f7ef11407e27c016d20cbfdeee18a1f2e57b13a9
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static void ath_cache_conf_rate(struct ath_softc *sc,
22 struct ieee80211_conf *conf)
23 {
24 switch (conf->channel->band) {
25 case IEEE80211_BAND_2GHZ:
26 if (conf_is_ht20(conf))
27 sc->cur_rate_mode = ATH9K_MODE_11NG_HT20;
28 else if (conf_is_ht40_minus(conf))
29 sc->cur_rate_mode = ATH9K_MODE_11NG_HT40MINUS;
30 else if (conf_is_ht40_plus(conf))
31 sc->cur_rate_mode = ATH9K_MODE_11NG_HT40PLUS;
32 else
33 sc->cur_rate_mode = ATH9K_MODE_11G;
34 break;
35 case IEEE80211_BAND_5GHZ:
36 if (conf_is_ht20(conf))
37 sc->cur_rate_mode = ATH9K_MODE_11NA_HT20;
38 else if (conf_is_ht40_minus(conf))
39 sc->cur_rate_mode = ATH9K_MODE_11NA_HT40MINUS;
40 else if (conf_is_ht40_plus(conf))
41 sc->cur_rate_mode = ATH9K_MODE_11NA_HT40PLUS;
42 else
43 sc->cur_rate_mode = ATH9K_MODE_11A;
44 break;
45 default:
46 BUG_ON(1);
47 break;
48 }
49 }
50
51 static void ath_update_txpow(struct ath_softc *sc)
52 {
53 struct ath_hw *ah = sc->sc_ah;
54 u32 txpow;
55
56 if (sc->curtxpow != sc->config.txpowlimit) {
57 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
58 /* read back in case value is clamped */
59 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
60 sc->curtxpow = txpow;
61 }
62 }
63
64 static u8 parse_mpdudensity(u8 mpdudensity)
65 {
66 /*
67 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
68 * 0 for no restriction
69 * 1 for 1/4 us
70 * 2 for 1/2 us
71 * 3 for 1 us
72 * 4 for 2 us
73 * 5 for 4 us
74 * 6 for 8 us
75 * 7 for 16 us
76 */
77 switch (mpdudensity) {
78 case 0:
79 return 0;
80 case 1:
81 case 2:
82 case 3:
83 /* Our lower layer calculations limit our precision to
84 1 microsecond */
85 return 1;
86 case 4:
87 return 2;
88 case 5:
89 return 4;
90 case 6:
91 return 8;
92 case 7:
93 return 16;
94 default:
95 return 0;
96 }
97 }
98
99 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
100 struct ieee80211_hw *hw)
101 {
102 struct ieee80211_channel *curchan = hw->conf.channel;
103 struct ath9k_channel *channel;
104 u8 chan_idx;
105
106 chan_idx = curchan->hw_value;
107 channel = &sc->sc_ah->channels[chan_idx];
108 ath9k_update_ichannel(sc, hw, channel);
109 return channel;
110 }
111
112 bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
113 {
114 unsigned long flags;
115 bool ret;
116
117 spin_lock_irqsave(&sc->sc_pm_lock, flags);
118 ret = ath9k_hw_setpower(sc->sc_ah, mode);
119 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
120
121 return ret;
122 }
123
124 void ath9k_ps_wakeup(struct ath_softc *sc)
125 {
126 unsigned long flags;
127
128 spin_lock_irqsave(&sc->sc_pm_lock, flags);
129 if (++sc->ps_usecount != 1)
130 goto unlock;
131
132 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
133
134 unlock:
135 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
136 }
137
138 void ath9k_ps_restore(struct ath_softc *sc)
139 {
140 unsigned long flags;
141
142 spin_lock_irqsave(&sc->sc_pm_lock, flags);
143 if (--sc->ps_usecount != 0)
144 goto unlock;
145
146 if (sc->ps_idle)
147 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
148 else if (sc->ps_enabled &&
149 !(sc->ps_flags & (PS_WAIT_FOR_BEACON |
150 PS_WAIT_FOR_CAB |
151 PS_WAIT_FOR_PSPOLL_DATA |
152 PS_WAIT_FOR_TX_ACK)))
153 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
154
155 unlock:
156 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
157 }
158
159 /*
160 * Set/change channels. If the channel is really being changed, it's done
161 * by reseting the chip. To accomplish this we must first cleanup any pending
162 * DMA, then restart stuff.
163 */
164 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
165 struct ath9k_channel *hchan)
166 {
167 struct ath_hw *ah = sc->sc_ah;
168 struct ath_common *common = ath9k_hw_common(ah);
169 struct ieee80211_conf *conf = &common->hw->conf;
170 bool fastcc = true, stopped;
171 struct ieee80211_channel *channel = hw->conf.channel;
172 int r;
173
174 if (sc->sc_flags & SC_OP_INVALID)
175 return -EIO;
176
177 ath9k_ps_wakeup(sc);
178
179 /*
180 * This is only performed if the channel settings have
181 * actually changed.
182 *
183 * To switch channels clear any pending DMA operations;
184 * wait long enough for the RX fifo to drain, reset the
185 * hardware at the new frequency, and then re-enable
186 * the relevant bits of the h/w.
187 */
188 ath9k_hw_set_interrupts(ah, 0);
189 ath_drain_all_txq(sc, false);
190 stopped = ath_stoprecv(sc);
191
192 /* XXX: do not flush receive queue here. We don't want
193 * to flush data frames already in queue because of
194 * changing channel. */
195
196 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
197 fastcc = false;
198
199 ath_print(common, ATH_DBG_CONFIG,
200 "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
201 sc->sc_ah->curchan->channel,
202 channel->center_freq, conf_is_ht40(conf));
203
204 spin_lock_bh(&sc->sc_resetlock);
205
206 r = ath9k_hw_reset(ah, hchan, fastcc);
207 if (r) {
208 ath_print(common, ATH_DBG_FATAL,
209 "Unable to reset channel (%u MHz), "
210 "reset status %d\n",
211 channel->center_freq, r);
212 spin_unlock_bh(&sc->sc_resetlock);
213 goto ps_restore;
214 }
215 spin_unlock_bh(&sc->sc_resetlock);
216
217 sc->sc_flags &= ~SC_OP_FULL_RESET;
218
219 if (ath_startrecv(sc) != 0) {
220 ath_print(common, ATH_DBG_FATAL,
221 "Unable to restart recv logic\n");
222 r = -EIO;
223 goto ps_restore;
224 }
225
226 ath_cache_conf_rate(sc, &hw->conf);
227 ath_update_txpow(sc);
228 ath9k_hw_set_interrupts(ah, ah->imask);
229
230 ps_restore:
231 ath9k_ps_restore(sc);
232 return r;
233 }
234
235 /*
236 * This routine performs the periodic noise floor calibration function
237 * that is used to adjust and optimize the chip performance. This
238 * takes environmental changes (location, temperature) into account.
239 * When the task is complete, it reschedules itself depending on the
240 * appropriate interval that was calculated.
241 */
242 void ath_ani_calibrate(unsigned long data)
243 {
244 struct ath_softc *sc = (struct ath_softc *)data;
245 struct ath_hw *ah = sc->sc_ah;
246 struct ath_common *common = ath9k_hw_common(ah);
247 bool longcal = false;
248 bool shortcal = false;
249 bool aniflag = false;
250 unsigned int timestamp = jiffies_to_msecs(jiffies);
251 u32 cal_interval, short_cal_interval;
252
253 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
254 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
255
256 /* Only calibrate if awake */
257 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
258 goto set_timer;
259
260 ath9k_ps_wakeup(sc);
261
262 /* Long calibration runs independently of short calibration. */
263 if ((timestamp - common->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
264 longcal = true;
265 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
266 common->ani.longcal_timer = timestamp;
267 }
268
269 /* Short calibration applies only while caldone is false */
270 if (!common->ani.caldone) {
271 if ((timestamp - common->ani.shortcal_timer) >= short_cal_interval) {
272 shortcal = true;
273 ath_print(common, ATH_DBG_ANI,
274 "shortcal @%lu\n", jiffies);
275 common->ani.shortcal_timer = timestamp;
276 common->ani.resetcal_timer = timestamp;
277 }
278 } else {
279 if ((timestamp - common->ani.resetcal_timer) >=
280 ATH_RESTART_CALINTERVAL) {
281 common->ani.caldone = ath9k_hw_reset_calvalid(ah);
282 if (common->ani.caldone)
283 common->ani.resetcal_timer = timestamp;
284 }
285 }
286
287 /* Verify whether we must check ANI */
288 if ((timestamp - common->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
289 aniflag = true;
290 common->ani.checkani_timer = timestamp;
291 }
292
293 /* Skip all processing if there's nothing to do. */
294 if (longcal || shortcal || aniflag) {
295 /* Call ANI routine if necessary */
296 if (aniflag)
297 ath9k_hw_ani_monitor(ah, ah->curchan);
298
299 /* Perform calibration if necessary */
300 if (longcal || shortcal) {
301 common->ani.caldone =
302 ath9k_hw_calibrate(ah,
303 ah->curchan,
304 common->rx_chainmask,
305 longcal);
306
307 if (longcal)
308 common->ani.noise_floor = ath9k_hw_getchan_noise(ah,
309 ah->curchan);
310
311 ath_print(common, ATH_DBG_ANI,
312 " calibrate chan %u/%x nf: %d\n",
313 ah->curchan->channel,
314 ah->curchan->channelFlags,
315 common->ani.noise_floor);
316 }
317 }
318
319 ath9k_ps_restore(sc);
320
321 set_timer:
322 /*
323 * Set timer interval based on previous results.
324 * The interval must be the shortest necessary to satisfy ANI,
325 * short calibration and long calibration.
326 */
327 cal_interval = ATH_LONG_CALINTERVAL;
328 if (sc->sc_ah->config.enable_ani)
329 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
330 if (!common->ani.caldone)
331 cal_interval = min(cal_interval, (u32)short_cal_interval);
332
333 mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
334 }
335
336 static void ath_start_ani(struct ath_common *common)
337 {
338 unsigned long timestamp = jiffies_to_msecs(jiffies);
339
340 common->ani.longcal_timer = timestamp;
341 common->ani.shortcal_timer = timestamp;
342 common->ani.checkani_timer = timestamp;
343
344 mod_timer(&common->ani.timer,
345 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
346 }
347
348 /*
349 * Update tx/rx chainmask. For legacy association,
350 * hard code chainmask to 1x1, for 11n association, use
351 * the chainmask configuration, for bt coexistence, use
352 * the chainmask configuration even in legacy mode.
353 */
354 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
355 {
356 struct ath_hw *ah = sc->sc_ah;
357 struct ath_common *common = ath9k_hw_common(ah);
358
359 if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
360 (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
361 common->tx_chainmask = ah->caps.tx_chainmask;
362 common->rx_chainmask = ah->caps.rx_chainmask;
363 } else {
364 common->tx_chainmask = 1;
365 common->rx_chainmask = 1;
366 }
367
368 ath_print(common, ATH_DBG_CONFIG,
369 "tx chmask: %d, rx chmask: %d\n",
370 common->tx_chainmask,
371 common->rx_chainmask);
372 }
373
374 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
375 {
376 struct ath_node *an;
377
378 an = (struct ath_node *)sta->drv_priv;
379
380 if (sc->sc_flags & SC_OP_TXAGGR) {
381 ath_tx_node_init(sc, an);
382 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
383 sta->ht_cap.ampdu_factor);
384 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
385 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
386 }
387 }
388
389 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
390 {
391 struct ath_node *an = (struct ath_node *)sta->drv_priv;
392
393 if (sc->sc_flags & SC_OP_TXAGGR)
394 ath_tx_node_cleanup(sc, an);
395 }
396
397 void ath9k_tasklet(unsigned long data)
398 {
399 struct ath_softc *sc = (struct ath_softc *)data;
400 struct ath_hw *ah = sc->sc_ah;
401 struct ath_common *common = ath9k_hw_common(ah);
402
403 u32 status = sc->intrstatus;
404
405 ath9k_ps_wakeup(sc);
406
407 if (status & ATH9K_INT_FATAL) {
408 ath_reset(sc, false);
409 ath9k_ps_restore(sc);
410 return;
411 }
412
413 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
414 spin_lock_bh(&sc->rx.rxflushlock);
415 ath_rx_tasklet(sc, 0);
416 spin_unlock_bh(&sc->rx.rxflushlock);
417 }
418
419 if (status & ATH9K_INT_TX)
420 ath_tx_tasklet(sc);
421
422 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
423 /*
424 * TSF sync does not look correct; remain awake to sync with
425 * the next Beacon.
426 */
427 ath_print(common, ATH_DBG_PS,
428 "TSFOOR - Sync with next Beacon\n");
429 sc->ps_flags |= PS_WAIT_FOR_BEACON | PS_BEACON_SYNC;
430 }
431
432 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
433 if (status & ATH9K_INT_GENTIMER)
434 ath_gen_timer_isr(sc->sc_ah);
435
436 /* re-enable hardware interrupt */
437 ath9k_hw_set_interrupts(ah, ah->imask);
438 ath9k_ps_restore(sc);
439 }
440
441 irqreturn_t ath_isr(int irq, void *dev)
442 {
443 #define SCHED_INTR ( \
444 ATH9K_INT_FATAL | \
445 ATH9K_INT_RXORN | \
446 ATH9K_INT_RXEOL | \
447 ATH9K_INT_RX | \
448 ATH9K_INT_TX | \
449 ATH9K_INT_BMISS | \
450 ATH9K_INT_CST | \
451 ATH9K_INT_TSFOOR | \
452 ATH9K_INT_GENTIMER)
453
454 struct ath_softc *sc = dev;
455 struct ath_hw *ah = sc->sc_ah;
456 enum ath9k_int status;
457 bool sched = false;
458
459 /*
460 * The hardware is not ready/present, don't
461 * touch anything. Note this can happen early
462 * on if the IRQ is shared.
463 */
464 if (sc->sc_flags & SC_OP_INVALID)
465 return IRQ_NONE;
466
467
468 /* shared irq, not for us */
469
470 if (!ath9k_hw_intrpend(ah))
471 return IRQ_NONE;
472
473 /*
474 * Figure out the reason(s) for the interrupt. Note
475 * that the hal returns a pseudo-ISR that may include
476 * bits we haven't explicitly enabled so we mask the
477 * value to insure we only process bits we requested.
478 */
479 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
480 status &= ah->imask; /* discard unasked-for bits */
481
482 /*
483 * If there are no status bits set, then this interrupt was not
484 * for me (should have been caught above).
485 */
486 if (!status)
487 return IRQ_NONE;
488
489 /* Cache the status */
490 sc->intrstatus = status;
491
492 if (status & SCHED_INTR)
493 sched = true;
494
495 /*
496 * If a FATAL or RXORN interrupt is received, we have to reset the
497 * chip immediately.
498 */
499 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
500 goto chip_reset;
501
502 if (status & ATH9K_INT_SWBA)
503 tasklet_schedule(&sc->bcon_tasklet);
504
505 if (status & ATH9K_INT_TXURN)
506 ath9k_hw_updatetxtriglevel(ah, true);
507
508 if (status & ATH9K_INT_MIB) {
509 /*
510 * Disable interrupts until we service the MIB
511 * interrupt; otherwise it will continue to
512 * fire.
513 */
514 ath9k_hw_set_interrupts(ah, 0);
515 /*
516 * Let the hal handle the event. We assume
517 * it will clear whatever condition caused
518 * the interrupt.
519 */
520 ath9k_hw_procmibevent(ah);
521 ath9k_hw_set_interrupts(ah, ah->imask);
522 }
523
524 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
525 if (status & ATH9K_INT_TIM_TIMER) {
526 /* Clear RxAbort bit so that we can
527 * receive frames */
528 ath9k_setpower(sc, ATH9K_PM_AWAKE);
529 ath9k_hw_setrxabort(sc->sc_ah, 0);
530 sc->ps_flags |= PS_WAIT_FOR_BEACON;
531 }
532
533 chip_reset:
534
535 ath_debug_stat_interrupt(sc, status);
536
537 if (sched) {
538 /* turn off every interrupt except SWBA */
539 ath9k_hw_set_interrupts(ah, (ah->imask & ATH9K_INT_SWBA));
540 tasklet_schedule(&sc->intr_tq);
541 }
542
543 return IRQ_HANDLED;
544
545 #undef SCHED_INTR
546 }
547
548 static u32 ath_get_extchanmode(struct ath_softc *sc,
549 struct ieee80211_channel *chan,
550 enum nl80211_channel_type channel_type)
551 {
552 u32 chanmode = 0;
553
554 switch (chan->band) {
555 case IEEE80211_BAND_2GHZ:
556 switch(channel_type) {
557 case NL80211_CHAN_NO_HT:
558 case NL80211_CHAN_HT20:
559 chanmode = CHANNEL_G_HT20;
560 break;
561 case NL80211_CHAN_HT40PLUS:
562 chanmode = CHANNEL_G_HT40PLUS;
563 break;
564 case NL80211_CHAN_HT40MINUS:
565 chanmode = CHANNEL_G_HT40MINUS;
566 break;
567 }
568 break;
569 case IEEE80211_BAND_5GHZ:
570 switch(channel_type) {
571 case NL80211_CHAN_NO_HT:
572 case NL80211_CHAN_HT20:
573 chanmode = CHANNEL_A_HT20;
574 break;
575 case NL80211_CHAN_HT40PLUS:
576 chanmode = CHANNEL_A_HT40PLUS;
577 break;
578 case NL80211_CHAN_HT40MINUS:
579 chanmode = CHANNEL_A_HT40MINUS;
580 break;
581 }
582 break;
583 default:
584 break;
585 }
586
587 return chanmode;
588 }
589
590 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
591 struct ath9k_keyval *hk, const u8 *addr,
592 bool authenticator)
593 {
594 struct ath_hw *ah = common->ah;
595 const u8 *key_rxmic;
596 const u8 *key_txmic;
597
598 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
599 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
600
601 if (addr == NULL) {
602 /*
603 * Group key installation - only two key cache entries are used
604 * regardless of splitmic capability since group key is only
605 * used either for TX or RX.
606 */
607 if (authenticator) {
608 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
609 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
610 } else {
611 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
612 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
613 }
614 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
615 }
616 if (!common->splitmic) {
617 /* TX and RX keys share the same key cache entry. */
618 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
619 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
620 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
621 }
622
623 /* Separate key cache entries for TX and RX */
624
625 /* TX key goes at first index, RX key at +32. */
626 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
627 if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) {
628 /* TX MIC entry failed. No need to proceed further */
629 ath_print(common, ATH_DBG_FATAL,
630 "Setting TX MIC Key Failed\n");
631 return 0;
632 }
633
634 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
635 /* XXX delete tx key on failure? */
636 return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr);
637 }
638
639 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
640 {
641 int i;
642
643 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
644 if (test_bit(i, common->keymap) ||
645 test_bit(i + 64, common->keymap))
646 continue; /* At least one part of TKIP key allocated */
647 if (common->splitmic &&
648 (test_bit(i + 32, common->keymap) ||
649 test_bit(i + 64 + 32, common->keymap)))
650 continue; /* At least one part of TKIP key allocated */
651
652 /* Found a free slot for a TKIP key */
653 return i;
654 }
655 return -1;
656 }
657
658 static int ath_reserve_key_cache_slot(struct ath_common *common)
659 {
660 int i;
661
662 /* First, try to find slots that would not be available for TKIP. */
663 if (common->splitmic) {
664 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
665 if (!test_bit(i, common->keymap) &&
666 (test_bit(i + 32, common->keymap) ||
667 test_bit(i + 64, common->keymap) ||
668 test_bit(i + 64 + 32, common->keymap)))
669 return i;
670 if (!test_bit(i + 32, common->keymap) &&
671 (test_bit(i, common->keymap) ||
672 test_bit(i + 64, common->keymap) ||
673 test_bit(i + 64 + 32, common->keymap)))
674 return i + 32;
675 if (!test_bit(i + 64, common->keymap) &&
676 (test_bit(i , common->keymap) ||
677 test_bit(i + 32, common->keymap) ||
678 test_bit(i + 64 + 32, common->keymap)))
679 return i + 64;
680 if (!test_bit(i + 64 + 32, common->keymap) &&
681 (test_bit(i, common->keymap) ||
682 test_bit(i + 32, common->keymap) ||
683 test_bit(i + 64, common->keymap)))
684 return i + 64 + 32;
685 }
686 } else {
687 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
688 if (!test_bit(i, common->keymap) &&
689 test_bit(i + 64, common->keymap))
690 return i;
691 if (test_bit(i, common->keymap) &&
692 !test_bit(i + 64, common->keymap))
693 return i + 64;
694 }
695 }
696
697 /* No partially used TKIP slots, pick any available slot */
698 for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
699 /* Do not allow slots that could be needed for TKIP group keys
700 * to be used. This limitation could be removed if we know that
701 * TKIP will not be used. */
702 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
703 continue;
704 if (common->splitmic) {
705 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
706 continue;
707 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
708 continue;
709 }
710
711 if (!test_bit(i, common->keymap))
712 return i; /* Found a free slot for a key */
713 }
714
715 /* No free slot found */
716 return -1;
717 }
718
719 static int ath_key_config(struct ath_common *common,
720 struct ieee80211_vif *vif,
721 struct ieee80211_sta *sta,
722 struct ieee80211_key_conf *key)
723 {
724 struct ath_hw *ah = common->ah;
725 struct ath9k_keyval hk;
726 const u8 *mac = NULL;
727 int ret = 0;
728 int idx;
729
730 memset(&hk, 0, sizeof(hk));
731
732 switch (key->alg) {
733 case ALG_WEP:
734 hk.kv_type = ATH9K_CIPHER_WEP;
735 break;
736 case ALG_TKIP:
737 hk.kv_type = ATH9K_CIPHER_TKIP;
738 break;
739 case ALG_CCMP:
740 hk.kv_type = ATH9K_CIPHER_AES_CCM;
741 break;
742 default:
743 return -EOPNOTSUPP;
744 }
745
746 hk.kv_len = key->keylen;
747 memcpy(hk.kv_val, key->key, key->keylen);
748
749 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
750 /* For now, use the default keys for broadcast keys. This may
751 * need to change with virtual interfaces. */
752 idx = key->keyidx;
753 } else if (key->keyidx) {
754 if (WARN_ON(!sta))
755 return -EOPNOTSUPP;
756 mac = sta->addr;
757
758 if (vif->type != NL80211_IFTYPE_AP) {
759 /* Only keyidx 0 should be used with unicast key, but
760 * allow this for client mode for now. */
761 idx = key->keyidx;
762 } else
763 return -EIO;
764 } else {
765 if (WARN_ON(!sta))
766 return -EOPNOTSUPP;
767 mac = sta->addr;
768
769 if (key->alg == ALG_TKIP)
770 idx = ath_reserve_key_cache_slot_tkip(common);
771 else
772 idx = ath_reserve_key_cache_slot(common);
773 if (idx < 0)
774 return -ENOSPC; /* no free key cache entries */
775 }
776
777 if (key->alg == ALG_TKIP)
778 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
779 vif->type == NL80211_IFTYPE_AP);
780 else
781 ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac);
782
783 if (!ret)
784 return -EIO;
785
786 set_bit(idx, common->keymap);
787 if (key->alg == ALG_TKIP) {
788 set_bit(idx + 64, common->keymap);
789 if (common->splitmic) {
790 set_bit(idx + 32, common->keymap);
791 set_bit(idx + 64 + 32, common->keymap);
792 }
793 }
794
795 return idx;
796 }
797
798 static void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
799 {
800 struct ath_hw *ah = common->ah;
801
802 ath9k_hw_keyreset(ah, key->hw_key_idx);
803 if (key->hw_key_idx < IEEE80211_WEP_NKID)
804 return;
805
806 clear_bit(key->hw_key_idx, common->keymap);
807 if (key->alg != ALG_TKIP)
808 return;
809
810 clear_bit(key->hw_key_idx + 64, common->keymap);
811 if (common->splitmic) {
812 ath9k_hw_keyreset(ah, key->hw_key_idx + 32);
813 clear_bit(key->hw_key_idx + 32, common->keymap);
814 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
815 }
816 }
817
818 static void ath9k_bss_assoc_info(struct ath_softc *sc,
819 struct ieee80211_vif *vif,
820 struct ieee80211_bss_conf *bss_conf)
821 {
822 struct ath_hw *ah = sc->sc_ah;
823 struct ath_common *common = ath9k_hw_common(ah);
824
825 if (bss_conf->assoc) {
826 ath_print(common, ATH_DBG_CONFIG,
827 "Bss Info ASSOC %d, bssid: %pM\n",
828 bss_conf->aid, common->curbssid);
829
830 /* New association, store aid */
831 common->curaid = bss_conf->aid;
832 ath9k_hw_write_associd(ah);
833
834 /*
835 * Request a re-configuration of Beacon related timers
836 * on the receipt of the first Beacon frame (i.e.,
837 * after time sync with the AP).
838 */
839 sc->ps_flags |= PS_BEACON_SYNC;
840
841 /* Configure the beacon */
842 ath_beacon_config(sc, vif);
843
844 /* Reset rssi stats */
845 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
846
847 ath_start_ani(common);
848 } else {
849 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
850 common->curaid = 0;
851 /* Stop ANI */
852 del_timer_sync(&common->ani.timer);
853 }
854 }
855
856 void ath_radio_enable(struct ath_softc *sc, struct ieee80211_hw *hw)
857 {
858 struct ath_hw *ah = sc->sc_ah;
859 struct ath_common *common = ath9k_hw_common(ah);
860 struct ieee80211_channel *channel = hw->conf.channel;
861 int r;
862
863 ath9k_ps_wakeup(sc);
864 ath9k_hw_configpcipowersave(ah, 0, 0);
865
866 if (!ah->curchan)
867 ah->curchan = ath_get_curchannel(sc, sc->hw);
868
869 spin_lock_bh(&sc->sc_resetlock);
870 r = ath9k_hw_reset(ah, ah->curchan, false);
871 if (r) {
872 ath_print(common, ATH_DBG_FATAL,
873 "Unable to reset channel (%u MHz), "
874 "reset status %d\n",
875 channel->center_freq, r);
876 }
877 spin_unlock_bh(&sc->sc_resetlock);
878
879 ath_update_txpow(sc);
880 if (ath_startrecv(sc) != 0) {
881 ath_print(common, ATH_DBG_FATAL,
882 "Unable to restart recv logic\n");
883 return;
884 }
885
886 if (sc->sc_flags & SC_OP_BEACONS)
887 ath_beacon_config(sc, NULL); /* restart beacons */
888
889 /* Re-Enable interrupts */
890 ath9k_hw_set_interrupts(ah, ah->imask);
891
892 /* Enable LED */
893 ath9k_hw_cfg_output(ah, ah->led_pin,
894 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
895 ath9k_hw_set_gpio(ah, ah->led_pin, 0);
896
897 ieee80211_wake_queues(hw);
898 ath9k_ps_restore(sc);
899 }
900
901 void ath_radio_disable(struct ath_softc *sc, struct ieee80211_hw *hw)
902 {
903 struct ath_hw *ah = sc->sc_ah;
904 struct ieee80211_channel *channel = hw->conf.channel;
905 int r;
906
907 ath9k_ps_wakeup(sc);
908 ieee80211_stop_queues(hw);
909
910 /* Disable LED */
911 ath9k_hw_set_gpio(ah, ah->led_pin, 1);
912 ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
913
914 /* Disable interrupts */
915 ath9k_hw_set_interrupts(ah, 0);
916
917 ath_drain_all_txq(sc, false); /* clear pending tx frames */
918 ath_stoprecv(sc); /* turn off frame recv */
919 ath_flushrecv(sc); /* flush recv queue */
920
921 if (!ah->curchan)
922 ah->curchan = ath_get_curchannel(sc, hw);
923
924 spin_lock_bh(&sc->sc_resetlock);
925 r = ath9k_hw_reset(ah, ah->curchan, false);
926 if (r) {
927 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
928 "Unable to reset channel (%u MHz), "
929 "reset status %d\n",
930 channel->center_freq, r);
931 }
932 spin_unlock_bh(&sc->sc_resetlock);
933
934 ath9k_hw_phy_disable(ah);
935 ath9k_hw_configpcipowersave(ah, 1, 1);
936 ath9k_ps_restore(sc);
937 ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
938 }
939
940 int ath_reset(struct ath_softc *sc, bool retry_tx)
941 {
942 struct ath_hw *ah = sc->sc_ah;
943 struct ath_common *common = ath9k_hw_common(ah);
944 struct ieee80211_hw *hw = sc->hw;
945 int r;
946
947 /* Stop ANI */
948 del_timer_sync(&common->ani.timer);
949
950 ieee80211_stop_queues(hw);
951
952 ath9k_hw_set_interrupts(ah, 0);
953 ath_drain_all_txq(sc, retry_tx);
954 ath_stoprecv(sc);
955 ath_flushrecv(sc);
956
957 spin_lock_bh(&sc->sc_resetlock);
958 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
959 if (r)
960 ath_print(common, ATH_DBG_FATAL,
961 "Unable to reset hardware; reset status %d\n", r);
962 spin_unlock_bh(&sc->sc_resetlock);
963
964 if (ath_startrecv(sc) != 0)
965 ath_print(common, ATH_DBG_FATAL,
966 "Unable to start recv logic\n");
967
968 /*
969 * We may be doing a reset in response to a request
970 * that changes the channel so update any state that
971 * might change as a result.
972 */
973 ath_cache_conf_rate(sc, &hw->conf);
974
975 ath_update_txpow(sc);
976
977 if (sc->sc_flags & SC_OP_BEACONS)
978 ath_beacon_config(sc, NULL); /* restart beacons */
979
980 ath9k_hw_set_interrupts(ah, ah->imask);
981
982 if (retry_tx) {
983 int i;
984 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
985 if (ATH_TXQ_SETUP(sc, i)) {
986 spin_lock_bh(&sc->tx.txq[i].axq_lock);
987 ath_txq_schedule(sc, &sc->tx.txq[i]);
988 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
989 }
990 }
991 }
992
993 ieee80211_wake_queues(hw);
994
995 /* Start ANI */
996 ath_start_ani(common);
997
998 return r;
999 }
1000
1001 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1002 {
1003 int qnum;
1004
1005 switch (queue) {
1006 case 0:
1007 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1008 break;
1009 case 1:
1010 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1011 break;
1012 case 2:
1013 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1014 break;
1015 case 3:
1016 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1017 break;
1018 default:
1019 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1020 break;
1021 }
1022
1023 return qnum;
1024 }
1025
1026 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1027 {
1028 int qnum;
1029
1030 switch (queue) {
1031 case ATH9K_WME_AC_VO:
1032 qnum = 0;
1033 break;
1034 case ATH9K_WME_AC_VI:
1035 qnum = 1;
1036 break;
1037 case ATH9K_WME_AC_BE:
1038 qnum = 2;
1039 break;
1040 case ATH9K_WME_AC_BK:
1041 qnum = 3;
1042 break;
1043 default:
1044 qnum = -1;
1045 break;
1046 }
1047
1048 return qnum;
1049 }
1050
1051 /* XXX: Remove me once we don't depend on ath9k_channel for all
1052 * this redundant data */
1053 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1054 struct ath9k_channel *ichan)
1055 {
1056 struct ieee80211_channel *chan = hw->conf.channel;
1057 struct ieee80211_conf *conf = &hw->conf;
1058
1059 ichan->channel = chan->center_freq;
1060 ichan->chan = chan;
1061
1062 if (chan->band == IEEE80211_BAND_2GHZ) {
1063 ichan->chanmode = CHANNEL_G;
1064 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1065 } else {
1066 ichan->chanmode = CHANNEL_A;
1067 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1068 }
1069
1070 if (conf_is_ht(conf))
1071 ichan->chanmode = ath_get_extchanmode(sc, chan,
1072 conf->channel_type);
1073 }
1074
1075 /**********************/
1076 /* mac80211 callbacks */
1077 /**********************/
1078
1079 static int ath9k_start(struct ieee80211_hw *hw)
1080 {
1081 struct ath_wiphy *aphy = hw->priv;
1082 struct ath_softc *sc = aphy->sc;
1083 struct ath_hw *ah = sc->sc_ah;
1084 struct ath_common *common = ath9k_hw_common(ah);
1085 struct ieee80211_channel *curchan = hw->conf.channel;
1086 struct ath9k_channel *init_channel;
1087 int r;
1088
1089 ath_print(common, ATH_DBG_CONFIG,
1090 "Starting driver with initial channel: %d MHz\n",
1091 curchan->center_freq);
1092
1093 mutex_lock(&sc->mutex);
1094
1095 if (ath9k_wiphy_started(sc)) {
1096 if (sc->chan_idx == curchan->hw_value) {
1097 /*
1098 * Already on the operational channel, the new wiphy
1099 * can be marked active.
1100 */
1101 aphy->state = ATH_WIPHY_ACTIVE;
1102 ieee80211_wake_queues(hw);
1103 } else {
1104 /*
1105 * Another wiphy is on another channel, start the new
1106 * wiphy in paused state.
1107 */
1108 aphy->state = ATH_WIPHY_PAUSED;
1109 ieee80211_stop_queues(hw);
1110 }
1111 mutex_unlock(&sc->mutex);
1112 return 0;
1113 }
1114 aphy->state = ATH_WIPHY_ACTIVE;
1115
1116 /* setup initial channel */
1117
1118 sc->chan_idx = curchan->hw_value;
1119
1120 init_channel = ath_get_curchannel(sc, hw);
1121
1122 /* Reset SERDES registers */
1123 ath9k_hw_configpcipowersave(ah, 0, 0);
1124
1125 /*
1126 * The basic interface to setting the hardware in a good
1127 * state is ``reset''. On return the hardware is known to
1128 * be powered up and with interrupts disabled. This must
1129 * be followed by initialization of the appropriate bits
1130 * and then setup of the interrupt mask.
1131 */
1132 spin_lock_bh(&sc->sc_resetlock);
1133 r = ath9k_hw_reset(ah, init_channel, false);
1134 if (r) {
1135 ath_print(common, ATH_DBG_FATAL,
1136 "Unable to reset hardware; reset status %d "
1137 "(freq %u MHz)\n", r,
1138 curchan->center_freq);
1139 spin_unlock_bh(&sc->sc_resetlock);
1140 goto mutex_unlock;
1141 }
1142 spin_unlock_bh(&sc->sc_resetlock);
1143
1144 /*
1145 * This is needed only to setup initial state
1146 * but it's best done after a reset.
1147 */
1148 ath_update_txpow(sc);
1149
1150 /*
1151 * Setup the hardware after reset:
1152 * The receive engine is set going.
1153 * Frame transmit is handled entirely
1154 * in the frame output path; there's nothing to do
1155 * here except setup the interrupt mask.
1156 */
1157 if (ath_startrecv(sc) != 0) {
1158 ath_print(common, ATH_DBG_FATAL,
1159 "Unable to start recv logic\n");
1160 r = -EIO;
1161 goto mutex_unlock;
1162 }
1163
1164 /* Setup our intr mask. */
1165 ah->imask = ATH9K_INT_RX | ATH9K_INT_TX
1166 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1167 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1168
1169 if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1170 ah->imask |= ATH9K_INT_GTT;
1171
1172 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1173 ah->imask |= ATH9K_INT_CST;
1174
1175 ath_cache_conf_rate(sc, &hw->conf);
1176
1177 sc->sc_flags &= ~SC_OP_INVALID;
1178
1179 /* Disable BMISS interrupt when we're not associated */
1180 ah->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1181 ath9k_hw_set_interrupts(ah, ah->imask);
1182
1183 ieee80211_wake_queues(hw);
1184
1185 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
1186
1187 if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
1188 !ah->btcoex_hw.enabled) {
1189 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1190 AR_STOMP_LOW_WLAN_WGHT);
1191 ath9k_hw_btcoex_enable(ah);
1192
1193 if (common->bus_ops->bt_coex_prep)
1194 common->bus_ops->bt_coex_prep(common);
1195 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1196 ath9k_btcoex_timer_resume(sc);
1197 }
1198
1199 mutex_unlock:
1200 mutex_unlock(&sc->mutex);
1201
1202 return r;
1203 }
1204
1205 static int ath9k_tx(struct ieee80211_hw *hw,
1206 struct sk_buff *skb)
1207 {
1208 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1209 struct ath_wiphy *aphy = hw->priv;
1210 struct ath_softc *sc = aphy->sc;
1211 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1212 struct ath_tx_control txctl;
1213 int padpos, padsize;
1214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1215
1216 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
1217 ath_print(common, ATH_DBG_XMIT,
1218 "ath9k: %s: TX in unexpected wiphy state "
1219 "%d\n", wiphy_name(hw->wiphy), aphy->state);
1220 goto exit;
1221 }
1222
1223 if (sc->ps_enabled) {
1224 /*
1225 * mac80211 does not set PM field for normal data frames, so we
1226 * need to update that based on the current PS mode.
1227 */
1228 if (ieee80211_is_data(hdr->frame_control) &&
1229 !ieee80211_is_nullfunc(hdr->frame_control) &&
1230 !ieee80211_has_pm(hdr->frame_control)) {
1231 ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
1232 "while in PS mode\n");
1233 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
1234 }
1235 }
1236
1237 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
1238 /*
1239 * We are using PS-Poll and mac80211 can request TX while in
1240 * power save mode. Need to wake up hardware for the TX to be
1241 * completed and if needed, also for RX of buffered frames.
1242 */
1243 ath9k_ps_wakeup(sc);
1244 ath9k_hw_setrxabort(sc->sc_ah, 0);
1245 if (ieee80211_is_pspoll(hdr->frame_control)) {
1246 ath_print(common, ATH_DBG_PS,
1247 "Sending PS-Poll to pick a buffered frame\n");
1248 sc->ps_flags |= PS_WAIT_FOR_PSPOLL_DATA;
1249 } else {
1250 ath_print(common, ATH_DBG_PS,
1251 "Wake up to complete TX\n");
1252 sc->ps_flags |= PS_WAIT_FOR_TX_ACK;
1253 }
1254 /*
1255 * The actual restore operation will happen only after
1256 * the sc_flags bit is cleared. We are just dropping
1257 * the ps_usecount here.
1258 */
1259 ath9k_ps_restore(sc);
1260 }
1261
1262 memset(&txctl, 0, sizeof(struct ath_tx_control));
1263
1264 /*
1265 * As a temporary workaround, assign seq# here; this will likely need
1266 * to be cleaned up to work better with Beacon transmission and virtual
1267 * BSSes.
1268 */
1269 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1270 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1271 sc->tx.seq_no += 0x10;
1272 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1273 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1274 }
1275
1276 /* Add the padding after the header if this is not already done */
1277 padpos = ath9k_cmn_padpos(hdr->frame_control);
1278 padsize = padpos & 3;
1279 if (padsize && skb->len>padpos) {
1280 if (skb_headroom(skb) < padsize)
1281 return -1;
1282 skb_push(skb, padsize);
1283 memmove(skb->data, skb->data + padsize, padpos);
1284 }
1285
1286 /* Check if a tx queue is available */
1287
1288 txctl.txq = ath_test_get_txq(sc, skb);
1289 if (!txctl.txq)
1290 goto exit;
1291
1292 ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1293
1294 if (ath_tx_start(hw, skb, &txctl) != 0) {
1295 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
1296 goto exit;
1297 }
1298
1299 return 0;
1300 exit:
1301 dev_kfree_skb_any(skb);
1302 return 0;
1303 }
1304
1305 static void ath9k_stop(struct ieee80211_hw *hw)
1306 {
1307 struct ath_wiphy *aphy = hw->priv;
1308 struct ath_softc *sc = aphy->sc;
1309 struct ath_hw *ah = sc->sc_ah;
1310 struct ath_common *common = ath9k_hw_common(ah);
1311
1312 mutex_lock(&sc->mutex);
1313
1314 aphy->state = ATH_WIPHY_INACTIVE;
1315
1316 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1317 cancel_delayed_work_sync(&sc->tx_complete_work);
1318
1319 if (!sc->num_sec_wiphy) {
1320 cancel_delayed_work_sync(&sc->wiphy_work);
1321 cancel_work_sync(&sc->chan_work);
1322 }
1323
1324 if (sc->sc_flags & SC_OP_INVALID) {
1325 ath_print(common, ATH_DBG_ANY, "Device not present\n");
1326 mutex_unlock(&sc->mutex);
1327 return;
1328 }
1329
1330 if (ath9k_wiphy_started(sc)) {
1331 mutex_unlock(&sc->mutex);
1332 return; /* another wiphy still in use */
1333 }
1334
1335 /* Ensure HW is awake when we try to shut it down. */
1336 ath9k_ps_wakeup(sc);
1337
1338 if (ah->btcoex_hw.enabled) {
1339 ath9k_hw_btcoex_disable(ah);
1340 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1341 ath9k_btcoex_timer_pause(sc);
1342 }
1343
1344 /* make sure h/w will not generate any interrupt
1345 * before setting the invalid flag. */
1346 ath9k_hw_set_interrupts(ah, 0);
1347
1348 if (!(sc->sc_flags & SC_OP_INVALID)) {
1349 ath_drain_all_txq(sc, false);
1350 ath_stoprecv(sc);
1351 ath9k_hw_phy_disable(ah);
1352 } else
1353 sc->rx.rxlink = NULL;
1354
1355 /* disable HAL and put h/w to sleep */
1356 ath9k_hw_disable(ah);
1357 ath9k_hw_configpcipowersave(ah, 1, 1);
1358 ath9k_ps_restore(sc);
1359
1360 /* Finally, put the chip in FULL SLEEP mode */
1361 ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1362
1363 sc->sc_flags |= SC_OP_INVALID;
1364
1365 mutex_unlock(&sc->mutex);
1366
1367 ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
1368 }
1369
1370 static int ath9k_add_interface(struct ieee80211_hw *hw,
1371 struct ieee80211_vif *vif)
1372 {
1373 struct ath_wiphy *aphy = hw->priv;
1374 struct ath_softc *sc = aphy->sc;
1375 struct ath_hw *ah = sc->sc_ah;
1376 struct ath_common *common = ath9k_hw_common(ah);
1377 struct ath_vif *avp = (void *)vif->drv_priv;
1378 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
1379 int ret = 0;
1380
1381 mutex_lock(&sc->mutex);
1382
1383 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
1384 sc->nvifs > 0) {
1385 ret = -ENOBUFS;
1386 goto out;
1387 }
1388
1389 switch (vif->type) {
1390 case NL80211_IFTYPE_STATION:
1391 ic_opmode = NL80211_IFTYPE_STATION;
1392 break;
1393 case NL80211_IFTYPE_ADHOC:
1394 case NL80211_IFTYPE_AP:
1395 case NL80211_IFTYPE_MESH_POINT:
1396 if (sc->nbcnvifs >= ATH_BCBUF) {
1397 ret = -ENOBUFS;
1398 goto out;
1399 }
1400 ic_opmode = vif->type;
1401 break;
1402 default:
1403 ath_print(common, ATH_DBG_FATAL,
1404 "Interface type %d not yet supported\n", vif->type);
1405 ret = -EOPNOTSUPP;
1406 goto out;
1407 }
1408
1409 ath_print(common, ATH_DBG_CONFIG,
1410 "Attach a VIF of type: %d\n", ic_opmode);
1411
1412 /* Set the VIF opmode */
1413 avp->av_opmode = ic_opmode;
1414 avp->av_bslot = -1;
1415
1416 sc->nvifs++;
1417
1418 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1419 ath9k_set_bssid_mask(hw);
1420
1421 if (sc->nvifs > 1)
1422 goto out; /* skip global settings for secondary vif */
1423
1424 if (ic_opmode == NL80211_IFTYPE_AP) {
1425 ath9k_hw_set_tsfadjust(ah, 1);
1426 sc->sc_flags |= SC_OP_TSF_RESET;
1427 }
1428
1429 /* Set the device opmode */
1430 ah->opmode = ic_opmode;
1431
1432 /*
1433 * Enable MIB interrupts when there are hardware phy counters.
1434 * Note we only do this (at the moment) for station mode.
1435 */
1436 if ((vif->type == NL80211_IFTYPE_STATION) ||
1437 (vif->type == NL80211_IFTYPE_ADHOC) ||
1438 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
1439 ah->imask |= ATH9K_INT_MIB;
1440 ah->imask |= ATH9K_INT_TSFOOR;
1441 }
1442
1443 ath9k_hw_set_interrupts(ah, ah->imask);
1444
1445 if (vif->type == NL80211_IFTYPE_AP ||
1446 vif->type == NL80211_IFTYPE_ADHOC ||
1447 vif->type == NL80211_IFTYPE_MONITOR)
1448 ath_start_ani(common);
1449
1450 out:
1451 mutex_unlock(&sc->mutex);
1452 return ret;
1453 }
1454
1455 static void ath9k_remove_interface(struct ieee80211_hw *hw,
1456 struct ieee80211_vif *vif)
1457 {
1458 struct ath_wiphy *aphy = hw->priv;
1459 struct ath_softc *sc = aphy->sc;
1460 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1461 struct ath_vif *avp = (void *)vif->drv_priv;
1462 int i;
1463
1464 ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
1465
1466 mutex_lock(&sc->mutex);
1467
1468 /* Stop ANI */
1469 del_timer_sync(&common->ani.timer);
1470
1471 /* Reclaim beacon resources */
1472 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
1473 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
1474 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
1475 ath9k_ps_wakeup(sc);
1476 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1477 ath9k_ps_restore(sc);
1478 }
1479
1480 ath_beacon_return(sc, avp);
1481 sc->sc_flags &= ~SC_OP_BEACONS;
1482
1483 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1484 if (sc->beacon.bslot[i] == vif) {
1485 printk(KERN_DEBUG "%s: vif had allocated beacon "
1486 "slot\n", __func__);
1487 sc->beacon.bslot[i] = NULL;
1488 sc->beacon.bslot_aphy[i] = NULL;
1489 }
1490 }
1491
1492 sc->nvifs--;
1493
1494 mutex_unlock(&sc->mutex);
1495 }
1496
1497 void ath9k_enable_ps(struct ath_softc *sc)
1498 {
1499 struct ath_hw *ah = sc->sc_ah;
1500
1501 sc->ps_enabled = true;
1502 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1503 if ((ah->imask & ATH9K_INT_TIM_TIMER) == 0) {
1504 ah->imask |= ATH9K_INT_TIM_TIMER;
1505 ath9k_hw_set_interrupts(ah, ah->imask);
1506 }
1507 }
1508 ath9k_hw_setrxabort(ah, 1);
1509 }
1510
1511 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
1512 {
1513 struct ath_wiphy *aphy = hw->priv;
1514 struct ath_softc *sc = aphy->sc;
1515 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1516 struct ieee80211_conf *conf = &hw->conf;
1517 struct ath_hw *ah = sc->sc_ah;
1518 bool disable_radio;
1519
1520 mutex_lock(&sc->mutex);
1521
1522 /*
1523 * Leave this as the first check because we need to turn on the
1524 * radio if it was disabled before prior to processing the rest
1525 * of the changes. Likewise we must only disable the radio towards
1526 * the end.
1527 */
1528 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
1529 bool enable_radio;
1530 bool all_wiphys_idle;
1531 bool idle = !!(conf->flags & IEEE80211_CONF_IDLE);
1532
1533 spin_lock_bh(&sc->wiphy_lock);
1534 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
1535 ath9k_set_wiphy_idle(aphy, idle);
1536
1537 enable_radio = (!idle && all_wiphys_idle);
1538
1539 /*
1540 * After we unlock here its possible another wiphy
1541 * can be re-renabled so to account for that we will
1542 * only disable the radio toward the end of this routine
1543 * if by then all wiphys are still idle.
1544 */
1545 spin_unlock_bh(&sc->wiphy_lock);
1546
1547 if (enable_radio) {
1548 sc->ps_idle = false;
1549 ath_radio_enable(sc, hw);
1550 ath_print(common, ATH_DBG_CONFIG,
1551 "not-idle: enabling radio\n");
1552 }
1553 }
1554
1555 /*
1556 * We just prepare to enable PS. We have to wait until our AP has
1557 * ACK'd our null data frame to disable RX otherwise we'll ignore
1558 * those ACKs and end up retransmitting the same null data frames.
1559 * IEEE80211_CONF_CHANGE_PS is only passed by mac80211 for STA mode.
1560 */
1561 if (changed & IEEE80211_CONF_CHANGE_PS) {
1562 if (conf->flags & IEEE80211_CONF_PS) {
1563 sc->ps_flags |= PS_ENABLED;
1564 /*
1565 * At this point we know hardware has received an ACK
1566 * of a previously sent null data frame.
1567 */
1568 if ((sc->ps_flags & PS_NULLFUNC_COMPLETED)) {
1569 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1570 ath9k_enable_ps(sc);
1571 }
1572 } else {
1573 sc->ps_enabled = false;
1574 sc->ps_flags &= ~(PS_ENABLED |
1575 PS_NULLFUNC_COMPLETED);
1576 ath9k_setpower(sc, ATH9K_PM_AWAKE);
1577 if (!(ah->caps.hw_caps &
1578 ATH9K_HW_CAP_AUTOSLEEP)) {
1579 ath9k_hw_setrxabort(sc->sc_ah, 0);
1580 sc->ps_flags &= ~(PS_WAIT_FOR_BEACON |
1581 PS_WAIT_FOR_CAB |
1582 PS_WAIT_FOR_PSPOLL_DATA |
1583 PS_WAIT_FOR_TX_ACK);
1584 if (ah->imask & ATH9K_INT_TIM_TIMER) {
1585 ah->imask &= ~ATH9K_INT_TIM_TIMER;
1586 ath9k_hw_set_interrupts(sc->sc_ah,
1587 ah->imask);
1588 }
1589 }
1590 }
1591 }
1592
1593 if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
1594 if (conf->flags & IEEE80211_CONF_MONITOR) {
1595 ath_print(common, ATH_DBG_CONFIG,
1596 "HW opmode set to Monitor mode\n");
1597 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1598 }
1599 }
1600
1601 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1602 struct ieee80211_channel *curchan = hw->conf.channel;
1603 int pos = curchan->hw_value;
1604
1605 aphy->chan_idx = pos;
1606 aphy->chan_is_ht = conf_is_ht(conf);
1607
1608 if (aphy->state == ATH_WIPHY_SCAN ||
1609 aphy->state == ATH_WIPHY_ACTIVE)
1610 ath9k_wiphy_pause_all_forced(sc, aphy);
1611 else {
1612 /*
1613 * Do not change operational channel based on a paused
1614 * wiphy changes.
1615 */
1616 goto skip_chan_change;
1617 }
1618
1619 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
1620 curchan->center_freq);
1621
1622 /* XXX: remove me eventualy */
1623 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
1624
1625 ath_update_chainmask(sc, conf_is_ht(conf));
1626
1627 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
1628 ath_print(common, ATH_DBG_FATAL,
1629 "Unable to set channel\n");
1630 mutex_unlock(&sc->mutex);
1631 return -EINVAL;
1632 }
1633 }
1634
1635 skip_chan_change:
1636 if (changed & IEEE80211_CONF_CHANGE_POWER) {
1637 sc->config.txpowlimit = 2 * conf->power_level;
1638 ath_update_txpow(sc);
1639 }
1640
1641 spin_lock_bh(&sc->wiphy_lock);
1642 disable_radio = ath9k_all_wiphys_idle(sc);
1643 spin_unlock_bh(&sc->wiphy_lock);
1644
1645 if (disable_radio) {
1646 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
1647 sc->ps_idle = true;
1648 ath_radio_disable(sc, hw);
1649 }
1650
1651 mutex_unlock(&sc->mutex);
1652
1653 return 0;
1654 }
1655
1656 #define SUPPORTED_FILTERS \
1657 (FIF_PROMISC_IN_BSS | \
1658 FIF_ALLMULTI | \
1659 FIF_CONTROL | \
1660 FIF_PSPOLL | \
1661 FIF_OTHER_BSS | \
1662 FIF_BCN_PRBRESP_PROMISC | \
1663 FIF_FCSFAIL)
1664
1665 /* FIXME: sc->sc_full_reset ? */
1666 static void ath9k_configure_filter(struct ieee80211_hw *hw,
1667 unsigned int changed_flags,
1668 unsigned int *total_flags,
1669 u64 multicast)
1670 {
1671 struct ath_wiphy *aphy = hw->priv;
1672 struct ath_softc *sc = aphy->sc;
1673 u32 rfilt;
1674
1675 changed_flags &= SUPPORTED_FILTERS;
1676 *total_flags &= SUPPORTED_FILTERS;
1677
1678 sc->rx.rxfilter = *total_flags;
1679 ath9k_ps_wakeup(sc);
1680 rfilt = ath_calcrxfilter(sc);
1681 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
1682 ath9k_ps_restore(sc);
1683
1684 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1685 "Set HW RX filter: 0x%x\n", rfilt);
1686 }
1687
1688 static int ath9k_sta_add(struct ieee80211_hw *hw,
1689 struct ieee80211_vif *vif,
1690 struct ieee80211_sta *sta)
1691 {
1692 struct ath_wiphy *aphy = hw->priv;
1693 struct ath_softc *sc = aphy->sc;
1694
1695 ath_node_attach(sc, sta);
1696
1697 return 0;
1698 }
1699
1700 static int ath9k_sta_remove(struct ieee80211_hw *hw,
1701 struct ieee80211_vif *vif,
1702 struct ieee80211_sta *sta)
1703 {
1704 struct ath_wiphy *aphy = hw->priv;
1705 struct ath_softc *sc = aphy->sc;
1706
1707 ath_node_detach(sc, sta);
1708
1709 return 0;
1710 }
1711
1712 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
1713 const struct ieee80211_tx_queue_params *params)
1714 {
1715 struct ath_wiphy *aphy = hw->priv;
1716 struct ath_softc *sc = aphy->sc;
1717 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1718 struct ath9k_tx_queue_info qi;
1719 int ret = 0, qnum;
1720
1721 if (queue >= WME_NUM_AC)
1722 return 0;
1723
1724 mutex_lock(&sc->mutex);
1725
1726 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
1727
1728 qi.tqi_aifs = params->aifs;
1729 qi.tqi_cwmin = params->cw_min;
1730 qi.tqi_cwmax = params->cw_max;
1731 qi.tqi_burstTime = params->txop;
1732 qnum = ath_get_hal_qnum(queue, sc);
1733
1734 ath_print(common, ATH_DBG_CONFIG,
1735 "Configure tx [queue/halq] [%d/%d], "
1736 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
1737 queue, qnum, params->aifs, params->cw_min,
1738 params->cw_max, params->txop);
1739
1740 ret = ath_txq_update(sc, qnum, &qi);
1741 if (ret)
1742 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
1743
1744 if (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)
1745 if ((qnum == sc->tx.hwq_map[ATH9K_WME_AC_BE]) && !ret)
1746 ath_beaconq_config(sc);
1747
1748 mutex_unlock(&sc->mutex);
1749
1750 return ret;
1751 }
1752
1753 static int ath9k_set_key(struct ieee80211_hw *hw,
1754 enum set_key_cmd cmd,
1755 struct ieee80211_vif *vif,
1756 struct ieee80211_sta *sta,
1757 struct ieee80211_key_conf *key)
1758 {
1759 struct ath_wiphy *aphy = hw->priv;
1760 struct ath_softc *sc = aphy->sc;
1761 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1762 int ret = 0;
1763
1764 if (modparam_nohwcrypt)
1765 return -ENOSPC;
1766
1767 mutex_lock(&sc->mutex);
1768 ath9k_ps_wakeup(sc);
1769 ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
1770
1771 switch (cmd) {
1772 case SET_KEY:
1773 ret = ath_key_config(common, vif, sta, key);
1774 if (ret >= 0) {
1775 key->hw_key_idx = ret;
1776 /* push IV and Michael MIC generation to stack */
1777 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1778 if (key->alg == ALG_TKIP)
1779 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1780 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
1781 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
1782 ret = 0;
1783 }
1784 break;
1785 case DISABLE_KEY:
1786 ath_key_delete(common, key);
1787 break;
1788 default:
1789 ret = -EINVAL;
1790 }
1791
1792 ath9k_ps_restore(sc);
1793 mutex_unlock(&sc->mutex);
1794
1795 return ret;
1796 }
1797
1798 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
1799 struct ieee80211_vif *vif,
1800 struct ieee80211_bss_conf *bss_conf,
1801 u32 changed)
1802 {
1803 struct ath_wiphy *aphy = hw->priv;
1804 struct ath_softc *sc = aphy->sc;
1805 struct ath_hw *ah = sc->sc_ah;
1806 struct ath_common *common = ath9k_hw_common(ah);
1807 struct ath_vif *avp = (void *)vif->drv_priv;
1808 int slottime;
1809 int error;
1810
1811 mutex_lock(&sc->mutex);
1812
1813 if (changed & BSS_CHANGED_BSSID) {
1814 /* Set BSSID */
1815 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1816 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
1817 common->curaid = 0;
1818 ath9k_hw_write_associd(ah);
1819
1820 /* Set aggregation protection mode parameters */
1821 sc->config.ath_aggr_prot = 0;
1822
1823 /* Only legacy IBSS for now */
1824 if (vif->type == NL80211_IFTYPE_ADHOC)
1825 ath_update_chainmask(sc, 0);
1826
1827 ath_print(common, ATH_DBG_CONFIG,
1828 "BSSID: %pM aid: 0x%x\n",
1829 common->curbssid, common->curaid);
1830
1831 /* need to reconfigure the beacon */
1832 sc->sc_flags &= ~SC_OP_BEACONS ;
1833 }
1834
1835 /* Enable transmission of beacons (AP, IBSS, MESH) */
1836 if ((changed & BSS_CHANGED_BEACON) ||
1837 ((changed & BSS_CHANGED_BEACON_ENABLED) && bss_conf->enable_beacon)) {
1838 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1839 error = ath_beacon_alloc(aphy, vif);
1840 if (!error)
1841 ath_beacon_config(sc, vif);
1842 }
1843
1844 if (changed & BSS_CHANGED_ERP_SLOT) {
1845 if (bss_conf->use_short_slot)
1846 slottime = 9;
1847 else
1848 slottime = 20;
1849 if (vif->type == NL80211_IFTYPE_AP) {
1850 /*
1851 * Defer update, so that connected stations can adjust
1852 * their settings at the same time.
1853 * See beacon.c for more details
1854 */
1855 sc->beacon.slottime = slottime;
1856 sc->beacon.updateslot = UPDATE;
1857 } else {
1858 ah->slottime = slottime;
1859 ath9k_hw_init_global_settings(ah);
1860 }
1861 }
1862
1863 /* Disable transmission of beacons */
1864 if ((changed & BSS_CHANGED_BEACON_ENABLED) && !bss_conf->enable_beacon)
1865 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1866
1867 if (changed & BSS_CHANGED_BEACON_INT) {
1868 sc->beacon_interval = bss_conf->beacon_int;
1869 /*
1870 * In case of AP mode, the HW TSF has to be reset
1871 * when the beacon interval changes.
1872 */
1873 if (vif->type == NL80211_IFTYPE_AP) {
1874 sc->sc_flags |= SC_OP_TSF_RESET;
1875 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1876 error = ath_beacon_alloc(aphy, vif);
1877 if (!error)
1878 ath_beacon_config(sc, vif);
1879 } else {
1880 ath_beacon_config(sc, vif);
1881 }
1882 }
1883
1884 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1885 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
1886 bss_conf->use_short_preamble);
1887 if (bss_conf->use_short_preamble)
1888 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
1889 else
1890 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
1891 }
1892
1893 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1894 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
1895 bss_conf->use_cts_prot);
1896 if (bss_conf->use_cts_prot &&
1897 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
1898 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
1899 else
1900 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
1901 }
1902
1903 if (changed & BSS_CHANGED_ASSOC) {
1904 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
1905 bss_conf->assoc);
1906 ath9k_bss_assoc_info(sc, vif, bss_conf);
1907 }
1908
1909 mutex_unlock(&sc->mutex);
1910 }
1911
1912 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
1913 {
1914 u64 tsf;
1915 struct ath_wiphy *aphy = hw->priv;
1916 struct ath_softc *sc = aphy->sc;
1917
1918 mutex_lock(&sc->mutex);
1919 tsf = ath9k_hw_gettsf64(sc->sc_ah);
1920 mutex_unlock(&sc->mutex);
1921
1922 return tsf;
1923 }
1924
1925 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
1926 {
1927 struct ath_wiphy *aphy = hw->priv;
1928 struct ath_softc *sc = aphy->sc;
1929
1930 mutex_lock(&sc->mutex);
1931 ath9k_hw_settsf64(sc->sc_ah, tsf);
1932 mutex_unlock(&sc->mutex);
1933 }
1934
1935 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
1936 {
1937 struct ath_wiphy *aphy = hw->priv;
1938 struct ath_softc *sc = aphy->sc;
1939
1940 mutex_lock(&sc->mutex);
1941
1942 ath9k_ps_wakeup(sc);
1943 ath9k_hw_reset_tsf(sc->sc_ah);
1944 ath9k_ps_restore(sc);
1945
1946 mutex_unlock(&sc->mutex);
1947 }
1948
1949 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
1950 struct ieee80211_vif *vif,
1951 enum ieee80211_ampdu_mlme_action action,
1952 struct ieee80211_sta *sta,
1953 u16 tid, u16 *ssn)
1954 {
1955 struct ath_wiphy *aphy = hw->priv;
1956 struct ath_softc *sc = aphy->sc;
1957 int ret = 0;
1958
1959 switch (action) {
1960 case IEEE80211_AMPDU_RX_START:
1961 if (!(sc->sc_flags & SC_OP_RXAGGR))
1962 ret = -ENOTSUPP;
1963 break;
1964 case IEEE80211_AMPDU_RX_STOP:
1965 break;
1966 case IEEE80211_AMPDU_TX_START:
1967 ath9k_ps_wakeup(sc);
1968 ath_tx_aggr_start(sc, sta, tid, ssn);
1969 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1970 ath9k_ps_restore(sc);
1971 break;
1972 case IEEE80211_AMPDU_TX_STOP:
1973 ath9k_ps_wakeup(sc);
1974 ath_tx_aggr_stop(sc, sta, tid);
1975 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1976 ath9k_ps_restore(sc);
1977 break;
1978 case IEEE80211_AMPDU_TX_OPERATIONAL:
1979 ath9k_ps_wakeup(sc);
1980 ath_tx_aggr_resume(sc, sta, tid);
1981 ath9k_ps_restore(sc);
1982 break;
1983 default:
1984 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1985 "Unknown AMPDU action\n");
1986 }
1987
1988 return ret;
1989 }
1990
1991 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
1992 {
1993 struct ath_wiphy *aphy = hw->priv;
1994 struct ath_softc *sc = aphy->sc;
1995 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1996
1997 mutex_lock(&sc->mutex);
1998 if (ath9k_wiphy_scanning(sc)) {
1999 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2000 "same time\n");
2001 /*
2002 * Do not allow the concurrent scanning state for now. This
2003 * could be improved with scanning control moved into ath9k.
2004 */
2005 mutex_unlock(&sc->mutex);
2006 return;
2007 }
2008
2009 aphy->state = ATH_WIPHY_SCAN;
2010 ath9k_wiphy_pause_all_forced(sc, aphy);
2011 sc->sc_flags |= SC_OP_SCANNING;
2012 del_timer_sync(&common->ani.timer);
2013 cancel_delayed_work_sync(&sc->tx_complete_work);
2014 mutex_unlock(&sc->mutex);
2015 }
2016
2017 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2018 {
2019 struct ath_wiphy *aphy = hw->priv;
2020 struct ath_softc *sc = aphy->sc;
2021 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2022
2023 mutex_lock(&sc->mutex);
2024 aphy->state = ATH_WIPHY_ACTIVE;
2025 sc->sc_flags &= ~SC_OP_SCANNING;
2026 sc->sc_flags |= SC_OP_FULL_RESET;
2027 ath_start_ani(common);
2028 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2029 ath_beacon_config(sc, NULL);
2030 mutex_unlock(&sc->mutex);
2031 }
2032
2033 static void ath9k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
2034 {
2035 struct ath_wiphy *aphy = hw->priv;
2036 struct ath_softc *sc = aphy->sc;
2037 struct ath_hw *ah = sc->sc_ah;
2038
2039 mutex_lock(&sc->mutex);
2040 ah->coverage_class = coverage_class;
2041 ath9k_hw_init_global_settings(ah);
2042 mutex_unlock(&sc->mutex);
2043 }
2044
2045 struct ieee80211_ops ath9k_ops = {
2046 .tx = ath9k_tx,
2047 .start = ath9k_start,
2048 .stop = ath9k_stop,
2049 .add_interface = ath9k_add_interface,
2050 .remove_interface = ath9k_remove_interface,
2051 .config = ath9k_config,
2052 .configure_filter = ath9k_configure_filter,
2053 .sta_add = ath9k_sta_add,
2054 .sta_remove = ath9k_sta_remove,
2055 .conf_tx = ath9k_conf_tx,
2056 .bss_info_changed = ath9k_bss_info_changed,
2057 .set_key = ath9k_set_key,
2058 .get_tsf = ath9k_get_tsf,
2059 .set_tsf = ath9k_set_tsf,
2060 .reset_tsf = ath9k_reset_tsf,
2061 .ampdu_action = ath9k_ampdu_action,
2062 .sw_scan_start = ath9k_sw_scan_start,
2063 .sw_scan_complete = ath9k_sw_scan_complete,
2064 .rfkill_poll = ath9k_rfkill_poll_state,
2065 .set_coverage_class = ath9k_set_coverage_class,
2066 };
This page took 0.104889 seconds and 5 git commands to generate.