Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 20, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 20, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
106 {
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
139 }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
146
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
152 }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157 /*
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
167 */
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
187 }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192 const struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
196
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
206 }
207
208 if (rate_table == NULL)
209 return;
210
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
213
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
218
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226 }
227 sband->n_bitrates++;
228
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
231 }
232 }
233
234 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
235 struct ieee80211_hw *hw)
236 {
237 struct ieee80211_channel *curchan = hw->conf.channel;
238 struct ath9k_channel *channel;
239 u8 chan_idx;
240
241 chan_idx = curchan->hw_value;
242 channel = &sc->sc_ah->channels[chan_idx];
243 ath9k_update_ichannel(sc, hw, channel);
244 return channel;
245 }
246
247 /*
248 * Set/change channels. If the channel is really being changed, it's done
249 * by reseting the chip. To accomplish this we must first cleanup any pending
250 * DMA, then restart stuff.
251 */
252 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
253 struct ath9k_channel *hchan)
254 {
255 struct ath_hw *ah = sc->sc_ah;
256 bool fastcc = true, stopped;
257 struct ieee80211_channel *channel = hw->conf.channel;
258 int r;
259
260 if (sc->sc_flags & SC_OP_INVALID)
261 return -EIO;
262
263 ath9k_ps_wakeup(sc);
264
265 /*
266 * This is only performed if the channel settings have
267 * actually changed.
268 *
269 * To switch channels clear any pending DMA operations;
270 * wait long enough for the RX fifo to drain, reset the
271 * hardware at the new frequency, and then re-enable
272 * the relevant bits of the h/w.
273 */
274 ath9k_hw_set_interrupts(ah, 0);
275 ath_drain_all_txq(sc, false);
276 stopped = ath_stoprecv(sc);
277
278 /* XXX: do not flush receive queue here. We don't want
279 * to flush data frames already in queue because of
280 * changing channel. */
281
282 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
283 fastcc = false;
284
285 DPRINTF(sc, ATH_DBG_CONFIG,
286 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
287 sc->sc_ah->curchan->channel,
288 channel->center_freq, sc->tx_chan_width);
289
290 spin_lock_bh(&sc->sc_resetlock);
291
292 r = ath9k_hw_reset(ah, hchan, fastcc);
293 if (r) {
294 DPRINTF(sc, ATH_DBG_FATAL,
295 "Unable to reset channel (%u Mhz) "
296 "reset status %d\n",
297 channel->center_freq, r);
298 spin_unlock_bh(&sc->sc_resetlock);
299 goto ps_restore;
300 }
301 spin_unlock_bh(&sc->sc_resetlock);
302
303 sc->sc_flags &= ~SC_OP_FULL_RESET;
304
305 if (ath_startrecv(sc) != 0) {
306 DPRINTF(sc, ATH_DBG_FATAL,
307 "Unable to restart recv logic\n");
308 r = -EIO;
309 goto ps_restore;
310 }
311
312 ath_cache_conf_rate(sc, &hw->conf);
313 ath_update_txpow(sc);
314 ath9k_hw_set_interrupts(ah, sc->imask);
315
316 ps_restore:
317 ath9k_ps_restore(sc);
318 return r;
319 }
320
321 /*
322 * This routine performs the periodic noise floor calibration function
323 * that is used to adjust and optimize the chip performance. This
324 * takes environmental changes (location, temperature) into account.
325 * When the task is complete, it reschedules itself depending on the
326 * appropriate interval that was calculated.
327 */
328 static void ath_ani_calibrate(unsigned long data)
329 {
330 struct ath_softc *sc = (struct ath_softc *)data;
331 struct ath_hw *ah = sc->sc_ah;
332 bool longcal = false;
333 bool shortcal = false;
334 bool aniflag = false;
335 unsigned int timestamp = jiffies_to_msecs(jiffies);
336 u32 cal_interval, short_cal_interval;
337
338 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
339 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
340
341 /*
342 * don't calibrate when we're scanning.
343 * we are most likely not on our home channel.
344 */
345 if (sc->sc_flags & SC_OP_SCANNING)
346 goto set_timer;
347
348 /* Only calibrate if awake */
349 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
350 goto set_timer;
351
352 ath9k_ps_wakeup(sc);
353
354 /* Long calibration runs independently of short calibration. */
355 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
356 longcal = true;
357 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
358 sc->ani.longcal_timer = timestamp;
359 }
360
361 /* Short calibration applies only while caldone is false */
362 if (!sc->ani.caldone) {
363 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
364 shortcal = true;
365 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366 sc->ani.shortcal_timer = timestamp;
367 sc->ani.resetcal_timer = timestamp;
368 }
369 } else {
370 if ((timestamp - sc->ani.resetcal_timer) >=
371 ATH_RESTART_CALINTERVAL) {
372 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
373 if (sc->ani.caldone)
374 sc->ani.resetcal_timer = timestamp;
375 }
376 }
377
378 /* Verify whether we must check ANI */
379 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
380 aniflag = true;
381 sc->ani.checkani_timer = timestamp;
382 }
383
384 /* Skip all processing if there's nothing to do. */
385 if (longcal || shortcal || aniflag) {
386 /* Call ANI routine if necessary */
387 if (aniflag)
388 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
389
390 /* Perform calibration if necessary */
391 if (longcal || shortcal) {
392 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
393 sc->rx_chainmask, longcal);
394
395 if (longcal)
396 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
397 ah->curchan);
398
399 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
400 ah->curchan->channel, ah->curchan->channelFlags,
401 sc->ani.noise_floor);
402 }
403 }
404
405 ath9k_ps_restore(sc);
406
407 set_timer:
408 /*
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
412 */
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
418
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
420 }
421
422 static void ath_start_ani(struct ath_softc *sc)
423 {
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
425
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
429
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 }
433
434 /*
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
439 */
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 {
442 if (is_ht ||
443 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
449 }
450
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
453 }
454
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
456 {
457 struct ath_node *an;
458
459 an = (struct ath_node *)sta->drv_priv;
460
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 }
467 }
468
469 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
470 {
471 struct ath_node *an = (struct ath_node *)sta->drv_priv;
472
473 if (sc->sc_flags & SC_OP_TXAGGR)
474 ath_tx_node_cleanup(sc, an);
475 }
476
477 static void ath9k_tasklet(unsigned long data)
478 {
479 struct ath_softc *sc = (struct ath_softc *)data;
480 u32 status = sc->intrstatus;
481
482 ath9k_ps_wakeup(sc);
483
484 if (status & ATH9K_INT_FATAL) {
485 ath_reset(sc, false);
486 ath9k_ps_restore(sc);
487 return;
488 }
489
490 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
491 spin_lock_bh(&sc->rx.rxflushlock);
492 ath_rx_tasklet(sc, 0);
493 spin_unlock_bh(&sc->rx.rxflushlock);
494 }
495
496 if (status & ATH9K_INT_TX)
497 ath_tx_tasklet(sc);
498
499 if ((status & ATH9K_INT_TSFOOR) &&
500 (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
501 /*
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
504 */
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
507 }
508
509 /* re-enable hardware interrupt */
510 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
511 ath9k_ps_restore(sc);
512 }
513
514 irqreturn_t ath_isr(int irq, void *dev)
515 {
516 #define SCHED_INTR ( \
517 ATH9K_INT_FATAL | \
518 ATH9K_INT_RXORN | \
519 ATH9K_INT_RXEOL | \
520 ATH9K_INT_RX | \
521 ATH9K_INT_TX | \
522 ATH9K_INT_BMISS | \
523 ATH9K_INT_CST | \
524 ATH9K_INT_TSFOOR)
525
526 struct ath_softc *sc = dev;
527 struct ath_hw *ah = sc->sc_ah;
528 enum ath9k_int status;
529 bool sched = false;
530
531 /*
532 * The hardware is not ready/present, don't
533 * touch anything. Note this can happen early
534 * on if the IRQ is shared.
535 */
536 if (sc->sc_flags & SC_OP_INVALID)
537 return IRQ_NONE;
538
539
540 /* shared irq, not for us */
541
542 if (!ath9k_hw_intrpend(ah))
543 return IRQ_NONE;
544
545 /*
546 * Figure out the reason(s) for the interrupt. Note
547 * that the hal returns a pseudo-ISR that may include
548 * bits we haven't explicitly enabled so we mask the
549 * value to insure we only process bits we requested.
550 */
551 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
552 status &= sc->imask; /* discard unasked-for bits */
553
554 /*
555 * If there are no status bits set, then this interrupt was not
556 * for me (should have been caught above).
557 */
558 if (!status)
559 return IRQ_NONE;
560
561 /* Cache the status */
562 sc->intrstatus = status;
563
564 if (status & SCHED_INTR)
565 sched = true;
566
567 /*
568 * If a FATAL or RXORN interrupt is received, we have to reset the
569 * chip immediately.
570 */
571 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
572 goto chip_reset;
573
574 if (status & ATH9K_INT_SWBA)
575 tasklet_schedule(&sc->bcon_tasklet);
576
577 if (status & ATH9K_INT_TXURN)
578 ath9k_hw_updatetxtriglevel(ah, true);
579
580 if (status & ATH9K_INT_MIB) {
581 /*
582 * Disable interrupts until we service the MIB
583 * interrupt; otherwise it will continue to
584 * fire.
585 */
586 ath9k_hw_set_interrupts(ah, 0);
587 /*
588 * Let the hal handle the event. We assume
589 * it will clear whatever condition caused
590 * the interrupt.
591 */
592 ath9k_hw_procmibevent(ah, &sc->nodestats);
593 ath9k_hw_set_interrupts(ah, sc->imask);
594 }
595
596 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
597 if (status & ATH9K_INT_TIM_TIMER) {
598 /* Clear RxAbort bit so that we can
599 * receive frames */
600 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
601 ath9k_hw_setrxabort(sc->sc_ah, 0);
602 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
603 }
604
605 chip_reset:
606
607 ath_debug_stat_interrupt(sc, status);
608
609 if (sched) {
610 /* turn off every interrupt except SWBA */
611 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
612 tasklet_schedule(&sc->intr_tq);
613 }
614
615 return IRQ_HANDLED;
616
617 #undef SCHED_INTR
618 }
619
620 static u32 ath_get_extchanmode(struct ath_softc *sc,
621 struct ieee80211_channel *chan,
622 enum nl80211_channel_type channel_type)
623 {
624 u32 chanmode = 0;
625
626 switch (chan->band) {
627 case IEEE80211_BAND_2GHZ:
628 switch(channel_type) {
629 case NL80211_CHAN_NO_HT:
630 case NL80211_CHAN_HT20:
631 chanmode = CHANNEL_G_HT20;
632 break;
633 case NL80211_CHAN_HT40PLUS:
634 chanmode = CHANNEL_G_HT40PLUS;
635 break;
636 case NL80211_CHAN_HT40MINUS:
637 chanmode = CHANNEL_G_HT40MINUS;
638 break;
639 }
640 break;
641 case IEEE80211_BAND_5GHZ:
642 switch(channel_type) {
643 case NL80211_CHAN_NO_HT:
644 case NL80211_CHAN_HT20:
645 chanmode = CHANNEL_A_HT20;
646 break;
647 case NL80211_CHAN_HT40PLUS:
648 chanmode = CHANNEL_A_HT40PLUS;
649 break;
650 case NL80211_CHAN_HT40MINUS:
651 chanmode = CHANNEL_A_HT40MINUS;
652 break;
653 }
654 break;
655 default:
656 break;
657 }
658
659 return chanmode;
660 }
661
662 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
663 struct ath9k_keyval *hk, const u8 *addr,
664 bool authenticator)
665 {
666 const u8 *key_rxmic;
667 const u8 *key_txmic;
668
669 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
670 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
671
672 if (addr == NULL) {
673 /*
674 * Group key installation - only two key cache entries are used
675 * regardless of splitmic capability since group key is only
676 * used either for TX or RX.
677 */
678 if (authenticator) {
679 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
680 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
681 } else {
682 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
684 }
685 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
686 }
687 if (!sc->splitmic) {
688 /* TX and RX keys share the same key cache entry. */
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
692 }
693
694 /* Separate key cache entries for TX and RX */
695
696 /* TX key goes at first index, RX key at +32. */
697 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
698 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
699 /* TX MIC entry failed. No need to proceed further */
700 DPRINTF(sc, ATH_DBG_FATAL,
701 "Setting TX MIC Key Failed\n");
702 return 0;
703 }
704
705 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
706 /* XXX delete tx key on failure? */
707 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
708 }
709
710 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
711 {
712 int i;
713
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
715 if (test_bit(i, sc->keymap) ||
716 test_bit(i + 64, sc->keymap))
717 continue; /* At least one part of TKIP key allocated */
718 if (sc->splitmic &&
719 (test_bit(i + 32, sc->keymap) ||
720 test_bit(i + 64 + 32, sc->keymap)))
721 continue; /* At least one part of TKIP key allocated */
722
723 /* Found a free slot for a TKIP key */
724 return i;
725 }
726 return -1;
727 }
728
729 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
730 {
731 int i;
732
733 /* First, try to find slots that would not be available for TKIP. */
734 if (sc->splitmic) {
735 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
736 if (!test_bit(i, sc->keymap) &&
737 (test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap) ||
739 test_bit(i + 64 + 32, sc->keymap)))
740 return i;
741 if (!test_bit(i + 32, sc->keymap) &&
742 (test_bit(i, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i + 32;
746 if (!test_bit(i + 64, sc->keymap) &&
747 (test_bit(i , sc->keymap) ||
748 test_bit(i + 32, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 64;
751 if (!test_bit(i + 64 + 32, sc->keymap) &&
752 (test_bit(i, sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64, sc->keymap)))
755 return i + 64 + 32;
756 }
757 } else {
758 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
759 if (!test_bit(i, sc->keymap) &&
760 test_bit(i + 64, sc->keymap))
761 return i;
762 if (test_bit(i, sc->keymap) &&
763 !test_bit(i + 64, sc->keymap))
764 return i + 64;
765 }
766 }
767
768 /* No partially used TKIP slots, pick any available slot */
769 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
770 /* Do not allow slots that could be needed for TKIP group keys
771 * to be used. This limitation could be removed if we know that
772 * TKIP will not be used. */
773 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
774 continue;
775 if (sc->splitmic) {
776 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
777 continue;
778 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
779 continue;
780 }
781
782 if (!test_bit(i, sc->keymap))
783 return i; /* Found a free slot for a key */
784 }
785
786 /* No free slot found */
787 return -1;
788 }
789
790 static int ath_key_config(struct ath_softc *sc,
791 struct ieee80211_vif *vif,
792 struct ieee80211_sta *sta,
793 struct ieee80211_key_conf *key)
794 {
795 struct ath9k_keyval hk;
796 const u8 *mac = NULL;
797 int ret = 0;
798 int idx;
799
800 memset(&hk, 0, sizeof(hk));
801
802 switch (key->alg) {
803 case ALG_WEP:
804 hk.kv_type = ATH9K_CIPHER_WEP;
805 break;
806 case ALG_TKIP:
807 hk.kv_type = ATH9K_CIPHER_TKIP;
808 break;
809 case ALG_CCMP:
810 hk.kv_type = ATH9K_CIPHER_AES_CCM;
811 break;
812 default:
813 return -EOPNOTSUPP;
814 }
815
816 hk.kv_len = key->keylen;
817 memcpy(hk.kv_val, key->key, key->keylen);
818
819 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
820 /* For now, use the default keys for broadcast keys. This may
821 * need to change with virtual interfaces. */
822 idx = key->keyidx;
823 } else if (key->keyidx) {
824 if (WARN_ON(!sta))
825 return -EOPNOTSUPP;
826 mac = sta->addr;
827
828 if (vif->type != NL80211_IFTYPE_AP) {
829 /* Only keyidx 0 should be used with unicast key, but
830 * allow this for client mode for now. */
831 idx = key->keyidx;
832 } else
833 return -EIO;
834 } else {
835 if (WARN_ON(!sta))
836 return -EOPNOTSUPP;
837 mac = sta->addr;
838
839 if (key->alg == ALG_TKIP)
840 idx = ath_reserve_key_cache_slot_tkip(sc);
841 else
842 idx = ath_reserve_key_cache_slot(sc);
843 if (idx < 0)
844 return -ENOSPC; /* no free key cache entries */
845 }
846
847 if (key->alg == ALG_TKIP)
848 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
849 vif->type == NL80211_IFTYPE_AP);
850 else
851 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
852
853 if (!ret)
854 return -EIO;
855
856 set_bit(idx, sc->keymap);
857 if (key->alg == ALG_TKIP) {
858 set_bit(idx + 64, sc->keymap);
859 if (sc->splitmic) {
860 set_bit(idx + 32, sc->keymap);
861 set_bit(idx + 64 + 32, sc->keymap);
862 }
863 }
864
865 return idx;
866 }
867
868 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
869 {
870 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
871 if (key->hw_key_idx < IEEE80211_WEP_NKID)
872 return;
873
874 clear_bit(key->hw_key_idx, sc->keymap);
875 if (key->alg != ALG_TKIP)
876 return;
877
878 clear_bit(key->hw_key_idx + 64, sc->keymap);
879 if (sc->splitmic) {
880 clear_bit(key->hw_key_idx + 32, sc->keymap);
881 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
882 }
883 }
884
885 static void setup_ht_cap(struct ath_softc *sc,
886 struct ieee80211_sta_ht_cap *ht_info)
887 {
888 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
889 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
890
891 ht_info->ht_supported = true;
892 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
893 IEEE80211_HT_CAP_SM_PS |
894 IEEE80211_HT_CAP_SGI_40 |
895 IEEE80211_HT_CAP_DSSSCCK40;
896
897 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
898 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
899
900 /* set up supported mcs set */
901 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
902
903 switch(sc->rx_chainmask) {
904 case 1:
905 ht_info->mcs.rx_mask[0] = 0xff;
906 break;
907 case 3:
908 case 5:
909 case 7:
910 default:
911 ht_info->mcs.rx_mask[0] = 0xff;
912 ht_info->mcs.rx_mask[1] = 0xff;
913 break;
914 }
915
916 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
917 }
918
919 static void ath9k_bss_assoc_info(struct ath_softc *sc,
920 struct ieee80211_vif *vif,
921 struct ieee80211_bss_conf *bss_conf)
922 {
923 struct ath_vif *avp = (void *)vif->drv_priv;
924
925 if (bss_conf->assoc) {
926 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
927 bss_conf->aid, sc->curbssid);
928
929 /* New association, store aid */
930 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
931 sc->curaid = bss_conf->aid;
932 ath9k_hw_write_associd(sc);
933
934 /*
935 * Request a re-configuration of Beacon related timers
936 * on the receipt of the first Beacon frame (i.e.,
937 * after time sync with the AP).
938 */
939 sc->sc_flags |= SC_OP_BEACON_SYNC;
940 }
941
942 /* Configure the beacon */
943 ath_beacon_config(sc, vif);
944
945 /* Reset rssi stats */
946 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
947 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
948 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
949 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
950
951 ath_start_ani(sc);
952 } else {
953 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
954 sc->curaid = 0;
955 }
956 }
957
958 /********************************/
959 /* LED functions */
960 /********************************/
961
962 static void ath_led_blink_work(struct work_struct *work)
963 {
964 struct ath_softc *sc = container_of(work, struct ath_softc,
965 ath_led_blink_work.work);
966
967 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
968 return;
969
970 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
971 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
972 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
973 else
974 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
975 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
976
977 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
978 (sc->sc_flags & SC_OP_LED_ON) ?
979 msecs_to_jiffies(sc->led_off_duration) :
980 msecs_to_jiffies(sc->led_on_duration));
981
982 sc->led_on_duration = sc->led_on_cnt ?
983 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
984 ATH_LED_ON_DURATION_IDLE;
985 sc->led_off_duration = sc->led_off_cnt ?
986 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
987 ATH_LED_OFF_DURATION_IDLE;
988 sc->led_on_cnt = sc->led_off_cnt = 0;
989 if (sc->sc_flags & SC_OP_LED_ON)
990 sc->sc_flags &= ~SC_OP_LED_ON;
991 else
992 sc->sc_flags |= SC_OP_LED_ON;
993 }
994
995 static void ath_led_brightness(struct led_classdev *led_cdev,
996 enum led_brightness brightness)
997 {
998 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
999 struct ath_softc *sc = led->sc;
1000
1001 switch (brightness) {
1002 case LED_OFF:
1003 if (led->led_type == ATH_LED_ASSOC ||
1004 led->led_type == ATH_LED_RADIO) {
1005 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
1006 (led->led_type == ATH_LED_RADIO));
1007 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1008 if (led->led_type == ATH_LED_RADIO)
1009 sc->sc_flags &= ~SC_OP_LED_ON;
1010 } else {
1011 sc->led_off_cnt++;
1012 }
1013 break;
1014 case LED_FULL:
1015 if (led->led_type == ATH_LED_ASSOC) {
1016 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1017 queue_delayed_work(sc->hw->workqueue,
1018 &sc->ath_led_blink_work, 0);
1019 } else if (led->led_type == ATH_LED_RADIO) {
1020 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1021 sc->sc_flags |= SC_OP_LED_ON;
1022 } else {
1023 sc->led_on_cnt++;
1024 }
1025 break;
1026 default:
1027 break;
1028 }
1029 }
1030
1031 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1032 char *trigger)
1033 {
1034 int ret;
1035
1036 led->sc = sc;
1037 led->led_cdev.name = led->name;
1038 led->led_cdev.default_trigger = trigger;
1039 led->led_cdev.brightness_set = ath_led_brightness;
1040
1041 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1042 if (ret)
1043 DPRINTF(sc, ATH_DBG_FATAL,
1044 "Failed to register led:%s", led->name);
1045 else
1046 led->registered = 1;
1047 return ret;
1048 }
1049
1050 static void ath_unregister_led(struct ath_led *led)
1051 {
1052 if (led->registered) {
1053 led_classdev_unregister(&led->led_cdev);
1054 led->registered = 0;
1055 }
1056 }
1057
1058 static void ath_deinit_leds(struct ath_softc *sc)
1059 {
1060 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1061 ath_unregister_led(&sc->assoc_led);
1062 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1063 ath_unregister_led(&sc->tx_led);
1064 ath_unregister_led(&sc->rx_led);
1065 ath_unregister_led(&sc->radio_led);
1066 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1067 }
1068
1069 static void ath_init_leds(struct ath_softc *sc)
1070 {
1071 char *trigger;
1072 int ret;
1073
1074 /* Configure gpio 1 for output */
1075 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1076 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1077 /* LED off, active low */
1078 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1079
1080 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1081
1082 trigger = ieee80211_get_radio_led_name(sc->hw);
1083 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1084 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1085 ret = ath_register_led(sc, &sc->radio_led, trigger);
1086 sc->radio_led.led_type = ATH_LED_RADIO;
1087 if (ret)
1088 goto fail;
1089
1090 trigger = ieee80211_get_assoc_led_name(sc->hw);
1091 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1092 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1093 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1094 sc->assoc_led.led_type = ATH_LED_ASSOC;
1095 if (ret)
1096 goto fail;
1097
1098 trigger = ieee80211_get_tx_led_name(sc->hw);
1099 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1100 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1101 ret = ath_register_led(sc, &sc->tx_led, trigger);
1102 sc->tx_led.led_type = ATH_LED_TX;
1103 if (ret)
1104 goto fail;
1105
1106 trigger = ieee80211_get_rx_led_name(sc->hw);
1107 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1108 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1109 ret = ath_register_led(sc, &sc->rx_led, trigger);
1110 sc->rx_led.led_type = ATH_LED_RX;
1111 if (ret)
1112 goto fail;
1113
1114 return;
1115
1116 fail:
1117 ath_deinit_leds(sc);
1118 }
1119
1120 void ath_radio_enable(struct ath_softc *sc)
1121 {
1122 struct ath_hw *ah = sc->sc_ah;
1123 struct ieee80211_channel *channel = sc->hw->conf.channel;
1124 int r;
1125
1126 ath9k_ps_wakeup(sc);
1127 ath9k_hw_configpcipowersave(ah, 0);
1128
1129 if (!ah->curchan)
1130 ah->curchan = ath_get_curchannel(sc, sc->hw);
1131
1132 spin_lock_bh(&sc->sc_resetlock);
1133 r = ath9k_hw_reset(ah, ah->curchan, false);
1134 if (r) {
1135 DPRINTF(sc, ATH_DBG_FATAL,
1136 "Unable to reset channel %u (%uMhz) ",
1137 "reset status %d\n",
1138 channel->center_freq, r);
1139 }
1140 spin_unlock_bh(&sc->sc_resetlock);
1141
1142 ath_update_txpow(sc);
1143 if (ath_startrecv(sc) != 0) {
1144 DPRINTF(sc, ATH_DBG_FATAL,
1145 "Unable to restart recv logic\n");
1146 return;
1147 }
1148
1149 if (sc->sc_flags & SC_OP_BEACONS)
1150 ath_beacon_config(sc, NULL); /* restart beacons */
1151
1152 /* Re-Enable interrupts */
1153 ath9k_hw_set_interrupts(ah, sc->imask);
1154
1155 /* Enable LED */
1156 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1157 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1158 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1159
1160 ieee80211_wake_queues(sc->hw);
1161 ath9k_ps_restore(sc);
1162 }
1163
1164 void ath_radio_disable(struct ath_softc *sc)
1165 {
1166 struct ath_hw *ah = sc->sc_ah;
1167 struct ieee80211_channel *channel = sc->hw->conf.channel;
1168 int r;
1169
1170 ath9k_ps_wakeup(sc);
1171 ieee80211_stop_queues(sc->hw);
1172
1173 /* Disable LED */
1174 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1175 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1176
1177 /* Disable interrupts */
1178 ath9k_hw_set_interrupts(ah, 0);
1179
1180 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1181 ath_stoprecv(sc); /* turn off frame recv */
1182 ath_flushrecv(sc); /* flush recv queue */
1183
1184 if (!ah->curchan)
1185 ah->curchan = ath_get_curchannel(sc, sc->hw);
1186
1187 spin_lock_bh(&sc->sc_resetlock);
1188 r = ath9k_hw_reset(ah, ah->curchan, false);
1189 if (r) {
1190 DPRINTF(sc, ATH_DBG_FATAL,
1191 "Unable to reset channel %u (%uMhz) "
1192 "reset status %d\n",
1193 channel->center_freq, r);
1194 }
1195 spin_unlock_bh(&sc->sc_resetlock);
1196
1197 ath9k_hw_phy_disable(ah);
1198 ath9k_hw_configpcipowersave(ah, 1);
1199 ath9k_ps_restore(sc);
1200 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1201 }
1202
1203 /*******************/
1204 /* Rfkill */
1205 /*******************/
1206
1207 static bool ath_is_rfkill_set(struct ath_softc *sc)
1208 {
1209 struct ath_hw *ah = sc->sc_ah;
1210
1211 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1212 ah->rfkill_polarity;
1213 }
1214
1215 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1216 {
1217 struct ath_wiphy *aphy = hw->priv;
1218 struct ath_softc *sc = aphy->sc;
1219 bool blocked = !!ath_is_rfkill_set(sc);
1220
1221 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1222
1223 if (blocked)
1224 ath_radio_disable(sc);
1225 else
1226 ath_radio_enable(sc);
1227 }
1228
1229 static void ath_start_rfkill_poll(struct ath_softc *sc)
1230 {
1231 struct ath_hw *ah = sc->sc_ah;
1232
1233 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1234 wiphy_rfkill_start_polling(sc->hw->wiphy);
1235 }
1236
1237 void ath_cleanup(struct ath_softc *sc)
1238 {
1239 ath_detach(sc);
1240 free_irq(sc->irq, sc);
1241 ath_bus_cleanup(sc);
1242 kfree(sc->sec_wiphy);
1243 ieee80211_free_hw(sc->hw);
1244 }
1245
1246 void ath_detach(struct ath_softc *sc)
1247 {
1248 struct ieee80211_hw *hw = sc->hw;
1249 int i = 0;
1250
1251 ath9k_ps_wakeup(sc);
1252
1253 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1254
1255 ath_deinit_leds(sc);
1256 cancel_work_sync(&sc->chan_work);
1257 cancel_delayed_work_sync(&sc->wiphy_work);
1258
1259 for (i = 0; i < sc->num_sec_wiphy; i++) {
1260 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1261 if (aphy == NULL)
1262 continue;
1263 sc->sec_wiphy[i] = NULL;
1264 ieee80211_unregister_hw(aphy->hw);
1265 ieee80211_free_hw(aphy->hw);
1266 }
1267 ieee80211_unregister_hw(hw);
1268 ath_rx_cleanup(sc);
1269 ath_tx_cleanup(sc);
1270
1271 tasklet_kill(&sc->intr_tq);
1272 tasklet_kill(&sc->bcon_tasklet);
1273
1274 if (!(sc->sc_flags & SC_OP_INVALID))
1275 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1276
1277 /* cleanup tx queues */
1278 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1279 if (ATH_TXQ_SETUP(sc, i))
1280 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1281
1282 ath9k_hw_detach(sc->sc_ah);
1283 ath9k_exit_debug(sc);
1284 ath9k_ps_restore(sc);
1285 }
1286
1287 static int ath9k_reg_notifier(struct wiphy *wiphy,
1288 struct regulatory_request *request)
1289 {
1290 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1291 struct ath_wiphy *aphy = hw->priv;
1292 struct ath_softc *sc = aphy->sc;
1293 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1294
1295 return ath_reg_notifier_apply(wiphy, request, reg);
1296 }
1297
1298 static int ath_init(u16 devid, struct ath_softc *sc)
1299 {
1300 struct ath_hw *ah = NULL;
1301 int status;
1302 int error = 0, i;
1303 int csz = 0;
1304
1305 /* XXX: hardware will not be ready until ath_open() being called */
1306 sc->sc_flags |= SC_OP_INVALID;
1307
1308 if (ath9k_init_debug(sc) < 0)
1309 printk(KERN_ERR "Unable to create debugfs files\n");
1310
1311 spin_lock_init(&sc->wiphy_lock);
1312 spin_lock_init(&sc->sc_resetlock);
1313 spin_lock_init(&sc->sc_serial_rw);
1314 mutex_init(&sc->mutex);
1315 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1316 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1317 (unsigned long)sc);
1318
1319 /*
1320 * Cache line size is used to size and align various
1321 * structures used to communicate with the hardware.
1322 */
1323 ath_read_cachesize(sc, &csz);
1324 /* XXX assert csz is non-zero */
1325 sc->cachelsz = csz << 2; /* convert to bytes */
1326
1327 ah = ath9k_hw_attach(devid, sc, &status);
1328 if (ah == NULL) {
1329 DPRINTF(sc, ATH_DBG_FATAL,
1330 "Unable to attach hardware; HAL status %d\n", status);
1331 error = -ENXIO;
1332 goto bad;
1333 }
1334 sc->sc_ah = ah;
1335
1336 /* Get the hardware key cache size. */
1337 sc->keymax = ah->caps.keycache_size;
1338 if (sc->keymax > ATH_KEYMAX) {
1339 DPRINTF(sc, ATH_DBG_ANY,
1340 "Warning, using only %u entries in %u key cache\n",
1341 ATH_KEYMAX, sc->keymax);
1342 sc->keymax = ATH_KEYMAX;
1343 }
1344
1345 /*
1346 * Reset the key cache since some parts do not
1347 * reset the contents on initial power up.
1348 */
1349 for (i = 0; i < sc->keymax; i++)
1350 ath9k_hw_keyreset(ah, (u16) i);
1351
1352 if (error)
1353 goto bad;
1354
1355 /* default to MONITOR mode */
1356 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1357
1358 /* Setup rate tables */
1359
1360 ath_rate_attach(sc);
1361 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1362 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1363
1364 /*
1365 * Allocate hardware transmit queues: one queue for
1366 * beacon frames and one data queue for each QoS
1367 * priority. Note that the hal handles reseting
1368 * these queues at the needed time.
1369 */
1370 sc->beacon.beaconq = ath_beaconq_setup(ah);
1371 if (sc->beacon.beaconq == -1) {
1372 DPRINTF(sc, ATH_DBG_FATAL,
1373 "Unable to setup a beacon xmit queue\n");
1374 error = -EIO;
1375 goto bad2;
1376 }
1377 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1378 if (sc->beacon.cabq == NULL) {
1379 DPRINTF(sc, ATH_DBG_FATAL,
1380 "Unable to setup CAB xmit queue\n");
1381 error = -EIO;
1382 goto bad2;
1383 }
1384
1385 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1386 ath_cabq_update(sc);
1387
1388 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1389 sc->tx.hwq_map[i] = -1;
1390
1391 /* Setup data queues */
1392 /* NB: ensure BK queue is the lowest priority h/w queue */
1393 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1394 DPRINTF(sc, ATH_DBG_FATAL,
1395 "Unable to setup xmit queue for BK traffic\n");
1396 error = -EIO;
1397 goto bad2;
1398 }
1399
1400 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1401 DPRINTF(sc, ATH_DBG_FATAL,
1402 "Unable to setup xmit queue for BE traffic\n");
1403 error = -EIO;
1404 goto bad2;
1405 }
1406 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1407 DPRINTF(sc, ATH_DBG_FATAL,
1408 "Unable to setup xmit queue for VI traffic\n");
1409 error = -EIO;
1410 goto bad2;
1411 }
1412 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1413 DPRINTF(sc, ATH_DBG_FATAL,
1414 "Unable to setup xmit queue for VO traffic\n");
1415 error = -EIO;
1416 goto bad2;
1417 }
1418
1419 /* Initializes the noise floor to a reasonable default value.
1420 * Later on this will be updated during ANI processing. */
1421
1422 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1423 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1424
1425 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1426 ATH9K_CIPHER_TKIP, NULL)) {
1427 /*
1428 * Whether we should enable h/w TKIP MIC.
1429 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1430 * report WMM capable, so it's always safe to turn on
1431 * TKIP MIC in this case.
1432 */
1433 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1434 0, 1, NULL);
1435 }
1436
1437 /*
1438 * Check whether the separate key cache entries
1439 * are required to handle both tx+rx MIC keys.
1440 * With split mic keys the number of stations is limited
1441 * to 27 otherwise 59.
1442 */
1443 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1444 ATH9K_CIPHER_TKIP, NULL)
1445 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1446 ATH9K_CIPHER_MIC, NULL)
1447 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1448 0, NULL))
1449 sc->splitmic = 1;
1450
1451 /* turn on mcast key search if possible */
1452 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1453 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1454 1, NULL);
1455
1456 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1457
1458 /* 11n Capabilities */
1459 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1460 sc->sc_flags |= SC_OP_TXAGGR;
1461 sc->sc_flags |= SC_OP_RXAGGR;
1462 }
1463
1464 sc->tx_chainmask = ah->caps.tx_chainmask;
1465 sc->rx_chainmask = ah->caps.rx_chainmask;
1466
1467 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1468 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1469
1470 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1471 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1472
1473 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1474
1475 /* initialize beacon slots */
1476 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1477 sc->beacon.bslot[i] = NULL;
1478 sc->beacon.bslot_aphy[i] = NULL;
1479 }
1480
1481 /* setup channels and rates */
1482
1483 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1484 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1485 sc->rates[IEEE80211_BAND_2GHZ];
1486 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1487 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1488 ARRAY_SIZE(ath9k_2ghz_chantable);
1489
1490 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1491 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1492 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1493 sc->rates[IEEE80211_BAND_5GHZ];
1494 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1495 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1496 ARRAY_SIZE(ath9k_5ghz_chantable);
1497 }
1498
1499 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1500 ath9k_hw_btcoex_enable(sc->sc_ah);
1501
1502 return 0;
1503 bad2:
1504 /* cleanup tx queues */
1505 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1506 if (ATH_TXQ_SETUP(sc, i))
1507 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1508 bad:
1509 if (ah)
1510 ath9k_hw_detach(ah);
1511 ath9k_exit_debug(sc);
1512
1513 return error;
1514 }
1515
1516 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1517 {
1518 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1519 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1520 IEEE80211_HW_SIGNAL_DBM |
1521 IEEE80211_HW_AMPDU_AGGREGATION |
1522 IEEE80211_HW_SUPPORTS_PS |
1523 IEEE80211_HW_PS_NULLFUNC_STACK |
1524 IEEE80211_HW_SPECTRUM_MGMT;
1525
1526 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1527 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1528
1529 hw->wiphy->interface_modes =
1530 BIT(NL80211_IFTYPE_AP) |
1531 BIT(NL80211_IFTYPE_STATION) |
1532 BIT(NL80211_IFTYPE_ADHOC) |
1533 BIT(NL80211_IFTYPE_MESH_POINT);
1534
1535 hw->queues = 4;
1536 hw->max_rates = 4;
1537 hw->channel_change_time = 5000;
1538 hw->max_listen_interval = 10;
1539 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1540 hw->sta_data_size = sizeof(struct ath_node);
1541 hw->vif_data_size = sizeof(struct ath_vif);
1542
1543 hw->rate_control_algorithm = "ath9k_rate_control";
1544
1545 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1546 &sc->sbands[IEEE80211_BAND_2GHZ];
1547 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1548 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1549 &sc->sbands[IEEE80211_BAND_5GHZ];
1550 }
1551
1552 int ath_attach(u16 devid, struct ath_softc *sc)
1553 {
1554 struct ieee80211_hw *hw = sc->hw;
1555 int error = 0, i;
1556 struct ath_regulatory *reg;
1557
1558 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1559
1560 error = ath_init(devid, sc);
1561 if (error != 0)
1562 return error;
1563
1564 /* get mac address from hardware and set in mac80211 */
1565
1566 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1567
1568 ath_set_hw_capab(sc, hw);
1569
1570 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1571 ath9k_reg_notifier);
1572 if (error)
1573 return error;
1574
1575 reg = &sc->sc_ah->regulatory;
1576
1577 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1578 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1579 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1580 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1581 }
1582
1583 /* initialize tx/rx engine */
1584 error = ath_tx_init(sc, ATH_TXBUF);
1585 if (error != 0)
1586 goto error_attach;
1587
1588 error = ath_rx_init(sc, ATH_RXBUF);
1589 if (error != 0)
1590 goto error_attach;
1591
1592 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1593 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1594 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1595
1596 error = ieee80211_register_hw(hw);
1597
1598 if (!ath_is_world_regd(reg)) {
1599 error = regulatory_hint(hw->wiphy, reg->alpha2);
1600 if (error)
1601 goto error_attach;
1602 }
1603
1604 /* Initialize LED control */
1605 ath_init_leds(sc);
1606
1607 ath_start_rfkill_poll(sc);
1608
1609 return 0;
1610
1611 error_attach:
1612 /* cleanup tx queues */
1613 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1614 if (ATH_TXQ_SETUP(sc, i))
1615 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1616
1617 ath9k_hw_detach(sc->sc_ah);
1618 ath9k_exit_debug(sc);
1619
1620 return error;
1621 }
1622
1623 int ath_reset(struct ath_softc *sc, bool retry_tx)
1624 {
1625 struct ath_hw *ah = sc->sc_ah;
1626 struct ieee80211_hw *hw = sc->hw;
1627 int r;
1628
1629 ath9k_hw_set_interrupts(ah, 0);
1630 ath_drain_all_txq(sc, retry_tx);
1631 ath_stoprecv(sc);
1632 ath_flushrecv(sc);
1633
1634 spin_lock_bh(&sc->sc_resetlock);
1635 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1636 if (r)
1637 DPRINTF(sc, ATH_DBG_FATAL,
1638 "Unable to reset hardware; reset status %d\n", r);
1639 spin_unlock_bh(&sc->sc_resetlock);
1640
1641 if (ath_startrecv(sc) != 0)
1642 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1643
1644 /*
1645 * We may be doing a reset in response to a request
1646 * that changes the channel so update any state that
1647 * might change as a result.
1648 */
1649 ath_cache_conf_rate(sc, &hw->conf);
1650
1651 ath_update_txpow(sc);
1652
1653 if (sc->sc_flags & SC_OP_BEACONS)
1654 ath_beacon_config(sc, NULL); /* restart beacons */
1655
1656 ath9k_hw_set_interrupts(ah, sc->imask);
1657
1658 if (retry_tx) {
1659 int i;
1660 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1661 if (ATH_TXQ_SETUP(sc, i)) {
1662 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1663 ath_txq_schedule(sc, &sc->tx.txq[i]);
1664 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1665 }
1666 }
1667 }
1668
1669 return r;
1670 }
1671
1672 /*
1673 * This function will allocate both the DMA descriptor structure, and the
1674 * buffers it contains. These are used to contain the descriptors used
1675 * by the system.
1676 */
1677 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1678 struct list_head *head, const char *name,
1679 int nbuf, int ndesc)
1680 {
1681 #define DS2PHYS(_dd, _ds) \
1682 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1683 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1684 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1685
1686 struct ath_desc *ds;
1687 struct ath_buf *bf;
1688 int i, bsize, error;
1689
1690 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1691 name, nbuf, ndesc);
1692
1693 INIT_LIST_HEAD(head);
1694 /* ath_desc must be a multiple of DWORDs */
1695 if ((sizeof(struct ath_desc) % 4) != 0) {
1696 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1697 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1698 error = -ENOMEM;
1699 goto fail;
1700 }
1701
1702 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1703
1704 /*
1705 * Need additional DMA memory because we can't use
1706 * descriptors that cross the 4K page boundary. Assume
1707 * one skipped descriptor per 4K page.
1708 */
1709 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1710 u32 ndesc_skipped =
1711 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1712 u32 dma_len;
1713
1714 while (ndesc_skipped) {
1715 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1716 dd->dd_desc_len += dma_len;
1717
1718 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1719 };
1720 }
1721
1722 /* allocate descriptors */
1723 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1724 &dd->dd_desc_paddr, GFP_KERNEL);
1725 if (dd->dd_desc == NULL) {
1726 error = -ENOMEM;
1727 goto fail;
1728 }
1729 ds = dd->dd_desc;
1730 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1731 name, ds, (u32) dd->dd_desc_len,
1732 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1733
1734 /* allocate buffers */
1735 bsize = sizeof(struct ath_buf) * nbuf;
1736 bf = kzalloc(bsize, GFP_KERNEL);
1737 if (bf == NULL) {
1738 error = -ENOMEM;
1739 goto fail2;
1740 }
1741 dd->dd_bufptr = bf;
1742
1743 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1744 bf->bf_desc = ds;
1745 bf->bf_daddr = DS2PHYS(dd, ds);
1746
1747 if (!(sc->sc_ah->caps.hw_caps &
1748 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1749 /*
1750 * Skip descriptor addresses which can cause 4KB
1751 * boundary crossing (addr + length) with a 32 dword
1752 * descriptor fetch.
1753 */
1754 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1755 ASSERT((caddr_t) bf->bf_desc <
1756 ((caddr_t) dd->dd_desc +
1757 dd->dd_desc_len));
1758
1759 ds += ndesc;
1760 bf->bf_desc = ds;
1761 bf->bf_daddr = DS2PHYS(dd, ds);
1762 }
1763 }
1764 list_add_tail(&bf->list, head);
1765 }
1766 return 0;
1767 fail2:
1768 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1769 dd->dd_desc_paddr);
1770 fail:
1771 memset(dd, 0, sizeof(*dd));
1772 return error;
1773 #undef ATH_DESC_4KB_BOUND_CHECK
1774 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1775 #undef DS2PHYS
1776 }
1777
1778 void ath_descdma_cleanup(struct ath_softc *sc,
1779 struct ath_descdma *dd,
1780 struct list_head *head)
1781 {
1782 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1783 dd->dd_desc_paddr);
1784
1785 INIT_LIST_HEAD(head);
1786 kfree(dd->dd_bufptr);
1787 memset(dd, 0, sizeof(*dd));
1788 }
1789
1790 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1791 {
1792 int qnum;
1793
1794 switch (queue) {
1795 case 0:
1796 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1797 break;
1798 case 1:
1799 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1800 break;
1801 case 2:
1802 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1803 break;
1804 case 3:
1805 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1806 break;
1807 default:
1808 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1809 break;
1810 }
1811
1812 return qnum;
1813 }
1814
1815 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1816 {
1817 int qnum;
1818
1819 switch (queue) {
1820 case ATH9K_WME_AC_VO:
1821 qnum = 0;
1822 break;
1823 case ATH9K_WME_AC_VI:
1824 qnum = 1;
1825 break;
1826 case ATH9K_WME_AC_BE:
1827 qnum = 2;
1828 break;
1829 case ATH9K_WME_AC_BK:
1830 qnum = 3;
1831 break;
1832 default:
1833 qnum = -1;
1834 break;
1835 }
1836
1837 return qnum;
1838 }
1839
1840 /* XXX: Remove me once we don't depend on ath9k_channel for all
1841 * this redundant data */
1842 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1843 struct ath9k_channel *ichan)
1844 {
1845 struct ieee80211_channel *chan = hw->conf.channel;
1846 struct ieee80211_conf *conf = &hw->conf;
1847
1848 ichan->channel = chan->center_freq;
1849 ichan->chan = chan;
1850
1851 if (chan->band == IEEE80211_BAND_2GHZ) {
1852 ichan->chanmode = CHANNEL_G;
1853 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1854 } else {
1855 ichan->chanmode = CHANNEL_A;
1856 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1857 }
1858
1859 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1860
1861 if (conf_is_ht(conf)) {
1862 if (conf_is_ht40(conf))
1863 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1864
1865 ichan->chanmode = ath_get_extchanmode(sc, chan,
1866 conf->channel_type);
1867 }
1868 }
1869
1870 /**********************/
1871 /* mac80211 callbacks */
1872 /**********************/
1873
1874 static int ath9k_start(struct ieee80211_hw *hw)
1875 {
1876 struct ath_wiphy *aphy = hw->priv;
1877 struct ath_softc *sc = aphy->sc;
1878 struct ieee80211_channel *curchan = hw->conf.channel;
1879 struct ath9k_channel *init_channel;
1880 int r;
1881
1882 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1883 "initial channel: %d MHz\n", curchan->center_freq);
1884
1885 mutex_lock(&sc->mutex);
1886
1887 if (ath9k_wiphy_started(sc)) {
1888 if (sc->chan_idx == curchan->hw_value) {
1889 /*
1890 * Already on the operational channel, the new wiphy
1891 * can be marked active.
1892 */
1893 aphy->state = ATH_WIPHY_ACTIVE;
1894 ieee80211_wake_queues(hw);
1895 } else {
1896 /*
1897 * Another wiphy is on another channel, start the new
1898 * wiphy in paused state.
1899 */
1900 aphy->state = ATH_WIPHY_PAUSED;
1901 ieee80211_stop_queues(hw);
1902 }
1903 mutex_unlock(&sc->mutex);
1904 return 0;
1905 }
1906 aphy->state = ATH_WIPHY_ACTIVE;
1907
1908 /* setup initial channel */
1909
1910 sc->chan_idx = curchan->hw_value;
1911
1912 init_channel = ath_get_curchannel(sc, hw);
1913
1914 /* Reset SERDES registers */
1915 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1916
1917 /*
1918 * The basic interface to setting the hardware in a good
1919 * state is ``reset''. On return the hardware is known to
1920 * be powered up and with interrupts disabled. This must
1921 * be followed by initialization of the appropriate bits
1922 * and then setup of the interrupt mask.
1923 */
1924 spin_lock_bh(&sc->sc_resetlock);
1925 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1926 if (r) {
1927 DPRINTF(sc, ATH_DBG_FATAL,
1928 "Unable to reset hardware; reset status %d "
1929 "(freq %u MHz)\n", r,
1930 curchan->center_freq);
1931 spin_unlock_bh(&sc->sc_resetlock);
1932 goto mutex_unlock;
1933 }
1934 spin_unlock_bh(&sc->sc_resetlock);
1935
1936 /*
1937 * This is needed only to setup initial state
1938 * but it's best done after a reset.
1939 */
1940 ath_update_txpow(sc);
1941
1942 /*
1943 * Setup the hardware after reset:
1944 * The receive engine is set going.
1945 * Frame transmit is handled entirely
1946 * in the frame output path; there's nothing to do
1947 * here except setup the interrupt mask.
1948 */
1949 if (ath_startrecv(sc) != 0) {
1950 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1951 r = -EIO;
1952 goto mutex_unlock;
1953 }
1954
1955 /* Setup our intr mask. */
1956 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1957 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1958 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1959
1960 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1961 sc->imask |= ATH9K_INT_GTT;
1962
1963 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1964 sc->imask |= ATH9K_INT_CST;
1965
1966 ath_cache_conf_rate(sc, &hw->conf);
1967
1968 sc->sc_flags &= ~SC_OP_INVALID;
1969
1970 /* Disable BMISS interrupt when we're not associated */
1971 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1972 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
1973
1974 ieee80211_wake_queues(hw);
1975
1976 mutex_unlock:
1977 mutex_unlock(&sc->mutex);
1978
1979 return r;
1980 }
1981
1982 static int ath9k_tx(struct ieee80211_hw *hw,
1983 struct sk_buff *skb)
1984 {
1985 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1986 struct ath_wiphy *aphy = hw->priv;
1987 struct ath_softc *sc = aphy->sc;
1988 struct ath_tx_control txctl;
1989 int hdrlen, padsize;
1990
1991 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
1992 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
1993 "%d\n", wiphy_name(hw->wiphy), aphy->state);
1994 goto exit;
1995 }
1996
1997 if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
1998 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1999 /*
2000 * mac80211 does not set PM field for normal data frames, so we
2001 * need to update that based on the current PS mode.
2002 */
2003 if (ieee80211_is_data(hdr->frame_control) &&
2004 !ieee80211_is_nullfunc(hdr->frame_control) &&
2005 !ieee80211_has_pm(hdr->frame_control)) {
2006 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2007 "while in PS mode\n");
2008 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2009 }
2010 }
2011
2012 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2013 /*
2014 * We are using PS-Poll and mac80211 can request TX while in
2015 * power save mode. Need to wake up hardware for the TX to be
2016 * completed and if needed, also for RX of buffered frames.
2017 */
2018 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2019 ath9k_ps_wakeup(sc);
2020 ath9k_hw_setrxabort(sc->sc_ah, 0);
2021 if (ieee80211_is_pspoll(hdr->frame_control)) {
2022 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2023 "buffered frame\n");
2024 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2025 } else {
2026 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2027 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2028 }
2029 /*
2030 * The actual restore operation will happen only after
2031 * the sc_flags bit is cleared. We are just dropping
2032 * the ps_usecount here.
2033 */
2034 ath9k_ps_restore(sc);
2035 }
2036
2037 memset(&txctl, 0, sizeof(struct ath_tx_control));
2038
2039 /*
2040 * As a temporary workaround, assign seq# here; this will likely need
2041 * to be cleaned up to work better with Beacon transmission and virtual
2042 * BSSes.
2043 */
2044 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2045 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2046 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2047 sc->tx.seq_no += 0x10;
2048 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2049 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2050 }
2051
2052 /* Add the padding after the header if this is not already done */
2053 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2054 if (hdrlen & 3) {
2055 padsize = hdrlen % 4;
2056 if (skb_headroom(skb) < padsize)
2057 return -1;
2058 skb_push(skb, padsize);
2059 memmove(skb->data, skb->data + padsize, hdrlen);
2060 }
2061
2062 /* Check if a tx queue is available */
2063
2064 txctl.txq = ath_test_get_txq(sc, skb);
2065 if (!txctl.txq)
2066 goto exit;
2067
2068 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2069
2070 if (ath_tx_start(hw, skb, &txctl) != 0) {
2071 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2072 goto exit;
2073 }
2074
2075 return 0;
2076 exit:
2077 dev_kfree_skb_any(skb);
2078 return 0;
2079 }
2080
2081 static void ath9k_stop(struct ieee80211_hw *hw)
2082 {
2083 struct ath_wiphy *aphy = hw->priv;
2084 struct ath_softc *sc = aphy->sc;
2085
2086 aphy->state = ATH_WIPHY_INACTIVE;
2087
2088 if (sc->sc_flags & SC_OP_INVALID) {
2089 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2090 return;
2091 }
2092
2093 mutex_lock(&sc->mutex);
2094
2095 ieee80211_stop_queues(hw);
2096
2097 if (ath9k_wiphy_started(sc)) {
2098 mutex_unlock(&sc->mutex);
2099 return; /* another wiphy still in use */
2100 }
2101
2102 /* make sure h/w will not generate any interrupt
2103 * before setting the invalid flag. */
2104 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2105
2106 if (!(sc->sc_flags & SC_OP_INVALID)) {
2107 ath_drain_all_txq(sc, false);
2108 ath_stoprecv(sc);
2109 ath9k_hw_phy_disable(sc->sc_ah);
2110 } else
2111 sc->rx.rxlink = NULL;
2112
2113 wiphy_rfkill_stop_polling(sc->hw->wiphy);
2114
2115 /* disable HAL and put h/w to sleep */
2116 ath9k_hw_disable(sc->sc_ah);
2117 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2118
2119 sc->sc_flags |= SC_OP_INVALID;
2120
2121 mutex_unlock(&sc->mutex);
2122
2123 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2124 }
2125
2126 static int ath9k_add_interface(struct ieee80211_hw *hw,
2127 struct ieee80211_if_init_conf *conf)
2128 {
2129 struct ath_wiphy *aphy = hw->priv;
2130 struct ath_softc *sc = aphy->sc;
2131 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2132 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2133 int ret = 0;
2134
2135 mutex_lock(&sc->mutex);
2136
2137 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2138 sc->nvifs > 0) {
2139 ret = -ENOBUFS;
2140 goto out;
2141 }
2142
2143 switch (conf->type) {
2144 case NL80211_IFTYPE_STATION:
2145 ic_opmode = NL80211_IFTYPE_STATION;
2146 break;
2147 case NL80211_IFTYPE_ADHOC:
2148 case NL80211_IFTYPE_AP:
2149 case NL80211_IFTYPE_MESH_POINT:
2150 if (sc->nbcnvifs >= ATH_BCBUF) {
2151 ret = -ENOBUFS;
2152 goto out;
2153 }
2154 ic_opmode = conf->type;
2155 break;
2156 default:
2157 DPRINTF(sc, ATH_DBG_FATAL,
2158 "Interface type %d not yet supported\n", conf->type);
2159 ret = -EOPNOTSUPP;
2160 goto out;
2161 }
2162
2163 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2164
2165 /* Set the VIF opmode */
2166 avp->av_opmode = ic_opmode;
2167 avp->av_bslot = -1;
2168
2169 sc->nvifs++;
2170
2171 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2172 ath9k_set_bssid_mask(hw);
2173
2174 if (sc->nvifs > 1)
2175 goto out; /* skip global settings for secondary vif */
2176
2177 if (ic_opmode == NL80211_IFTYPE_AP) {
2178 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2179 sc->sc_flags |= SC_OP_TSF_RESET;
2180 }
2181
2182 /* Set the device opmode */
2183 sc->sc_ah->opmode = ic_opmode;
2184
2185 /*
2186 * Enable MIB interrupts when there are hardware phy counters.
2187 * Note we only do this (at the moment) for station mode.
2188 */
2189 if ((conf->type == NL80211_IFTYPE_STATION) ||
2190 (conf->type == NL80211_IFTYPE_ADHOC) ||
2191 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2192 if (ath9k_hw_phycounters(sc->sc_ah))
2193 sc->imask |= ATH9K_INT_MIB;
2194 sc->imask |= ATH9K_INT_TSFOOR;
2195 }
2196
2197 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2198
2199 if (conf->type == NL80211_IFTYPE_AP)
2200 ath_start_ani(sc);
2201
2202 out:
2203 mutex_unlock(&sc->mutex);
2204 return ret;
2205 }
2206
2207 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2208 struct ieee80211_if_init_conf *conf)
2209 {
2210 struct ath_wiphy *aphy = hw->priv;
2211 struct ath_softc *sc = aphy->sc;
2212 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2213 int i;
2214
2215 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2216
2217 mutex_lock(&sc->mutex);
2218
2219 /* Stop ANI */
2220 del_timer_sync(&sc->ani.timer);
2221
2222 /* Reclaim beacon resources */
2223 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2224 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2225 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2226 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2227 ath_beacon_return(sc, avp);
2228 }
2229
2230 sc->sc_flags &= ~SC_OP_BEACONS;
2231
2232 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2233 if (sc->beacon.bslot[i] == conf->vif) {
2234 printk(KERN_DEBUG "%s: vif had allocated beacon "
2235 "slot\n", __func__);
2236 sc->beacon.bslot[i] = NULL;
2237 sc->beacon.bslot_aphy[i] = NULL;
2238 }
2239 }
2240
2241 sc->nvifs--;
2242
2243 mutex_unlock(&sc->mutex);
2244 }
2245
2246 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2247 {
2248 struct ath_wiphy *aphy = hw->priv;
2249 struct ath_softc *sc = aphy->sc;
2250 struct ieee80211_conf *conf = &hw->conf;
2251 struct ath_hw *ah = sc->sc_ah;
2252
2253 mutex_lock(&sc->mutex);
2254
2255 if (changed & IEEE80211_CONF_CHANGE_PS) {
2256 if (conf->flags & IEEE80211_CONF_PS) {
2257 if (!(ah->caps.hw_caps &
2258 ATH9K_HW_CAP_AUTOSLEEP)) {
2259 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2260 sc->imask |= ATH9K_INT_TIM_TIMER;
2261 ath9k_hw_set_interrupts(sc->sc_ah,
2262 sc->imask);
2263 }
2264 ath9k_hw_setrxabort(sc->sc_ah, 1);
2265 }
2266 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2267 } else {
2268 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2269 if (!(ah->caps.hw_caps &
2270 ATH9K_HW_CAP_AUTOSLEEP)) {
2271 ath9k_hw_setrxabort(sc->sc_ah, 0);
2272 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2273 SC_OP_WAIT_FOR_CAB |
2274 SC_OP_WAIT_FOR_PSPOLL_DATA |
2275 SC_OP_WAIT_FOR_TX_ACK);
2276 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2277 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2278 ath9k_hw_set_interrupts(sc->sc_ah,
2279 sc->imask);
2280 }
2281 }
2282 }
2283 }
2284
2285 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2286 struct ieee80211_channel *curchan = hw->conf.channel;
2287 int pos = curchan->hw_value;
2288
2289 aphy->chan_idx = pos;
2290 aphy->chan_is_ht = conf_is_ht(conf);
2291
2292 if (aphy->state == ATH_WIPHY_SCAN ||
2293 aphy->state == ATH_WIPHY_ACTIVE)
2294 ath9k_wiphy_pause_all_forced(sc, aphy);
2295 else {
2296 /*
2297 * Do not change operational channel based on a paused
2298 * wiphy changes.
2299 */
2300 goto skip_chan_change;
2301 }
2302
2303 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2304 curchan->center_freq);
2305
2306 /* XXX: remove me eventualy */
2307 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2308
2309 ath_update_chainmask(sc, conf_is_ht(conf));
2310
2311 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2312 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2313 mutex_unlock(&sc->mutex);
2314 return -EINVAL;
2315 }
2316 }
2317
2318 skip_chan_change:
2319 if (changed & IEEE80211_CONF_CHANGE_POWER)
2320 sc->config.txpowlimit = 2 * conf->power_level;
2321
2322 mutex_unlock(&sc->mutex);
2323
2324 return 0;
2325 }
2326
2327 #define SUPPORTED_FILTERS \
2328 (FIF_PROMISC_IN_BSS | \
2329 FIF_ALLMULTI | \
2330 FIF_CONTROL | \
2331 FIF_OTHER_BSS | \
2332 FIF_BCN_PRBRESP_PROMISC | \
2333 FIF_FCSFAIL)
2334
2335 /* FIXME: sc->sc_full_reset ? */
2336 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2337 unsigned int changed_flags,
2338 unsigned int *total_flags,
2339 int mc_count,
2340 struct dev_mc_list *mclist)
2341 {
2342 struct ath_wiphy *aphy = hw->priv;
2343 struct ath_softc *sc = aphy->sc;
2344 u32 rfilt;
2345
2346 changed_flags &= SUPPORTED_FILTERS;
2347 *total_flags &= SUPPORTED_FILTERS;
2348
2349 sc->rx.rxfilter = *total_flags;
2350 ath9k_ps_wakeup(sc);
2351 rfilt = ath_calcrxfilter(sc);
2352 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2353 ath9k_ps_restore(sc);
2354
2355 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2356 }
2357
2358 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2359 struct ieee80211_vif *vif,
2360 enum sta_notify_cmd cmd,
2361 struct ieee80211_sta *sta)
2362 {
2363 struct ath_wiphy *aphy = hw->priv;
2364 struct ath_softc *sc = aphy->sc;
2365
2366 switch (cmd) {
2367 case STA_NOTIFY_ADD:
2368 ath_node_attach(sc, sta);
2369 break;
2370 case STA_NOTIFY_REMOVE:
2371 ath_node_detach(sc, sta);
2372 break;
2373 default:
2374 break;
2375 }
2376 }
2377
2378 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2379 const struct ieee80211_tx_queue_params *params)
2380 {
2381 struct ath_wiphy *aphy = hw->priv;
2382 struct ath_softc *sc = aphy->sc;
2383 struct ath9k_tx_queue_info qi;
2384 int ret = 0, qnum;
2385
2386 if (queue >= WME_NUM_AC)
2387 return 0;
2388
2389 mutex_lock(&sc->mutex);
2390
2391 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2392
2393 qi.tqi_aifs = params->aifs;
2394 qi.tqi_cwmin = params->cw_min;
2395 qi.tqi_cwmax = params->cw_max;
2396 qi.tqi_burstTime = params->txop;
2397 qnum = ath_get_hal_qnum(queue, sc);
2398
2399 DPRINTF(sc, ATH_DBG_CONFIG,
2400 "Configure tx [queue/halq] [%d/%d], "
2401 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2402 queue, qnum, params->aifs, params->cw_min,
2403 params->cw_max, params->txop);
2404
2405 ret = ath_txq_update(sc, qnum, &qi);
2406 if (ret)
2407 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2408
2409 mutex_unlock(&sc->mutex);
2410
2411 return ret;
2412 }
2413
2414 static int ath9k_set_key(struct ieee80211_hw *hw,
2415 enum set_key_cmd cmd,
2416 struct ieee80211_vif *vif,
2417 struct ieee80211_sta *sta,
2418 struct ieee80211_key_conf *key)
2419 {
2420 struct ath_wiphy *aphy = hw->priv;
2421 struct ath_softc *sc = aphy->sc;
2422 int ret = 0;
2423
2424 if (modparam_nohwcrypt)
2425 return -ENOSPC;
2426
2427 mutex_lock(&sc->mutex);
2428 ath9k_ps_wakeup(sc);
2429 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2430
2431 switch (cmd) {
2432 case SET_KEY:
2433 ret = ath_key_config(sc, vif, sta, key);
2434 if (ret >= 0) {
2435 key->hw_key_idx = ret;
2436 /* push IV and Michael MIC generation to stack */
2437 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2438 if (key->alg == ALG_TKIP)
2439 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2440 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2441 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2442 ret = 0;
2443 }
2444 break;
2445 case DISABLE_KEY:
2446 ath_key_delete(sc, key);
2447 break;
2448 default:
2449 ret = -EINVAL;
2450 }
2451
2452 ath9k_ps_restore(sc);
2453 mutex_unlock(&sc->mutex);
2454
2455 return ret;
2456 }
2457
2458 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2459 struct ieee80211_vif *vif,
2460 struct ieee80211_bss_conf *bss_conf,
2461 u32 changed)
2462 {
2463 struct ath_wiphy *aphy = hw->priv;
2464 struct ath_softc *sc = aphy->sc;
2465 struct ath_hw *ah = sc->sc_ah;
2466 struct ath_vif *avp = (void *)vif->drv_priv;
2467 u32 rfilt = 0;
2468 int error, i;
2469
2470 mutex_lock(&sc->mutex);
2471
2472 /*
2473 * TODO: Need to decide which hw opmode to use for
2474 * multi-interface cases
2475 * XXX: This belongs into add_interface!
2476 */
2477 if (vif->type == NL80211_IFTYPE_AP &&
2478 ah->opmode != NL80211_IFTYPE_AP) {
2479 ah->opmode = NL80211_IFTYPE_STATION;
2480 ath9k_hw_setopmode(ah);
2481 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2482 sc->curaid = 0;
2483 ath9k_hw_write_associd(sc);
2484 /* Request full reset to get hw opmode changed properly */
2485 sc->sc_flags |= SC_OP_FULL_RESET;
2486 }
2487
2488 if ((changed & BSS_CHANGED_BSSID) &&
2489 !is_zero_ether_addr(bss_conf->bssid)) {
2490 switch (vif->type) {
2491 case NL80211_IFTYPE_STATION:
2492 case NL80211_IFTYPE_ADHOC:
2493 case NL80211_IFTYPE_MESH_POINT:
2494 /* Set BSSID */
2495 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2496 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2497 sc->curaid = 0;
2498 ath9k_hw_write_associd(sc);
2499
2500 /* Set aggregation protection mode parameters */
2501 sc->config.ath_aggr_prot = 0;
2502
2503 DPRINTF(sc, ATH_DBG_CONFIG,
2504 "RX filter 0x%x bssid %pM aid 0x%x\n",
2505 rfilt, sc->curbssid, sc->curaid);
2506
2507 /* need to reconfigure the beacon */
2508 sc->sc_flags &= ~SC_OP_BEACONS ;
2509
2510 break;
2511 default:
2512 break;
2513 }
2514 }
2515
2516 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2517 (vif->type == NL80211_IFTYPE_AP) ||
2518 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2519 if ((changed & BSS_CHANGED_BEACON) ||
2520 (changed & BSS_CHANGED_BEACON_ENABLED &&
2521 bss_conf->enable_beacon)) {
2522 /*
2523 * Allocate and setup the beacon frame.
2524 *
2525 * Stop any previous beacon DMA. This may be
2526 * necessary, for example, when an ibss merge
2527 * causes reconfiguration; we may be called
2528 * with beacon transmission active.
2529 */
2530 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2531
2532 error = ath_beacon_alloc(aphy, vif);
2533 if (!error)
2534 ath_beacon_config(sc, vif);
2535 }
2536 }
2537
2538 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2539 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2540 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2541 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2542 ath9k_hw_keysetmac(sc->sc_ah,
2543 (u16)i,
2544 sc->curbssid);
2545 }
2546
2547 /* Only legacy IBSS for now */
2548 if (vif->type == NL80211_IFTYPE_ADHOC)
2549 ath_update_chainmask(sc, 0);
2550
2551 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2552 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2553 bss_conf->use_short_preamble);
2554 if (bss_conf->use_short_preamble)
2555 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2556 else
2557 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2558 }
2559
2560 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2561 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2562 bss_conf->use_cts_prot);
2563 if (bss_conf->use_cts_prot &&
2564 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2565 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2566 else
2567 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2568 }
2569
2570 if (changed & BSS_CHANGED_ASSOC) {
2571 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2572 bss_conf->assoc);
2573 ath9k_bss_assoc_info(sc, vif, bss_conf);
2574 }
2575
2576 /*
2577 * The HW TSF has to be reset when the beacon interval changes.
2578 * We set the flag here, and ath_beacon_config_ap() would take this
2579 * into account when it gets called through the subsequent
2580 * config_interface() call - with IFCC_BEACON in the changed field.
2581 */
2582
2583 if (changed & BSS_CHANGED_BEACON_INT) {
2584 sc->sc_flags |= SC_OP_TSF_RESET;
2585 sc->beacon_interval = bss_conf->beacon_int;
2586 }
2587
2588 mutex_unlock(&sc->mutex);
2589 }
2590
2591 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2592 {
2593 u64 tsf;
2594 struct ath_wiphy *aphy = hw->priv;
2595 struct ath_softc *sc = aphy->sc;
2596
2597 mutex_lock(&sc->mutex);
2598 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2599 mutex_unlock(&sc->mutex);
2600
2601 return tsf;
2602 }
2603
2604 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2605 {
2606 struct ath_wiphy *aphy = hw->priv;
2607 struct ath_softc *sc = aphy->sc;
2608
2609 mutex_lock(&sc->mutex);
2610 ath9k_hw_settsf64(sc->sc_ah, tsf);
2611 mutex_unlock(&sc->mutex);
2612 }
2613
2614 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2615 {
2616 struct ath_wiphy *aphy = hw->priv;
2617 struct ath_softc *sc = aphy->sc;
2618
2619 mutex_lock(&sc->mutex);
2620 ath9k_hw_reset_tsf(sc->sc_ah);
2621 mutex_unlock(&sc->mutex);
2622 }
2623
2624 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2625 enum ieee80211_ampdu_mlme_action action,
2626 struct ieee80211_sta *sta,
2627 u16 tid, u16 *ssn)
2628 {
2629 struct ath_wiphy *aphy = hw->priv;
2630 struct ath_softc *sc = aphy->sc;
2631 int ret = 0;
2632
2633 switch (action) {
2634 case IEEE80211_AMPDU_RX_START:
2635 if (!(sc->sc_flags & SC_OP_RXAGGR))
2636 ret = -ENOTSUPP;
2637 break;
2638 case IEEE80211_AMPDU_RX_STOP:
2639 break;
2640 case IEEE80211_AMPDU_TX_START:
2641 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2642 if (ret < 0)
2643 DPRINTF(sc, ATH_DBG_FATAL,
2644 "Unable to start TX aggregation\n");
2645 else
2646 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2647 break;
2648 case IEEE80211_AMPDU_TX_STOP:
2649 ret = ath_tx_aggr_stop(sc, sta, tid);
2650 if (ret < 0)
2651 DPRINTF(sc, ATH_DBG_FATAL,
2652 "Unable to stop TX aggregation\n");
2653
2654 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2655 break;
2656 case IEEE80211_AMPDU_TX_OPERATIONAL:
2657 ath_tx_aggr_resume(sc, sta, tid);
2658 break;
2659 default:
2660 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2661 }
2662
2663 return ret;
2664 }
2665
2666 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2667 {
2668 struct ath_wiphy *aphy = hw->priv;
2669 struct ath_softc *sc = aphy->sc;
2670
2671 if (ath9k_wiphy_scanning(sc)) {
2672 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2673 "same time\n");
2674 /*
2675 * Do not allow the concurrent scanning state for now. This
2676 * could be improved with scanning control moved into ath9k.
2677 */
2678 return;
2679 }
2680
2681 aphy->state = ATH_WIPHY_SCAN;
2682 ath9k_wiphy_pause_all_forced(sc, aphy);
2683
2684 mutex_lock(&sc->mutex);
2685 sc->sc_flags |= SC_OP_SCANNING;
2686 mutex_unlock(&sc->mutex);
2687 }
2688
2689 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2690 {
2691 struct ath_wiphy *aphy = hw->priv;
2692 struct ath_softc *sc = aphy->sc;
2693
2694 mutex_lock(&sc->mutex);
2695 aphy->state = ATH_WIPHY_ACTIVE;
2696 sc->sc_flags &= ~SC_OP_SCANNING;
2697 sc->sc_flags |= SC_OP_FULL_RESET;
2698 mutex_unlock(&sc->mutex);
2699 }
2700
2701 struct ieee80211_ops ath9k_ops = {
2702 .tx = ath9k_tx,
2703 .start = ath9k_start,
2704 .stop = ath9k_stop,
2705 .add_interface = ath9k_add_interface,
2706 .remove_interface = ath9k_remove_interface,
2707 .config = ath9k_config,
2708 .configure_filter = ath9k_configure_filter,
2709 .sta_notify = ath9k_sta_notify,
2710 .conf_tx = ath9k_conf_tx,
2711 .bss_info_changed = ath9k_bss_info_changed,
2712 .set_key = ath9k_set_key,
2713 .get_tsf = ath9k_get_tsf,
2714 .set_tsf = ath9k_set_tsf,
2715 .reset_tsf = ath9k_reset_tsf,
2716 .ampdu_action = ath9k_ampdu_action,
2717 .sw_scan_start = ath9k_sw_scan_start,
2718 .sw_scan_complete = ath9k_sw_scan_complete,
2719 .rfkill_poll = ath9k_rfkill_poll_state,
2720 };
2721
2722 static struct {
2723 u32 version;
2724 const char * name;
2725 } ath_mac_bb_names[] = {
2726 { AR_SREV_VERSION_5416_PCI, "5416" },
2727 { AR_SREV_VERSION_5416_PCIE, "5418" },
2728 { AR_SREV_VERSION_9100, "9100" },
2729 { AR_SREV_VERSION_9160, "9160" },
2730 { AR_SREV_VERSION_9280, "9280" },
2731 { AR_SREV_VERSION_9285, "9285" }
2732 };
2733
2734 static struct {
2735 u16 version;
2736 const char * name;
2737 } ath_rf_names[] = {
2738 { 0, "5133" },
2739 { AR_RAD5133_SREV_MAJOR, "5133" },
2740 { AR_RAD5122_SREV_MAJOR, "5122" },
2741 { AR_RAD2133_SREV_MAJOR, "2133" },
2742 { AR_RAD2122_SREV_MAJOR, "2122" }
2743 };
2744
2745 /*
2746 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2747 */
2748 const char *
2749 ath_mac_bb_name(u32 mac_bb_version)
2750 {
2751 int i;
2752
2753 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2754 if (ath_mac_bb_names[i].version == mac_bb_version) {
2755 return ath_mac_bb_names[i].name;
2756 }
2757 }
2758
2759 return "????";
2760 }
2761
2762 /*
2763 * Return the RF name. "????" is returned if the RF is unknown.
2764 */
2765 const char *
2766 ath_rf_name(u16 rf_version)
2767 {
2768 int i;
2769
2770 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2771 if (ath_rf_names[i].version == rf_version) {
2772 return ath_rf_names[i].name;
2773 }
2774 }
2775
2776 return "????";
2777 }
2778
2779 static int __init ath9k_init(void)
2780 {
2781 int error;
2782
2783 /* Register rate control algorithm */
2784 error = ath_rate_control_register();
2785 if (error != 0) {
2786 printk(KERN_ERR
2787 "ath9k: Unable to register rate control "
2788 "algorithm: %d\n",
2789 error);
2790 goto err_out;
2791 }
2792
2793 error = ath9k_debug_create_root();
2794 if (error) {
2795 printk(KERN_ERR
2796 "ath9k: Unable to create debugfs root: %d\n",
2797 error);
2798 goto err_rate_unregister;
2799 }
2800
2801 error = ath_pci_init();
2802 if (error < 0) {
2803 printk(KERN_ERR
2804 "ath9k: No PCI devices found, driver not installed.\n");
2805 error = -ENODEV;
2806 goto err_remove_root;
2807 }
2808
2809 error = ath_ahb_init();
2810 if (error < 0) {
2811 error = -ENODEV;
2812 goto err_pci_exit;
2813 }
2814
2815 return 0;
2816
2817 err_pci_exit:
2818 ath_pci_exit();
2819
2820 err_remove_root:
2821 ath9k_debug_remove_root();
2822 err_rate_unregister:
2823 ath_rate_control_unregister();
2824 err_out:
2825 return error;
2826 }
2827 module_init(ath9k_init);
2828
2829 static void __exit ath9k_exit(void)
2830 {
2831 ath_ahb_exit();
2832 ath_pci_exit();
2833 ath9k_debug_remove_root();
2834 ath_rate_control_unregister();
2835 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2836 }
2837 module_exit(ath9k_exit);
This page took 0.093685 seconds and 6 git commands to generate.