ath9k: do not enable interrupt on set interrupt mask
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / mac.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "hw-ops.h"
19
20 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
21 struct ath9k_tx_queue_info *qi)
22 {
23 ath_dbg(ath9k_hw_common(ah), ATH_DBG_INTERRUPT,
24 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
25 ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
26 ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
27 ah->txurn_interrupt_mask);
28
29 ENABLE_REGWRITE_BUFFER(ah);
30
31 REG_WRITE(ah, AR_IMR_S0,
32 SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
33 | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
34 REG_WRITE(ah, AR_IMR_S1,
35 SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
36 | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
37
38 ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
39 ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
40 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
41
42 REGWRITE_BUFFER_FLUSH(ah);
43 }
44
45 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
46 {
47 return REG_READ(ah, AR_QTXDP(q));
48 }
49 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
50
51 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
52 {
53 REG_WRITE(ah, AR_QTXDP(q), txdp);
54 }
55 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
56
57 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
58 {
59 ath_dbg(ath9k_hw_common(ah), ATH_DBG_QUEUE,
60 "Enable TXE on queue: %u\n", q);
61 REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64
65 void ath9k_hw_cleartxdesc(struct ath_hw *ah, void *ds)
66 {
67 struct ar5416_desc *ads = AR5416DESC(ds);
68
69 ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
70 ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
71 ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
72 ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
73 ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
74 }
75 EXPORT_SYMBOL(ath9k_hw_cleartxdesc);
76
77 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
78 {
79 u32 npend;
80
81 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
82 if (npend == 0) {
83
84 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
85 npend = 1;
86 }
87
88 return npend;
89 }
90 EXPORT_SYMBOL(ath9k_hw_numtxpending);
91
92 /**
93 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
94 *
95 * @ah: atheros hardware struct
96 * @bIncTrigLevel: whether or not the frame trigger level should be updated
97 *
98 * The frame trigger level specifies the minimum number of bytes,
99 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
100 * before the PCU will initiate sending the frame on the air. This can
101 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
102 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
103 * first)
104 *
105 * Caution must be taken to ensure to set the frame trigger level based
106 * on the DMA request size. For example if the DMA request size is set to
107 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
108 * there need to be enough space in the tx FIFO for the requested transfer
109 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
110 * the threshold to a value beyond 6, then the transmit will hang.
111 *
112 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
113 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
114 * there is a hardware issue which forces us to use 2 KB instead so the
115 * frame trigger level must not exceed 2 KB for these chipsets.
116 */
117 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
118 {
119 u32 txcfg, curLevel, newLevel;
120
121 if (ah->tx_trig_level >= ah->config.max_txtrig_level)
122 return false;
123
124 ath9k_hw_disable_interrupts(ah);
125
126 txcfg = REG_READ(ah, AR_TXCFG);
127 curLevel = MS(txcfg, AR_FTRIG);
128 newLevel = curLevel;
129 if (bIncTrigLevel) {
130 if (curLevel < ah->config.max_txtrig_level)
131 newLevel++;
132 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
133 newLevel--;
134 if (newLevel != curLevel)
135 REG_WRITE(ah, AR_TXCFG,
136 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
137
138 ath9k_hw_enable_interrupts(ah);
139
140 ah->tx_trig_level = newLevel;
141
142 return newLevel != curLevel;
143 }
144 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
145
146 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
147 {
148 int i, q;
149
150 REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
151
152 REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
153 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
154 REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
155
156 for (q = 0; q < AR_NUM_QCU; q++) {
157 for (i = 0; i < 1000; i++) {
158 if (i)
159 udelay(5);
160
161 if (!ath9k_hw_numtxpending(ah, q))
162 break;
163 }
164 }
165
166 REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
167 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
168 REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
169
170 REG_WRITE(ah, AR_Q_TXD, 0);
171 }
172 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
173
174 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
175 {
176 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
177 #define ATH9K_TIME_QUANTUM 100 /* usec */
178 int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
179 int wait;
180
181 REG_WRITE(ah, AR_Q_TXD, 1 << q);
182
183 for (wait = wait_time; wait != 0; wait--) {
184 if (wait != wait_time)
185 udelay(ATH9K_TIME_QUANTUM);
186
187 if (ath9k_hw_numtxpending(ah, q) == 0)
188 break;
189 }
190
191 REG_WRITE(ah, AR_Q_TXD, 0);
192
193 return wait != 0;
194
195 #undef ATH9K_TX_STOP_DMA_TIMEOUT
196 #undef ATH9K_TIME_QUANTUM
197 }
198 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
199
200 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
201 {
202 *txqs &= ah->intr_txqs;
203 ah->intr_txqs &= ~(*txqs);
204 }
205 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
206
207 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
208 const struct ath9k_tx_queue_info *qinfo)
209 {
210 u32 cw;
211 struct ath_common *common = ath9k_hw_common(ah);
212 struct ath9k_tx_queue_info *qi;
213
214 qi = &ah->txq[q];
215 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
216 ath_dbg(common, ATH_DBG_QUEUE,
217 "Set TXQ properties, inactive queue: %u\n", q);
218 return false;
219 }
220
221 ath_dbg(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q);
222
223 qi->tqi_ver = qinfo->tqi_ver;
224 qi->tqi_subtype = qinfo->tqi_subtype;
225 qi->tqi_qflags = qinfo->tqi_qflags;
226 qi->tqi_priority = qinfo->tqi_priority;
227 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
228 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
229 else
230 qi->tqi_aifs = INIT_AIFS;
231 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
232 cw = min(qinfo->tqi_cwmin, 1024U);
233 qi->tqi_cwmin = 1;
234 while (qi->tqi_cwmin < cw)
235 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
236 } else
237 qi->tqi_cwmin = qinfo->tqi_cwmin;
238 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
239 cw = min(qinfo->tqi_cwmax, 1024U);
240 qi->tqi_cwmax = 1;
241 while (qi->tqi_cwmax < cw)
242 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
243 } else
244 qi->tqi_cwmax = INIT_CWMAX;
245
246 if (qinfo->tqi_shretry != 0)
247 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
248 else
249 qi->tqi_shretry = INIT_SH_RETRY;
250 if (qinfo->tqi_lgretry != 0)
251 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
252 else
253 qi->tqi_lgretry = INIT_LG_RETRY;
254 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
255 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
256 qi->tqi_burstTime = qinfo->tqi_burstTime;
257 qi->tqi_readyTime = qinfo->tqi_readyTime;
258
259 switch (qinfo->tqi_subtype) {
260 case ATH9K_WME_UPSD:
261 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
262 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
263 break;
264 default:
265 break;
266 }
267
268 return true;
269 }
270 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
271
272 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
273 struct ath9k_tx_queue_info *qinfo)
274 {
275 struct ath_common *common = ath9k_hw_common(ah);
276 struct ath9k_tx_queue_info *qi;
277
278 qi = &ah->txq[q];
279 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
280 ath_dbg(common, ATH_DBG_QUEUE,
281 "Get TXQ properties, inactive queue: %u\n", q);
282 return false;
283 }
284
285 qinfo->tqi_qflags = qi->tqi_qflags;
286 qinfo->tqi_ver = qi->tqi_ver;
287 qinfo->tqi_subtype = qi->tqi_subtype;
288 qinfo->tqi_qflags = qi->tqi_qflags;
289 qinfo->tqi_priority = qi->tqi_priority;
290 qinfo->tqi_aifs = qi->tqi_aifs;
291 qinfo->tqi_cwmin = qi->tqi_cwmin;
292 qinfo->tqi_cwmax = qi->tqi_cwmax;
293 qinfo->tqi_shretry = qi->tqi_shretry;
294 qinfo->tqi_lgretry = qi->tqi_lgretry;
295 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
296 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
297 qinfo->tqi_burstTime = qi->tqi_burstTime;
298 qinfo->tqi_readyTime = qi->tqi_readyTime;
299
300 return true;
301 }
302 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
303
304 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
305 const struct ath9k_tx_queue_info *qinfo)
306 {
307 struct ath_common *common = ath9k_hw_common(ah);
308 struct ath9k_tx_queue_info *qi;
309 int q;
310
311 switch (type) {
312 case ATH9K_TX_QUEUE_BEACON:
313 q = ATH9K_NUM_TX_QUEUES - 1;
314 break;
315 case ATH9K_TX_QUEUE_CAB:
316 q = ATH9K_NUM_TX_QUEUES - 2;
317 break;
318 case ATH9K_TX_QUEUE_PSPOLL:
319 q = 1;
320 break;
321 case ATH9K_TX_QUEUE_UAPSD:
322 q = ATH9K_NUM_TX_QUEUES - 3;
323 break;
324 case ATH9K_TX_QUEUE_DATA:
325 for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
326 if (ah->txq[q].tqi_type ==
327 ATH9K_TX_QUEUE_INACTIVE)
328 break;
329 if (q == ATH9K_NUM_TX_QUEUES) {
330 ath_err(common, "No available TX queue\n");
331 return -1;
332 }
333 break;
334 default:
335 ath_err(common, "Invalid TX queue type: %u\n", type);
336 return -1;
337 }
338
339 ath_dbg(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q);
340
341 qi = &ah->txq[q];
342 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
343 ath_err(common, "TX queue: %u already active\n", q);
344 return -1;
345 }
346 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
347 qi->tqi_type = type;
348 if (qinfo == NULL) {
349 qi->tqi_qflags =
350 TXQ_FLAG_TXOKINT_ENABLE
351 | TXQ_FLAG_TXERRINT_ENABLE
352 | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
353 qi->tqi_aifs = INIT_AIFS;
354 qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
355 qi->tqi_cwmax = INIT_CWMAX;
356 qi->tqi_shretry = INIT_SH_RETRY;
357 qi->tqi_lgretry = INIT_LG_RETRY;
358 qi->tqi_physCompBuf = 0;
359 } else {
360 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
361 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
362 }
363
364 return q;
365 }
366 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
367
368 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
369 {
370 struct ath_common *common = ath9k_hw_common(ah);
371 struct ath9k_tx_queue_info *qi;
372
373 qi = &ah->txq[q];
374 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375 ath_dbg(common, ATH_DBG_QUEUE,
376 "Release TXQ, inactive queue: %u\n", q);
377 return false;
378 }
379
380 ath_dbg(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q);
381
382 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
383 ah->txok_interrupt_mask &= ~(1 << q);
384 ah->txerr_interrupt_mask &= ~(1 << q);
385 ah->txdesc_interrupt_mask &= ~(1 << q);
386 ah->txeol_interrupt_mask &= ~(1 << q);
387 ah->txurn_interrupt_mask &= ~(1 << q);
388 ath9k_hw_set_txq_interrupts(ah, qi);
389
390 return true;
391 }
392 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
393
394 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
395 {
396 struct ath_common *common = ath9k_hw_common(ah);
397 struct ath9k_channel *chan = ah->curchan;
398 struct ath9k_tx_queue_info *qi;
399 u32 cwMin, chanCwMin, value;
400
401 qi = &ah->txq[q];
402 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
403 ath_dbg(common, ATH_DBG_QUEUE,
404 "Reset TXQ, inactive queue: %u\n", q);
405 return true;
406 }
407
408 ath_dbg(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q);
409
410 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
411 if (chan && IS_CHAN_B(chan))
412 chanCwMin = INIT_CWMIN_11B;
413 else
414 chanCwMin = INIT_CWMIN;
415
416 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
417 } else
418 cwMin = qi->tqi_cwmin;
419
420 ENABLE_REGWRITE_BUFFER(ah);
421
422 REG_WRITE(ah, AR_DLCL_IFS(q),
423 SM(cwMin, AR_D_LCL_IFS_CWMIN) |
424 SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
425 SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
426
427 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
428 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
429 SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
430 SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
431
432 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
433
434 if (AR_SREV_9340(ah))
435 REG_WRITE(ah, AR_DMISC(q),
436 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
437 else
438 REG_WRITE(ah, AR_DMISC(q),
439 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
440
441 if (qi->tqi_cbrPeriod) {
442 REG_WRITE(ah, AR_QCBRCFG(q),
443 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
444 SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
445 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
446 (qi->tqi_cbrOverflowLimit ?
447 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
448 }
449 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
450 REG_WRITE(ah, AR_QRDYTIMECFG(q),
451 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
452 AR_Q_RDYTIMECFG_EN);
453 }
454
455 REG_WRITE(ah, AR_DCHNTIME(q),
456 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
457 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
458
459 if (qi->tqi_burstTime
460 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
461 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
462
463 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
464 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
465
466 REGWRITE_BUFFER_FLUSH(ah);
467
468 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
469 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
470
471 switch (qi->tqi_type) {
472 case ATH9K_TX_QUEUE_BEACON:
473 ENABLE_REGWRITE_BUFFER(ah);
474
475 REG_SET_BIT(ah, AR_QMISC(q),
476 AR_Q_MISC_FSP_DBA_GATED
477 | AR_Q_MISC_BEACON_USE
478 | AR_Q_MISC_CBR_INCR_DIS1);
479
480 REG_SET_BIT(ah, AR_DMISC(q),
481 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
483 | AR_D_MISC_BEACON_USE
484 | AR_D_MISC_POST_FR_BKOFF_DIS);
485
486 REGWRITE_BUFFER_FLUSH(ah);
487
488 /*
489 * cwmin and cwmax should be 0 for beacon queue
490 * but not for IBSS as we would create an imbalance
491 * on beaconing fairness for participating nodes.
492 */
493 if (AR_SREV_9300_20_OR_LATER(ah) &&
494 ah->opmode != NL80211_IFTYPE_ADHOC) {
495 REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
496 | SM(0, AR_D_LCL_IFS_CWMAX)
497 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
498 }
499 break;
500 case ATH9K_TX_QUEUE_CAB:
501 ENABLE_REGWRITE_BUFFER(ah);
502
503 REG_SET_BIT(ah, AR_QMISC(q),
504 AR_Q_MISC_FSP_DBA_GATED
505 | AR_Q_MISC_CBR_INCR_DIS1
506 | AR_Q_MISC_CBR_INCR_DIS0);
507 value = (qi->tqi_readyTime -
508 (ah->config.sw_beacon_response_time -
509 ah->config.dma_beacon_response_time) -
510 ah->config.additional_swba_backoff) * 1024;
511 REG_WRITE(ah, AR_QRDYTIMECFG(q),
512 value | AR_Q_RDYTIMECFG_EN);
513 REG_SET_BIT(ah, AR_DMISC(q),
514 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
515 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
516
517 REGWRITE_BUFFER_FLUSH(ah);
518
519 break;
520 case ATH9K_TX_QUEUE_PSPOLL:
521 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
522 break;
523 case ATH9K_TX_QUEUE_UAPSD:
524 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
525 break;
526 default:
527 break;
528 }
529
530 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
531 REG_SET_BIT(ah, AR_DMISC(q),
532 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
533 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
534 AR_D_MISC_POST_FR_BKOFF_DIS);
535 }
536
537 if (AR_SREV_9300_20_OR_LATER(ah))
538 REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
539
540 if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
541 ah->txok_interrupt_mask |= 1 << q;
542 else
543 ah->txok_interrupt_mask &= ~(1 << q);
544 if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
545 ah->txerr_interrupt_mask |= 1 << q;
546 else
547 ah->txerr_interrupt_mask &= ~(1 << q);
548 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
549 ah->txdesc_interrupt_mask |= 1 << q;
550 else
551 ah->txdesc_interrupt_mask &= ~(1 << q);
552 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
553 ah->txeol_interrupt_mask |= 1 << q;
554 else
555 ah->txeol_interrupt_mask &= ~(1 << q);
556 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
557 ah->txurn_interrupt_mask |= 1 << q;
558 else
559 ah->txurn_interrupt_mask &= ~(1 << q);
560 ath9k_hw_set_txq_interrupts(ah, qi);
561
562 return true;
563 }
564 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
565
566 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
567 struct ath_rx_status *rs, u64 tsf)
568 {
569 struct ar5416_desc ads;
570 struct ar5416_desc *adsp = AR5416DESC(ds);
571 u32 phyerr;
572
573 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
574 return -EINPROGRESS;
575
576 ads.u.rx = adsp->u.rx;
577
578 rs->rs_status = 0;
579 rs->rs_flags = 0;
580
581 rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
582 rs->rs_tstamp = ads.AR_RcvTimestamp;
583
584 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
585 rs->rs_rssi = ATH9K_RSSI_BAD;
586 rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
587 rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
588 rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
589 rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
590 rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
591 rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
592 } else {
593 rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
594 rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
595 AR_RxRSSIAnt00);
596 rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
597 AR_RxRSSIAnt01);
598 rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
599 AR_RxRSSIAnt02);
600 rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
601 AR_RxRSSIAnt10);
602 rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
603 AR_RxRSSIAnt11);
604 rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
605 AR_RxRSSIAnt12);
606 }
607 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
608 rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
609 else
610 rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
611
612 rs->rs_rate = RXSTATUS_RATE(ah, (&ads));
613 rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
614
615 rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
616 rs->rs_moreaggr =
617 (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
618 rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
619 rs->rs_flags =
620 (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
621 rs->rs_flags |=
622 (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
623
624 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
625 rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
626 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
627 rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
628 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
629 rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
630
631 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
632 /*
633 * Treat these errors as mutually exclusive to avoid spurious
634 * extra error reports from the hardware. If a CRC error is
635 * reported, then decryption and MIC errors are irrelevant,
636 * the frame is going to be dropped either way
637 */
638 if (ads.ds_rxstatus8 & AR_CRCErr)
639 rs->rs_status |= ATH9K_RXERR_CRC;
640 else if (ads.ds_rxstatus8 & AR_PHYErr) {
641 rs->rs_status |= ATH9K_RXERR_PHY;
642 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
643 rs->rs_phyerr = phyerr;
644 } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
645 rs->rs_status |= ATH9K_RXERR_DECRYPT;
646 else if (ads.ds_rxstatus8 & AR_MichaelErr)
647 rs->rs_status |= ATH9K_RXERR_MIC;
648 else if (ads.ds_rxstatus8 & AR_KeyMiss)
649 rs->rs_status |= ATH9K_RXERR_DECRYPT;
650 }
651
652 return 0;
653 }
654 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
655
656 /*
657 * This can stop or re-enables RX.
658 *
659 * If bool is set this will kill any frame which is currently being
660 * transferred between the MAC and baseband and also prevent any new
661 * frames from getting started.
662 */
663 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
664 {
665 u32 reg;
666
667 if (set) {
668 REG_SET_BIT(ah, AR_DIAG_SW,
669 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
670
671 if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
672 0, AH_WAIT_TIMEOUT)) {
673 REG_CLR_BIT(ah, AR_DIAG_SW,
674 (AR_DIAG_RX_DIS |
675 AR_DIAG_RX_ABORT));
676
677 reg = REG_READ(ah, AR_OBS_BUS_1);
678 ath_err(ath9k_hw_common(ah),
679 "RX failed to go idle in 10 ms RXSM=0x%x\n",
680 reg);
681
682 return false;
683 }
684 } else {
685 REG_CLR_BIT(ah, AR_DIAG_SW,
686 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
687 }
688
689 return true;
690 }
691 EXPORT_SYMBOL(ath9k_hw_setrxabort);
692
693 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
694 {
695 REG_WRITE(ah, AR_RXDP, rxdp);
696 }
697 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
698
699 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
700 {
701 ath9k_enable_mib_counters(ah);
702
703 ath9k_ani_reset(ah, is_scanning);
704
705 REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
706 }
707 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
708
709 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
710 {
711 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
712
713 ath9k_hw_disable_mib_counters(ah);
714 }
715 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
716
717 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
718 {
719 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
720 struct ath_common *common = ath9k_hw_common(ah);
721 u32 mac_status, last_mac_status = 0;
722 int i;
723
724 /* Enable access to the DMA observation bus */
725 REG_WRITE(ah, AR_MACMISC,
726 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
727 (AR_MACMISC_MISC_OBS_BUS_1 <<
728 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
729
730 REG_WRITE(ah, AR_CR, AR_CR_RXD);
731
732 /* Wait for rx enable bit to go low */
733 for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
734 if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
735 break;
736
737 if (!AR_SREV_9300_20_OR_LATER(ah)) {
738 mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
739 if (mac_status == 0x1c0 && mac_status == last_mac_status) {
740 *reset = true;
741 break;
742 }
743
744 last_mac_status = mac_status;
745 }
746
747 udelay(AH_TIME_QUANTUM);
748 }
749
750 if (i == 0) {
751 ath_err(common,
752 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
753 AH_RX_STOP_DMA_TIMEOUT / 1000,
754 REG_READ(ah, AR_CR),
755 REG_READ(ah, AR_DIAG_SW),
756 REG_READ(ah, AR_DMADBG_7));
757 return false;
758 } else {
759 return true;
760 }
761
762 #undef AH_RX_STOP_DMA_TIMEOUT
763 }
764 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
765
766 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
767 {
768 struct ath9k_tx_queue_info qi;
769
770 memset(&qi, 0, sizeof(qi));
771 qi.tqi_aifs = 1;
772 qi.tqi_cwmin = 0;
773 qi.tqi_cwmax = 0;
774 /* NB: don't enable any interrupts */
775 return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
776 }
777 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
778
779 bool ath9k_hw_intrpend(struct ath_hw *ah)
780 {
781 u32 host_isr;
782
783 if (AR_SREV_9100(ah))
784 return true;
785
786 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
787 if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
788 return true;
789
790 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
791 if ((host_isr & AR_INTR_SYNC_DEFAULT)
792 && (host_isr != AR_INTR_SPURIOUS))
793 return true;
794
795 return false;
796 }
797 EXPORT_SYMBOL(ath9k_hw_intrpend);
798
799 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
800 {
801 struct ath_common *common = ath9k_hw_common(ah);
802
803 ath_dbg(common, ATH_DBG_INTERRUPT, "disable IER\n");
804 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
805 (void) REG_READ(ah, AR_IER);
806 if (!AR_SREV_9100(ah)) {
807 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
808 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
809
810 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
811 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
812 }
813 }
814 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
815
816 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
817 {
818 struct ath_common *common = ath9k_hw_common(ah);
819 u32 sync_default = AR_INTR_SYNC_DEFAULT;
820
821 if (!(ah->imask & ATH9K_INT_GLOBAL))
822 return;
823
824 if (AR_SREV_9340(ah))
825 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
826
827 ath_dbg(common, ATH_DBG_INTERRUPT, "enable IER\n");
828 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
829 if (!AR_SREV_9100(ah)) {
830 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
831 AR_INTR_MAC_IRQ);
832 REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
833
834
835 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
836 REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
837 }
838 ath_dbg(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
839 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
840 }
841 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
842
843 void ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
844 {
845 enum ath9k_int omask = ah->imask;
846 u32 mask, mask2;
847 struct ath9k_hw_capabilities *pCap = &ah->caps;
848 struct ath_common *common = ath9k_hw_common(ah);
849
850 if (!(ints & ATH9K_INT_GLOBAL))
851 ath9k_hw_disable_interrupts(ah);
852
853 ath_dbg(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
854
855 /* TODO: global int Ref count */
856 mask = ints & ATH9K_INT_COMMON;
857 mask2 = 0;
858
859 if (ints & ATH9K_INT_TX) {
860 if (ah->config.tx_intr_mitigation)
861 mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
862 else {
863 if (ah->txok_interrupt_mask)
864 mask |= AR_IMR_TXOK;
865 if (ah->txdesc_interrupt_mask)
866 mask |= AR_IMR_TXDESC;
867 }
868 if (ah->txerr_interrupt_mask)
869 mask |= AR_IMR_TXERR;
870 if (ah->txeol_interrupt_mask)
871 mask |= AR_IMR_TXEOL;
872 }
873 if (ints & ATH9K_INT_RX) {
874 if (AR_SREV_9300_20_OR_LATER(ah)) {
875 mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
876 if (ah->config.rx_intr_mitigation) {
877 mask &= ~AR_IMR_RXOK_LP;
878 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
879 } else {
880 mask |= AR_IMR_RXOK_LP;
881 }
882 } else {
883 if (ah->config.rx_intr_mitigation)
884 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
885 else
886 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
887 }
888 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
889 mask |= AR_IMR_GENTMR;
890 }
891
892 if (ints & ATH9K_INT_GENTIMER)
893 mask |= AR_IMR_GENTMR;
894
895 if (ints & (ATH9K_INT_BMISC)) {
896 mask |= AR_IMR_BCNMISC;
897 if (ints & ATH9K_INT_TIM)
898 mask2 |= AR_IMR_S2_TIM;
899 if (ints & ATH9K_INT_DTIM)
900 mask2 |= AR_IMR_S2_DTIM;
901 if (ints & ATH9K_INT_DTIMSYNC)
902 mask2 |= AR_IMR_S2_DTIMSYNC;
903 if (ints & ATH9K_INT_CABEND)
904 mask2 |= AR_IMR_S2_CABEND;
905 if (ints & ATH9K_INT_TSFOOR)
906 mask2 |= AR_IMR_S2_TSFOOR;
907 }
908
909 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
910 mask |= AR_IMR_BCNMISC;
911 if (ints & ATH9K_INT_GTT)
912 mask2 |= AR_IMR_S2_GTT;
913 if (ints & ATH9K_INT_CST)
914 mask2 |= AR_IMR_S2_CST;
915 }
916
917 ath_dbg(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
918 REG_WRITE(ah, AR_IMR, mask);
919 ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
920 AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
921 AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
922 ah->imrs2_reg |= mask2;
923 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
924
925 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
926 if (ints & ATH9K_INT_TIM_TIMER)
927 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
928 else
929 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
930 }
931
932 return;
933 }
934 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
This page took 0.053298 seconds and 5 git commands to generate.