bs->bs_sleepduration;
2630
2631 if (beaconintval == dtimperiod)
2632 nextTbtt = bs->bs_nextdtim;
2633 else
2634 nextTbtt = bs->bs_nexttbtt;
2635
2636 ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2637 ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2638 ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2639 ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2640
2641 REG_WRITE(ah, AR_NEXT_DTIM,
2642 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2643 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2644
2645 REG_WRITE(ah, AR_SLEEP1,
2646 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2647 | AR_SLEEP1_ASSUME_DTIM);
2648
2649 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2650 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2651 else
2652 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2653
2654 REG_WRITE(ah, AR_SLEEP2,
2655 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2656
2657 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2658 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2659
2660 REG_SET_BIT(ah, AR_TIMER_MODE,
2661 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2662 AR_DTIM_TIMER_EN);
2663
2664 /* TSF Out of Range Threshold */
2665 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2666 }
2667 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2668
2669 /*******************/
2670 /* HW Capabilities */
2671 /*******************/
2672
2673 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2674 {
2675 struct ath9k_hw_capabilities *pCap = &ah->caps;
2676 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2677 struct ath_common *common = ath9k_hw_common(ah);
2678 struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2679
2680 u16 capField = 0, eeval;
2681
2682 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2683 regulatory->current_rd = eeval;
2684
2685 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2686 if (AR_SREV_9285_10_OR_LATER(ah))
2687 eeval |= AR9285_RDEXT_DEFAULT;
2688 regulatory->current_rd_ext = eeval;
2689
2690 capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2691
2692 if (ah->opmode != NL80211_IFTYPE_AP &&
2693 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2694 if (regulatory->current_rd == 0x64 ||
2695 regulatory->current_rd == 0x65)
2696 regulatory->current_rd += 5;
2697 else if (regulatory->current_rd == 0x41)
2698 regulatory->current_rd = 0x43;
2699 ath_print(common, ATH_DBG_REGULATORY,
2700 "regdomain mapped to 0x%x\n", regulatory->current_rd);
2701 }
2702
2703 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2704 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2705 ath_print(common, ATH_DBG_FATAL,
2706 "no band has been marked as supported in EEPROM.\n");
2707 return -EINVAL;
2708 }
2709
2710 bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2711
2712 if (eeval & AR5416_OPFLAGS_11A) {
2713 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2714 if (ah->config.ht_enable) {
2715 if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2716 set_bit(ATH9K_MODE_11NA_HT20,
2717 pCap->wireless_modes);
2718 if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2719 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2720 pCap->wireless_modes);
2721 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2722 pCap->wireless_modes);
2723 }
2724 }
2725 }
2726
2727 if (eeval & AR5416_OPFLAGS_11G) {
2728 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2729 if (ah->config.ht_enable) {
2730 if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2731 set_bit(ATH9K_MODE_11NG_HT20,
2732 pCap->wireless_modes);
2733 if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2734 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2735 pCap->wireless_modes);
2736 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2737 pCap->wireless_modes);
2738 }
2739 }
2740 }
2741
2742 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2743 /*
2744 * For AR9271 we will temporarilly uses the rx chainmax as read from
2745 * the EEPROM.
2746 */
2747 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2748 !(eeval & AR5416_OPFLAGS_11A) &&
2749 !(AR_SREV_9271(ah)))
2750 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2751 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2752 else
2753 /* Use rx_chainmask from EEPROM. */
2754 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2755
2756 if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2757 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2758
2759 pCap->low_2ghz_chan = 2312;
2760 pCap->high_2ghz_chan = 2732;
2761
2762 pCap->low_5ghz_chan = 4920;
2763 pCap->high_5ghz_chan = 6100;
2764
2765 pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2766 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2767 pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2768
2769 pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2770 pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2771 pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2772
2773 if (ah->config.ht_enable)
2774 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2775 else
2776 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2777
2778 pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2779 pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2780 pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2781 pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2782
2783 if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2784 pCap->total_queues =
2785 MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2786 else
2787 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2788
2789 if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2790 pCap->keycache_size =
2791 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2792 else
2793 pCap->keycache_size = AR_KEYTABLE_SIZE;
2794
2795 pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2796
2797 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2798 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2799 else
2800 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2801
2802 if (AR_SREV_9271(ah))
2803 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2804 else if (AR_SREV_9285_10_OR_LATER(ah))
2805 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2806 else if (AR_SREV_9280_10_OR_LATER(ah))
2807 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2808 else
2809 pCap->num_gpio_pins = AR_NUM_GPIO;
2810
2811 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2812 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2813 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2814 } else {
2815 pCap->rts_aggr_limit = (8 * 1024);
2816 }
2817
2818 pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2819
2820 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2821 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2822 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2823 ah->rfkill_gpio =
2824 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2825 ah->rfkill_polarity =
2826 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2827
2828 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2829 }
2830 #endif
2831 if (AR_SREV_9271(ah))
2832 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2833 else
2834 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2835
2836 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2837 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2838 else
2839 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2840
2841 if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2842 pCap->reg_cap =
2843 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2844 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2845 AR_EEPROM_EEREGCAP_EN_KK_U2 |
2846 AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2847 } else {
2848 pCap->reg_cap =
2849 AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2850 AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2851 }
2852
2853 /* Advertise midband for AR5416 with FCC midband set in eeprom */
2854 if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2855 AR_SREV_5416(ah))
2856 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2857
2858 pCap->num_antcfg_5ghz =
2859 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2860 pCap->num_antcfg_2ghz =
2861 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2862
2863 if (AR_SREV_9280_10_OR_LATER(ah) &&
2864 ath9k_hw_btcoex_supported(ah)) {
2865 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2866 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2867
2868 if (AR_SREV_9285(ah)) {
2869 btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2870 btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2871 } else {
2872 btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2873 }
2874 } else {
2875 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2876 }
2877
2878 if (AR_SREV_9300_20_OR_LATER(ah)) {
2879 pCap->hw_caps |= ATH9K_HW_CAP_EDMA;
2880 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2881 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2882 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2883 }
2884
2885 return 0;
2886 }
2887
2888 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2889 u32 capability, u32 *result)
2890 {
2891 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2892 switch (type) {
2893 case ATH9K_CAP_CIPHER:
2894 switch (capability) {
2895 case ATH9K_CIPHER_AES_CCM:
2896 case ATH9K_CIPHER_AES_OCB:
2897 case ATH9K_CIPHER_TKIP:
2898 case ATH9K_CIPHER_WEP:
2899 case ATH9K_CIPHER_MIC:
2900 case ATH9K_CIPHER_CLR:
2901 return true;
2902 default:
2903 return false;
2904 }
2905 case ATH9K_CAP_TKIP_MIC:
2906 switch (capability) {
2907 case 0:
2908 return true;
2909 case 1:
2910 return (ah->sta_id1_defaults &
2911 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2912 false;
2913 }
2914 case ATH9K_CAP_TKIP_SPLIT:
2915 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2916 false : true;
2917 case ATH9K_CAP_MCAST_KEYSRCH:
2918 switch (capability) {
2919 case 0:
2920 return true;
2921 case 1:
2922 if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2923 return false;
2924 } else {
2925 return (ah->sta_id1_defaults &
2926 AR_STA_ID1_MCAST_KSRCH) ? true :
2927 false;
2928 }
2929 }
2930 return false;
2931 case ATH9K_CAP_TXPOW:
2932 switch (capability) {
2933 case 0:
2934 return 0;
2935 case 1:
2936 *result = regulatory->power_limit;
2937 return 0;
2938 case 2:
2939 *result = regulatory->max_power_level;
2940 return 0;
2941 case 3:
2942 *result = regulatory->tp_scale;
2943 return 0;
2944 }
2945 return false;
2946 case ATH9K_CAP_DS:
2947 return (AR_SREV_9280_20_OR_LATER(ah) &&
2948 (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2949 ? false : true;
2950 default:
2951 return false;
2952 }
2953 }
2954 EXPORT_SYMBOL(ath9k_hw_getcapability);
2955
2956 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2957 u32 capability, u32 setting, int *status)
2958 {
2959 switch (type) {
2960 case ATH9K_CAP_TKIP_MIC:
2961 if (setting)
2962 ah->sta_id1_defaults |=
2963 AR_STA_ID1_CRPT_MIC_ENABLE;
2964 else
2965 ah->sta_id1_defaults &=
2966 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2967 return true;
2968 case ATH9K_CAP_MCAST_KEYSRCH:
2969 if (setting)
2970 ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2971 else
2972 ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2973 return true;
2974 default:
2975 return false;
2976 }
2977 }
2978 EXPORT_SYMBOL(ath9k_hw_setcapability);
2979
2980 /****************************/
2981 /* GPIO / RFKILL / Antennae */
2982 /****************************/
2983
2984 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2985 u32 gpio, u32 type)
2986 {
2987 int addr;
2988 u32 gpio_shift, tmp;
2989
2990 if (gpio > 11)
2991 addr = AR_GPIO_OUTPUT_MUX3;
2992 else if (gpio > 5)
2993 addr = AR_GPIO_OUTPUT_MUX2;
2994 else
2995 addr = AR_GPIO_OUTPUT_MUX1;
2996
2997 gpio_shift = (gpio % 6) * 5;
2998
2999 if (AR_SREV_9280_20_OR_LATER(ah)
3000 || (addr != AR_GPIO_OUTPUT_MUX1)) {
3001 REG_RMW(ah, addr, (type << gpio_shift),
3002 (0x1f << gpio_shift));
3003 } else {
3004 tmp = REG_READ(ah, addr);
3005 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3006 tmp &= ~(0x1f << gpio_shift);
3007 tmp |= (type << gpio_shift);
3008 REG_WRITE(ah, addr, tmp);
3009 }
3010 }
3011
3012 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3013 {
3014 u32 gpio_shift;
3015
3016 BUG_ON(gpio >= ah->caps.num_gpio_pins);
3017
3018 gpio_shift = gpio << 1;
3019
3020 REG_RMW(ah,
3021 AR_GPIO_OE_OUT,
3022 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3023 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3024 }
3025 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3026
3027 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3028 {
3029 #define MS_REG_READ(x, y) \
3030 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3031
3032 if (gpio >= ah->caps.num_gpio_pins)
3033 return 0xffffffff;
3034
3035 if (AR_SREV_9300_20_OR_LATER(ah))
3036 return MS_REG_READ(AR9300, gpio) != 0;
3037 else if (AR_SREV_9271(ah))
3038 return MS_REG_READ(AR9271, gpio) != 0;
3039 else if (AR_SREV_9287_10_OR_LATER(ah))
3040 return MS_REG_READ(AR9287, gpio) != 0;
3041 else if (AR_SREV_9285_10_OR_LATER(ah))
3042 return MS_REG_READ(AR9285, gpio) != 0;
3043 else if (AR_SREV_9280_10_OR_LATER(ah))
3044 return MS_REG_READ(AR928X, gpio) != 0;
3045 else
3046 return MS_REG_READ(AR, gpio) != 0;
3047 }
3048 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3049
3050 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3051 u32 ah_signal_type)
3052 {
3053 u32 gpio_shift;
3054
3055 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3056
3057 gpio_shift = 2 * gpio;
3058
3059 REG_RMW(ah,
3060 AR_GPIO_OE_OUT,
3061 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3062 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3063 }
3064 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3065
3066 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3067 {
3068 if (AR_SREV_9271(ah))
3069 val = ~val;
3070
3071 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3072 AR_GPIO_BIT(gpio));
3073 }
3074 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3075
3076 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3077 {
3078 return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3079 }
3080 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3081
3082 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3083 {
3084 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3085 }
3086 EXPORT_SYMBOL(ath9k_hw_setantenna);
3087
3088 /*********************/
3089 /* General Operation */
3090 /*********************/
3091
3092 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3093 {
3094 u32 bits = REG_READ(ah, AR_RX_FILTER);
3095 u32 phybits = REG_READ(ah, AR_PHY_ERR);
3096
3097 if (phybits & AR_PHY_ERR_RADAR)
3098 bits |= ATH9K_RX_FILTER_PHYRADAR;
3099 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3100 bits |= ATH9K_RX_FILTER_PHYERR;
3101
3102 return bits;
3103 }
3104 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3105
3106 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3107 {
3108 u32 phybits;
3109
3110 REG_WRITE(ah, AR_RX_FILTER, bits);
3111
3112 phybits = 0;
3113 if (bits & ATH9K_RX_FILTER_PHYRADAR)
3114 phybits |= AR_PHY_ERR_RADAR;
3115 if (bits & ATH9K_RX_FILTER_PHYERR)
3116 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3117 REG_WRITE(ah, AR_PHY_ERR, phybits);
3118
3119 if (phybits)
3120 REG_WRITE(ah, AR_RXCFG,
3121 REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3122 else
3123 REG_WRITE(ah, AR_RXCFG,
3124 REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3125 }
3126 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3127
3128 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3129 {
3130 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3131 return false;
3132
3133 ath9k_hw_init_pll(ah, NULL);
3134 return true;
3135 }
3136 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3137
3138 bool ath9k_hw_disable(struct ath_hw *ah)
3139 {
3140 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3141 return false;
3142
3143 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3144 return false;
3145
3146 ath9k_hw_init_pll(ah, NULL);
3147 return true;
3148 }
3149 EXPORT_SYMBOL(ath9k_hw_disable);
3150
3151 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3152 {
3153 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3154 struct ath9k_channel *chan = ah->curchan;
3155 struct ieee80211_channel *channel = chan->chan;
3156
3157 regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3158
3159 ah->eep_ops->set_txpower(ah, chan,
3160 ath9k_regd_get_ctl(regulatory, chan),
3161 channel->max_antenna_gain * 2,
3162 channel->max_power * 2,
3163 min((u32) MAX_RATE_POWER,
3164 (u32) regulatory->power_limit));
3165 }
3166 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3167
3168 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3169 {
3170 memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3171 }
3172 EXPORT_SYMBOL(ath9k_hw_setmac);
3173
3174 void ath9k_hw_setopmode(struct ath_hw *ah)
3175 {
3176 ath9k_hw_set_operating_mode(ah, ah->opmode);
3177 }
3178 EXPORT_SYMBOL(ath9k_hw_setopmode);
3179
3180 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3181 {
3182 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3183 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3184 }
3185 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3186
3187 void ath9k_hw_write_associd(struct ath_hw *ah)
3188 {
3189 struct ath_common *common = ath9k_hw_common(ah);
3190
3191 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3192 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3193 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3194 }
3195 EXPORT_SYMBOL(ath9k_hw_write_associd);
3196
3197 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3198 {
3199 u64 tsf;
3200
3201 tsf = REG_READ(ah, AR_TSF_U32);
3202 tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3203
3204 return tsf;
3205 }
3206 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3207
3208 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3209 {
3210 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3211 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3212 }
3213 EXPORT_SYMBOL(ath9k_hw_settsf64);
3214
3215 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3216 {
3217 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3218 AH_TSF_WRITE_TIMEOUT))
3219 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3220 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3221
3222 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3223 }
3224 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3225
3226 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3227 {
3228 if (setting)
3229 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3230 else
3231 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3232 }
3233 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3234
3235 /*
3236 * Extend 15-bit time stamp from rx descriptor to
3237 * a full 64-bit TSF using the current h/w TSF.
3238 */
3239 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3240 {
3241 u64 tsf;
3242
3243 tsf = ath9k_hw_gettsf64(ah);
3244 if ((tsf & 0x7fff) < rstamp)
3245 tsf -= 0x8000;
3246 return (tsf & ~0x7fff) | rstamp;
3247 }
3248 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3249
3250 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3251 {
3252 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3253 u32 macmode;
3254
3255 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3256 macmode = AR_2040_JOINED_RX_CLEAR;
3257 else
3258 macmode = 0;
3259
3260 REG_WRITE(ah, AR_2040_MODE, macmode);
3261 }
3262
3263 /* HW Generic timers configuration */
3264
3265 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3266 {
3267 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3268 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3269 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3270 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3271 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3272 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3273 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3274 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3275 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3276 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3277 AR_NDP2_TIMER_MODE, 0x0002},
3278 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3279 AR_NDP2_TIMER_MODE, 0x0004},
3280 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3281 AR_NDP2_TIMER_MODE, 0x0008},
3282 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3283 AR_NDP2_TIMER_MODE, 0x0010},
3284 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3285 AR_NDP2_TIMER_MODE, 0x0020},
3286 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3287 AR_NDP2_TIMER_MODE, 0x0040},
3288 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3289 AR_NDP2_TIMER_MODE, 0x0080}
3290 };
3291
3292 /* HW generic timer primitives */
3293
3294 /* compute and clear index of rightmost 1 */
3295 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3296 {
3297 u32 b;
3298
3299 b = *mask;
3300 b &= (0-b);
3301 *mask &= ~b;
3302 b *= debruijn32;
3303 b >>= 27;
3304
3305 return timer_table->gen_timer_index[b];
3306 }
3307
3308 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3309 {
3310 return REG_READ(ah, AR_TSF_L32);
3311 }
3312 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3313
3314 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3315 void (*trigger)(void *),
3316 void (*overflow)(void *),
3317 void *arg,
3318 u8 timer_index)
3319 {
3320 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3321 struct ath_gen_timer *timer;
3322
3323 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3324
3325 if (timer == NULL) {
3326 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3327 "Failed to allocate memory"
3328 "for hw timer[%d]\n", timer_index);
3329 return NULL;
3330 }
3331
3332 /* allocate a hardware generic timer slot */
3333 timer_table->timers[timer_index] = timer;
3334 timer->index = timer_index;
3335 timer->trigger = trigger;
3336 timer->overflow = overflow;
3337 timer->arg = arg;
3338
3339 return timer;
3340 }
3341 EXPORT_SYMBOL(ath_gen_timer_alloc);
3342
3343 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3344 struct ath_gen_timer *timer,
3345 u32 timer_next,
3346 u32 timer_period)
3347 {
3348 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3349 u32 tsf;
3350
3351 BUG_ON(!timer_period);
3352
3353 set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3354
3355 tsf = ath9k_hw_gettsf32(ah);
3356
3357 ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3358 "curent tsf %x period %x"
3359 "timer_next %x\n", tsf, timer_period, timer_next);
3360
3361 /*
3362 * Pull timer_next forward if the current TSF already passed it
3363 * because of software latency
3364 */
3365 if (timer_next < tsf)
3366 timer_next = tsf + timer_period;
3367
3368 /*
3369 * Program generic timer registers
3370 */
3371 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3372 timer_next);
3373 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3374 timer_period);
3375 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3376 gen_tmr_configuration[timer->index].mode_mask);
3377
3378 /* Enable both trigger and thresh interrupt masks */
3379 REG_SET_BIT(ah, AR_IMR_S5,
3380 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3381 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3382 }
3383 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3384
3385 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3386 {
3387 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3388
3389 if ((timer->index < AR_FIRST_NDP_TIMER) ||
3390 (timer->index >= ATH_MAX_GEN_TIMER)) {
3391 return;
3392 }
3393
3394 /* Clear generic timer enable bits. */
3395 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3396 gen_tmr_configuration[timer->index].mode_mask);
3397
3398 /* Disable both trigger and thresh interrupt masks */
3399 REG_CLR_BIT(ah, AR_IMR_S5,
3400 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3401 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3402
3403 clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3404 }
3405 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3406
3407 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3408 {
3409 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3410
3411 /* free the hardware generic timer slot */
3412 timer_table->timers[timer->index] = NULL;
3413 kfree(timer);
3414 }
3415 EXPORT_SYMBOL(ath_gen_timer_free);
3416
3417 /*
3418 * Generic Timer Interrupts handling
3419 */
3420 void ath_gen_timer_isr(struct ath_hw *ah)
3421 {
3422 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3423 struct ath_gen_timer *timer;
3424 struct ath_common *common = ath9k_hw_common(ah);
3425 u32 trigger_mask, thresh_mask, index;
3426
3427 /* get hardware generic timer interrupt status */
3428 trigger_mask = ah->intr_gen_timer_trigger;
3429 thresh_mask = ah->intr_gen_timer_thresh;
3430 trigger_mask &= timer_table->timer_mask.val;
3431 thresh_mask &= timer_table->timer_mask.val;
3432
3433 trigger_mask &= ~thresh_mask;
3434
3435 while (thresh_mask) {
3436 index = rightmost_index(timer_table, &thresh_mask);
3437 timer = timer_table->timers[index];
3438 BUG_ON(!timer);
3439 ath_print(common, ATH_DBG_HWTIMER,
3440 "TSF overflow for Gen timer %d\n", index);
3441 timer->overflow(timer->arg);
3442 }
3443
3444 while (trigger_mask) {
3445 index = rightmost_index(timer_table, &trigger_mask);
3446 timer = timer_table->timers[index];
3447 BUG_ON(!timer);
3448 ath_print(common, ATH_DBG_HWTIMER,
3449 "Gen timer[%d] trigger\n", index);
3450 timer->trigger(timer->arg);
3451 }
3452 }
3453 EXPORT_SYMBOL(ath_gen_timer_isr);
3454
3455 /********/
3456 /* HTC */
3457 /********/
3458
3459 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3460 {
3461 ah->htc_reset_init = true;
3462 }
3463 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3464
3465 static struct {
3466 u32 version;
3467 const char * name;
3468 } ath_mac_bb_names[] = {
3469 /* Devices with external radios */
3470 { AR_SREV_VERSION_5416_PCI, "5416" },
3471 { AR_SREV_VERSION_5416_PCIE, "5418" },
3472 { AR_SREV_VERSION_9100, "9100" },
3473 { AR_SREV_VERSION_9160, "9160" },
3474 /* Single-chip solutions */
3475 { AR_SREV_VERSION_9280, "9280" },
3476 { AR_SREV_VERSION_9285, "9285" },
3477 { AR_SREV_VERSION_9287, "9287" },
3478 { AR_SREV_VERSION_9271, "9271" },
3479 };
3480
3481 /* For devices with external radios */
3482 static struct {
3483 u16 version;
3484 const char * name;
3485 } ath_rf_names[] = {
3486 { 0, "5133" },
3487 { AR_RAD5133_SREV_MAJOR, "5133" },
3488 { AR_RAD5122_SREV_MAJOR, "5122" },
3489 { AR_RAD2133_SREV_MAJOR, "2133" },
3490 { AR_RAD2122_SREV_MAJOR, "2122" }
3491 };
3492
3493 /*
3494 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3495 */
3496 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3497 {
3498 int i;
3499
3500 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3501 if (ath_mac_bb_names[i].version == mac_bb_version) {
3502 return ath_mac_bb_names[i].name;
3503 }
3504 }
3505
3506 return "????";
3507 }
3508
3509 /*
3510 * Return the RF name. "????" is returned if the RF is unknown.
3511 * Used for devices with external radios.
3512 */
3513 static const char *ath9k_hw_rf_name(u16 rf_version)
3514 {
3515 int i;
3516
3517 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3518 if (ath_rf_names[i].version == rf_version) {
3519 return ath_rf_names[i].name;
3520 }
3521 }
3522
3523 return "????";
3524 }
3525
3526 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3527 {
3528 int used;
3529
3530 /* chipsets >= AR9280 are single-chip */
3531 if (AR_SREV_9280_10_OR_LATER(ah)) {
3532 used = snprintf(hw_name, len,
3533 "Atheros AR%s Rev:%x",
3534 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3535 ah->hw_version.macRev);
3536 }
3537 else {
3538 used = snprintf(hw_name, len,
3539 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3540 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3541 ah->hw_version.macRev,
3542 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3543 AR_RADIO_SREV_MAJOR)),
3544 ah->hw_version.phyRev);
3545 }
3546
3547 hw_name[used] = '\0';
3548 }
3549 EXPORT_SYMBOL(ath9k_hw_name);
3550
3551 /* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
3552 static void ar9002_hw_attach_ops(struct ath_hw *ah)
3553 {
3554 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3555 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
3556
3557 priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
3558 priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
3559 priv_ops->macversion_supported = ar9002_hw_macversion_supported;
3560
3561 ops->config_pci_powersave = ar9002_hw_configpcipowersave;
3562
3563 ar5008_hw_attach_phy_ops(ah);
3564 if (AR_SREV_9280_10_OR_LATER(ah))
3565 ar9002_hw_attach_phy_ops(ah);
3566 }
3567
3568 /* Sets up the AR9003 hardware familiy callbacks */
3569 static void ar9003_hw_attach_ops(struct ath_hw *ah)
3570 {
3571 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3572
3573 priv_ops->macversion_supported = ar9003_hw_macversion_supported;
3574
3575 ar9003_hw_attach_phy_ops(ah);
3576 }
This page took 0.119321 seconds and 6 git commands to generate.