Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 20, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 20, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
106 {
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
139 }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
146
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
152 }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157 /*
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
167 */
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
187 }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192 const struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
196
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
206 }
207
208 if (rate_table == NULL)
209 return;
210
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
213
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
218
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226 }
227 sband->n_bitrates++;
228
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
231 }
232 }
233
234 /*
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240 struct ath9k_channel *hchan)
241 {
242 struct ath_hw *ah = sc->sc_ah;
243 bool fastcc = true, stopped;
244 struct ieee80211_channel *channel = hw->conf.channel;
245 int r;
246
247 if (sc->sc_flags & SC_OP_INVALID)
248 return -EIO;
249
250 ath9k_ps_wakeup(sc);
251
252 /*
253 * This is only performed if the channel settings have
254 * actually changed.
255 *
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
260 */
261 ath9k_hw_set_interrupts(ah, 0);
262 ath_drain_all_txq(sc, false);
263 stopped = ath_stoprecv(sc);
264
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
268
269 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270 fastcc = false;
271
272 DPRINTF(sc, ATH_DBG_CONFIG,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc->sc_ah->curchan->channel,
275 channel->center_freq, sc->tx_chan_width);
276
277 spin_lock_bh(&sc->sc_resetlock);
278
279 r = ath9k_hw_reset(ah, hchan, fastcc);
280 if (r) {
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "Unable to reset channel (%u Mhz) "
283 "reset status %d\n",
284 channel->center_freq, r);
285 spin_unlock_bh(&sc->sc_resetlock);
286 return r;
287 }
288 spin_unlock_bh(&sc->sc_resetlock);
289
290 sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292 if (ath_startrecv(sc) != 0) {
293 DPRINTF(sc, ATH_DBG_FATAL,
294 "Unable to restart recv logic\n");
295 return -EIO;
296 }
297
298 ath_cache_conf_rate(sc, &hw->conf);
299 ath_update_txpow(sc);
300 ath9k_hw_set_interrupts(ah, sc->imask);
301 ath9k_ps_restore(sc);
302 return 0;
303 }
304
305 /*
306 * This routine performs the periodic noise floor calibration function
307 * that is used to adjust and optimize the chip performance. This
308 * takes environmental changes (location, temperature) into account.
309 * When the task is complete, it reschedules itself depending on the
310 * appropriate interval that was calculated.
311 */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314 struct ath_softc *sc = (struct ath_softc *)data;
315 struct ath_hw *ah = sc->sc_ah;
316 bool longcal = false;
317 bool shortcal = false;
318 bool aniflag = false;
319 unsigned int timestamp = jiffies_to_msecs(jiffies);
320 u32 cal_interval, short_cal_interval;
321
322 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325 /*
326 * don't calibrate when we're scanning.
327 * we are most likely not on our home channel.
328 */
329 if (sc->sc_flags & SC_OP_SCANNING)
330 goto set_timer;
331
332 /* Only calibrate if awake */
333 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
334 goto set_timer;
335
336 ath9k_ps_wakeup(sc);
337
338 /* Long calibration runs independently of short calibration. */
339 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
340 longcal = true;
341 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
342 sc->ani.longcal_timer = timestamp;
343 }
344
345 /* Short calibration applies only while caldone is false */
346 if (!sc->ani.caldone) {
347 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
348 shortcal = true;
349 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
350 sc->ani.shortcal_timer = timestamp;
351 sc->ani.resetcal_timer = timestamp;
352 }
353 } else {
354 if ((timestamp - sc->ani.resetcal_timer) >=
355 ATH_RESTART_CALINTERVAL) {
356 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
357 if (sc->ani.caldone)
358 sc->ani.resetcal_timer = timestamp;
359 }
360 }
361
362 /* Verify whether we must check ANI */
363 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
364 aniflag = true;
365 sc->ani.checkani_timer = timestamp;
366 }
367
368 /* Skip all processing if there's nothing to do. */
369 if (longcal || shortcal || aniflag) {
370 /* Call ANI routine if necessary */
371 if (aniflag)
372 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
373
374 /* Perform calibration if necessary */
375 if (longcal || shortcal) {
376 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
377 sc->rx_chainmask, longcal);
378
379 if (longcal)
380 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
381 ah->curchan);
382
383 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
384 ah->curchan->channel, ah->curchan->channelFlags,
385 sc->ani.noise_floor);
386 }
387 }
388
389 ath9k_ps_restore(sc);
390
391 set_timer:
392 /*
393 * Set timer interval based on previous results.
394 * The interval must be the shortest necessary to satisfy ANI,
395 * short calibration and long calibration.
396 */
397 cal_interval = ATH_LONG_CALINTERVAL;
398 if (sc->sc_ah->config.enable_ani)
399 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
400 if (!sc->ani.caldone)
401 cal_interval = min(cal_interval, (u32)short_cal_interval);
402
403 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
404 }
405
406 static void ath_start_ani(struct ath_softc *sc)
407 {
408 unsigned long timestamp = jiffies_to_msecs(jiffies);
409
410 sc->ani.longcal_timer = timestamp;
411 sc->ani.shortcal_timer = timestamp;
412 sc->ani.checkani_timer = timestamp;
413
414 mod_timer(&sc->ani.timer,
415 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
416 }
417
418 /*
419 * Update tx/rx chainmask. For legacy association,
420 * hard code chainmask to 1x1, for 11n association, use
421 * the chainmask configuration, for bt coexistence, use
422 * the chainmask configuration even in legacy mode.
423 */
424 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
425 {
426 if (is_ht ||
427 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
428 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
429 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
430 } else {
431 sc->tx_chainmask = 1;
432 sc->rx_chainmask = 1;
433 }
434
435 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
436 sc->tx_chainmask, sc->rx_chainmask);
437 }
438
439 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
440 {
441 struct ath_node *an;
442
443 an = (struct ath_node *)sta->drv_priv;
444
445 if (sc->sc_flags & SC_OP_TXAGGR) {
446 ath_tx_node_init(sc, an);
447 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
448 sta->ht_cap.ampdu_factor);
449 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
450 }
451 }
452
453 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
454 {
455 struct ath_node *an = (struct ath_node *)sta->drv_priv;
456
457 if (sc->sc_flags & SC_OP_TXAGGR)
458 ath_tx_node_cleanup(sc, an);
459 }
460
461 static void ath9k_tasklet(unsigned long data)
462 {
463 struct ath_softc *sc = (struct ath_softc *)data;
464 u32 status = sc->intrstatus;
465
466 ath9k_ps_wakeup(sc);
467
468 if (status & ATH9K_INT_FATAL) {
469 ath_reset(sc, false);
470 ath9k_ps_restore(sc);
471 return;
472 }
473
474 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
475 spin_lock_bh(&sc->rx.rxflushlock);
476 ath_rx_tasklet(sc, 0);
477 spin_unlock_bh(&sc->rx.rxflushlock);
478 }
479
480 if (status & ATH9K_INT_TX)
481 ath_tx_tasklet(sc);
482
483 if ((status & ATH9K_INT_TSFOOR) &&
484 (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
485 /*
486 * TSF sync does not look correct; remain awake to sync with
487 * the next Beacon.
488 */
489 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
490 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
491 }
492
493 /* re-enable hardware interrupt */
494 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
495 ath9k_ps_restore(sc);
496 }
497
498 irqreturn_t ath_isr(int irq, void *dev)
499 {
500 #define SCHED_INTR ( \
501 ATH9K_INT_FATAL | \
502 ATH9K_INT_RXORN | \
503 ATH9K_INT_RXEOL | \
504 ATH9K_INT_RX | \
505 ATH9K_INT_TX | \
506 ATH9K_INT_BMISS | \
507 ATH9K_INT_CST | \
508 ATH9K_INT_TSFOOR)
509
510 struct ath_softc *sc = dev;
511 struct ath_hw *ah = sc->sc_ah;
512 enum ath9k_int status;
513 bool sched = false;
514
515 /*
516 * The hardware is not ready/present, don't
517 * touch anything. Note this can happen early
518 * on if the IRQ is shared.
519 */
520 if (sc->sc_flags & SC_OP_INVALID)
521 return IRQ_NONE;
522
523
524 /* shared irq, not for us */
525
526 if (!ath9k_hw_intrpend(ah))
527 return IRQ_NONE;
528
529 /*
530 * Figure out the reason(s) for the interrupt. Note
531 * that the hal returns a pseudo-ISR that may include
532 * bits we haven't explicitly enabled so we mask the
533 * value to insure we only process bits we requested.
534 */
535 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
536 status &= sc->imask; /* discard unasked-for bits */
537
538 /*
539 * If there are no status bits set, then this interrupt was not
540 * for me (should have been caught above).
541 */
542 if (!status)
543 return IRQ_NONE;
544
545 /* Cache the status */
546 sc->intrstatus = status;
547
548 if (status & SCHED_INTR)
549 sched = true;
550
551 /*
552 * If a FATAL or RXORN interrupt is received, we have to reset the
553 * chip immediately.
554 */
555 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
556 goto chip_reset;
557
558 if (status & ATH9K_INT_SWBA)
559 tasklet_schedule(&sc->bcon_tasklet);
560
561 if (status & ATH9K_INT_TXURN)
562 ath9k_hw_updatetxtriglevel(ah, true);
563
564 if (status & ATH9K_INT_MIB) {
565 /*
566 * Disable interrupts until we service the MIB
567 * interrupt; otherwise it will continue to
568 * fire.
569 */
570 ath9k_hw_set_interrupts(ah, 0);
571 /*
572 * Let the hal handle the event. We assume
573 * it will clear whatever condition caused
574 * the interrupt.
575 */
576 ath9k_hw_procmibevent(ah, &sc->nodestats);
577 ath9k_hw_set_interrupts(ah, sc->imask);
578 }
579
580 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
581 if (status & ATH9K_INT_TIM_TIMER) {
582 /* Clear RxAbort bit so that we can
583 * receive frames */
584 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
585 ath9k_hw_setrxabort(sc->sc_ah, 0);
586 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
587 }
588
589 chip_reset:
590
591 ath_debug_stat_interrupt(sc, status);
592
593 if (sched) {
594 /* turn off every interrupt except SWBA */
595 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
596 tasklet_schedule(&sc->intr_tq);
597 }
598
599 return IRQ_HANDLED;
600
601 #undef SCHED_INTR
602 }
603
604 static u32 ath_get_extchanmode(struct ath_softc *sc,
605 struct ieee80211_channel *chan,
606 enum nl80211_channel_type channel_type)
607 {
608 u32 chanmode = 0;
609
610 switch (chan->band) {
611 case IEEE80211_BAND_2GHZ:
612 switch(channel_type) {
613 case NL80211_CHAN_NO_HT:
614 case NL80211_CHAN_HT20:
615 chanmode = CHANNEL_G_HT20;
616 break;
617 case NL80211_CHAN_HT40PLUS:
618 chanmode = CHANNEL_G_HT40PLUS;
619 break;
620 case NL80211_CHAN_HT40MINUS:
621 chanmode = CHANNEL_G_HT40MINUS;
622 break;
623 }
624 break;
625 case IEEE80211_BAND_5GHZ:
626 switch(channel_type) {
627 case NL80211_CHAN_NO_HT:
628 case NL80211_CHAN_HT20:
629 chanmode = CHANNEL_A_HT20;
630 break;
631 case NL80211_CHAN_HT40PLUS:
632 chanmode = CHANNEL_A_HT40PLUS;
633 break;
634 case NL80211_CHAN_HT40MINUS:
635 chanmode = CHANNEL_A_HT40MINUS;
636 break;
637 }
638 break;
639 default:
640 break;
641 }
642
643 return chanmode;
644 }
645
646 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
647 struct ath9k_keyval *hk, const u8 *addr,
648 bool authenticator)
649 {
650 const u8 *key_rxmic;
651 const u8 *key_txmic;
652
653 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
654 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
655
656 if (addr == NULL) {
657 /*
658 * Group key installation - only two key cache entries are used
659 * regardless of splitmic capability since group key is only
660 * used either for TX or RX.
661 */
662 if (authenticator) {
663 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
664 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
665 } else {
666 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
668 }
669 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
670 }
671 if (!sc->splitmic) {
672 /* TX and RX keys share the same key cache entry. */
673 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
674 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
675 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
676 }
677
678 /* Separate key cache entries for TX and RX */
679
680 /* TX key goes at first index, RX key at +32. */
681 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
682 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
683 /* TX MIC entry failed. No need to proceed further */
684 DPRINTF(sc, ATH_DBG_FATAL,
685 "Setting TX MIC Key Failed\n");
686 return 0;
687 }
688
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 /* XXX delete tx key on failure? */
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
692 }
693
694 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
695 {
696 int i;
697
698 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
699 if (test_bit(i, sc->keymap) ||
700 test_bit(i + 64, sc->keymap))
701 continue; /* At least one part of TKIP key allocated */
702 if (sc->splitmic &&
703 (test_bit(i + 32, sc->keymap) ||
704 test_bit(i + 64 + 32, sc->keymap)))
705 continue; /* At least one part of TKIP key allocated */
706
707 /* Found a free slot for a TKIP key */
708 return i;
709 }
710 return -1;
711 }
712
713 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
714 {
715 int i;
716
717 /* First, try to find slots that would not be available for TKIP. */
718 if (sc->splitmic) {
719 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
720 if (!test_bit(i, sc->keymap) &&
721 (test_bit(i + 32, sc->keymap) ||
722 test_bit(i + 64, sc->keymap) ||
723 test_bit(i + 64 + 32, sc->keymap)))
724 return i;
725 if (!test_bit(i + 32, sc->keymap) &&
726 (test_bit(i, sc->keymap) ||
727 test_bit(i + 64, sc->keymap) ||
728 test_bit(i + 64 + 32, sc->keymap)))
729 return i + 32;
730 if (!test_bit(i + 64, sc->keymap) &&
731 (test_bit(i , sc->keymap) ||
732 test_bit(i + 32, sc->keymap) ||
733 test_bit(i + 64 + 32, sc->keymap)))
734 return i + 64;
735 if (!test_bit(i + 64 + 32, sc->keymap) &&
736 (test_bit(i, sc->keymap) ||
737 test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap)))
739 return i + 64 + 32;
740 }
741 } else {
742 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
743 if (!test_bit(i, sc->keymap) &&
744 test_bit(i + 64, sc->keymap))
745 return i;
746 if (test_bit(i, sc->keymap) &&
747 !test_bit(i + 64, sc->keymap))
748 return i + 64;
749 }
750 }
751
752 /* No partially used TKIP slots, pick any available slot */
753 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
754 /* Do not allow slots that could be needed for TKIP group keys
755 * to be used. This limitation could be removed if we know that
756 * TKIP will not be used. */
757 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
758 continue;
759 if (sc->splitmic) {
760 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
761 continue;
762 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
763 continue;
764 }
765
766 if (!test_bit(i, sc->keymap))
767 return i; /* Found a free slot for a key */
768 }
769
770 /* No free slot found */
771 return -1;
772 }
773
774 static int ath_key_config(struct ath_softc *sc,
775 struct ieee80211_vif *vif,
776 struct ieee80211_sta *sta,
777 struct ieee80211_key_conf *key)
778 {
779 struct ath9k_keyval hk;
780 const u8 *mac = NULL;
781 int ret = 0;
782 int idx;
783
784 memset(&hk, 0, sizeof(hk));
785
786 switch (key->alg) {
787 case ALG_WEP:
788 hk.kv_type = ATH9K_CIPHER_WEP;
789 break;
790 case ALG_TKIP:
791 hk.kv_type = ATH9K_CIPHER_TKIP;
792 break;
793 case ALG_CCMP:
794 hk.kv_type = ATH9K_CIPHER_AES_CCM;
795 break;
796 default:
797 return -EOPNOTSUPP;
798 }
799
800 hk.kv_len = key->keylen;
801 memcpy(hk.kv_val, key->key, key->keylen);
802
803 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
804 /* For now, use the default keys for broadcast keys. This may
805 * need to change with virtual interfaces. */
806 idx = key->keyidx;
807 } else if (key->keyidx) {
808 if (WARN_ON(!sta))
809 return -EOPNOTSUPP;
810 mac = sta->addr;
811
812 if (vif->type != NL80211_IFTYPE_AP) {
813 /* Only keyidx 0 should be used with unicast key, but
814 * allow this for client mode for now. */
815 idx = key->keyidx;
816 } else
817 return -EIO;
818 } else {
819 if (WARN_ON(!sta))
820 return -EOPNOTSUPP;
821 mac = sta->addr;
822
823 if (key->alg == ALG_TKIP)
824 idx = ath_reserve_key_cache_slot_tkip(sc);
825 else
826 idx = ath_reserve_key_cache_slot(sc);
827 if (idx < 0)
828 return -ENOSPC; /* no free key cache entries */
829 }
830
831 if (key->alg == ALG_TKIP)
832 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
833 vif->type == NL80211_IFTYPE_AP);
834 else
835 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
836
837 if (!ret)
838 return -EIO;
839
840 set_bit(idx, sc->keymap);
841 if (key->alg == ALG_TKIP) {
842 set_bit(idx + 64, sc->keymap);
843 if (sc->splitmic) {
844 set_bit(idx + 32, sc->keymap);
845 set_bit(idx + 64 + 32, sc->keymap);
846 }
847 }
848
849 return idx;
850 }
851
852 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
853 {
854 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
855 if (key->hw_key_idx < IEEE80211_WEP_NKID)
856 return;
857
858 clear_bit(key->hw_key_idx, sc->keymap);
859 if (key->alg != ALG_TKIP)
860 return;
861
862 clear_bit(key->hw_key_idx + 64, sc->keymap);
863 if (sc->splitmic) {
864 clear_bit(key->hw_key_idx + 32, sc->keymap);
865 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
866 }
867 }
868
869 static void setup_ht_cap(struct ath_softc *sc,
870 struct ieee80211_sta_ht_cap *ht_info)
871 {
872 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
873 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
874
875 ht_info->ht_supported = true;
876 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
877 IEEE80211_HT_CAP_SM_PS |
878 IEEE80211_HT_CAP_SGI_40 |
879 IEEE80211_HT_CAP_DSSSCCK40;
880
881 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
882 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
883
884 /* set up supported mcs set */
885 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
886
887 switch(sc->rx_chainmask) {
888 case 1:
889 ht_info->mcs.rx_mask[0] = 0xff;
890 break;
891 case 3:
892 case 5:
893 case 7:
894 default:
895 ht_info->mcs.rx_mask[0] = 0xff;
896 ht_info->mcs.rx_mask[1] = 0xff;
897 break;
898 }
899
900 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
901 }
902
903 static void ath9k_bss_assoc_info(struct ath_softc *sc,
904 struct ieee80211_vif *vif,
905 struct ieee80211_bss_conf *bss_conf)
906 {
907 struct ath_vif *avp = (void *)vif->drv_priv;
908
909 if (bss_conf->assoc) {
910 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
911 bss_conf->aid, sc->curbssid);
912
913 /* New association, store aid */
914 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
915 sc->curaid = bss_conf->aid;
916 ath9k_hw_write_associd(sc);
917
918 /*
919 * Request a re-configuration of Beacon related timers
920 * on the receipt of the first Beacon frame (i.e.,
921 * after time sync with the AP).
922 */
923 sc->sc_flags |= SC_OP_BEACON_SYNC;
924 }
925
926 /* Configure the beacon */
927 ath_beacon_config(sc, vif);
928
929 /* Reset rssi stats */
930 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
931 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
932 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
933 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
934
935 ath_start_ani(sc);
936 } else {
937 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
938 sc->curaid = 0;
939 }
940 }
941
942 /********************************/
943 /* LED functions */
944 /********************************/
945
946 static void ath_led_blink_work(struct work_struct *work)
947 {
948 struct ath_softc *sc = container_of(work, struct ath_softc,
949 ath_led_blink_work.work);
950
951 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
952 return;
953
954 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
955 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
956 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
957 else
958 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
959 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
960
961 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
962 (sc->sc_flags & SC_OP_LED_ON) ?
963 msecs_to_jiffies(sc->led_off_duration) :
964 msecs_to_jiffies(sc->led_on_duration));
965
966 sc->led_on_duration = sc->led_on_cnt ?
967 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
968 ATH_LED_ON_DURATION_IDLE;
969 sc->led_off_duration = sc->led_off_cnt ?
970 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
971 ATH_LED_OFF_DURATION_IDLE;
972 sc->led_on_cnt = sc->led_off_cnt = 0;
973 if (sc->sc_flags & SC_OP_LED_ON)
974 sc->sc_flags &= ~SC_OP_LED_ON;
975 else
976 sc->sc_flags |= SC_OP_LED_ON;
977 }
978
979 static void ath_led_brightness(struct led_classdev *led_cdev,
980 enum led_brightness brightness)
981 {
982 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
983 struct ath_softc *sc = led->sc;
984
985 switch (brightness) {
986 case LED_OFF:
987 if (led->led_type == ATH_LED_ASSOC ||
988 led->led_type == ATH_LED_RADIO) {
989 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
990 (led->led_type == ATH_LED_RADIO));
991 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
992 if (led->led_type == ATH_LED_RADIO)
993 sc->sc_flags &= ~SC_OP_LED_ON;
994 } else {
995 sc->led_off_cnt++;
996 }
997 break;
998 case LED_FULL:
999 if (led->led_type == ATH_LED_ASSOC) {
1000 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1001 queue_delayed_work(sc->hw->workqueue,
1002 &sc->ath_led_blink_work, 0);
1003 } else if (led->led_type == ATH_LED_RADIO) {
1004 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1005 sc->sc_flags |= SC_OP_LED_ON;
1006 } else {
1007 sc->led_on_cnt++;
1008 }
1009 break;
1010 default:
1011 break;
1012 }
1013 }
1014
1015 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1016 char *trigger)
1017 {
1018 int ret;
1019
1020 led->sc = sc;
1021 led->led_cdev.name = led->name;
1022 led->led_cdev.default_trigger = trigger;
1023 led->led_cdev.brightness_set = ath_led_brightness;
1024
1025 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1026 if (ret)
1027 DPRINTF(sc, ATH_DBG_FATAL,
1028 "Failed to register led:%s", led->name);
1029 else
1030 led->registered = 1;
1031 return ret;
1032 }
1033
1034 static void ath_unregister_led(struct ath_led *led)
1035 {
1036 if (led->registered) {
1037 led_classdev_unregister(&led->led_cdev);
1038 led->registered = 0;
1039 }
1040 }
1041
1042 static void ath_deinit_leds(struct ath_softc *sc)
1043 {
1044 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1045 ath_unregister_led(&sc->assoc_led);
1046 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1047 ath_unregister_led(&sc->tx_led);
1048 ath_unregister_led(&sc->rx_led);
1049 ath_unregister_led(&sc->radio_led);
1050 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1051 }
1052
1053 static void ath_init_leds(struct ath_softc *sc)
1054 {
1055 char *trigger;
1056 int ret;
1057
1058 /* Configure gpio 1 for output */
1059 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1060 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1061 /* LED off, active low */
1062 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1063
1064 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1065
1066 trigger = ieee80211_get_radio_led_name(sc->hw);
1067 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1068 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1069 ret = ath_register_led(sc, &sc->radio_led, trigger);
1070 sc->radio_led.led_type = ATH_LED_RADIO;
1071 if (ret)
1072 goto fail;
1073
1074 trigger = ieee80211_get_assoc_led_name(sc->hw);
1075 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1076 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1077 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1078 sc->assoc_led.led_type = ATH_LED_ASSOC;
1079 if (ret)
1080 goto fail;
1081
1082 trigger = ieee80211_get_tx_led_name(sc->hw);
1083 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1084 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1085 ret = ath_register_led(sc, &sc->tx_led, trigger);
1086 sc->tx_led.led_type = ATH_LED_TX;
1087 if (ret)
1088 goto fail;
1089
1090 trigger = ieee80211_get_rx_led_name(sc->hw);
1091 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1092 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1093 ret = ath_register_led(sc, &sc->rx_led, trigger);
1094 sc->rx_led.led_type = ATH_LED_RX;
1095 if (ret)
1096 goto fail;
1097
1098 return;
1099
1100 fail:
1101 ath_deinit_leds(sc);
1102 }
1103
1104 void ath_radio_enable(struct ath_softc *sc)
1105 {
1106 struct ath_hw *ah = sc->sc_ah;
1107 struct ieee80211_channel *channel = sc->hw->conf.channel;
1108 int r;
1109
1110 ath9k_ps_wakeup(sc);
1111 ath9k_hw_configpcipowersave(ah, 0);
1112
1113 spin_lock_bh(&sc->sc_resetlock);
1114 r = ath9k_hw_reset(ah, ah->curchan, false);
1115 if (r) {
1116 DPRINTF(sc, ATH_DBG_FATAL,
1117 "Unable to reset channel %u (%uMhz) ",
1118 "reset status %d\n",
1119 channel->center_freq, r);
1120 }
1121 spin_unlock_bh(&sc->sc_resetlock);
1122
1123 ath_update_txpow(sc);
1124 if (ath_startrecv(sc) != 0) {
1125 DPRINTF(sc, ATH_DBG_FATAL,
1126 "Unable to restart recv logic\n");
1127 return;
1128 }
1129
1130 if (sc->sc_flags & SC_OP_BEACONS)
1131 ath_beacon_config(sc, NULL); /* restart beacons */
1132
1133 /* Re-Enable interrupts */
1134 ath9k_hw_set_interrupts(ah, sc->imask);
1135
1136 /* Enable LED */
1137 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1138 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1139 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1140
1141 ieee80211_wake_queues(sc->hw);
1142 ath9k_ps_restore(sc);
1143 }
1144
1145 void ath_radio_disable(struct ath_softc *sc)
1146 {
1147 struct ath_hw *ah = sc->sc_ah;
1148 struct ieee80211_channel *channel = sc->hw->conf.channel;
1149 int r;
1150
1151 ath9k_ps_wakeup(sc);
1152 ieee80211_stop_queues(sc->hw);
1153
1154 /* Disable LED */
1155 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1156 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1157
1158 /* Disable interrupts */
1159 ath9k_hw_set_interrupts(ah, 0);
1160
1161 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1162 ath_stoprecv(sc); /* turn off frame recv */
1163 ath_flushrecv(sc); /* flush recv queue */
1164
1165 spin_lock_bh(&sc->sc_resetlock);
1166 r = ath9k_hw_reset(ah, ah->curchan, false);
1167 if (r) {
1168 DPRINTF(sc, ATH_DBG_FATAL,
1169 "Unable to reset channel %u (%uMhz) "
1170 "reset status %d\n",
1171 channel->center_freq, r);
1172 }
1173 spin_unlock_bh(&sc->sc_resetlock);
1174
1175 ath9k_hw_phy_disable(ah);
1176 ath9k_hw_configpcipowersave(ah, 1);
1177 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1178 ath9k_ps_restore(sc);
1179 }
1180
1181 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1182
1183 /*******************/
1184 /* Rfkill */
1185 /*******************/
1186
1187 static bool ath_is_rfkill_set(struct ath_softc *sc)
1188 {
1189 struct ath_hw *ah = sc->sc_ah;
1190
1191 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1192 ah->rfkill_polarity;
1193 }
1194
1195 /* h/w rfkill poll function */
1196 static void ath_rfkill_poll(struct work_struct *work)
1197 {
1198 struct ath_softc *sc = container_of(work, struct ath_softc,
1199 rf_kill.rfkill_poll.work);
1200 bool radio_on;
1201
1202 if (sc->sc_flags & SC_OP_INVALID)
1203 return;
1204
1205 radio_on = !ath_is_rfkill_set(sc);
1206
1207 /*
1208 * enable/disable radio only when there is a
1209 * state change in RF switch
1210 */
1211 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1212 enum rfkill_state state;
1213
1214 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1215 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1216 : RFKILL_STATE_HARD_BLOCKED;
1217 } else if (radio_on) {
1218 ath_radio_enable(sc);
1219 state = RFKILL_STATE_UNBLOCKED;
1220 } else {
1221 ath_radio_disable(sc);
1222 state = RFKILL_STATE_HARD_BLOCKED;
1223 }
1224
1225 if (state == RFKILL_STATE_HARD_BLOCKED)
1226 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1227 else
1228 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1229
1230 rfkill_force_state(sc->rf_kill.rfkill, state);
1231 }
1232
1233 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1234 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1235 }
1236
1237 /* s/w rfkill handler */
1238 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1239 {
1240 struct ath_softc *sc = data;
1241
1242 switch (state) {
1243 case RFKILL_STATE_SOFT_BLOCKED:
1244 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1245 SC_OP_RFKILL_SW_BLOCKED)))
1246 ath_radio_disable(sc);
1247 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1248 return 0;
1249 case RFKILL_STATE_UNBLOCKED:
1250 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1251 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1252 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1253 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1254 "radio as it is disabled by h/w\n");
1255 return -EPERM;
1256 }
1257 ath_radio_enable(sc);
1258 }
1259 return 0;
1260 default:
1261 return -EINVAL;
1262 }
1263 }
1264
1265 /* Init s/w rfkill */
1266 static int ath_init_sw_rfkill(struct ath_softc *sc)
1267 {
1268 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1269 RFKILL_TYPE_WLAN);
1270 if (!sc->rf_kill.rfkill) {
1271 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1272 return -ENOMEM;
1273 }
1274
1275 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1276 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1277 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1278 sc->rf_kill.rfkill->data = sc;
1279 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1280 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1281
1282 return 0;
1283 }
1284
1285 /* Deinitialize rfkill */
1286 static void ath_deinit_rfkill(struct ath_softc *sc)
1287 {
1288 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1289 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1290
1291 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1292 rfkill_unregister(sc->rf_kill.rfkill);
1293 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1294 sc->rf_kill.rfkill = NULL;
1295 }
1296 }
1297
1298 static int ath_start_rfkill_poll(struct ath_softc *sc)
1299 {
1300 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1301 queue_delayed_work(sc->hw->workqueue,
1302 &sc->rf_kill.rfkill_poll, 0);
1303
1304 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1305 if (rfkill_register(sc->rf_kill.rfkill)) {
1306 DPRINTF(sc, ATH_DBG_FATAL,
1307 "Unable to register rfkill\n");
1308 rfkill_free(sc->rf_kill.rfkill);
1309
1310 /* Deinitialize the device */
1311 ath_cleanup(sc);
1312 return -EIO;
1313 } else {
1314 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1315 }
1316 }
1317
1318 return 0;
1319 }
1320 #endif /* CONFIG_RFKILL */
1321
1322 void ath_cleanup(struct ath_softc *sc)
1323 {
1324 ath_detach(sc);
1325 free_irq(sc->irq, sc);
1326 ath_bus_cleanup(sc);
1327 kfree(sc->sec_wiphy);
1328 ieee80211_free_hw(sc->hw);
1329 }
1330
1331 void ath_detach(struct ath_softc *sc)
1332 {
1333 struct ieee80211_hw *hw = sc->hw;
1334 int i = 0;
1335
1336 ath9k_ps_wakeup(sc);
1337
1338 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1339
1340 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1341 ath_deinit_rfkill(sc);
1342 #endif
1343 ath_deinit_leds(sc);
1344 cancel_work_sync(&sc->chan_work);
1345 cancel_delayed_work_sync(&sc->wiphy_work);
1346
1347 for (i = 0; i < sc->num_sec_wiphy; i++) {
1348 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1349 if (aphy == NULL)
1350 continue;
1351 sc->sec_wiphy[i] = NULL;
1352 ieee80211_unregister_hw(aphy->hw);
1353 ieee80211_free_hw(aphy->hw);
1354 }
1355 ieee80211_unregister_hw(hw);
1356 ath_rx_cleanup(sc);
1357 ath_tx_cleanup(sc);
1358
1359 tasklet_kill(&sc->intr_tq);
1360 tasklet_kill(&sc->bcon_tasklet);
1361
1362 if (!(sc->sc_flags & SC_OP_INVALID))
1363 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1364
1365 /* cleanup tx queues */
1366 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1367 if (ATH_TXQ_SETUP(sc, i))
1368 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1369
1370 ath9k_hw_detach(sc->sc_ah);
1371 ath9k_exit_debug(sc);
1372 ath9k_ps_restore(sc);
1373 }
1374
1375 static int ath9k_reg_notifier(struct wiphy *wiphy,
1376 struct regulatory_request *request)
1377 {
1378 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1379 struct ath_wiphy *aphy = hw->priv;
1380 struct ath_softc *sc = aphy->sc;
1381 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1382
1383 return ath_reg_notifier_apply(wiphy, request, reg);
1384 }
1385
1386 static int ath_init(u16 devid, struct ath_softc *sc)
1387 {
1388 struct ath_hw *ah = NULL;
1389 int status;
1390 int error = 0, i;
1391 int csz = 0;
1392
1393 /* XXX: hardware will not be ready until ath_open() being called */
1394 sc->sc_flags |= SC_OP_INVALID;
1395
1396 if (ath9k_init_debug(sc) < 0)
1397 printk(KERN_ERR "Unable to create debugfs files\n");
1398
1399 spin_lock_init(&sc->wiphy_lock);
1400 spin_lock_init(&sc->sc_resetlock);
1401 spin_lock_init(&sc->sc_serial_rw);
1402 mutex_init(&sc->mutex);
1403 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1404 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1405 (unsigned long)sc);
1406
1407 /*
1408 * Cache line size is used to size and align various
1409 * structures used to communicate with the hardware.
1410 */
1411 ath_read_cachesize(sc, &csz);
1412 /* XXX assert csz is non-zero */
1413 sc->cachelsz = csz << 2; /* convert to bytes */
1414
1415 ah = ath9k_hw_attach(devid, sc, &status);
1416 if (ah == NULL) {
1417 DPRINTF(sc, ATH_DBG_FATAL,
1418 "Unable to attach hardware; HAL status %d\n", status);
1419 error = -ENXIO;
1420 goto bad;
1421 }
1422 sc->sc_ah = ah;
1423
1424 /* Get the hardware key cache size. */
1425 sc->keymax = ah->caps.keycache_size;
1426 if (sc->keymax > ATH_KEYMAX) {
1427 DPRINTF(sc, ATH_DBG_ANY,
1428 "Warning, using only %u entries in %u key cache\n",
1429 ATH_KEYMAX, sc->keymax);
1430 sc->keymax = ATH_KEYMAX;
1431 }
1432
1433 /*
1434 * Reset the key cache since some parts do not
1435 * reset the contents on initial power up.
1436 */
1437 for (i = 0; i < sc->keymax; i++)
1438 ath9k_hw_keyreset(ah, (u16) i);
1439
1440 if (error)
1441 goto bad;
1442
1443 /* default to MONITOR mode */
1444 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1445
1446 /* Setup rate tables */
1447
1448 ath_rate_attach(sc);
1449 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1450 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1451
1452 /*
1453 * Allocate hardware transmit queues: one queue for
1454 * beacon frames and one data queue for each QoS
1455 * priority. Note that the hal handles reseting
1456 * these queues at the needed time.
1457 */
1458 sc->beacon.beaconq = ath_beaconq_setup(ah);
1459 if (sc->beacon.beaconq == -1) {
1460 DPRINTF(sc, ATH_DBG_FATAL,
1461 "Unable to setup a beacon xmit queue\n");
1462 error = -EIO;
1463 goto bad2;
1464 }
1465 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1466 if (sc->beacon.cabq == NULL) {
1467 DPRINTF(sc, ATH_DBG_FATAL,
1468 "Unable to setup CAB xmit queue\n");
1469 error = -EIO;
1470 goto bad2;
1471 }
1472
1473 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1474 ath_cabq_update(sc);
1475
1476 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1477 sc->tx.hwq_map[i] = -1;
1478
1479 /* Setup data queues */
1480 /* NB: ensure BK queue is the lowest priority h/w queue */
1481 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1482 DPRINTF(sc, ATH_DBG_FATAL,
1483 "Unable to setup xmit queue for BK traffic\n");
1484 error = -EIO;
1485 goto bad2;
1486 }
1487
1488 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1489 DPRINTF(sc, ATH_DBG_FATAL,
1490 "Unable to setup xmit queue for BE traffic\n");
1491 error = -EIO;
1492 goto bad2;
1493 }
1494 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1495 DPRINTF(sc, ATH_DBG_FATAL,
1496 "Unable to setup xmit queue for VI traffic\n");
1497 error = -EIO;
1498 goto bad2;
1499 }
1500 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1501 DPRINTF(sc, ATH_DBG_FATAL,
1502 "Unable to setup xmit queue for VO traffic\n");
1503 error = -EIO;
1504 goto bad2;
1505 }
1506
1507 /* Initializes the noise floor to a reasonable default value.
1508 * Later on this will be updated during ANI processing. */
1509
1510 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1511 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1512
1513 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1514 ATH9K_CIPHER_TKIP, NULL)) {
1515 /*
1516 * Whether we should enable h/w TKIP MIC.
1517 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1518 * report WMM capable, so it's always safe to turn on
1519 * TKIP MIC in this case.
1520 */
1521 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1522 0, 1, NULL);
1523 }
1524
1525 /*
1526 * Check whether the separate key cache entries
1527 * are required to handle both tx+rx MIC keys.
1528 * With split mic keys the number of stations is limited
1529 * to 27 otherwise 59.
1530 */
1531 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1532 ATH9K_CIPHER_TKIP, NULL)
1533 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1534 ATH9K_CIPHER_MIC, NULL)
1535 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1536 0, NULL))
1537 sc->splitmic = 1;
1538
1539 /* turn on mcast key search if possible */
1540 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1541 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1542 1, NULL);
1543
1544 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1545
1546 /* 11n Capabilities */
1547 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1548 sc->sc_flags |= SC_OP_TXAGGR;
1549 sc->sc_flags |= SC_OP_RXAGGR;
1550 }
1551
1552 sc->tx_chainmask = ah->caps.tx_chainmask;
1553 sc->rx_chainmask = ah->caps.rx_chainmask;
1554
1555 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1556 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1557
1558 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1559 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1560
1561 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1562
1563 /* initialize beacon slots */
1564 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1565 sc->beacon.bslot[i] = NULL;
1566 sc->beacon.bslot_aphy[i] = NULL;
1567 }
1568
1569 /* setup channels and rates */
1570
1571 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1572 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1573 sc->rates[IEEE80211_BAND_2GHZ];
1574 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1575 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1576 ARRAY_SIZE(ath9k_2ghz_chantable);
1577
1578 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1579 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1580 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1581 sc->rates[IEEE80211_BAND_5GHZ];
1582 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1583 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1584 ARRAY_SIZE(ath9k_5ghz_chantable);
1585 }
1586
1587 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1588 ath9k_hw_btcoex_enable(sc->sc_ah);
1589
1590 return 0;
1591 bad2:
1592 /* cleanup tx queues */
1593 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1594 if (ATH_TXQ_SETUP(sc, i))
1595 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1596 bad:
1597 if (ah)
1598 ath9k_hw_detach(ah);
1599 ath9k_exit_debug(sc);
1600
1601 return error;
1602 }
1603
1604 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1605 {
1606 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1607 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1608 IEEE80211_HW_SIGNAL_DBM |
1609 IEEE80211_HW_AMPDU_AGGREGATION |
1610 IEEE80211_HW_SUPPORTS_PS |
1611 IEEE80211_HW_PS_NULLFUNC_STACK |
1612 IEEE80211_HW_SPECTRUM_MGMT;
1613
1614 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1615 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1616
1617 hw->wiphy->interface_modes =
1618 BIT(NL80211_IFTYPE_AP) |
1619 BIT(NL80211_IFTYPE_STATION) |
1620 BIT(NL80211_IFTYPE_ADHOC) |
1621 BIT(NL80211_IFTYPE_MESH_POINT);
1622
1623 hw->queues = 4;
1624 hw->max_rates = 4;
1625 hw->channel_change_time = 5000;
1626 hw->max_listen_interval = 10;
1627 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1628 hw->sta_data_size = sizeof(struct ath_node);
1629 hw->vif_data_size = sizeof(struct ath_vif);
1630
1631 hw->rate_control_algorithm = "ath9k_rate_control";
1632
1633 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1634 &sc->sbands[IEEE80211_BAND_2GHZ];
1635 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1636 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1637 &sc->sbands[IEEE80211_BAND_5GHZ];
1638 }
1639
1640 int ath_attach(u16 devid, struct ath_softc *sc)
1641 {
1642 struct ieee80211_hw *hw = sc->hw;
1643 int error = 0, i;
1644 struct ath_regulatory *reg;
1645
1646 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1647
1648 error = ath_init(devid, sc);
1649 if (error != 0)
1650 return error;
1651
1652 /* get mac address from hardware and set in mac80211 */
1653
1654 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1655
1656 ath_set_hw_capab(sc, hw);
1657
1658 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1659 ath9k_reg_notifier);
1660 if (error)
1661 return error;
1662
1663 reg = &sc->sc_ah->regulatory;
1664
1665 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1666 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1667 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1668 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1669 }
1670
1671 /* initialize tx/rx engine */
1672 error = ath_tx_init(sc, ATH_TXBUF);
1673 if (error != 0)
1674 goto error_attach;
1675
1676 error = ath_rx_init(sc, ATH_RXBUF);
1677 if (error != 0)
1678 goto error_attach;
1679
1680 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1681 /* Initialze h/w Rfkill */
1682 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1683 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1684
1685 /* Initialize s/w rfkill */
1686 error = ath_init_sw_rfkill(sc);
1687 if (error)
1688 goto error_attach;
1689 #endif
1690
1691 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1692 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1693 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1694
1695 error = ieee80211_register_hw(hw);
1696
1697 if (!ath_is_world_regd(reg)) {
1698 error = regulatory_hint(hw->wiphy, reg->alpha2);
1699 if (error)
1700 goto error_attach;
1701 }
1702
1703 /* Initialize LED control */
1704 ath_init_leds(sc);
1705
1706
1707 return 0;
1708
1709 error_attach:
1710 /* cleanup tx queues */
1711 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1712 if (ATH_TXQ_SETUP(sc, i))
1713 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1714
1715 ath9k_hw_detach(sc->sc_ah);
1716 ath9k_exit_debug(sc);
1717
1718 return error;
1719 }
1720
1721 int ath_reset(struct ath_softc *sc, bool retry_tx)
1722 {
1723 struct ath_hw *ah = sc->sc_ah;
1724 struct ieee80211_hw *hw = sc->hw;
1725 int r;
1726
1727 ath9k_hw_set_interrupts(ah, 0);
1728 ath_drain_all_txq(sc, retry_tx);
1729 ath_stoprecv(sc);
1730 ath_flushrecv(sc);
1731
1732 spin_lock_bh(&sc->sc_resetlock);
1733 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1734 if (r)
1735 DPRINTF(sc, ATH_DBG_FATAL,
1736 "Unable to reset hardware; reset status %d\n", r);
1737 spin_unlock_bh(&sc->sc_resetlock);
1738
1739 if (ath_startrecv(sc) != 0)
1740 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1741
1742 /*
1743 * We may be doing a reset in response to a request
1744 * that changes the channel so update any state that
1745 * might change as a result.
1746 */
1747 ath_cache_conf_rate(sc, &hw->conf);
1748
1749 ath_update_txpow(sc);
1750
1751 if (sc->sc_flags & SC_OP_BEACONS)
1752 ath_beacon_config(sc, NULL); /* restart beacons */
1753
1754 ath9k_hw_set_interrupts(ah, sc->imask);
1755
1756 if (retry_tx) {
1757 int i;
1758 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1759 if (ATH_TXQ_SETUP(sc, i)) {
1760 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1761 ath_txq_schedule(sc, &sc->tx.txq[i]);
1762 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1763 }
1764 }
1765 }
1766
1767 return r;
1768 }
1769
1770 /*
1771 * This function will allocate both the DMA descriptor structure, and the
1772 * buffers it contains. These are used to contain the descriptors used
1773 * by the system.
1774 */
1775 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1776 struct list_head *head, const char *name,
1777 int nbuf, int ndesc)
1778 {
1779 #define DS2PHYS(_dd, _ds) \
1780 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1781 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1782 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1783
1784 struct ath_desc *ds;
1785 struct ath_buf *bf;
1786 int i, bsize, error;
1787
1788 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1789 name, nbuf, ndesc);
1790
1791 INIT_LIST_HEAD(head);
1792 /* ath_desc must be a multiple of DWORDs */
1793 if ((sizeof(struct ath_desc) % 4) != 0) {
1794 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1795 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1796 error = -ENOMEM;
1797 goto fail;
1798 }
1799
1800 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1801
1802 /*
1803 * Need additional DMA memory because we can't use
1804 * descriptors that cross the 4K page boundary. Assume
1805 * one skipped descriptor per 4K page.
1806 */
1807 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1808 u32 ndesc_skipped =
1809 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1810 u32 dma_len;
1811
1812 while (ndesc_skipped) {
1813 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1814 dd->dd_desc_len += dma_len;
1815
1816 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1817 };
1818 }
1819
1820 /* allocate descriptors */
1821 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1822 &dd->dd_desc_paddr, GFP_KERNEL);
1823 if (dd->dd_desc == NULL) {
1824 error = -ENOMEM;
1825 goto fail;
1826 }
1827 ds = dd->dd_desc;
1828 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1829 name, ds, (u32) dd->dd_desc_len,
1830 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1831
1832 /* allocate buffers */
1833 bsize = sizeof(struct ath_buf) * nbuf;
1834 bf = kzalloc(bsize, GFP_KERNEL);
1835 if (bf == NULL) {
1836 error = -ENOMEM;
1837 goto fail2;
1838 }
1839 dd->dd_bufptr = bf;
1840
1841 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1842 bf->bf_desc = ds;
1843 bf->bf_daddr = DS2PHYS(dd, ds);
1844
1845 if (!(sc->sc_ah->caps.hw_caps &
1846 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1847 /*
1848 * Skip descriptor addresses which can cause 4KB
1849 * boundary crossing (addr + length) with a 32 dword
1850 * descriptor fetch.
1851 */
1852 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1853 ASSERT((caddr_t) bf->bf_desc <
1854 ((caddr_t) dd->dd_desc +
1855 dd->dd_desc_len));
1856
1857 ds += ndesc;
1858 bf->bf_desc = ds;
1859 bf->bf_daddr = DS2PHYS(dd, ds);
1860 }
1861 }
1862 list_add_tail(&bf->list, head);
1863 }
1864 return 0;
1865 fail2:
1866 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1867 dd->dd_desc_paddr);
1868 fail:
1869 memset(dd, 0, sizeof(*dd));
1870 return error;
1871 #undef ATH_DESC_4KB_BOUND_CHECK
1872 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1873 #undef DS2PHYS
1874 }
1875
1876 void ath_descdma_cleanup(struct ath_softc *sc,
1877 struct ath_descdma *dd,
1878 struct list_head *head)
1879 {
1880 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1881 dd->dd_desc_paddr);
1882
1883 INIT_LIST_HEAD(head);
1884 kfree(dd->dd_bufptr);
1885 memset(dd, 0, sizeof(*dd));
1886 }
1887
1888 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1889 {
1890 int qnum;
1891
1892 switch (queue) {
1893 case 0:
1894 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1895 break;
1896 case 1:
1897 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1898 break;
1899 case 2:
1900 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1901 break;
1902 case 3:
1903 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1904 break;
1905 default:
1906 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1907 break;
1908 }
1909
1910 return qnum;
1911 }
1912
1913 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1914 {
1915 int qnum;
1916
1917 switch (queue) {
1918 case ATH9K_WME_AC_VO:
1919 qnum = 0;
1920 break;
1921 case ATH9K_WME_AC_VI:
1922 qnum = 1;
1923 break;
1924 case ATH9K_WME_AC_BE:
1925 qnum = 2;
1926 break;
1927 case ATH9K_WME_AC_BK:
1928 qnum = 3;
1929 break;
1930 default:
1931 qnum = -1;
1932 break;
1933 }
1934
1935 return qnum;
1936 }
1937
1938 /* XXX: Remove me once we don't depend on ath9k_channel for all
1939 * this redundant data */
1940 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1941 struct ath9k_channel *ichan)
1942 {
1943 struct ieee80211_channel *chan = hw->conf.channel;
1944 struct ieee80211_conf *conf = &hw->conf;
1945
1946 ichan->channel = chan->center_freq;
1947 ichan->chan = chan;
1948
1949 if (chan->band == IEEE80211_BAND_2GHZ) {
1950 ichan->chanmode = CHANNEL_G;
1951 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1952 } else {
1953 ichan->chanmode = CHANNEL_A;
1954 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1955 }
1956
1957 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1958
1959 if (conf_is_ht(conf)) {
1960 if (conf_is_ht40(conf))
1961 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1962
1963 ichan->chanmode = ath_get_extchanmode(sc, chan,
1964 conf->channel_type);
1965 }
1966 }
1967
1968 /**********************/
1969 /* mac80211 callbacks */
1970 /**********************/
1971
1972 static int ath9k_start(struct ieee80211_hw *hw)
1973 {
1974 struct ath_wiphy *aphy = hw->priv;
1975 struct ath_softc *sc = aphy->sc;
1976 struct ieee80211_channel *curchan = hw->conf.channel;
1977 struct ath9k_channel *init_channel;
1978 int r, pos;
1979
1980 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1981 "initial channel: %d MHz\n", curchan->center_freq);
1982
1983 mutex_lock(&sc->mutex);
1984
1985 if (ath9k_wiphy_started(sc)) {
1986 if (sc->chan_idx == curchan->hw_value) {
1987 /*
1988 * Already on the operational channel, the new wiphy
1989 * can be marked active.
1990 */
1991 aphy->state = ATH_WIPHY_ACTIVE;
1992 ieee80211_wake_queues(hw);
1993 } else {
1994 /*
1995 * Another wiphy is on another channel, start the new
1996 * wiphy in paused state.
1997 */
1998 aphy->state = ATH_WIPHY_PAUSED;
1999 ieee80211_stop_queues(hw);
2000 }
2001 mutex_unlock(&sc->mutex);
2002 return 0;
2003 }
2004 aphy->state = ATH_WIPHY_ACTIVE;
2005
2006 /* setup initial channel */
2007
2008 pos = curchan->hw_value;
2009
2010 sc->chan_idx = pos;
2011 init_channel = &sc->sc_ah->channels[pos];
2012 ath9k_update_ichannel(sc, hw, init_channel);
2013
2014 /* Reset SERDES registers */
2015 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2016
2017 /*
2018 * The basic interface to setting the hardware in a good
2019 * state is ``reset''. On return the hardware is known to
2020 * be powered up and with interrupts disabled. This must
2021 * be followed by initialization of the appropriate bits
2022 * and then setup of the interrupt mask.
2023 */
2024 spin_lock_bh(&sc->sc_resetlock);
2025 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2026 if (r) {
2027 DPRINTF(sc, ATH_DBG_FATAL,
2028 "Unable to reset hardware; reset status %d "
2029 "(freq %u MHz)\n", r,
2030 curchan->center_freq);
2031 spin_unlock_bh(&sc->sc_resetlock);
2032 goto mutex_unlock;
2033 }
2034 spin_unlock_bh(&sc->sc_resetlock);
2035
2036 /*
2037 * This is needed only to setup initial state
2038 * but it's best done after a reset.
2039 */
2040 ath_update_txpow(sc);
2041
2042 /*
2043 * Setup the hardware after reset:
2044 * The receive engine is set going.
2045 * Frame transmit is handled entirely
2046 * in the frame output path; there's nothing to do
2047 * here except setup the interrupt mask.
2048 */
2049 if (ath_startrecv(sc) != 0) {
2050 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2051 r = -EIO;
2052 goto mutex_unlock;
2053 }
2054
2055 /* Setup our intr mask. */
2056 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2057 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2058 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2059
2060 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2061 sc->imask |= ATH9K_INT_GTT;
2062
2063 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2064 sc->imask |= ATH9K_INT_CST;
2065
2066 ath_cache_conf_rate(sc, &hw->conf);
2067
2068 sc->sc_flags &= ~SC_OP_INVALID;
2069
2070 /* Disable BMISS interrupt when we're not associated */
2071 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2072 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2073
2074 ieee80211_wake_queues(hw);
2075
2076 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2077 r = ath_start_rfkill_poll(sc);
2078 #endif
2079
2080 mutex_unlock:
2081 mutex_unlock(&sc->mutex);
2082
2083 return r;
2084 }
2085
2086 static int ath9k_tx(struct ieee80211_hw *hw,
2087 struct sk_buff *skb)
2088 {
2089 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2090 struct ath_wiphy *aphy = hw->priv;
2091 struct ath_softc *sc = aphy->sc;
2092 struct ath_tx_control txctl;
2093 int hdrlen, padsize;
2094
2095 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2096 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2097 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2098 goto exit;
2099 }
2100
2101 if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
2102 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2103 /*
2104 * mac80211 does not set PM field for normal data frames, so we
2105 * need to update that based on the current PS mode.
2106 */
2107 if (ieee80211_is_data(hdr->frame_control) &&
2108 !ieee80211_is_nullfunc(hdr->frame_control) &&
2109 !ieee80211_has_pm(hdr->frame_control)) {
2110 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2111 "while in PS mode\n");
2112 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2113 }
2114 }
2115
2116 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2117 /*
2118 * We are using PS-Poll and mac80211 can request TX while in
2119 * power save mode. Need to wake up hardware for the TX to be
2120 * completed and if needed, also for RX of buffered frames.
2121 */
2122 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2123 ath9k_ps_wakeup(sc);
2124 ath9k_hw_setrxabort(sc->sc_ah, 0);
2125 if (ieee80211_is_pspoll(hdr->frame_control)) {
2126 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2127 "buffered frame\n");
2128 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2129 } else {
2130 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2131 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2132 }
2133 /*
2134 * The actual restore operation will happen only after
2135 * the sc_flags bit is cleared. We are just dropping
2136 * the ps_usecount here.
2137 */
2138 ath9k_ps_restore(sc);
2139 }
2140
2141 memset(&txctl, 0, sizeof(struct ath_tx_control));
2142
2143 /*
2144 * As a temporary workaround, assign seq# here; this will likely need
2145 * to be cleaned up to work better with Beacon transmission and virtual
2146 * BSSes.
2147 */
2148 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2149 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2150 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2151 sc->tx.seq_no += 0x10;
2152 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2153 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2154 }
2155
2156 /* Add the padding after the header if this is not already done */
2157 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2158 if (hdrlen & 3) {
2159 padsize = hdrlen % 4;
2160 if (skb_headroom(skb) < padsize)
2161 return -1;
2162 skb_push(skb, padsize);
2163 memmove(skb->data, skb->data + padsize, hdrlen);
2164 }
2165
2166 /* Check if a tx queue is available */
2167
2168 txctl.txq = ath_test_get_txq(sc, skb);
2169 if (!txctl.txq)
2170 goto exit;
2171
2172 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2173
2174 if (ath_tx_start(hw, skb, &txctl) != 0) {
2175 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2176 goto exit;
2177 }
2178
2179 return 0;
2180 exit:
2181 dev_kfree_skb_any(skb);
2182 return 0;
2183 }
2184
2185 static void ath9k_stop(struct ieee80211_hw *hw)
2186 {
2187 struct ath_wiphy *aphy = hw->priv;
2188 struct ath_softc *sc = aphy->sc;
2189
2190 aphy->state = ATH_WIPHY_INACTIVE;
2191
2192 if (sc->sc_flags & SC_OP_INVALID) {
2193 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2194 return;
2195 }
2196
2197 mutex_lock(&sc->mutex);
2198
2199 ieee80211_stop_queues(hw);
2200
2201 if (ath9k_wiphy_started(sc)) {
2202 mutex_unlock(&sc->mutex);
2203 return; /* another wiphy still in use */
2204 }
2205
2206 /* make sure h/w will not generate any interrupt
2207 * before setting the invalid flag. */
2208 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2209
2210 if (!(sc->sc_flags & SC_OP_INVALID)) {
2211 ath_drain_all_txq(sc, false);
2212 ath_stoprecv(sc);
2213 ath9k_hw_phy_disable(sc->sc_ah);
2214 } else
2215 sc->rx.rxlink = NULL;
2216
2217 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2218 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2219 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2220 #endif
2221 /* disable HAL and put h/w to sleep */
2222 ath9k_hw_disable(sc->sc_ah);
2223 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2224
2225 sc->sc_flags |= SC_OP_INVALID;
2226
2227 mutex_unlock(&sc->mutex);
2228
2229 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2230 }
2231
2232 static int ath9k_add_interface(struct ieee80211_hw *hw,
2233 struct ieee80211_if_init_conf *conf)
2234 {
2235 struct ath_wiphy *aphy = hw->priv;
2236 struct ath_softc *sc = aphy->sc;
2237 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2238 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2239 int ret = 0;
2240
2241 mutex_lock(&sc->mutex);
2242
2243 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2244 sc->nvifs > 0) {
2245 ret = -ENOBUFS;
2246 goto out;
2247 }
2248
2249 switch (conf->type) {
2250 case NL80211_IFTYPE_STATION:
2251 ic_opmode = NL80211_IFTYPE_STATION;
2252 break;
2253 case NL80211_IFTYPE_ADHOC:
2254 case NL80211_IFTYPE_AP:
2255 case NL80211_IFTYPE_MESH_POINT:
2256 if (sc->nbcnvifs >= ATH_BCBUF) {
2257 ret = -ENOBUFS;
2258 goto out;
2259 }
2260 ic_opmode = conf->type;
2261 break;
2262 default:
2263 DPRINTF(sc, ATH_DBG_FATAL,
2264 "Interface type %d not yet supported\n", conf->type);
2265 ret = -EOPNOTSUPP;
2266 goto out;
2267 }
2268
2269 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2270
2271 /* Set the VIF opmode */
2272 avp->av_opmode = ic_opmode;
2273 avp->av_bslot = -1;
2274
2275 sc->nvifs++;
2276
2277 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2278 ath9k_set_bssid_mask(hw);
2279
2280 if (sc->nvifs > 1)
2281 goto out; /* skip global settings for secondary vif */
2282
2283 if (ic_opmode == NL80211_IFTYPE_AP) {
2284 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2285 sc->sc_flags |= SC_OP_TSF_RESET;
2286 }
2287
2288 /* Set the device opmode */
2289 sc->sc_ah->opmode = ic_opmode;
2290
2291 /*
2292 * Enable MIB interrupts when there are hardware phy counters.
2293 * Note we only do this (at the moment) for station mode.
2294 */
2295 if ((conf->type == NL80211_IFTYPE_STATION) ||
2296 (conf->type == NL80211_IFTYPE_ADHOC) ||
2297 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2298 if (ath9k_hw_phycounters(sc->sc_ah))
2299 sc->imask |= ATH9K_INT_MIB;
2300 sc->imask |= ATH9K_INT_TSFOOR;
2301 }
2302
2303 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2304
2305 if (conf->type == NL80211_IFTYPE_AP)
2306 ath_start_ani(sc);
2307
2308 out:
2309 mutex_unlock(&sc->mutex);
2310 return ret;
2311 }
2312
2313 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2314 struct ieee80211_if_init_conf *conf)
2315 {
2316 struct ath_wiphy *aphy = hw->priv;
2317 struct ath_softc *sc = aphy->sc;
2318 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2319 int i;
2320
2321 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2322
2323 mutex_lock(&sc->mutex);
2324
2325 /* Stop ANI */
2326 del_timer_sync(&sc->ani.timer);
2327
2328 /* Reclaim beacon resources */
2329 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2330 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2331 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2332 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2333 ath_beacon_return(sc, avp);
2334 }
2335
2336 sc->sc_flags &= ~SC_OP_BEACONS;
2337
2338 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2339 if (sc->beacon.bslot[i] == conf->vif) {
2340 printk(KERN_DEBUG "%s: vif had allocated beacon "
2341 "slot\n", __func__);
2342 sc->beacon.bslot[i] = NULL;
2343 sc->beacon.bslot_aphy[i] = NULL;
2344 }
2345 }
2346
2347 sc->nvifs--;
2348
2349 mutex_unlock(&sc->mutex);
2350 }
2351
2352 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2353 {
2354 struct ath_wiphy *aphy = hw->priv;
2355 struct ath_softc *sc = aphy->sc;
2356 struct ieee80211_conf *conf = &hw->conf;
2357 struct ath_hw *ah = sc->sc_ah;
2358
2359 mutex_lock(&sc->mutex);
2360
2361 if (changed & IEEE80211_CONF_CHANGE_PS) {
2362 if (conf->flags & IEEE80211_CONF_PS) {
2363 if (!(ah->caps.hw_caps &
2364 ATH9K_HW_CAP_AUTOSLEEP)) {
2365 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2366 sc->imask |= ATH9K_INT_TIM_TIMER;
2367 ath9k_hw_set_interrupts(sc->sc_ah,
2368 sc->imask);
2369 }
2370 ath9k_hw_setrxabort(sc->sc_ah, 1);
2371 }
2372 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2373 } else {
2374 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2375 if (!(ah->caps.hw_caps &
2376 ATH9K_HW_CAP_AUTOSLEEP)) {
2377 ath9k_hw_setrxabort(sc->sc_ah, 0);
2378 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2379 SC_OP_WAIT_FOR_CAB |
2380 SC_OP_WAIT_FOR_PSPOLL_DATA |
2381 SC_OP_WAIT_FOR_TX_ACK);
2382 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2383 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2384 ath9k_hw_set_interrupts(sc->sc_ah,
2385 sc->imask);
2386 }
2387 }
2388 }
2389 }
2390
2391 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2392 struct ieee80211_channel *curchan = hw->conf.channel;
2393 int pos = curchan->hw_value;
2394
2395 aphy->chan_idx = pos;
2396 aphy->chan_is_ht = conf_is_ht(conf);
2397
2398 if (aphy->state == ATH_WIPHY_SCAN ||
2399 aphy->state == ATH_WIPHY_ACTIVE)
2400 ath9k_wiphy_pause_all_forced(sc, aphy);
2401 else {
2402 /*
2403 * Do not change operational channel based on a paused
2404 * wiphy changes.
2405 */
2406 goto skip_chan_change;
2407 }
2408
2409 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2410 curchan->center_freq);
2411
2412 /* XXX: remove me eventualy */
2413 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2414
2415 ath_update_chainmask(sc, conf_is_ht(conf));
2416
2417 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2418 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2419 mutex_unlock(&sc->mutex);
2420 return -EINVAL;
2421 }
2422 }
2423
2424 skip_chan_change:
2425 if (changed & IEEE80211_CONF_CHANGE_POWER)
2426 sc->config.txpowlimit = 2 * conf->power_level;
2427
2428 mutex_unlock(&sc->mutex);
2429
2430 return 0;
2431 }
2432
2433 #define SUPPORTED_FILTERS \
2434 (FIF_PROMISC_IN_BSS | \
2435 FIF_ALLMULTI | \
2436 FIF_CONTROL | \
2437 FIF_OTHER_BSS | \
2438 FIF_BCN_PRBRESP_PROMISC | \
2439 FIF_FCSFAIL)
2440
2441 /* FIXME: sc->sc_full_reset ? */
2442 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2443 unsigned int changed_flags,
2444 unsigned int *total_flags,
2445 int mc_count,
2446 struct dev_mc_list *mclist)
2447 {
2448 struct ath_wiphy *aphy = hw->priv;
2449 struct ath_softc *sc = aphy->sc;
2450 u32 rfilt;
2451
2452 changed_flags &= SUPPORTED_FILTERS;
2453 *total_flags &= SUPPORTED_FILTERS;
2454
2455 sc->rx.rxfilter = *total_flags;
2456 ath9k_ps_wakeup(sc);
2457 rfilt = ath_calcrxfilter(sc);
2458 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2459 ath9k_ps_restore(sc);
2460
2461 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2462 }
2463
2464 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2465 struct ieee80211_vif *vif,
2466 enum sta_notify_cmd cmd,
2467 struct ieee80211_sta *sta)
2468 {
2469 struct ath_wiphy *aphy = hw->priv;
2470 struct ath_softc *sc = aphy->sc;
2471
2472 switch (cmd) {
2473 case STA_NOTIFY_ADD:
2474 ath_node_attach(sc, sta);
2475 break;
2476 case STA_NOTIFY_REMOVE:
2477 ath_node_detach(sc, sta);
2478 break;
2479 default:
2480 break;
2481 }
2482 }
2483
2484 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2485 const struct ieee80211_tx_queue_params *params)
2486 {
2487 struct ath_wiphy *aphy = hw->priv;
2488 struct ath_softc *sc = aphy->sc;
2489 struct ath9k_tx_queue_info qi;
2490 int ret = 0, qnum;
2491
2492 if (queue >= WME_NUM_AC)
2493 return 0;
2494
2495 mutex_lock(&sc->mutex);
2496
2497 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2498
2499 qi.tqi_aifs = params->aifs;
2500 qi.tqi_cwmin = params->cw_min;
2501 qi.tqi_cwmax = params->cw_max;
2502 qi.tqi_burstTime = params->txop;
2503 qnum = ath_get_hal_qnum(queue, sc);
2504
2505 DPRINTF(sc, ATH_DBG_CONFIG,
2506 "Configure tx [queue/halq] [%d/%d], "
2507 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2508 queue, qnum, params->aifs, params->cw_min,
2509 params->cw_max, params->txop);
2510
2511 ret = ath_txq_update(sc, qnum, &qi);
2512 if (ret)
2513 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2514
2515 mutex_unlock(&sc->mutex);
2516
2517 return ret;
2518 }
2519
2520 static int ath9k_set_key(struct ieee80211_hw *hw,
2521 enum set_key_cmd cmd,
2522 struct ieee80211_vif *vif,
2523 struct ieee80211_sta *sta,
2524 struct ieee80211_key_conf *key)
2525 {
2526 struct ath_wiphy *aphy = hw->priv;
2527 struct ath_softc *sc = aphy->sc;
2528 int ret = 0;
2529
2530 if (modparam_nohwcrypt)
2531 return -ENOSPC;
2532
2533 mutex_lock(&sc->mutex);
2534 ath9k_ps_wakeup(sc);
2535 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2536
2537 switch (cmd) {
2538 case SET_KEY:
2539 ret = ath_key_config(sc, vif, sta, key);
2540 if (ret >= 0) {
2541 key->hw_key_idx = ret;
2542 /* push IV and Michael MIC generation to stack */
2543 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2544 if (key->alg == ALG_TKIP)
2545 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2546 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2547 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2548 ret = 0;
2549 }
2550 break;
2551 case DISABLE_KEY:
2552 ath_key_delete(sc, key);
2553 break;
2554 default:
2555 ret = -EINVAL;
2556 }
2557
2558 ath9k_ps_restore(sc);
2559 mutex_unlock(&sc->mutex);
2560
2561 return ret;
2562 }
2563
2564 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2565 struct ieee80211_vif *vif,
2566 struct ieee80211_bss_conf *bss_conf,
2567 u32 changed)
2568 {
2569 struct ath_wiphy *aphy = hw->priv;
2570 struct ath_softc *sc = aphy->sc;
2571 struct ath_hw *ah = sc->sc_ah;
2572 struct ath_vif *avp = (void *)vif->drv_priv;
2573 u32 rfilt = 0;
2574 int error, i;
2575
2576 mutex_lock(&sc->mutex);
2577
2578 /*
2579 * TODO: Need to decide which hw opmode to use for
2580 * multi-interface cases
2581 * XXX: This belongs into add_interface!
2582 */
2583 if (vif->type == NL80211_IFTYPE_AP &&
2584 ah->opmode != NL80211_IFTYPE_AP) {
2585 ah->opmode = NL80211_IFTYPE_STATION;
2586 ath9k_hw_setopmode(ah);
2587 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2588 sc->curaid = 0;
2589 ath9k_hw_write_associd(sc);
2590 /* Request full reset to get hw opmode changed properly */
2591 sc->sc_flags |= SC_OP_FULL_RESET;
2592 }
2593
2594 if ((changed & BSS_CHANGED_BSSID) &&
2595 !is_zero_ether_addr(bss_conf->bssid)) {
2596 switch (vif->type) {
2597 case NL80211_IFTYPE_STATION:
2598 case NL80211_IFTYPE_ADHOC:
2599 case NL80211_IFTYPE_MESH_POINT:
2600 /* Set BSSID */
2601 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2602 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2603 sc->curaid = 0;
2604 ath9k_hw_write_associd(sc);
2605
2606 /* Set aggregation protection mode parameters */
2607 sc->config.ath_aggr_prot = 0;
2608
2609 DPRINTF(sc, ATH_DBG_CONFIG,
2610 "RX filter 0x%x bssid %pM aid 0x%x\n",
2611 rfilt, sc->curbssid, sc->curaid);
2612
2613 /* need to reconfigure the beacon */
2614 sc->sc_flags &= ~SC_OP_BEACONS ;
2615
2616 break;
2617 default:
2618 break;
2619 }
2620 }
2621
2622 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2623 (vif->type == NL80211_IFTYPE_AP) ||
2624 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2625 if ((changed & BSS_CHANGED_BEACON) ||
2626 (changed & BSS_CHANGED_BEACON_ENABLED &&
2627 bss_conf->enable_beacon)) {
2628 /*
2629 * Allocate and setup the beacon frame.
2630 *
2631 * Stop any previous beacon DMA. This may be
2632 * necessary, for example, when an ibss merge
2633 * causes reconfiguration; we may be called
2634 * with beacon transmission active.
2635 */
2636 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2637
2638 error = ath_beacon_alloc(aphy, vif);
2639 if (!error)
2640 ath_beacon_config(sc, vif);
2641 }
2642 }
2643
2644 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2645 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2646 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2647 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2648 ath9k_hw_keysetmac(sc->sc_ah,
2649 (u16)i,
2650 sc->curbssid);
2651 }
2652
2653 /* Only legacy IBSS for now */
2654 if (vif->type == NL80211_IFTYPE_ADHOC)
2655 ath_update_chainmask(sc, 0);
2656
2657 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2658 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2659 bss_conf->use_short_preamble);
2660 if (bss_conf->use_short_preamble)
2661 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2662 else
2663 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2664 }
2665
2666 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2667 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2668 bss_conf->use_cts_prot);
2669 if (bss_conf->use_cts_prot &&
2670 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2671 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2672 else
2673 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2674 }
2675
2676 if (changed & BSS_CHANGED_ASSOC) {
2677 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2678 bss_conf->assoc);
2679 ath9k_bss_assoc_info(sc, vif, bss_conf);
2680 }
2681
2682 /*
2683 * The HW TSF has to be reset when the beacon interval changes.
2684 * We set the flag here, and ath_beacon_config_ap() would take this
2685 * into account when it gets called through the subsequent
2686 * config_interface() call - with IFCC_BEACON in the changed field.
2687 */
2688
2689 if (changed & BSS_CHANGED_BEACON_INT) {
2690 sc->sc_flags |= SC_OP_TSF_RESET;
2691 sc->beacon_interval = bss_conf->beacon_int;
2692 }
2693
2694 mutex_unlock(&sc->mutex);
2695 }
2696
2697 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2698 {
2699 u64 tsf;
2700 struct ath_wiphy *aphy = hw->priv;
2701 struct ath_softc *sc = aphy->sc;
2702
2703 mutex_lock(&sc->mutex);
2704 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2705 mutex_unlock(&sc->mutex);
2706
2707 return tsf;
2708 }
2709
2710 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2711 {
2712 struct ath_wiphy *aphy = hw->priv;
2713 struct ath_softc *sc = aphy->sc;
2714
2715 mutex_lock(&sc->mutex);
2716 ath9k_hw_settsf64(sc->sc_ah, tsf);
2717 mutex_unlock(&sc->mutex);
2718 }
2719
2720 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2721 {
2722 struct ath_wiphy *aphy = hw->priv;
2723 struct ath_softc *sc = aphy->sc;
2724
2725 mutex_lock(&sc->mutex);
2726 ath9k_hw_reset_tsf(sc->sc_ah);
2727 mutex_unlock(&sc->mutex);
2728 }
2729
2730 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2731 enum ieee80211_ampdu_mlme_action action,
2732 struct ieee80211_sta *sta,
2733 u16 tid, u16 *ssn)
2734 {
2735 struct ath_wiphy *aphy = hw->priv;
2736 struct ath_softc *sc = aphy->sc;
2737 int ret = 0;
2738
2739 switch (action) {
2740 case IEEE80211_AMPDU_RX_START:
2741 if (!(sc->sc_flags & SC_OP_RXAGGR))
2742 ret = -ENOTSUPP;
2743 break;
2744 case IEEE80211_AMPDU_RX_STOP:
2745 break;
2746 case IEEE80211_AMPDU_TX_START:
2747 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2748 if (ret < 0)
2749 DPRINTF(sc, ATH_DBG_FATAL,
2750 "Unable to start TX aggregation\n");
2751 else
2752 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2753 break;
2754 case IEEE80211_AMPDU_TX_STOP:
2755 ret = ath_tx_aggr_stop(sc, sta, tid);
2756 if (ret < 0)
2757 DPRINTF(sc, ATH_DBG_FATAL,
2758 "Unable to stop TX aggregation\n");
2759
2760 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2761 break;
2762 case IEEE80211_AMPDU_TX_OPERATIONAL:
2763 ath_tx_aggr_resume(sc, sta, tid);
2764 break;
2765 default:
2766 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2767 }
2768
2769 return ret;
2770 }
2771
2772 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2773 {
2774 struct ath_wiphy *aphy = hw->priv;
2775 struct ath_softc *sc = aphy->sc;
2776
2777 if (ath9k_wiphy_scanning(sc)) {
2778 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2779 "same time\n");
2780 /*
2781 * Do not allow the concurrent scanning state for now. This
2782 * could be improved with scanning control moved into ath9k.
2783 */
2784 return;
2785 }
2786
2787 aphy->state = ATH_WIPHY_SCAN;
2788 ath9k_wiphy_pause_all_forced(sc, aphy);
2789
2790 mutex_lock(&sc->mutex);
2791 sc->sc_flags |= SC_OP_SCANNING;
2792 mutex_unlock(&sc->mutex);
2793 }
2794
2795 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2796 {
2797 struct ath_wiphy *aphy = hw->priv;
2798 struct ath_softc *sc = aphy->sc;
2799
2800 mutex_lock(&sc->mutex);
2801 aphy->state = ATH_WIPHY_ACTIVE;
2802 sc->sc_flags &= ~SC_OP_SCANNING;
2803 sc->sc_flags |= SC_OP_FULL_RESET;
2804 mutex_unlock(&sc->mutex);
2805 }
2806
2807 struct ieee80211_ops ath9k_ops = {
2808 .tx = ath9k_tx,
2809 .start = ath9k_start,
2810 .stop = ath9k_stop,
2811 .add_interface = ath9k_add_interface,
2812 .remove_interface = ath9k_remove_interface,
2813 .config = ath9k_config,
2814 .configure_filter = ath9k_configure_filter,
2815 .sta_notify = ath9k_sta_notify,
2816 .conf_tx = ath9k_conf_tx,
2817 .bss_info_changed = ath9k_bss_info_changed,
2818 .set_key = ath9k_set_key,
2819 .get_tsf = ath9k_get_tsf,
2820 .set_tsf = ath9k_set_tsf,
2821 .reset_tsf = ath9k_reset_tsf,
2822 .ampdu_action = ath9k_ampdu_action,
2823 .sw_scan_start = ath9k_sw_scan_start,
2824 .sw_scan_complete = ath9k_sw_scan_complete,
2825 };
2826
2827 static struct {
2828 u32 version;
2829 const char * name;
2830 } ath_mac_bb_names[] = {
2831 { AR_SREV_VERSION_5416_PCI, "5416" },
2832 { AR_SREV_VERSION_5416_PCIE, "5418" },
2833 { AR_SREV_VERSION_9100, "9100" },
2834 { AR_SREV_VERSION_9160, "9160" },
2835 { AR_SREV_VERSION_9280, "9280" },
2836 { AR_SREV_VERSION_9285, "9285" }
2837 };
2838
2839 static struct {
2840 u16 version;
2841 const char * name;
2842 } ath_rf_names[] = {
2843 { 0, "5133" },
2844 { AR_RAD5133_SREV_MAJOR, "5133" },
2845 { AR_RAD5122_SREV_MAJOR, "5122" },
2846 { AR_RAD2133_SREV_MAJOR, "2133" },
2847 { AR_RAD2122_SREV_MAJOR, "2122" }
2848 };
2849
2850 /*
2851 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2852 */
2853 const char *
2854 ath_mac_bb_name(u32 mac_bb_version)
2855 {
2856 int i;
2857
2858 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2859 if (ath_mac_bb_names[i].version == mac_bb_version) {
2860 return ath_mac_bb_names[i].name;
2861 }
2862 }
2863
2864 return "????";
2865 }
2866
2867 /*
2868 * Return the RF name. "????" is returned if the RF is unknown.
2869 */
2870 const char *
2871 ath_rf_name(u16 rf_version)
2872 {
2873 int i;
2874
2875 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2876 if (ath_rf_names[i].version == rf_version) {
2877 return ath_rf_names[i].name;
2878 }
2879 }
2880
2881 return "????";
2882 }
2883
2884 static int __init ath9k_init(void)
2885 {
2886 int error;
2887
2888 /* Register rate control algorithm */
2889 error = ath_rate_control_register();
2890 if (error != 0) {
2891 printk(KERN_ERR
2892 "ath9k: Unable to register rate control "
2893 "algorithm: %d\n",
2894 error);
2895 goto err_out;
2896 }
2897
2898 error = ath9k_debug_create_root();
2899 if (error) {
2900 printk(KERN_ERR
2901 "ath9k: Unable to create debugfs root: %d\n",
2902 error);
2903 goto err_rate_unregister;
2904 }
2905
2906 error = ath_pci_init();
2907 if (error < 0) {
2908 printk(KERN_ERR
2909 "ath9k: No PCI devices found, driver not installed.\n");
2910 error = -ENODEV;
2911 goto err_remove_root;
2912 }
2913
2914 error = ath_ahb_init();
2915 if (error < 0) {
2916 error = -ENODEV;
2917 goto err_pci_exit;
2918 }
2919
2920 return 0;
2921
2922 err_pci_exit:
2923 ath_pci_exit();
2924
2925 err_remove_root:
2926 ath9k_debug_remove_root();
2927 err_rate_unregister:
2928 ath_rate_control_unregister();
2929 err_out:
2930 return error;
2931 }
2932 module_init(ath9k_init);
2933
2934 static void __exit ath9k_exit(void)
2935 {
2936 ath_ahb_exit();
2937 ath_pci_exit();
2938 ath9k_debug_remove_root();
2939 ath_rate_control_unregister();
2940 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2941 }
2942 module_exit(ath9k_exit);
This page took 0.185089 seconds and 6 git commands to generate.