mac80211: allow configure_filter callback to sleep
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 static char *dev_info = "ath9k";
21
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
26
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
30
31 /* We use the hw_value as an index into our private channel structure */
32
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
35 .hw_value = (_idx), \
36 .max_power = 20, \
37 }
38
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
42 .hw_value = (_idx), \
43 .max_power = 20, \
44 }
45
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
49 * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
65 };
66
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
70 * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
100 };
101
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
104 {
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
108 sc->cur_rate_table =
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
111 sc->cur_rate_table =
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
114 sc->cur_rate_table =
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116 else
117 sc->cur_rate_table =
118 sc->hw_rate_table[ATH9K_MODE_11G];
119 break;
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
122 sc->cur_rate_table =
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
125 sc->cur_rate_table =
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
128 sc->cur_rate_table =
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130 else
131 sc->cur_rate_table =
132 sc->hw_rate_table[ATH9K_MODE_11A];
133 break;
134 default:
135 BUG_ON(1);
136 break;
137 }
138 }
139
140 static void ath_update_txpow(struct ath_softc *sc)
141 {
142 struct ath_hw *ah = sc->sc_ah;
143 u32 txpow;
144
145 if (sc->curtxpow != sc->config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->curtxpow = txpow;
150 }
151 }
152
153 static u8 parse_mpdudensity(u8 mpdudensity)
154 {
155 /*
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
158 * 1 for 1/4 us
159 * 2 for 1/2 us
160 * 3 for 1 us
161 * 4 for 2 us
162 * 5 for 4 us
163 * 6 for 8 us
164 * 7 for 16 us
165 */
166 switch (mpdudensity) {
167 case 0:
168 return 0;
169 case 1:
170 case 2:
171 case 3:
172 /* Our lower layer calculations limit our precision to
173 1 microsecond */
174 return 1;
175 case 4:
176 return 2;
177 case 5:
178 return 4;
179 case 6:
180 return 8;
181 case 7:
182 return 16;
183 default:
184 return 0;
185 }
186 }
187
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
189 {
190 const struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
193 int i, maxrates;
194
195 switch (band) {
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198 break;
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201 break;
202 default:
203 break;
204 }
205
206 if (rate_table == NULL)
207 return;
208
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
211
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
214 else
215 maxrates = rate_table->rate_cnt;
216
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
224 }
225 sband->n_bitrates++;
226
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
229 }
230 }
231
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233 struct ieee80211_hw *hw)
234 {
235 struct ieee80211_channel *curchan = hw->conf.channel;
236 struct ath9k_channel *channel;
237 u8 chan_idx;
238
239 chan_idx = curchan->hw_value;
240 channel = &sc->sc_ah->channels[chan_idx];
241 ath9k_update_ichannel(sc, hw, channel);
242 return channel;
243 }
244
245 /*
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
249 */
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251 struct ath9k_channel *hchan)
252 {
253 struct ath_hw *ah = sc->sc_ah;
254 bool fastcc = true, stopped;
255 struct ieee80211_channel *channel = hw->conf.channel;
256 int r;
257
258 if (sc->sc_flags & SC_OP_INVALID)
259 return -EIO;
260
261 ath9k_ps_wakeup(sc);
262
263 /*
264 * This is only performed if the channel settings have
265 * actually changed.
266 *
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
271 */
272 ath9k_hw_set_interrupts(ah, 0);
273 ath_drain_all_txq(sc, false);
274 stopped = ath_stoprecv(sc);
275
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
279
280 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281 fastcc = false;
282
283 DPRINTF(sc, ATH_DBG_CONFIG,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc->sc_ah->curchan->channel,
286 channel->center_freq, sc->tx_chan_width);
287
288 spin_lock_bh(&sc->sc_resetlock);
289
290 r = ath9k_hw_reset(ah, hchan, fastcc);
291 if (r) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to reset channel (%u Mhz) "
294 "reset status %d\n",
295 channel->center_freq, r);
296 spin_unlock_bh(&sc->sc_resetlock);
297 goto ps_restore;
298 }
299 spin_unlock_bh(&sc->sc_resetlock);
300
301 sc->sc_flags &= ~SC_OP_FULL_RESET;
302
303 if (ath_startrecv(sc) != 0) {
304 DPRINTF(sc, ATH_DBG_FATAL,
305 "Unable to restart recv logic\n");
306 r = -EIO;
307 goto ps_restore;
308 }
309
310 ath_cache_conf_rate(sc, &hw->conf);
311 ath_update_txpow(sc);
312 ath9k_hw_set_interrupts(ah, sc->imask);
313
314 ps_restore:
315 ath9k_ps_restore(sc);
316 return r;
317 }
318
319 /*
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
325 */
326 static void ath_ani_calibrate(unsigned long data)
327 {
328 struct ath_softc *sc = (struct ath_softc *)data;
329 struct ath_hw *ah = sc->sc_ah;
330 bool longcal = false;
331 bool shortcal = false;
332 bool aniflag = false;
333 unsigned int timestamp = jiffies_to_msecs(jiffies);
334 u32 cal_interval, short_cal_interval;
335
336 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
338
339 /*
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
342 */
343 spin_lock(&sc->ani_lock);
344 if (sc->sc_flags & SC_OP_SCANNING)
345 goto set_timer;
346
347 /* Only calibrate if awake */
348 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349 goto set_timer;
350
351 ath9k_ps_wakeup(sc);
352
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 longcal = true;
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->ani.longcal_timer = timestamp;
358 }
359
360 /* Short calibration applies only while caldone is false */
361 if (!sc->ani.caldone) {
362 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->ani.shortcal_timer = timestamp;
366 sc->ani.resetcal_timer = timestamp;
367 }
368 } else {
369 if ((timestamp - sc->ani.resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->ani.caldone)
373 sc->ani.resetcal_timer = timestamp;
374 }
375 }
376
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379 aniflag = true;
380 sc->ani.checkani_timer = timestamp;
381 }
382
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
386 if (aniflag)
387 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
388
389 /* Perform calibration if necessary */
390 if (longcal || shortcal) {
391 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392 sc->rx_chainmask, longcal);
393
394 if (longcal)
395 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396 ah->curchan);
397
398 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399 ah->curchan->channel, ah->curchan->channelFlags,
400 sc->ani.noise_floor);
401 }
402 }
403
404 ath9k_ps_restore(sc);
405
406 set_timer:
407 spin_unlock(&sc->ani_lock);
408 /*
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
412 */
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
418
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
420 }
421
422 static void ath_start_ani(struct ath_softc *sc)
423 {
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
425
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
429
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 }
433
434 /*
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
439 */
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 {
442 if (is_ht ||
443 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
449 }
450
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
453 }
454
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
456 {
457 struct ath_node *an;
458
459 an = (struct ath_node *)sta->drv_priv;
460
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
467 }
468 }
469
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 {
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
473
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
476 }
477
478 static void ath9k_tasklet(unsigned long data)
479 {
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->intrstatus;
482
483 ath9k_ps_wakeup(sc);
484
485 if (status & ATH9K_INT_FATAL) {
486 ath_reset(sc, false);
487 ath9k_ps_restore(sc);
488 return;
489 }
490
491 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492 spin_lock_bh(&sc->rx.rxflushlock);
493 ath_rx_tasklet(sc, 0);
494 spin_unlock_bh(&sc->rx.rxflushlock);
495 }
496
497 if (status & ATH9K_INT_TX)
498 ath_tx_tasklet(sc);
499
500 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
501 /*
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
504 */
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
507 }
508
509 /* re-enable hardware interrupt */
510 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
511 ath9k_ps_restore(sc);
512 }
513
514 irqreturn_t ath_isr(int irq, void *dev)
515 {
516 #define SCHED_INTR ( \
517 ATH9K_INT_FATAL | \
518 ATH9K_INT_RXORN | \
519 ATH9K_INT_RXEOL | \
520 ATH9K_INT_RX | \
521 ATH9K_INT_TX | \
522 ATH9K_INT_BMISS | \
523 ATH9K_INT_CST | \
524 ATH9K_INT_TSFOOR)
525
526 struct ath_softc *sc = dev;
527 struct ath_hw *ah = sc->sc_ah;
528 enum ath9k_int status;
529 bool sched = false;
530
531 /*
532 * The hardware is not ready/present, don't
533 * touch anything. Note this can happen early
534 * on if the IRQ is shared.
535 */
536 if (sc->sc_flags & SC_OP_INVALID)
537 return IRQ_NONE;
538
539
540 /* shared irq, not for us */
541
542 if (!ath9k_hw_intrpend(ah))
543 return IRQ_NONE;
544
545 /*
546 * Figure out the reason(s) for the interrupt. Note
547 * that the hal returns a pseudo-ISR that may include
548 * bits we haven't explicitly enabled so we mask the
549 * value to insure we only process bits we requested.
550 */
551 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
552 status &= sc->imask; /* discard unasked-for bits */
553
554 /*
555 * If there are no status bits set, then this interrupt was not
556 * for me (should have been caught above).
557 */
558 if (!status)
559 return IRQ_NONE;
560
561 /* Cache the status */
562 sc->intrstatus = status;
563
564 if (status & SCHED_INTR)
565 sched = true;
566
567 /*
568 * If a FATAL or RXORN interrupt is received, we have to reset the
569 * chip immediately.
570 */
571 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
572 goto chip_reset;
573
574 if (status & ATH9K_INT_SWBA)
575 tasklet_schedule(&sc->bcon_tasklet);
576
577 if (status & ATH9K_INT_TXURN)
578 ath9k_hw_updatetxtriglevel(ah, true);
579
580 if (status & ATH9K_INT_MIB) {
581 /*
582 * Disable interrupts until we service the MIB
583 * interrupt; otherwise it will continue to
584 * fire.
585 */
586 ath9k_hw_set_interrupts(ah, 0);
587 /*
588 * Let the hal handle the event. We assume
589 * it will clear whatever condition caused
590 * the interrupt.
591 */
592 ath9k_hw_procmibevent(ah, &sc->nodestats);
593 ath9k_hw_set_interrupts(ah, sc->imask);
594 }
595
596 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
597 if (status & ATH9K_INT_TIM_TIMER) {
598 /* Clear RxAbort bit so that we can
599 * receive frames */
600 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
601 ath9k_hw_setrxabort(sc->sc_ah, 0);
602 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
603 }
604
605 chip_reset:
606
607 ath_debug_stat_interrupt(sc, status);
608
609 if (sched) {
610 /* turn off every interrupt except SWBA */
611 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
612 tasklet_schedule(&sc->intr_tq);
613 }
614
615 return IRQ_HANDLED;
616
617 #undef SCHED_INTR
618 }
619
620 static u32 ath_get_extchanmode(struct ath_softc *sc,
621 struct ieee80211_channel *chan,
622 enum nl80211_channel_type channel_type)
623 {
624 u32 chanmode = 0;
625
626 switch (chan->band) {
627 case IEEE80211_BAND_2GHZ:
628 switch(channel_type) {
629 case NL80211_CHAN_NO_HT:
630 case NL80211_CHAN_HT20:
631 chanmode = CHANNEL_G_HT20;
632 break;
633 case NL80211_CHAN_HT40PLUS:
634 chanmode = CHANNEL_G_HT40PLUS;
635 break;
636 case NL80211_CHAN_HT40MINUS:
637 chanmode = CHANNEL_G_HT40MINUS;
638 break;
639 }
640 break;
641 case IEEE80211_BAND_5GHZ:
642 switch(channel_type) {
643 case NL80211_CHAN_NO_HT:
644 case NL80211_CHAN_HT20:
645 chanmode = CHANNEL_A_HT20;
646 break;
647 case NL80211_CHAN_HT40PLUS:
648 chanmode = CHANNEL_A_HT40PLUS;
649 break;
650 case NL80211_CHAN_HT40MINUS:
651 chanmode = CHANNEL_A_HT40MINUS;
652 break;
653 }
654 break;
655 default:
656 break;
657 }
658
659 return chanmode;
660 }
661
662 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
663 struct ath9k_keyval *hk, const u8 *addr,
664 bool authenticator)
665 {
666 const u8 *key_rxmic;
667 const u8 *key_txmic;
668
669 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
670 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
671
672 if (addr == NULL) {
673 /*
674 * Group key installation - only two key cache entries are used
675 * regardless of splitmic capability since group key is only
676 * used either for TX or RX.
677 */
678 if (authenticator) {
679 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
680 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
681 } else {
682 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
684 }
685 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
686 }
687 if (!sc->splitmic) {
688 /* TX and RX keys share the same key cache entry. */
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
692 }
693
694 /* Separate key cache entries for TX and RX */
695
696 /* TX key goes at first index, RX key at +32. */
697 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
698 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
699 /* TX MIC entry failed. No need to proceed further */
700 DPRINTF(sc, ATH_DBG_FATAL,
701 "Setting TX MIC Key Failed\n");
702 return 0;
703 }
704
705 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
706 /* XXX delete tx key on failure? */
707 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
708 }
709
710 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
711 {
712 int i;
713
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
715 if (test_bit(i, sc->keymap) ||
716 test_bit(i + 64, sc->keymap))
717 continue; /* At least one part of TKIP key allocated */
718 if (sc->splitmic &&
719 (test_bit(i + 32, sc->keymap) ||
720 test_bit(i + 64 + 32, sc->keymap)))
721 continue; /* At least one part of TKIP key allocated */
722
723 /* Found a free slot for a TKIP key */
724 return i;
725 }
726 return -1;
727 }
728
729 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
730 {
731 int i;
732
733 /* First, try to find slots that would not be available for TKIP. */
734 if (sc->splitmic) {
735 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
736 if (!test_bit(i, sc->keymap) &&
737 (test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap) ||
739 test_bit(i + 64 + 32, sc->keymap)))
740 return i;
741 if (!test_bit(i + 32, sc->keymap) &&
742 (test_bit(i, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i + 32;
746 if (!test_bit(i + 64, sc->keymap) &&
747 (test_bit(i , sc->keymap) ||
748 test_bit(i + 32, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 64;
751 if (!test_bit(i + 64 + 32, sc->keymap) &&
752 (test_bit(i, sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64, sc->keymap)))
755 return i + 64 + 32;
756 }
757 } else {
758 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
759 if (!test_bit(i, sc->keymap) &&
760 test_bit(i + 64, sc->keymap))
761 return i;
762 if (test_bit(i, sc->keymap) &&
763 !test_bit(i + 64, sc->keymap))
764 return i + 64;
765 }
766 }
767
768 /* No partially used TKIP slots, pick any available slot */
769 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
770 /* Do not allow slots that could be needed for TKIP group keys
771 * to be used. This limitation could be removed if we know that
772 * TKIP will not be used. */
773 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
774 continue;
775 if (sc->splitmic) {
776 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
777 continue;
778 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
779 continue;
780 }
781
782 if (!test_bit(i, sc->keymap))
783 return i; /* Found a free slot for a key */
784 }
785
786 /* No free slot found */
787 return -1;
788 }
789
790 static int ath_key_config(struct ath_softc *sc,
791 struct ieee80211_vif *vif,
792 struct ieee80211_sta *sta,
793 struct ieee80211_key_conf *key)
794 {
795 struct ath9k_keyval hk;
796 const u8 *mac = NULL;
797 int ret = 0;
798 int idx;
799
800 memset(&hk, 0, sizeof(hk));
801
802 switch (key->alg) {
803 case ALG_WEP:
804 hk.kv_type = ATH9K_CIPHER_WEP;
805 break;
806 case ALG_TKIP:
807 hk.kv_type = ATH9K_CIPHER_TKIP;
808 break;
809 case ALG_CCMP:
810 hk.kv_type = ATH9K_CIPHER_AES_CCM;
811 break;
812 default:
813 return -EOPNOTSUPP;
814 }
815
816 hk.kv_len = key->keylen;
817 memcpy(hk.kv_val, key->key, key->keylen);
818
819 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
820 /* For now, use the default keys for broadcast keys. This may
821 * need to change with virtual interfaces. */
822 idx = key->keyidx;
823 } else if (key->keyidx) {
824 if (WARN_ON(!sta))
825 return -EOPNOTSUPP;
826 mac = sta->addr;
827
828 if (vif->type != NL80211_IFTYPE_AP) {
829 /* Only keyidx 0 should be used with unicast key, but
830 * allow this for client mode for now. */
831 idx = key->keyidx;
832 } else
833 return -EIO;
834 } else {
835 if (WARN_ON(!sta))
836 return -EOPNOTSUPP;
837 mac = sta->addr;
838
839 if (key->alg == ALG_TKIP)
840 idx = ath_reserve_key_cache_slot_tkip(sc);
841 else
842 idx = ath_reserve_key_cache_slot(sc);
843 if (idx < 0)
844 return -ENOSPC; /* no free key cache entries */
845 }
846
847 if (key->alg == ALG_TKIP)
848 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
849 vif->type == NL80211_IFTYPE_AP);
850 else
851 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
852
853 if (!ret)
854 return -EIO;
855
856 set_bit(idx, sc->keymap);
857 if (key->alg == ALG_TKIP) {
858 set_bit(idx + 64, sc->keymap);
859 if (sc->splitmic) {
860 set_bit(idx + 32, sc->keymap);
861 set_bit(idx + 64 + 32, sc->keymap);
862 }
863 }
864
865 return idx;
866 }
867
868 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
869 {
870 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
871 if (key->hw_key_idx < IEEE80211_WEP_NKID)
872 return;
873
874 clear_bit(key->hw_key_idx, sc->keymap);
875 if (key->alg != ALG_TKIP)
876 return;
877
878 clear_bit(key->hw_key_idx + 64, sc->keymap);
879 if (sc->splitmic) {
880 clear_bit(key->hw_key_idx + 32, sc->keymap);
881 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
882 }
883 }
884
885 static void setup_ht_cap(struct ath_softc *sc,
886 struct ieee80211_sta_ht_cap *ht_info)
887 {
888 u8 tx_streams, rx_streams;
889
890 ht_info->ht_supported = true;
891 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
892 IEEE80211_HT_CAP_SM_PS |
893 IEEE80211_HT_CAP_SGI_40 |
894 IEEE80211_HT_CAP_DSSSCCK40;
895
896 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
897 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
898
899 /* set up supported mcs set */
900 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
901 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
902 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
903
904 if (tx_streams != rx_streams) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
906 tx_streams, rx_streams);
907 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
908 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
909 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
910 }
911
912 ht_info->mcs.rx_mask[0] = 0xff;
913 if (rx_streams >= 2)
914 ht_info->mcs.rx_mask[1] = 0xff;
915
916 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
917 }
918
919 static void ath9k_bss_assoc_info(struct ath_softc *sc,
920 struct ieee80211_vif *vif,
921 struct ieee80211_bss_conf *bss_conf)
922 {
923
924 if (bss_conf->assoc) {
925 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
926 bss_conf->aid, sc->curbssid);
927
928 /* New association, store aid */
929 sc->curaid = bss_conf->aid;
930 ath9k_hw_write_associd(sc);
931
932 /*
933 * Request a re-configuration of Beacon related timers
934 * on the receipt of the first Beacon frame (i.e.,
935 * after time sync with the AP).
936 */
937 sc->sc_flags |= SC_OP_BEACON_SYNC;
938
939 /* Configure the beacon */
940 ath_beacon_config(sc, vif);
941
942 /* Reset rssi stats */
943 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
944 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
945 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
946 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
947
948 ath_start_ani(sc);
949 } else {
950 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
951 sc->curaid = 0;
952 /* Stop ANI */
953 del_timer_sync(&sc->ani.timer);
954 }
955 }
956
957 /********************************/
958 /* LED functions */
959 /********************************/
960
961 static void ath_led_blink_work(struct work_struct *work)
962 {
963 struct ath_softc *sc = container_of(work, struct ath_softc,
964 ath_led_blink_work.work);
965
966 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
967 return;
968
969 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
970 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
971 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
972 else
973 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
974 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
975
976 ieee80211_queue_delayed_work(sc->hw,
977 &sc->ath_led_blink_work,
978 (sc->sc_flags & SC_OP_LED_ON) ?
979 msecs_to_jiffies(sc->led_off_duration) :
980 msecs_to_jiffies(sc->led_on_duration));
981
982 sc->led_on_duration = sc->led_on_cnt ?
983 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
984 ATH_LED_ON_DURATION_IDLE;
985 sc->led_off_duration = sc->led_off_cnt ?
986 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
987 ATH_LED_OFF_DURATION_IDLE;
988 sc->led_on_cnt = sc->led_off_cnt = 0;
989 if (sc->sc_flags & SC_OP_LED_ON)
990 sc->sc_flags &= ~SC_OP_LED_ON;
991 else
992 sc->sc_flags |= SC_OP_LED_ON;
993 }
994
995 static void ath_led_brightness(struct led_classdev *led_cdev,
996 enum led_brightness brightness)
997 {
998 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
999 struct ath_softc *sc = led->sc;
1000
1001 switch (brightness) {
1002 case LED_OFF:
1003 if (led->led_type == ATH_LED_ASSOC ||
1004 led->led_type == ATH_LED_RADIO) {
1005 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1006 (led->led_type == ATH_LED_RADIO));
1007 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1008 if (led->led_type == ATH_LED_RADIO)
1009 sc->sc_flags &= ~SC_OP_LED_ON;
1010 } else {
1011 sc->led_off_cnt++;
1012 }
1013 break;
1014 case LED_FULL:
1015 if (led->led_type == ATH_LED_ASSOC) {
1016 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1017 ieee80211_queue_delayed_work(sc->hw,
1018 &sc->ath_led_blink_work, 0);
1019 } else if (led->led_type == ATH_LED_RADIO) {
1020 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1021 sc->sc_flags |= SC_OP_LED_ON;
1022 } else {
1023 sc->led_on_cnt++;
1024 }
1025 break;
1026 default:
1027 break;
1028 }
1029 }
1030
1031 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1032 char *trigger)
1033 {
1034 int ret;
1035
1036 led->sc = sc;
1037 led->led_cdev.name = led->name;
1038 led->led_cdev.default_trigger = trigger;
1039 led->led_cdev.brightness_set = ath_led_brightness;
1040
1041 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1042 if (ret)
1043 DPRINTF(sc, ATH_DBG_FATAL,
1044 "Failed to register led:%s", led->name);
1045 else
1046 led->registered = 1;
1047 return ret;
1048 }
1049
1050 static void ath_unregister_led(struct ath_led *led)
1051 {
1052 if (led->registered) {
1053 led_classdev_unregister(&led->led_cdev);
1054 led->registered = 0;
1055 }
1056 }
1057
1058 static void ath_deinit_leds(struct ath_softc *sc)
1059 {
1060 ath_unregister_led(&sc->assoc_led);
1061 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1062 ath_unregister_led(&sc->tx_led);
1063 ath_unregister_led(&sc->rx_led);
1064 ath_unregister_led(&sc->radio_led);
1065 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1066 }
1067
1068 static void ath_init_leds(struct ath_softc *sc)
1069 {
1070 char *trigger;
1071 int ret;
1072
1073 if (AR_SREV_9287(sc->sc_ah))
1074 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1075 else
1076 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1077
1078 /* Configure gpio 1 for output */
1079 ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1080 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1081 /* LED off, active low */
1082 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1083
1084 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1085
1086 trigger = ieee80211_get_radio_led_name(sc->hw);
1087 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1088 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1089 ret = ath_register_led(sc, &sc->radio_led, trigger);
1090 sc->radio_led.led_type = ATH_LED_RADIO;
1091 if (ret)
1092 goto fail;
1093
1094 trigger = ieee80211_get_assoc_led_name(sc->hw);
1095 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1096 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1097 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1098 sc->assoc_led.led_type = ATH_LED_ASSOC;
1099 if (ret)
1100 goto fail;
1101
1102 trigger = ieee80211_get_tx_led_name(sc->hw);
1103 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1104 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1105 ret = ath_register_led(sc, &sc->tx_led, trigger);
1106 sc->tx_led.led_type = ATH_LED_TX;
1107 if (ret)
1108 goto fail;
1109
1110 trigger = ieee80211_get_rx_led_name(sc->hw);
1111 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1112 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1113 ret = ath_register_led(sc, &sc->rx_led, trigger);
1114 sc->rx_led.led_type = ATH_LED_RX;
1115 if (ret)
1116 goto fail;
1117
1118 return;
1119
1120 fail:
1121 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1122 ath_deinit_leds(sc);
1123 }
1124
1125 void ath_radio_enable(struct ath_softc *sc)
1126 {
1127 struct ath_hw *ah = sc->sc_ah;
1128 struct ieee80211_channel *channel = sc->hw->conf.channel;
1129 int r;
1130
1131 ath9k_ps_wakeup(sc);
1132 ath9k_hw_configpcipowersave(ah, 0);
1133
1134 if (!ah->curchan)
1135 ah->curchan = ath_get_curchannel(sc, sc->hw);
1136
1137 spin_lock_bh(&sc->sc_resetlock);
1138 r = ath9k_hw_reset(ah, ah->curchan, false);
1139 if (r) {
1140 DPRINTF(sc, ATH_DBG_FATAL,
1141 "Unable to reset channel %u (%uMhz) ",
1142 "reset status %d\n",
1143 channel->center_freq, r);
1144 }
1145 spin_unlock_bh(&sc->sc_resetlock);
1146
1147 ath_update_txpow(sc);
1148 if (ath_startrecv(sc) != 0) {
1149 DPRINTF(sc, ATH_DBG_FATAL,
1150 "Unable to restart recv logic\n");
1151 return;
1152 }
1153
1154 if (sc->sc_flags & SC_OP_BEACONS)
1155 ath_beacon_config(sc, NULL); /* restart beacons */
1156
1157 /* Re-Enable interrupts */
1158 ath9k_hw_set_interrupts(ah, sc->imask);
1159
1160 /* Enable LED */
1161 ath9k_hw_cfg_output(ah, ah->led_pin,
1162 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1163 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1164
1165 ieee80211_wake_queues(sc->hw);
1166 ath9k_ps_restore(sc);
1167 }
1168
1169 void ath_radio_disable(struct ath_softc *sc)
1170 {
1171 struct ath_hw *ah = sc->sc_ah;
1172 struct ieee80211_channel *channel = sc->hw->conf.channel;
1173 int r;
1174
1175 ath9k_ps_wakeup(sc);
1176 ieee80211_stop_queues(sc->hw);
1177
1178 /* Disable LED */
1179 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1180 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1181
1182 /* Disable interrupts */
1183 ath9k_hw_set_interrupts(ah, 0);
1184
1185 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1186 ath_stoprecv(sc); /* turn off frame recv */
1187 ath_flushrecv(sc); /* flush recv queue */
1188
1189 if (!ah->curchan)
1190 ah->curchan = ath_get_curchannel(sc, sc->hw);
1191
1192 spin_lock_bh(&sc->sc_resetlock);
1193 r = ath9k_hw_reset(ah, ah->curchan, false);
1194 if (r) {
1195 DPRINTF(sc, ATH_DBG_FATAL,
1196 "Unable to reset channel %u (%uMhz) "
1197 "reset status %d\n",
1198 channel->center_freq, r);
1199 }
1200 spin_unlock_bh(&sc->sc_resetlock);
1201
1202 ath9k_hw_phy_disable(ah);
1203 ath9k_hw_configpcipowersave(ah, 1);
1204 ath9k_ps_restore(sc);
1205 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1206 }
1207
1208 /*******************/
1209 /* Rfkill */
1210 /*******************/
1211
1212 static bool ath_is_rfkill_set(struct ath_softc *sc)
1213 {
1214 struct ath_hw *ah = sc->sc_ah;
1215
1216 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1217 ah->rfkill_polarity;
1218 }
1219
1220 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1221 {
1222 struct ath_wiphy *aphy = hw->priv;
1223 struct ath_softc *sc = aphy->sc;
1224 bool blocked = !!ath_is_rfkill_set(sc);
1225
1226 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1227
1228 if (blocked)
1229 ath_radio_disable(sc);
1230 else
1231 ath_radio_enable(sc);
1232 }
1233
1234 static void ath_start_rfkill_poll(struct ath_softc *sc)
1235 {
1236 struct ath_hw *ah = sc->sc_ah;
1237
1238 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1239 wiphy_rfkill_start_polling(sc->hw->wiphy);
1240 }
1241
1242 void ath_cleanup(struct ath_softc *sc)
1243 {
1244 ath_detach(sc);
1245 free_irq(sc->irq, sc);
1246 ath_bus_cleanup(sc);
1247 kfree(sc->sec_wiphy);
1248 ieee80211_free_hw(sc->hw);
1249 }
1250
1251 void ath_detach(struct ath_softc *sc)
1252 {
1253 struct ieee80211_hw *hw = sc->hw;
1254 int i = 0;
1255
1256 ath9k_ps_wakeup(sc);
1257
1258 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1259
1260 ath_deinit_leds(sc);
1261
1262 for (i = 0; i < sc->num_sec_wiphy; i++) {
1263 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1264 if (aphy == NULL)
1265 continue;
1266 sc->sec_wiphy[i] = NULL;
1267 ieee80211_unregister_hw(aphy->hw);
1268 ieee80211_free_hw(aphy->hw);
1269 }
1270 ieee80211_unregister_hw(hw);
1271 ath_rx_cleanup(sc);
1272 ath_tx_cleanup(sc);
1273
1274 tasklet_kill(&sc->intr_tq);
1275 tasklet_kill(&sc->bcon_tasklet);
1276
1277 if (!(sc->sc_flags & SC_OP_INVALID))
1278 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1279
1280 /* cleanup tx queues */
1281 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1282 if (ATH_TXQ_SETUP(sc, i))
1283 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1284
1285 ath9k_hw_detach(sc->sc_ah);
1286 sc->sc_ah = NULL;
1287 ath9k_exit_debug(sc);
1288 }
1289
1290 static int ath9k_reg_notifier(struct wiphy *wiphy,
1291 struct regulatory_request *request)
1292 {
1293 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1294 struct ath_wiphy *aphy = hw->priv;
1295 struct ath_softc *sc = aphy->sc;
1296 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1297
1298 return ath_reg_notifier_apply(wiphy, request, reg);
1299 }
1300
1301 /*
1302 * Initialize and fill ath_softc, ath_sofct is the
1303 * "Software Carrier" struct. Historically it has existed
1304 * to allow the separation between hardware specific
1305 * variables (now in ath_hw) and driver specific variables.
1306 */
1307 static int ath_init_softc(u16 devid, struct ath_softc *sc)
1308 {
1309 struct ath_hw *ah = NULL;
1310 int r = 0, i;
1311 int csz = 0;
1312
1313 /* XXX: hardware will not be ready until ath_open() being called */
1314 sc->sc_flags |= SC_OP_INVALID;
1315
1316 if (ath9k_init_debug(sc) < 0)
1317 printk(KERN_ERR "Unable to create debugfs files\n");
1318
1319 spin_lock_init(&sc->wiphy_lock);
1320 spin_lock_init(&sc->sc_resetlock);
1321 spin_lock_init(&sc->sc_serial_rw);
1322 spin_lock_init(&sc->ani_lock);
1323 spin_lock_init(&sc->sc_pm_lock);
1324 mutex_init(&sc->mutex);
1325 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1326 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1327 (unsigned long)sc);
1328
1329 /*
1330 * Cache line size is used to size and align various
1331 * structures used to communicate with the hardware.
1332 */
1333 ath_read_cachesize(sc, &csz);
1334 /* XXX assert csz is non-zero */
1335 sc->common.cachelsz = csz << 2; /* convert to bytes */
1336
1337 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1338 if (!ah) {
1339 r = -ENOMEM;
1340 goto bad_no_ah;
1341 }
1342
1343 ah->ah_sc = sc;
1344 ah->hw_version.devid = devid;
1345 sc->sc_ah = ah;
1346
1347 r = ath9k_hw_init(ah);
1348 if (r) {
1349 DPRINTF(sc, ATH_DBG_FATAL,
1350 "Unable to initialize hardware; "
1351 "initialization status: %d\n", r);
1352 goto bad;
1353 }
1354
1355 /* Get the hardware key cache size. */
1356 sc->keymax = ah->caps.keycache_size;
1357 if (sc->keymax > ATH_KEYMAX) {
1358 DPRINTF(sc, ATH_DBG_ANY,
1359 "Warning, using only %u entries in %u key cache\n",
1360 ATH_KEYMAX, sc->keymax);
1361 sc->keymax = ATH_KEYMAX;
1362 }
1363
1364 /*
1365 * Reset the key cache since some parts do not
1366 * reset the contents on initial power up.
1367 */
1368 for (i = 0; i < sc->keymax; i++)
1369 ath9k_hw_keyreset(ah, (u16) i);
1370
1371 /* default to MONITOR mode */
1372 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1373
1374 /* Setup rate tables */
1375
1376 ath_rate_attach(sc);
1377 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1378 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1379
1380 /*
1381 * Allocate hardware transmit queues: one queue for
1382 * beacon frames and one data queue for each QoS
1383 * priority. Note that the hal handles reseting
1384 * these queues at the needed time.
1385 */
1386 sc->beacon.beaconq = ath_beaconq_setup(ah);
1387 if (sc->beacon.beaconq == -1) {
1388 DPRINTF(sc, ATH_DBG_FATAL,
1389 "Unable to setup a beacon xmit queue\n");
1390 r = -EIO;
1391 goto bad2;
1392 }
1393 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1394 if (sc->beacon.cabq == NULL) {
1395 DPRINTF(sc, ATH_DBG_FATAL,
1396 "Unable to setup CAB xmit queue\n");
1397 r = -EIO;
1398 goto bad2;
1399 }
1400
1401 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1402 ath_cabq_update(sc);
1403
1404 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1405 sc->tx.hwq_map[i] = -1;
1406
1407 /* Setup data queues */
1408 /* NB: ensure BK queue is the lowest priority h/w queue */
1409 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1410 DPRINTF(sc, ATH_DBG_FATAL,
1411 "Unable to setup xmit queue for BK traffic\n");
1412 r = -EIO;
1413 goto bad2;
1414 }
1415
1416 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1417 DPRINTF(sc, ATH_DBG_FATAL,
1418 "Unable to setup xmit queue for BE traffic\n");
1419 r = -EIO;
1420 goto bad2;
1421 }
1422 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1423 DPRINTF(sc, ATH_DBG_FATAL,
1424 "Unable to setup xmit queue for VI traffic\n");
1425 r = -EIO;
1426 goto bad2;
1427 }
1428 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1429 DPRINTF(sc, ATH_DBG_FATAL,
1430 "Unable to setup xmit queue for VO traffic\n");
1431 r = -EIO;
1432 goto bad2;
1433 }
1434
1435 /* Initializes the noise floor to a reasonable default value.
1436 * Later on this will be updated during ANI processing. */
1437
1438 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1439 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1440
1441 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1442 ATH9K_CIPHER_TKIP, NULL)) {
1443 /*
1444 * Whether we should enable h/w TKIP MIC.
1445 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1446 * report WMM capable, so it's always safe to turn on
1447 * TKIP MIC in this case.
1448 */
1449 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1450 0, 1, NULL);
1451 }
1452
1453 /*
1454 * Check whether the separate key cache entries
1455 * are required to handle both tx+rx MIC keys.
1456 * With split mic keys the number of stations is limited
1457 * to 27 otherwise 59.
1458 */
1459 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1460 ATH9K_CIPHER_TKIP, NULL)
1461 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1462 ATH9K_CIPHER_MIC, NULL)
1463 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1464 0, NULL))
1465 sc->splitmic = 1;
1466
1467 /* turn on mcast key search if possible */
1468 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1469 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1470 1, NULL);
1471
1472 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1473
1474 /* 11n Capabilities */
1475 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1476 sc->sc_flags |= SC_OP_TXAGGR;
1477 sc->sc_flags |= SC_OP_RXAGGR;
1478 }
1479
1480 sc->tx_chainmask = ah->caps.tx_chainmask;
1481 sc->rx_chainmask = ah->caps.rx_chainmask;
1482
1483 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1484 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1485
1486 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1487 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1488
1489 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1490
1491 /* initialize beacon slots */
1492 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1493 sc->beacon.bslot[i] = NULL;
1494 sc->beacon.bslot_aphy[i] = NULL;
1495 }
1496
1497 /* setup channels and rates */
1498
1499 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1500 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1501 sc->rates[IEEE80211_BAND_2GHZ];
1502 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1503 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1504 ARRAY_SIZE(ath9k_2ghz_chantable);
1505
1506 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1507 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1508 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1509 sc->rates[IEEE80211_BAND_5GHZ];
1510 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1511 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1512 ARRAY_SIZE(ath9k_5ghz_chantable);
1513 }
1514
1515 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1516 ath9k_hw_btcoex_enable(sc->sc_ah);
1517
1518 return 0;
1519 bad2:
1520 /* cleanup tx queues */
1521 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1522 if (ATH_TXQ_SETUP(sc, i))
1523 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1524 bad:
1525 ath9k_hw_detach(ah);
1526 sc->sc_ah = NULL;
1527 bad_no_ah:
1528 ath9k_exit_debug(sc);
1529
1530 return r;
1531 }
1532
1533 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1534 {
1535 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1536 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1537 IEEE80211_HW_SIGNAL_DBM |
1538 IEEE80211_HW_AMPDU_AGGREGATION |
1539 IEEE80211_HW_SUPPORTS_PS |
1540 IEEE80211_HW_PS_NULLFUNC_STACK |
1541 IEEE80211_HW_SPECTRUM_MGMT;
1542
1543 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1544 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1545
1546 hw->wiphy->interface_modes =
1547 BIT(NL80211_IFTYPE_AP) |
1548 BIT(NL80211_IFTYPE_STATION) |
1549 BIT(NL80211_IFTYPE_ADHOC) |
1550 BIT(NL80211_IFTYPE_MESH_POINT);
1551
1552 hw->queues = 4;
1553 hw->max_rates = 4;
1554 hw->channel_change_time = 5000;
1555 hw->max_listen_interval = 10;
1556 /* Hardware supports 10 but we use 4 */
1557 hw->max_rate_tries = 4;
1558 hw->sta_data_size = sizeof(struct ath_node);
1559 hw->vif_data_size = sizeof(struct ath_vif);
1560
1561 hw->rate_control_algorithm = "ath9k_rate_control";
1562
1563 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1564 &sc->sbands[IEEE80211_BAND_2GHZ];
1565 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1566 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1567 &sc->sbands[IEEE80211_BAND_5GHZ];
1568 }
1569
1570 /* Device driver core initialization */
1571 int ath_init_device(u16 devid, struct ath_softc *sc)
1572 {
1573 struct ieee80211_hw *hw = sc->hw;
1574 int error = 0, i;
1575 struct ath_regulatory *reg;
1576
1577 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1578
1579 error = ath_init_softc(devid, sc);
1580 if (error != 0)
1581 return error;
1582
1583 /* get mac address from hardware and set in mac80211 */
1584
1585 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1586
1587 ath_set_hw_capab(sc, hw);
1588
1589 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1590 ath9k_reg_notifier);
1591 if (error)
1592 return error;
1593
1594 reg = &sc->sc_ah->regulatory;
1595
1596 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1597 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1598 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1599 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1600 }
1601
1602 /* initialize tx/rx engine */
1603 error = ath_tx_init(sc, ATH_TXBUF);
1604 if (error != 0)
1605 goto error_attach;
1606
1607 error = ath_rx_init(sc, ATH_RXBUF);
1608 if (error != 0)
1609 goto error_attach;
1610
1611 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1612 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1613 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1614
1615 error = ieee80211_register_hw(hw);
1616
1617 if (!ath_is_world_regd(reg)) {
1618 error = regulatory_hint(hw->wiphy, reg->alpha2);
1619 if (error)
1620 goto error_attach;
1621 }
1622
1623 /* Initialize LED control */
1624 ath_init_leds(sc);
1625
1626 ath_start_rfkill_poll(sc);
1627
1628 return 0;
1629
1630 error_attach:
1631 /* cleanup tx queues */
1632 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1633 if (ATH_TXQ_SETUP(sc, i))
1634 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1635
1636 ath9k_hw_detach(sc->sc_ah);
1637 sc->sc_ah = NULL;
1638 ath9k_exit_debug(sc);
1639
1640 return error;
1641 }
1642
1643 int ath_reset(struct ath_softc *sc, bool retry_tx)
1644 {
1645 struct ath_hw *ah = sc->sc_ah;
1646 struct ieee80211_hw *hw = sc->hw;
1647 int r;
1648
1649 ath9k_hw_set_interrupts(ah, 0);
1650 ath_drain_all_txq(sc, retry_tx);
1651 ath_stoprecv(sc);
1652 ath_flushrecv(sc);
1653
1654 spin_lock_bh(&sc->sc_resetlock);
1655 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1656 if (r)
1657 DPRINTF(sc, ATH_DBG_FATAL,
1658 "Unable to reset hardware; reset status %d\n", r);
1659 spin_unlock_bh(&sc->sc_resetlock);
1660
1661 if (ath_startrecv(sc) != 0)
1662 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1663
1664 /*
1665 * We may be doing a reset in response to a request
1666 * that changes the channel so update any state that
1667 * might change as a result.
1668 */
1669 ath_cache_conf_rate(sc, &hw->conf);
1670
1671 ath_update_txpow(sc);
1672
1673 if (sc->sc_flags & SC_OP_BEACONS)
1674 ath_beacon_config(sc, NULL); /* restart beacons */
1675
1676 ath9k_hw_set_interrupts(ah, sc->imask);
1677
1678 if (retry_tx) {
1679 int i;
1680 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1681 if (ATH_TXQ_SETUP(sc, i)) {
1682 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1683 ath_txq_schedule(sc, &sc->tx.txq[i]);
1684 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1685 }
1686 }
1687 }
1688
1689 return r;
1690 }
1691
1692 /*
1693 * This function will allocate both the DMA descriptor structure, and the
1694 * buffers it contains. These are used to contain the descriptors used
1695 * by the system.
1696 */
1697 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1698 struct list_head *head, const char *name,
1699 int nbuf, int ndesc)
1700 {
1701 #define DS2PHYS(_dd, _ds) \
1702 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1703 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1704 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1705
1706 struct ath_desc *ds;
1707 struct ath_buf *bf;
1708 int i, bsize, error;
1709
1710 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1711 name, nbuf, ndesc);
1712
1713 INIT_LIST_HEAD(head);
1714 /* ath_desc must be a multiple of DWORDs */
1715 if ((sizeof(struct ath_desc) % 4) != 0) {
1716 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1717 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1718 error = -ENOMEM;
1719 goto fail;
1720 }
1721
1722 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1723
1724 /*
1725 * Need additional DMA memory because we can't use
1726 * descriptors that cross the 4K page boundary. Assume
1727 * one skipped descriptor per 4K page.
1728 */
1729 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1730 u32 ndesc_skipped =
1731 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1732 u32 dma_len;
1733
1734 while (ndesc_skipped) {
1735 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1736 dd->dd_desc_len += dma_len;
1737
1738 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1739 };
1740 }
1741
1742 /* allocate descriptors */
1743 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1744 &dd->dd_desc_paddr, GFP_KERNEL);
1745 if (dd->dd_desc == NULL) {
1746 error = -ENOMEM;
1747 goto fail;
1748 }
1749 ds = dd->dd_desc;
1750 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1751 name, ds, (u32) dd->dd_desc_len,
1752 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1753
1754 /* allocate buffers */
1755 bsize = sizeof(struct ath_buf) * nbuf;
1756 bf = kzalloc(bsize, GFP_KERNEL);
1757 if (bf == NULL) {
1758 error = -ENOMEM;
1759 goto fail2;
1760 }
1761 dd->dd_bufptr = bf;
1762
1763 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1764 bf->bf_desc = ds;
1765 bf->bf_daddr = DS2PHYS(dd, ds);
1766
1767 if (!(sc->sc_ah->caps.hw_caps &
1768 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1769 /*
1770 * Skip descriptor addresses which can cause 4KB
1771 * boundary crossing (addr + length) with a 32 dword
1772 * descriptor fetch.
1773 */
1774 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1775 ASSERT((caddr_t) bf->bf_desc <
1776 ((caddr_t) dd->dd_desc +
1777 dd->dd_desc_len));
1778
1779 ds += ndesc;
1780 bf->bf_desc = ds;
1781 bf->bf_daddr = DS2PHYS(dd, ds);
1782 }
1783 }
1784 list_add_tail(&bf->list, head);
1785 }
1786 return 0;
1787 fail2:
1788 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1789 dd->dd_desc_paddr);
1790 fail:
1791 memset(dd, 0, sizeof(*dd));
1792 return error;
1793 #undef ATH_DESC_4KB_BOUND_CHECK
1794 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1795 #undef DS2PHYS
1796 }
1797
1798 void ath_descdma_cleanup(struct ath_softc *sc,
1799 struct ath_descdma *dd,
1800 struct list_head *head)
1801 {
1802 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1803 dd->dd_desc_paddr);
1804
1805 INIT_LIST_HEAD(head);
1806 kfree(dd->dd_bufptr);
1807 memset(dd, 0, sizeof(*dd));
1808 }
1809
1810 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1811 {
1812 int qnum;
1813
1814 switch (queue) {
1815 case 0:
1816 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1817 break;
1818 case 1:
1819 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1820 break;
1821 case 2:
1822 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1823 break;
1824 case 3:
1825 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1826 break;
1827 default:
1828 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1829 break;
1830 }
1831
1832 return qnum;
1833 }
1834
1835 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1836 {
1837 int qnum;
1838
1839 switch (queue) {
1840 case ATH9K_WME_AC_VO:
1841 qnum = 0;
1842 break;
1843 case ATH9K_WME_AC_VI:
1844 qnum = 1;
1845 break;
1846 case ATH9K_WME_AC_BE:
1847 qnum = 2;
1848 break;
1849 case ATH9K_WME_AC_BK:
1850 qnum = 3;
1851 break;
1852 default:
1853 qnum = -1;
1854 break;
1855 }
1856
1857 return qnum;
1858 }
1859
1860 /* XXX: Remove me once we don't depend on ath9k_channel for all
1861 * this redundant data */
1862 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1863 struct ath9k_channel *ichan)
1864 {
1865 struct ieee80211_channel *chan = hw->conf.channel;
1866 struct ieee80211_conf *conf = &hw->conf;
1867
1868 ichan->channel = chan->center_freq;
1869 ichan->chan = chan;
1870
1871 if (chan->band == IEEE80211_BAND_2GHZ) {
1872 ichan->chanmode = CHANNEL_G;
1873 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1874 } else {
1875 ichan->chanmode = CHANNEL_A;
1876 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1877 }
1878
1879 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1880
1881 if (conf_is_ht(conf)) {
1882 if (conf_is_ht40(conf))
1883 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1884
1885 ichan->chanmode = ath_get_extchanmode(sc, chan,
1886 conf->channel_type);
1887 }
1888 }
1889
1890 /**********************/
1891 /* mac80211 callbacks */
1892 /**********************/
1893
1894 static int ath9k_start(struct ieee80211_hw *hw)
1895 {
1896 struct ath_wiphy *aphy = hw->priv;
1897 struct ath_softc *sc = aphy->sc;
1898 struct ieee80211_channel *curchan = hw->conf.channel;
1899 struct ath9k_channel *init_channel;
1900 int r;
1901
1902 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1903 "initial channel: %d MHz\n", curchan->center_freq);
1904
1905 mutex_lock(&sc->mutex);
1906
1907 if (ath9k_wiphy_started(sc)) {
1908 if (sc->chan_idx == curchan->hw_value) {
1909 /*
1910 * Already on the operational channel, the new wiphy
1911 * can be marked active.
1912 */
1913 aphy->state = ATH_WIPHY_ACTIVE;
1914 ieee80211_wake_queues(hw);
1915 } else {
1916 /*
1917 * Another wiphy is on another channel, start the new
1918 * wiphy in paused state.
1919 */
1920 aphy->state = ATH_WIPHY_PAUSED;
1921 ieee80211_stop_queues(hw);
1922 }
1923 mutex_unlock(&sc->mutex);
1924 return 0;
1925 }
1926 aphy->state = ATH_WIPHY_ACTIVE;
1927
1928 /* setup initial channel */
1929
1930 sc->chan_idx = curchan->hw_value;
1931
1932 init_channel = ath_get_curchannel(sc, hw);
1933
1934 /* Reset SERDES registers */
1935 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1936
1937 /*
1938 * The basic interface to setting the hardware in a good
1939 * state is ``reset''. On return the hardware is known to
1940 * be powered up and with interrupts disabled. This must
1941 * be followed by initialization of the appropriate bits
1942 * and then setup of the interrupt mask.
1943 */
1944 spin_lock_bh(&sc->sc_resetlock);
1945 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1946 if (r) {
1947 DPRINTF(sc, ATH_DBG_FATAL,
1948 "Unable to reset hardware; reset status %d "
1949 "(freq %u MHz)\n", r,
1950 curchan->center_freq);
1951 spin_unlock_bh(&sc->sc_resetlock);
1952 goto mutex_unlock;
1953 }
1954 spin_unlock_bh(&sc->sc_resetlock);
1955
1956 /*
1957 * This is needed only to setup initial state
1958 * but it's best done after a reset.
1959 */
1960 ath_update_txpow(sc);
1961
1962 /*
1963 * Setup the hardware after reset:
1964 * The receive engine is set going.
1965 * Frame transmit is handled entirely
1966 * in the frame output path; there's nothing to do
1967 * here except setup the interrupt mask.
1968 */
1969 if (ath_startrecv(sc) != 0) {
1970 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1971 r = -EIO;
1972 goto mutex_unlock;
1973 }
1974
1975 /* Setup our intr mask. */
1976 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1977 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1978 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1979
1980 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1981 sc->imask |= ATH9K_INT_GTT;
1982
1983 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1984 sc->imask |= ATH9K_INT_CST;
1985
1986 ath_cache_conf_rate(sc, &hw->conf);
1987
1988 sc->sc_flags &= ~SC_OP_INVALID;
1989
1990 /* Disable BMISS interrupt when we're not associated */
1991 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1992 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
1993
1994 ieee80211_wake_queues(hw);
1995
1996 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
1997
1998 mutex_unlock:
1999 mutex_unlock(&sc->mutex);
2000
2001 return r;
2002 }
2003
2004 static int ath9k_tx(struct ieee80211_hw *hw,
2005 struct sk_buff *skb)
2006 {
2007 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2008 struct ath_wiphy *aphy = hw->priv;
2009 struct ath_softc *sc = aphy->sc;
2010 struct ath_tx_control txctl;
2011 int hdrlen, padsize;
2012
2013 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2014 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2015 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2016 goto exit;
2017 }
2018
2019 if (sc->ps_enabled) {
2020 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2021 /*
2022 * mac80211 does not set PM field for normal data frames, so we
2023 * need to update that based on the current PS mode.
2024 */
2025 if (ieee80211_is_data(hdr->frame_control) &&
2026 !ieee80211_is_nullfunc(hdr->frame_control) &&
2027 !ieee80211_has_pm(hdr->frame_control)) {
2028 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2029 "while in PS mode\n");
2030 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2031 }
2032 }
2033
2034 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2035 /*
2036 * We are using PS-Poll and mac80211 can request TX while in
2037 * power save mode. Need to wake up hardware for the TX to be
2038 * completed and if needed, also for RX of buffered frames.
2039 */
2040 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2041 ath9k_ps_wakeup(sc);
2042 ath9k_hw_setrxabort(sc->sc_ah, 0);
2043 if (ieee80211_is_pspoll(hdr->frame_control)) {
2044 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2045 "buffered frame\n");
2046 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2047 } else {
2048 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2049 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2050 }
2051 /*
2052 * The actual restore operation will happen only after
2053 * the sc_flags bit is cleared. We are just dropping
2054 * the ps_usecount here.
2055 */
2056 ath9k_ps_restore(sc);
2057 }
2058
2059 memset(&txctl, 0, sizeof(struct ath_tx_control));
2060
2061 /*
2062 * As a temporary workaround, assign seq# here; this will likely need
2063 * to be cleaned up to work better with Beacon transmission and virtual
2064 * BSSes.
2065 */
2066 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2067 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2068 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2069 sc->tx.seq_no += 0x10;
2070 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2071 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2072 }
2073
2074 /* Add the padding after the header if this is not already done */
2075 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2076 if (hdrlen & 3) {
2077 padsize = hdrlen % 4;
2078 if (skb_headroom(skb) < padsize)
2079 return -1;
2080 skb_push(skb, padsize);
2081 memmove(skb->data, skb->data + padsize, hdrlen);
2082 }
2083
2084 /* Check if a tx queue is available */
2085
2086 txctl.txq = ath_test_get_txq(sc, skb);
2087 if (!txctl.txq)
2088 goto exit;
2089
2090 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2091
2092 if (ath_tx_start(hw, skb, &txctl) != 0) {
2093 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2094 goto exit;
2095 }
2096
2097 return 0;
2098 exit:
2099 dev_kfree_skb_any(skb);
2100 return 0;
2101 }
2102
2103 static void ath9k_stop(struct ieee80211_hw *hw)
2104 {
2105 struct ath_wiphy *aphy = hw->priv;
2106 struct ath_softc *sc = aphy->sc;
2107
2108 aphy->state = ATH_WIPHY_INACTIVE;
2109
2110 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2111 cancel_delayed_work_sync(&sc->tx_complete_work);
2112
2113 if (!sc->num_sec_wiphy) {
2114 cancel_delayed_work_sync(&sc->wiphy_work);
2115 cancel_work_sync(&sc->chan_work);
2116 }
2117
2118 if (sc->sc_flags & SC_OP_INVALID) {
2119 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2120 return;
2121 }
2122
2123 mutex_lock(&sc->mutex);
2124
2125 cancel_delayed_work_sync(&sc->tx_complete_work);
2126
2127 if (ath9k_wiphy_started(sc)) {
2128 mutex_unlock(&sc->mutex);
2129 return; /* another wiphy still in use */
2130 }
2131
2132 /* make sure h/w will not generate any interrupt
2133 * before setting the invalid flag. */
2134 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2135
2136 if (!(sc->sc_flags & SC_OP_INVALID)) {
2137 ath_drain_all_txq(sc, false);
2138 ath_stoprecv(sc);
2139 ath9k_hw_phy_disable(sc->sc_ah);
2140 } else
2141 sc->rx.rxlink = NULL;
2142
2143 wiphy_rfkill_stop_polling(sc->hw->wiphy);
2144
2145 /* disable HAL and put h/w to sleep */
2146 ath9k_hw_disable(sc->sc_ah);
2147 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2148 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
2149
2150 sc->sc_flags |= SC_OP_INVALID;
2151
2152 mutex_unlock(&sc->mutex);
2153
2154 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2155 }
2156
2157 static int ath9k_add_interface(struct ieee80211_hw *hw,
2158 struct ieee80211_if_init_conf *conf)
2159 {
2160 struct ath_wiphy *aphy = hw->priv;
2161 struct ath_softc *sc = aphy->sc;
2162 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2163 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2164 int ret = 0;
2165
2166 mutex_lock(&sc->mutex);
2167
2168 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2169 sc->nvifs > 0) {
2170 ret = -ENOBUFS;
2171 goto out;
2172 }
2173
2174 switch (conf->type) {
2175 case NL80211_IFTYPE_STATION:
2176 ic_opmode = NL80211_IFTYPE_STATION;
2177 break;
2178 case NL80211_IFTYPE_ADHOC:
2179 case NL80211_IFTYPE_AP:
2180 case NL80211_IFTYPE_MESH_POINT:
2181 if (sc->nbcnvifs >= ATH_BCBUF) {
2182 ret = -ENOBUFS;
2183 goto out;
2184 }
2185 ic_opmode = conf->type;
2186 break;
2187 default:
2188 DPRINTF(sc, ATH_DBG_FATAL,
2189 "Interface type %d not yet supported\n", conf->type);
2190 ret = -EOPNOTSUPP;
2191 goto out;
2192 }
2193
2194 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2195
2196 /* Set the VIF opmode */
2197 avp->av_opmode = ic_opmode;
2198 avp->av_bslot = -1;
2199
2200 sc->nvifs++;
2201
2202 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2203 ath9k_set_bssid_mask(hw);
2204
2205 if (sc->nvifs > 1)
2206 goto out; /* skip global settings for secondary vif */
2207
2208 if (ic_opmode == NL80211_IFTYPE_AP) {
2209 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2210 sc->sc_flags |= SC_OP_TSF_RESET;
2211 }
2212
2213 /* Set the device opmode */
2214 sc->sc_ah->opmode = ic_opmode;
2215
2216 /*
2217 * Enable MIB interrupts when there are hardware phy counters.
2218 * Note we only do this (at the moment) for station mode.
2219 */
2220 if ((conf->type == NL80211_IFTYPE_STATION) ||
2221 (conf->type == NL80211_IFTYPE_ADHOC) ||
2222 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2223 sc->imask |= ATH9K_INT_MIB;
2224 sc->imask |= ATH9K_INT_TSFOOR;
2225 }
2226
2227 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2228
2229 if (conf->type == NL80211_IFTYPE_AP ||
2230 conf->type == NL80211_IFTYPE_ADHOC ||
2231 conf->type == NL80211_IFTYPE_MONITOR)
2232 ath_start_ani(sc);
2233
2234 out:
2235 mutex_unlock(&sc->mutex);
2236 return ret;
2237 }
2238
2239 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2240 struct ieee80211_if_init_conf *conf)
2241 {
2242 struct ath_wiphy *aphy = hw->priv;
2243 struct ath_softc *sc = aphy->sc;
2244 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2245 int i;
2246
2247 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2248
2249 mutex_lock(&sc->mutex);
2250
2251 /* Stop ANI */
2252 del_timer_sync(&sc->ani.timer);
2253
2254 /* Reclaim beacon resources */
2255 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2256 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2257 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2258 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2259 ath_beacon_return(sc, avp);
2260 }
2261
2262 sc->sc_flags &= ~SC_OP_BEACONS;
2263
2264 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2265 if (sc->beacon.bslot[i] == conf->vif) {
2266 printk(KERN_DEBUG "%s: vif had allocated beacon "
2267 "slot\n", __func__);
2268 sc->beacon.bslot[i] = NULL;
2269 sc->beacon.bslot_aphy[i] = NULL;
2270 }
2271 }
2272
2273 sc->nvifs--;
2274
2275 mutex_unlock(&sc->mutex);
2276 }
2277
2278 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2279 {
2280 struct ath_wiphy *aphy = hw->priv;
2281 struct ath_softc *sc = aphy->sc;
2282 struct ieee80211_conf *conf = &hw->conf;
2283 struct ath_hw *ah = sc->sc_ah;
2284 bool all_wiphys_idle = false, disable_radio = false;
2285
2286 mutex_lock(&sc->mutex);
2287
2288 /* Leave this as the first check */
2289 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2290
2291 spin_lock_bh(&sc->wiphy_lock);
2292 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2293 spin_unlock_bh(&sc->wiphy_lock);
2294
2295 if (conf->flags & IEEE80211_CONF_IDLE){
2296 if (all_wiphys_idle)
2297 disable_radio = true;
2298 }
2299 else if (all_wiphys_idle) {
2300 ath_radio_enable(sc);
2301 DPRINTF(sc, ATH_DBG_CONFIG,
2302 "not-idle: enabling radio\n");
2303 }
2304 }
2305
2306 if (changed & IEEE80211_CONF_CHANGE_PS) {
2307 if (conf->flags & IEEE80211_CONF_PS) {
2308 if (!(ah->caps.hw_caps &
2309 ATH9K_HW_CAP_AUTOSLEEP)) {
2310 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2311 sc->imask |= ATH9K_INT_TIM_TIMER;
2312 ath9k_hw_set_interrupts(sc->sc_ah,
2313 sc->imask);
2314 }
2315 ath9k_hw_setrxabort(sc->sc_ah, 1);
2316 }
2317 sc->ps_enabled = true;
2318 } else {
2319 sc->ps_enabled = false;
2320 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2321 if (!(ah->caps.hw_caps &
2322 ATH9K_HW_CAP_AUTOSLEEP)) {
2323 ath9k_hw_setrxabort(sc->sc_ah, 0);
2324 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2325 SC_OP_WAIT_FOR_CAB |
2326 SC_OP_WAIT_FOR_PSPOLL_DATA |
2327 SC_OP_WAIT_FOR_TX_ACK);
2328 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2329 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2330 ath9k_hw_set_interrupts(sc->sc_ah,
2331 sc->imask);
2332 }
2333 }
2334 }
2335 }
2336
2337 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2338 struct ieee80211_channel *curchan = hw->conf.channel;
2339 int pos = curchan->hw_value;
2340
2341 aphy->chan_idx = pos;
2342 aphy->chan_is_ht = conf_is_ht(conf);
2343
2344 if (aphy->state == ATH_WIPHY_SCAN ||
2345 aphy->state == ATH_WIPHY_ACTIVE)
2346 ath9k_wiphy_pause_all_forced(sc, aphy);
2347 else {
2348 /*
2349 * Do not change operational channel based on a paused
2350 * wiphy changes.
2351 */
2352 goto skip_chan_change;
2353 }
2354
2355 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2356 curchan->center_freq);
2357
2358 /* XXX: remove me eventualy */
2359 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2360
2361 ath_update_chainmask(sc, conf_is_ht(conf));
2362
2363 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2364 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2365 mutex_unlock(&sc->mutex);
2366 return -EINVAL;
2367 }
2368 }
2369
2370 skip_chan_change:
2371 if (changed & IEEE80211_CONF_CHANGE_POWER)
2372 sc->config.txpowlimit = 2 * conf->power_level;
2373
2374 if (disable_radio) {
2375 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2376 ath_radio_disable(sc);
2377 }
2378
2379 mutex_unlock(&sc->mutex);
2380
2381 return 0;
2382 }
2383
2384 #define SUPPORTED_FILTERS \
2385 (FIF_PROMISC_IN_BSS | \
2386 FIF_ALLMULTI | \
2387 FIF_CONTROL | \
2388 FIF_PSPOLL | \
2389 FIF_OTHER_BSS | \
2390 FIF_BCN_PRBRESP_PROMISC | \
2391 FIF_FCSFAIL)
2392
2393 /* FIXME: sc->sc_full_reset ? */
2394 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2395 unsigned int changed_flags,
2396 unsigned int *total_flags,
2397 u64 multicast)
2398 {
2399 struct ath_wiphy *aphy = hw->priv;
2400 struct ath_softc *sc = aphy->sc;
2401 u32 rfilt;
2402
2403 changed_flags &= SUPPORTED_FILTERS;
2404 *total_flags &= SUPPORTED_FILTERS;
2405
2406 sc->rx.rxfilter = *total_flags;
2407 ath9k_ps_wakeup(sc);
2408 rfilt = ath_calcrxfilter(sc);
2409 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2410 ath9k_ps_restore(sc);
2411
2412 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2413 }
2414
2415 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2416 struct ieee80211_vif *vif,
2417 enum sta_notify_cmd cmd,
2418 struct ieee80211_sta *sta)
2419 {
2420 struct ath_wiphy *aphy = hw->priv;
2421 struct ath_softc *sc = aphy->sc;
2422
2423 switch (cmd) {
2424 case STA_NOTIFY_ADD:
2425 ath_node_attach(sc, sta);
2426 break;
2427 case STA_NOTIFY_REMOVE:
2428 ath_node_detach(sc, sta);
2429 break;
2430 default:
2431 break;
2432 }
2433 }
2434
2435 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2436 const struct ieee80211_tx_queue_params *params)
2437 {
2438 struct ath_wiphy *aphy = hw->priv;
2439 struct ath_softc *sc = aphy->sc;
2440 struct ath9k_tx_queue_info qi;
2441 int ret = 0, qnum;
2442
2443 if (queue >= WME_NUM_AC)
2444 return 0;
2445
2446 mutex_lock(&sc->mutex);
2447
2448 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2449
2450 qi.tqi_aifs = params->aifs;
2451 qi.tqi_cwmin = params->cw_min;
2452 qi.tqi_cwmax = params->cw_max;
2453 qi.tqi_burstTime = params->txop;
2454 qnum = ath_get_hal_qnum(queue, sc);
2455
2456 DPRINTF(sc, ATH_DBG_CONFIG,
2457 "Configure tx [queue/halq] [%d/%d], "
2458 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2459 queue, qnum, params->aifs, params->cw_min,
2460 params->cw_max, params->txop);
2461
2462 ret = ath_txq_update(sc, qnum, &qi);
2463 if (ret)
2464 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2465
2466 mutex_unlock(&sc->mutex);
2467
2468 return ret;
2469 }
2470
2471 static int ath9k_set_key(struct ieee80211_hw *hw,
2472 enum set_key_cmd cmd,
2473 struct ieee80211_vif *vif,
2474 struct ieee80211_sta *sta,
2475 struct ieee80211_key_conf *key)
2476 {
2477 struct ath_wiphy *aphy = hw->priv;
2478 struct ath_softc *sc = aphy->sc;
2479 int ret = 0;
2480
2481 if (modparam_nohwcrypt)
2482 return -ENOSPC;
2483
2484 mutex_lock(&sc->mutex);
2485 ath9k_ps_wakeup(sc);
2486 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2487
2488 switch (cmd) {
2489 case SET_KEY:
2490 ret = ath_key_config(sc, vif, sta, key);
2491 if (ret >= 0) {
2492 key->hw_key_idx = ret;
2493 /* push IV and Michael MIC generation to stack */
2494 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2495 if (key->alg == ALG_TKIP)
2496 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2497 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2498 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2499 ret = 0;
2500 }
2501 break;
2502 case DISABLE_KEY:
2503 ath_key_delete(sc, key);
2504 break;
2505 default:
2506 ret = -EINVAL;
2507 }
2508
2509 ath9k_ps_restore(sc);
2510 mutex_unlock(&sc->mutex);
2511
2512 return ret;
2513 }
2514
2515 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2516 struct ieee80211_vif *vif,
2517 struct ieee80211_bss_conf *bss_conf,
2518 u32 changed)
2519 {
2520 struct ath_wiphy *aphy = hw->priv;
2521 struct ath_softc *sc = aphy->sc;
2522 struct ath_hw *ah = sc->sc_ah;
2523 struct ath_vif *avp = (void *)vif->drv_priv;
2524 u32 rfilt = 0;
2525 int error, i;
2526
2527 mutex_lock(&sc->mutex);
2528
2529 /*
2530 * TODO: Need to decide which hw opmode to use for
2531 * multi-interface cases
2532 * XXX: This belongs into add_interface!
2533 */
2534 if (vif->type == NL80211_IFTYPE_AP &&
2535 ah->opmode != NL80211_IFTYPE_AP) {
2536 ah->opmode = NL80211_IFTYPE_STATION;
2537 ath9k_hw_setopmode(ah);
2538 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2539 sc->curaid = 0;
2540 ath9k_hw_write_associd(sc);
2541 /* Request full reset to get hw opmode changed properly */
2542 sc->sc_flags |= SC_OP_FULL_RESET;
2543 }
2544
2545 if ((changed & BSS_CHANGED_BSSID) &&
2546 !is_zero_ether_addr(bss_conf->bssid)) {
2547 switch (vif->type) {
2548 case NL80211_IFTYPE_STATION:
2549 case NL80211_IFTYPE_ADHOC:
2550 case NL80211_IFTYPE_MESH_POINT:
2551 /* Set BSSID */
2552 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2553 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2554 sc->curaid = 0;
2555 ath9k_hw_write_associd(sc);
2556
2557 /* Set aggregation protection mode parameters */
2558 sc->config.ath_aggr_prot = 0;
2559
2560 DPRINTF(sc, ATH_DBG_CONFIG,
2561 "RX filter 0x%x bssid %pM aid 0x%x\n",
2562 rfilt, sc->curbssid, sc->curaid);
2563
2564 /* need to reconfigure the beacon */
2565 sc->sc_flags &= ~SC_OP_BEACONS ;
2566
2567 break;
2568 default:
2569 break;
2570 }
2571 }
2572
2573 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2574 (vif->type == NL80211_IFTYPE_AP) ||
2575 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2576 if ((changed & BSS_CHANGED_BEACON) ||
2577 (changed & BSS_CHANGED_BEACON_ENABLED &&
2578 bss_conf->enable_beacon)) {
2579 /*
2580 * Allocate and setup the beacon frame.
2581 *
2582 * Stop any previous beacon DMA. This may be
2583 * necessary, for example, when an ibss merge
2584 * causes reconfiguration; we may be called
2585 * with beacon transmission active.
2586 */
2587 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2588
2589 error = ath_beacon_alloc(aphy, vif);
2590 if (!error)
2591 ath_beacon_config(sc, vif);
2592 }
2593 }
2594
2595 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2596 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2597 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2598 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2599 ath9k_hw_keysetmac(sc->sc_ah,
2600 (u16)i,
2601 sc->curbssid);
2602 }
2603
2604 /* Only legacy IBSS for now */
2605 if (vif->type == NL80211_IFTYPE_ADHOC)
2606 ath_update_chainmask(sc, 0);
2607
2608 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2609 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2610 bss_conf->use_short_preamble);
2611 if (bss_conf->use_short_preamble)
2612 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2613 else
2614 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2615 }
2616
2617 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2618 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2619 bss_conf->use_cts_prot);
2620 if (bss_conf->use_cts_prot &&
2621 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2622 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2623 else
2624 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2625 }
2626
2627 if (changed & BSS_CHANGED_ASSOC) {
2628 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2629 bss_conf->assoc);
2630 ath9k_bss_assoc_info(sc, vif, bss_conf);
2631 }
2632
2633 /*
2634 * The HW TSF has to be reset when the beacon interval changes.
2635 * We set the flag here, and ath_beacon_config_ap() would take this
2636 * into account when it gets called through the subsequent
2637 * config_interface() call - with IFCC_BEACON in the changed field.
2638 */
2639
2640 if (changed & BSS_CHANGED_BEACON_INT) {
2641 sc->sc_flags |= SC_OP_TSF_RESET;
2642 sc->beacon_interval = bss_conf->beacon_int;
2643 }
2644
2645 mutex_unlock(&sc->mutex);
2646 }
2647
2648 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2649 {
2650 u64 tsf;
2651 struct ath_wiphy *aphy = hw->priv;
2652 struct ath_softc *sc = aphy->sc;
2653
2654 mutex_lock(&sc->mutex);
2655 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2656 mutex_unlock(&sc->mutex);
2657
2658 return tsf;
2659 }
2660
2661 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2662 {
2663 struct ath_wiphy *aphy = hw->priv;
2664 struct ath_softc *sc = aphy->sc;
2665
2666 mutex_lock(&sc->mutex);
2667 ath9k_hw_settsf64(sc->sc_ah, tsf);
2668 mutex_unlock(&sc->mutex);
2669 }
2670
2671 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2672 {
2673 struct ath_wiphy *aphy = hw->priv;
2674 struct ath_softc *sc = aphy->sc;
2675
2676 mutex_lock(&sc->mutex);
2677 ath9k_hw_reset_tsf(sc->sc_ah);
2678 mutex_unlock(&sc->mutex);
2679 }
2680
2681 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2682 enum ieee80211_ampdu_mlme_action action,
2683 struct ieee80211_sta *sta,
2684 u16 tid, u16 *ssn)
2685 {
2686 struct ath_wiphy *aphy = hw->priv;
2687 struct ath_softc *sc = aphy->sc;
2688 int ret = 0;
2689
2690 switch (action) {
2691 case IEEE80211_AMPDU_RX_START:
2692 if (!(sc->sc_flags & SC_OP_RXAGGR))
2693 ret = -ENOTSUPP;
2694 break;
2695 case IEEE80211_AMPDU_RX_STOP:
2696 break;
2697 case IEEE80211_AMPDU_TX_START:
2698 ath_tx_aggr_start(sc, sta, tid, ssn);
2699 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2700 break;
2701 case IEEE80211_AMPDU_TX_STOP:
2702 ath_tx_aggr_stop(sc, sta, tid);
2703 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2704 break;
2705 case IEEE80211_AMPDU_TX_OPERATIONAL:
2706 ath_tx_aggr_resume(sc, sta, tid);
2707 break;
2708 default:
2709 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2710 }
2711
2712 return ret;
2713 }
2714
2715 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2716 {
2717 struct ath_wiphy *aphy = hw->priv;
2718 struct ath_softc *sc = aphy->sc;
2719
2720 if (ath9k_wiphy_scanning(sc)) {
2721 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2722 "same time\n");
2723 /*
2724 * Do not allow the concurrent scanning state for now. This
2725 * could be improved with scanning control moved into ath9k.
2726 */
2727 return;
2728 }
2729
2730 aphy->state = ATH_WIPHY_SCAN;
2731 ath9k_wiphy_pause_all_forced(sc, aphy);
2732
2733 spin_lock_bh(&sc->ani_lock);
2734 sc->sc_flags |= SC_OP_SCANNING;
2735 spin_unlock_bh(&sc->ani_lock);
2736 }
2737
2738 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2739 {
2740 struct ath_wiphy *aphy = hw->priv;
2741 struct ath_softc *sc = aphy->sc;
2742
2743 spin_lock_bh(&sc->ani_lock);
2744 aphy->state = ATH_WIPHY_ACTIVE;
2745 sc->sc_flags &= ~SC_OP_SCANNING;
2746 sc->sc_flags |= SC_OP_FULL_RESET;
2747 spin_unlock_bh(&sc->ani_lock);
2748 }
2749
2750 struct ieee80211_ops ath9k_ops = {
2751 .tx = ath9k_tx,
2752 .start = ath9k_start,
2753 .stop = ath9k_stop,
2754 .add_interface = ath9k_add_interface,
2755 .remove_interface = ath9k_remove_interface,
2756 .config = ath9k_config,
2757 .configure_filter = ath9k_configure_filter,
2758 .sta_notify = ath9k_sta_notify,
2759 .conf_tx = ath9k_conf_tx,
2760 .bss_info_changed = ath9k_bss_info_changed,
2761 .set_key = ath9k_set_key,
2762 .get_tsf = ath9k_get_tsf,
2763 .set_tsf = ath9k_set_tsf,
2764 .reset_tsf = ath9k_reset_tsf,
2765 .ampdu_action = ath9k_ampdu_action,
2766 .sw_scan_start = ath9k_sw_scan_start,
2767 .sw_scan_complete = ath9k_sw_scan_complete,
2768 .rfkill_poll = ath9k_rfkill_poll_state,
2769 };
2770
2771 static struct {
2772 u32 version;
2773 const char * name;
2774 } ath_mac_bb_names[] = {
2775 { AR_SREV_VERSION_5416_PCI, "5416" },
2776 { AR_SREV_VERSION_5416_PCIE, "5418" },
2777 { AR_SREV_VERSION_9100, "9100" },
2778 { AR_SREV_VERSION_9160, "9160" },
2779 { AR_SREV_VERSION_9280, "9280" },
2780 { AR_SREV_VERSION_9285, "9285" },
2781 { AR_SREV_VERSION_9287, "9287" }
2782 };
2783
2784 static struct {
2785 u16 version;
2786 const char * name;
2787 } ath_rf_names[] = {
2788 { 0, "5133" },
2789 { AR_RAD5133_SREV_MAJOR, "5133" },
2790 { AR_RAD5122_SREV_MAJOR, "5122" },
2791 { AR_RAD2133_SREV_MAJOR, "2133" },
2792 { AR_RAD2122_SREV_MAJOR, "2122" }
2793 };
2794
2795 /*
2796 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2797 */
2798 const char *
2799 ath_mac_bb_name(u32 mac_bb_version)
2800 {
2801 int i;
2802
2803 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2804 if (ath_mac_bb_names[i].version == mac_bb_version) {
2805 return ath_mac_bb_names[i].name;
2806 }
2807 }
2808
2809 return "????";
2810 }
2811
2812 /*
2813 * Return the RF name. "????" is returned if the RF is unknown.
2814 */
2815 const char *
2816 ath_rf_name(u16 rf_version)
2817 {
2818 int i;
2819
2820 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2821 if (ath_rf_names[i].version == rf_version) {
2822 return ath_rf_names[i].name;
2823 }
2824 }
2825
2826 return "????";
2827 }
2828
2829 static int __init ath9k_init(void)
2830 {
2831 int error;
2832
2833 /* Register rate control algorithm */
2834 error = ath_rate_control_register();
2835 if (error != 0) {
2836 printk(KERN_ERR
2837 "ath9k: Unable to register rate control "
2838 "algorithm: %d\n",
2839 error);
2840 goto err_out;
2841 }
2842
2843 error = ath9k_debug_create_root();
2844 if (error) {
2845 printk(KERN_ERR
2846 "ath9k: Unable to create debugfs root: %d\n",
2847 error);
2848 goto err_rate_unregister;
2849 }
2850
2851 error = ath_pci_init();
2852 if (error < 0) {
2853 printk(KERN_ERR
2854 "ath9k: No PCI devices found, driver not installed.\n");
2855 error = -ENODEV;
2856 goto err_remove_root;
2857 }
2858
2859 error = ath_ahb_init();
2860 if (error < 0) {
2861 error = -ENODEV;
2862 goto err_pci_exit;
2863 }
2864
2865 return 0;
2866
2867 err_pci_exit:
2868 ath_pci_exit();
2869
2870 err_remove_root:
2871 ath9k_debug_remove_root();
2872 err_rate_unregister:
2873 ath_rate_control_unregister();
2874 err_out:
2875 return error;
2876 }
2877 module_init(ath9k_init);
2878
2879 static void __exit ath9k_exit(void)
2880 {
2881 ath_ahb_exit();
2882 ath_pci_exit();
2883 ath9k_debug_remove_root();
2884 ath_rate_control_unregister();
2885 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2886 }
2887 module_exit(ath9k_exit);
This page took 0.123954 seconds and 5 git commands to generate.