ath9k: move cache setting of softc ah prior to attach
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 static char *dev_info = "ath9k";
21
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
26
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
30
31 /* We use the hw_value as an index into our private channel structure */
32
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
35 .hw_value = (_idx), \
36 .max_power = 20, \
37 }
38
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
42 .hw_value = (_idx), \
43 .max_power = 20, \
44 }
45
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
49 * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
65 };
66
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
70 * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
100 };
101
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
104 {
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
108 sc->cur_rate_table =
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
111 sc->cur_rate_table =
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
114 sc->cur_rate_table =
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116 else
117 sc->cur_rate_table =
118 sc->hw_rate_table[ATH9K_MODE_11G];
119 break;
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
122 sc->cur_rate_table =
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
125 sc->cur_rate_table =
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
128 sc->cur_rate_table =
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130 else
131 sc->cur_rate_table =
132 sc->hw_rate_table[ATH9K_MODE_11A];
133 break;
134 default:
135 BUG_ON(1);
136 break;
137 }
138 }
139
140 static void ath_update_txpow(struct ath_softc *sc)
141 {
142 struct ath_hw *ah = sc->sc_ah;
143 u32 txpow;
144
145 if (sc->curtxpow != sc->config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->curtxpow = txpow;
150 }
151 }
152
153 static u8 parse_mpdudensity(u8 mpdudensity)
154 {
155 /*
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
158 * 1 for 1/4 us
159 * 2 for 1/2 us
160 * 3 for 1 us
161 * 4 for 2 us
162 * 5 for 4 us
163 * 6 for 8 us
164 * 7 for 16 us
165 */
166 switch (mpdudensity) {
167 case 0:
168 return 0;
169 case 1:
170 case 2:
171 case 3:
172 /* Our lower layer calculations limit our precision to
173 1 microsecond */
174 return 1;
175 case 4:
176 return 2;
177 case 5:
178 return 4;
179 case 6:
180 return 8;
181 case 7:
182 return 16;
183 default:
184 return 0;
185 }
186 }
187
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
189 {
190 const struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
193 int i, maxrates;
194
195 switch (band) {
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198 break;
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201 break;
202 default:
203 break;
204 }
205
206 if (rate_table == NULL)
207 return;
208
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
211
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
214 else
215 maxrates = rate_table->rate_cnt;
216
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
224 }
225 sband->n_bitrates++;
226
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
229 }
230 }
231
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233 struct ieee80211_hw *hw)
234 {
235 struct ieee80211_channel *curchan = hw->conf.channel;
236 struct ath9k_channel *channel;
237 u8 chan_idx;
238
239 chan_idx = curchan->hw_value;
240 channel = &sc->sc_ah->channels[chan_idx];
241 ath9k_update_ichannel(sc, hw, channel);
242 return channel;
243 }
244
245 /*
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
249 */
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251 struct ath9k_channel *hchan)
252 {
253 struct ath_hw *ah = sc->sc_ah;
254 bool fastcc = true, stopped;
255 struct ieee80211_channel *channel = hw->conf.channel;
256 int r;
257
258 if (sc->sc_flags & SC_OP_INVALID)
259 return -EIO;
260
261 ath9k_ps_wakeup(sc);
262
263 /*
264 * This is only performed if the channel settings have
265 * actually changed.
266 *
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
271 */
272 ath9k_hw_set_interrupts(ah, 0);
273 ath_drain_all_txq(sc, false);
274 stopped = ath_stoprecv(sc);
275
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
279
280 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281 fastcc = false;
282
283 DPRINTF(sc, ATH_DBG_CONFIG,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc->sc_ah->curchan->channel,
286 channel->center_freq, sc->tx_chan_width);
287
288 spin_lock_bh(&sc->sc_resetlock);
289
290 r = ath9k_hw_reset(ah, hchan, fastcc);
291 if (r) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to reset channel (%u Mhz) "
294 "reset status %d\n",
295 channel->center_freq, r);
296 spin_unlock_bh(&sc->sc_resetlock);
297 goto ps_restore;
298 }
299 spin_unlock_bh(&sc->sc_resetlock);
300
301 sc->sc_flags &= ~SC_OP_FULL_RESET;
302
303 if (ath_startrecv(sc) != 0) {
304 DPRINTF(sc, ATH_DBG_FATAL,
305 "Unable to restart recv logic\n");
306 r = -EIO;
307 goto ps_restore;
308 }
309
310 ath_cache_conf_rate(sc, &hw->conf);
311 ath_update_txpow(sc);
312 ath9k_hw_set_interrupts(ah, sc->imask);
313
314 ps_restore:
315 ath9k_ps_restore(sc);
316 return r;
317 }
318
319 /*
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
325 */
326 static void ath_ani_calibrate(unsigned long data)
327 {
328 struct ath_softc *sc = (struct ath_softc *)data;
329 struct ath_hw *ah = sc->sc_ah;
330 bool longcal = false;
331 bool shortcal = false;
332 bool aniflag = false;
333 unsigned int timestamp = jiffies_to_msecs(jiffies);
334 u32 cal_interval, short_cal_interval;
335
336 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
338
339 /*
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
342 */
343 spin_lock(&sc->ani_lock);
344 if (sc->sc_flags & SC_OP_SCANNING)
345 goto set_timer;
346
347 /* Only calibrate if awake */
348 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349 goto set_timer;
350
351 ath9k_ps_wakeup(sc);
352
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 longcal = true;
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->ani.longcal_timer = timestamp;
358 }
359
360 /* Short calibration applies only while caldone is false */
361 if (!sc->ani.caldone) {
362 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->ani.shortcal_timer = timestamp;
366 sc->ani.resetcal_timer = timestamp;
367 }
368 } else {
369 if ((timestamp - sc->ani.resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->ani.caldone)
373 sc->ani.resetcal_timer = timestamp;
374 }
375 }
376
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379 aniflag = true;
380 sc->ani.checkani_timer = timestamp;
381 }
382
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
386 if (aniflag)
387 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
388
389 /* Perform calibration if necessary */
390 if (longcal || shortcal) {
391 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392 sc->rx_chainmask, longcal);
393
394 if (longcal)
395 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396 ah->curchan);
397
398 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399 ah->curchan->channel, ah->curchan->channelFlags,
400 sc->ani.noise_floor);
401 }
402 }
403
404 ath9k_ps_restore(sc);
405
406 set_timer:
407 spin_unlock(&sc->ani_lock);
408 /*
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
412 */
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
418
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
420 }
421
422 static void ath_start_ani(struct ath_softc *sc)
423 {
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
425
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
429
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 }
433
434 /*
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
439 */
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 {
442 if (is_ht ||
443 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
449 }
450
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
453 }
454
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
456 {
457 struct ath_node *an;
458
459 an = (struct ath_node *)sta->drv_priv;
460
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
467 }
468 }
469
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 {
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
473
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
476 }
477
478 static void ath9k_tasklet(unsigned long data)
479 {
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->intrstatus;
482
483 ath9k_ps_wakeup(sc);
484
485 if (status & ATH9K_INT_FATAL) {
486 ath_reset(sc, false);
487 ath9k_ps_restore(sc);
488 return;
489 }
490
491 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492 spin_lock_bh(&sc->rx.rxflushlock);
493 ath_rx_tasklet(sc, 0);
494 spin_unlock_bh(&sc->rx.rxflushlock);
495 }
496
497 if (status & ATH9K_INT_TX)
498 ath_tx_tasklet(sc);
499
500 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
501 /*
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
504 */
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
507 }
508
509 /* re-enable hardware interrupt */
510 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
511 ath9k_ps_restore(sc);
512 }
513
514 irqreturn_t ath_isr(int irq, void *dev)
515 {
516 #define SCHED_INTR ( \
517 ATH9K_INT_FATAL | \
518 ATH9K_INT_RXORN | \
519 ATH9K_INT_RXEOL | \
520 ATH9K_INT_RX | \
521 ATH9K_INT_TX | \
522 ATH9K_INT_BMISS | \
523 ATH9K_INT_CST | \
524 ATH9K_INT_TSFOOR)
525
526 struct ath_softc *sc = dev;
527 struct ath_hw *ah = sc->sc_ah;
528 enum ath9k_int status;
529 bool sched = false;
530
531 /*
532 * The hardware is not ready/present, don't
533 * touch anything. Note this can happen early
534 * on if the IRQ is shared.
535 */
536 if (sc->sc_flags & SC_OP_INVALID)
537 return IRQ_NONE;
538
539
540 /* shared irq, not for us */
541
542 if (!ath9k_hw_intrpend(ah))
543 return IRQ_NONE;
544
545 /*
546 * Figure out the reason(s) for the interrupt. Note
547 * that the hal returns a pseudo-ISR that may include
548 * bits we haven't explicitly enabled so we mask the
549 * value to insure we only process bits we requested.
550 */
551 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
552 status &= sc->imask; /* discard unasked-for bits */
553
554 /*
555 * If there are no status bits set, then this interrupt was not
556 * for me (should have been caught above).
557 */
558 if (!status)
559 return IRQ_NONE;
560
561 /* Cache the status */
562 sc->intrstatus = status;
563
564 if (status & SCHED_INTR)
565 sched = true;
566
567 /*
568 * If a FATAL or RXORN interrupt is received, we have to reset the
569 * chip immediately.
570 */
571 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
572 goto chip_reset;
573
574 if (status & ATH9K_INT_SWBA)
575 tasklet_schedule(&sc->bcon_tasklet);
576
577 if (status & ATH9K_INT_TXURN)
578 ath9k_hw_updatetxtriglevel(ah, true);
579
580 if (status & ATH9K_INT_MIB) {
581 /*
582 * Disable interrupts until we service the MIB
583 * interrupt; otherwise it will continue to
584 * fire.
585 */
586 ath9k_hw_set_interrupts(ah, 0);
587 /*
588 * Let the hal handle the event. We assume
589 * it will clear whatever condition caused
590 * the interrupt.
591 */
592 ath9k_hw_procmibevent(ah, &sc->nodestats);
593 ath9k_hw_set_interrupts(ah, sc->imask);
594 }
595
596 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
597 if (status & ATH9K_INT_TIM_TIMER) {
598 /* Clear RxAbort bit so that we can
599 * receive frames */
600 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
601 ath9k_hw_setrxabort(sc->sc_ah, 0);
602 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
603 }
604
605 chip_reset:
606
607 ath_debug_stat_interrupt(sc, status);
608
609 if (sched) {
610 /* turn off every interrupt except SWBA */
611 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
612 tasklet_schedule(&sc->intr_tq);
613 }
614
615 return IRQ_HANDLED;
616
617 #undef SCHED_INTR
618 }
619
620 static u32 ath_get_extchanmode(struct ath_softc *sc,
621 struct ieee80211_channel *chan,
622 enum nl80211_channel_type channel_type)
623 {
624 u32 chanmode = 0;
625
626 switch (chan->band) {
627 case IEEE80211_BAND_2GHZ:
628 switch(channel_type) {
629 case NL80211_CHAN_NO_HT:
630 case NL80211_CHAN_HT20:
631 chanmode = CHANNEL_G_HT20;
632 break;
633 case NL80211_CHAN_HT40PLUS:
634 chanmode = CHANNEL_G_HT40PLUS;
635 break;
636 case NL80211_CHAN_HT40MINUS:
637 chanmode = CHANNEL_G_HT40MINUS;
638 break;
639 }
640 break;
641 case IEEE80211_BAND_5GHZ:
642 switch(channel_type) {
643 case NL80211_CHAN_NO_HT:
644 case NL80211_CHAN_HT20:
645 chanmode = CHANNEL_A_HT20;
646 break;
647 case NL80211_CHAN_HT40PLUS:
648 chanmode = CHANNEL_A_HT40PLUS;
649 break;
650 case NL80211_CHAN_HT40MINUS:
651 chanmode = CHANNEL_A_HT40MINUS;
652 break;
653 }
654 break;
655 default:
656 break;
657 }
658
659 return chanmode;
660 }
661
662 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
663 struct ath9k_keyval *hk, const u8 *addr,
664 bool authenticator)
665 {
666 const u8 *key_rxmic;
667 const u8 *key_txmic;
668
669 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
670 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
671
672 if (addr == NULL) {
673 /*
674 * Group key installation - only two key cache entries are used
675 * regardless of splitmic capability since group key is only
676 * used either for TX or RX.
677 */
678 if (authenticator) {
679 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
680 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
681 } else {
682 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
684 }
685 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
686 }
687 if (!sc->splitmic) {
688 /* TX and RX keys share the same key cache entry. */
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
692 }
693
694 /* Separate key cache entries for TX and RX */
695
696 /* TX key goes at first index, RX key at +32. */
697 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
698 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
699 /* TX MIC entry failed. No need to proceed further */
700 DPRINTF(sc, ATH_DBG_FATAL,
701 "Setting TX MIC Key Failed\n");
702 return 0;
703 }
704
705 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
706 /* XXX delete tx key on failure? */
707 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
708 }
709
710 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
711 {
712 int i;
713
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
715 if (test_bit(i, sc->keymap) ||
716 test_bit(i + 64, sc->keymap))
717 continue; /* At least one part of TKIP key allocated */
718 if (sc->splitmic &&
719 (test_bit(i + 32, sc->keymap) ||
720 test_bit(i + 64 + 32, sc->keymap)))
721 continue; /* At least one part of TKIP key allocated */
722
723 /* Found a free slot for a TKIP key */
724 return i;
725 }
726 return -1;
727 }
728
729 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
730 {
731 int i;
732
733 /* First, try to find slots that would not be available for TKIP. */
734 if (sc->splitmic) {
735 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
736 if (!test_bit(i, sc->keymap) &&
737 (test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap) ||
739 test_bit(i + 64 + 32, sc->keymap)))
740 return i;
741 if (!test_bit(i + 32, sc->keymap) &&
742 (test_bit(i, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i + 32;
746 if (!test_bit(i + 64, sc->keymap) &&
747 (test_bit(i , sc->keymap) ||
748 test_bit(i + 32, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 64;
751 if (!test_bit(i + 64 + 32, sc->keymap) &&
752 (test_bit(i, sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64, sc->keymap)))
755 return i + 64 + 32;
756 }
757 } else {
758 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
759 if (!test_bit(i, sc->keymap) &&
760 test_bit(i + 64, sc->keymap))
761 return i;
762 if (test_bit(i, sc->keymap) &&
763 !test_bit(i + 64, sc->keymap))
764 return i + 64;
765 }
766 }
767
768 /* No partially used TKIP slots, pick any available slot */
769 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
770 /* Do not allow slots that could be needed for TKIP group keys
771 * to be used. This limitation could be removed if we know that
772 * TKIP will not be used. */
773 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
774 continue;
775 if (sc->splitmic) {
776 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
777 continue;
778 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
779 continue;
780 }
781
782 if (!test_bit(i, sc->keymap))
783 return i; /* Found a free slot for a key */
784 }
785
786 /* No free slot found */
787 return -1;
788 }
789
790 static int ath_key_config(struct ath_softc *sc,
791 struct ieee80211_vif *vif,
792 struct ieee80211_sta *sta,
793 struct ieee80211_key_conf *key)
794 {
795 struct ath9k_keyval hk;
796 const u8 *mac = NULL;
797 int ret = 0;
798 int idx;
799
800 memset(&hk, 0, sizeof(hk));
801
802 switch (key->alg) {
803 case ALG_WEP:
804 hk.kv_type = ATH9K_CIPHER_WEP;
805 break;
806 case ALG_TKIP:
807 hk.kv_type = ATH9K_CIPHER_TKIP;
808 break;
809 case ALG_CCMP:
810 hk.kv_type = ATH9K_CIPHER_AES_CCM;
811 break;
812 default:
813 return -EOPNOTSUPP;
814 }
815
816 hk.kv_len = key->keylen;
817 memcpy(hk.kv_val, key->key, key->keylen);
818
819 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
820 /* For now, use the default keys for broadcast keys. This may
821 * need to change with virtual interfaces. */
822 idx = key->keyidx;
823 } else if (key->keyidx) {
824 if (WARN_ON(!sta))
825 return -EOPNOTSUPP;
826 mac = sta->addr;
827
828 if (vif->type != NL80211_IFTYPE_AP) {
829 /* Only keyidx 0 should be used with unicast key, but
830 * allow this for client mode for now. */
831 idx = key->keyidx;
832 } else
833 return -EIO;
834 } else {
835 if (WARN_ON(!sta))
836 return -EOPNOTSUPP;
837 mac = sta->addr;
838
839 if (key->alg == ALG_TKIP)
840 idx = ath_reserve_key_cache_slot_tkip(sc);
841 else
842 idx = ath_reserve_key_cache_slot(sc);
843 if (idx < 0)
844 return -ENOSPC; /* no free key cache entries */
845 }
846
847 if (key->alg == ALG_TKIP)
848 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
849 vif->type == NL80211_IFTYPE_AP);
850 else
851 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
852
853 if (!ret)
854 return -EIO;
855
856 set_bit(idx, sc->keymap);
857 if (key->alg == ALG_TKIP) {
858 set_bit(idx + 64, sc->keymap);
859 if (sc->splitmic) {
860 set_bit(idx + 32, sc->keymap);
861 set_bit(idx + 64 + 32, sc->keymap);
862 }
863 }
864
865 return idx;
866 }
867
868 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
869 {
870 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
871 if (key->hw_key_idx < IEEE80211_WEP_NKID)
872 return;
873
874 clear_bit(key->hw_key_idx, sc->keymap);
875 if (key->alg != ALG_TKIP)
876 return;
877
878 clear_bit(key->hw_key_idx + 64, sc->keymap);
879 if (sc->splitmic) {
880 clear_bit(key->hw_key_idx + 32, sc->keymap);
881 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
882 }
883 }
884
885 static void setup_ht_cap(struct ath_softc *sc,
886 struct ieee80211_sta_ht_cap *ht_info)
887 {
888 u8 tx_streams, rx_streams;
889
890 ht_info->ht_supported = true;
891 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
892 IEEE80211_HT_CAP_SM_PS |
893 IEEE80211_HT_CAP_SGI_40 |
894 IEEE80211_HT_CAP_DSSSCCK40;
895
896 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
897 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
898
899 /* set up supported mcs set */
900 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
901 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
902 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
903
904 if (tx_streams != rx_streams) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
906 tx_streams, rx_streams);
907 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
908 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
909 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
910 }
911
912 ht_info->mcs.rx_mask[0] = 0xff;
913 if (rx_streams >= 2)
914 ht_info->mcs.rx_mask[1] = 0xff;
915
916 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
917 }
918
919 static void ath9k_bss_assoc_info(struct ath_softc *sc,
920 struct ieee80211_vif *vif,
921 struct ieee80211_bss_conf *bss_conf)
922 {
923
924 if (bss_conf->assoc) {
925 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
926 bss_conf->aid, sc->curbssid);
927
928 /* New association, store aid */
929 sc->curaid = bss_conf->aid;
930 ath9k_hw_write_associd(sc);
931
932 /*
933 * Request a re-configuration of Beacon related timers
934 * on the receipt of the first Beacon frame (i.e.,
935 * after time sync with the AP).
936 */
937 sc->sc_flags |= SC_OP_BEACON_SYNC;
938
939 /* Configure the beacon */
940 ath_beacon_config(sc, vif);
941
942 /* Reset rssi stats */
943 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
944 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
945 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
946 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
947
948 ath_start_ani(sc);
949 } else {
950 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
951 sc->curaid = 0;
952 /* Stop ANI */
953 del_timer_sync(&sc->ani.timer);
954 }
955 }
956
957 /********************************/
958 /* LED functions */
959 /********************************/
960
961 static void ath_led_blink_work(struct work_struct *work)
962 {
963 struct ath_softc *sc = container_of(work, struct ath_softc,
964 ath_led_blink_work.work);
965
966 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
967 return;
968
969 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
970 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
971 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
972 else
973 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
974 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
975
976 ieee80211_queue_delayed_work(sc->hw,
977 &sc->ath_led_blink_work,
978 (sc->sc_flags & SC_OP_LED_ON) ?
979 msecs_to_jiffies(sc->led_off_duration) :
980 msecs_to_jiffies(sc->led_on_duration));
981
982 sc->led_on_duration = sc->led_on_cnt ?
983 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
984 ATH_LED_ON_DURATION_IDLE;
985 sc->led_off_duration = sc->led_off_cnt ?
986 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
987 ATH_LED_OFF_DURATION_IDLE;
988 sc->led_on_cnt = sc->led_off_cnt = 0;
989 if (sc->sc_flags & SC_OP_LED_ON)
990 sc->sc_flags &= ~SC_OP_LED_ON;
991 else
992 sc->sc_flags |= SC_OP_LED_ON;
993 }
994
995 static void ath_led_brightness(struct led_classdev *led_cdev,
996 enum led_brightness brightness)
997 {
998 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
999 struct ath_softc *sc = led->sc;
1000
1001 switch (brightness) {
1002 case LED_OFF:
1003 if (led->led_type == ATH_LED_ASSOC ||
1004 led->led_type == ATH_LED_RADIO) {
1005 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
1006 (led->led_type == ATH_LED_RADIO));
1007 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1008 if (led->led_type == ATH_LED_RADIO)
1009 sc->sc_flags &= ~SC_OP_LED_ON;
1010 } else {
1011 sc->led_off_cnt++;
1012 }
1013 break;
1014 case LED_FULL:
1015 if (led->led_type == ATH_LED_ASSOC) {
1016 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1017 ieee80211_queue_delayed_work(sc->hw,
1018 &sc->ath_led_blink_work, 0);
1019 } else if (led->led_type == ATH_LED_RADIO) {
1020 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1021 sc->sc_flags |= SC_OP_LED_ON;
1022 } else {
1023 sc->led_on_cnt++;
1024 }
1025 break;
1026 default:
1027 break;
1028 }
1029 }
1030
1031 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1032 char *trigger)
1033 {
1034 int ret;
1035
1036 led->sc = sc;
1037 led->led_cdev.name = led->name;
1038 led->led_cdev.default_trigger = trigger;
1039 led->led_cdev.brightness_set = ath_led_brightness;
1040
1041 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1042 if (ret)
1043 DPRINTF(sc, ATH_DBG_FATAL,
1044 "Failed to register led:%s", led->name);
1045 else
1046 led->registered = 1;
1047 return ret;
1048 }
1049
1050 static void ath_unregister_led(struct ath_led *led)
1051 {
1052 if (led->registered) {
1053 led_classdev_unregister(&led->led_cdev);
1054 led->registered = 0;
1055 }
1056 }
1057
1058 static void ath_deinit_leds(struct ath_softc *sc)
1059 {
1060 ath_unregister_led(&sc->assoc_led);
1061 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1062 ath_unregister_led(&sc->tx_led);
1063 ath_unregister_led(&sc->rx_led);
1064 ath_unregister_led(&sc->radio_led);
1065 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1066 }
1067
1068 static void ath_init_leds(struct ath_softc *sc)
1069 {
1070 char *trigger;
1071 int ret;
1072
1073 /* Configure gpio 1 for output */
1074 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1075 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1076 /* LED off, active low */
1077 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1078
1079 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1080
1081 trigger = ieee80211_get_radio_led_name(sc->hw);
1082 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1083 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1084 ret = ath_register_led(sc, &sc->radio_led, trigger);
1085 sc->radio_led.led_type = ATH_LED_RADIO;
1086 if (ret)
1087 goto fail;
1088
1089 trigger = ieee80211_get_assoc_led_name(sc->hw);
1090 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1091 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1092 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1093 sc->assoc_led.led_type = ATH_LED_ASSOC;
1094 if (ret)
1095 goto fail;
1096
1097 trigger = ieee80211_get_tx_led_name(sc->hw);
1098 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1099 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1100 ret = ath_register_led(sc, &sc->tx_led, trigger);
1101 sc->tx_led.led_type = ATH_LED_TX;
1102 if (ret)
1103 goto fail;
1104
1105 trigger = ieee80211_get_rx_led_name(sc->hw);
1106 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1107 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1108 ret = ath_register_led(sc, &sc->rx_led, trigger);
1109 sc->rx_led.led_type = ATH_LED_RX;
1110 if (ret)
1111 goto fail;
1112
1113 return;
1114
1115 fail:
1116 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1117 ath_deinit_leds(sc);
1118 }
1119
1120 void ath_radio_enable(struct ath_softc *sc)
1121 {
1122 struct ath_hw *ah = sc->sc_ah;
1123 struct ieee80211_channel *channel = sc->hw->conf.channel;
1124 int r;
1125
1126 ath9k_ps_wakeup(sc);
1127 ath9k_hw_configpcipowersave(ah, 0);
1128
1129 if (!ah->curchan)
1130 ah->curchan = ath_get_curchannel(sc, sc->hw);
1131
1132 spin_lock_bh(&sc->sc_resetlock);
1133 r = ath9k_hw_reset(ah, ah->curchan, false);
1134 if (r) {
1135 DPRINTF(sc, ATH_DBG_FATAL,
1136 "Unable to reset channel %u (%uMhz) ",
1137 "reset status %d\n",
1138 channel->center_freq, r);
1139 }
1140 spin_unlock_bh(&sc->sc_resetlock);
1141
1142 ath_update_txpow(sc);
1143 if (ath_startrecv(sc) != 0) {
1144 DPRINTF(sc, ATH_DBG_FATAL,
1145 "Unable to restart recv logic\n");
1146 return;
1147 }
1148
1149 if (sc->sc_flags & SC_OP_BEACONS)
1150 ath_beacon_config(sc, NULL); /* restart beacons */
1151
1152 /* Re-Enable interrupts */
1153 ath9k_hw_set_interrupts(ah, sc->imask);
1154
1155 /* Enable LED */
1156 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1157 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1158 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1159
1160 ieee80211_wake_queues(sc->hw);
1161 ath9k_ps_restore(sc);
1162 }
1163
1164 void ath_radio_disable(struct ath_softc *sc)
1165 {
1166 struct ath_hw *ah = sc->sc_ah;
1167 struct ieee80211_channel *channel = sc->hw->conf.channel;
1168 int r;
1169
1170 ath9k_ps_wakeup(sc);
1171 ieee80211_stop_queues(sc->hw);
1172
1173 /* Disable LED */
1174 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1175 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1176
1177 /* Disable interrupts */
1178 ath9k_hw_set_interrupts(ah, 0);
1179
1180 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1181 ath_stoprecv(sc); /* turn off frame recv */
1182 ath_flushrecv(sc); /* flush recv queue */
1183
1184 if (!ah->curchan)
1185 ah->curchan = ath_get_curchannel(sc, sc->hw);
1186
1187 spin_lock_bh(&sc->sc_resetlock);
1188 r = ath9k_hw_reset(ah, ah->curchan, false);
1189 if (r) {
1190 DPRINTF(sc, ATH_DBG_FATAL,
1191 "Unable to reset channel %u (%uMhz) "
1192 "reset status %d\n",
1193 channel->center_freq, r);
1194 }
1195 spin_unlock_bh(&sc->sc_resetlock);
1196
1197 ath9k_hw_phy_disable(ah);
1198 ath9k_hw_configpcipowersave(ah, 1);
1199 ath9k_ps_restore(sc);
1200 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1201 }
1202
1203 /*******************/
1204 /* Rfkill */
1205 /*******************/
1206
1207 static bool ath_is_rfkill_set(struct ath_softc *sc)
1208 {
1209 struct ath_hw *ah = sc->sc_ah;
1210
1211 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1212 ah->rfkill_polarity;
1213 }
1214
1215 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1216 {
1217 struct ath_wiphy *aphy = hw->priv;
1218 struct ath_softc *sc = aphy->sc;
1219 bool blocked = !!ath_is_rfkill_set(sc);
1220
1221 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1222
1223 if (blocked)
1224 ath_radio_disable(sc);
1225 else
1226 ath_radio_enable(sc);
1227 }
1228
1229 static void ath_start_rfkill_poll(struct ath_softc *sc)
1230 {
1231 struct ath_hw *ah = sc->sc_ah;
1232
1233 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1234 wiphy_rfkill_start_polling(sc->hw->wiphy);
1235 }
1236
1237 void ath_cleanup(struct ath_softc *sc)
1238 {
1239 ath_detach(sc);
1240 free_irq(sc->irq, sc);
1241 ath_bus_cleanup(sc);
1242 kfree(sc->sec_wiphy);
1243 ieee80211_free_hw(sc->hw);
1244 }
1245
1246 void ath_detach(struct ath_softc *sc)
1247 {
1248 struct ieee80211_hw *hw = sc->hw;
1249 int i = 0;
1250
1251 ath9k_ps_wakeup(sc);
1252
1253 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1254
1255 ath_deinit_leds(sc);
1256
1257 for (i = 0; i < sc->num_sec_wiphy; i++) {
1258 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1259 if (aphy == NULL)
1260 continue;
1261 sc->sec_wiphy[i] = NULL;
1262 ieee80211_unregister_hw(aphy->hw);
1263 ieee80211_free_hw(aphy->hw);
1264 }
1265 ieee80211_unregister_hw(hw);
1266 ath_rx_cleanup(sc);
1267 ath_tx_cleanup(sc);
1268
1269 tasklet_kill(&sc->intr_tq);
1270 tasklet_kill(&sc->bcon_tasklet);
1271
1272 if (!(sc->sc_flags & SC_OP_INVALID))
1273 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1274
1275 /* cleanup tx queues */
1276 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1277 if (ATH_TXQ_SETUP(sc, i))
1278 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1279
1280 ath9k_hw_detach(sc->sc_ah);
1281 ath9k_exit_debug(sc);
1282 }
1283
1284 static int ath9k_reg_notifier(struct wiphy *wiphy,
1285 struct regulatory_request *request)
1286 {
1287 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1288 struct ath_wiphy *aphy = hw->priv;
1289 struct ath_softc *sc = aphy->sc;
1290 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1291
1292 return ath_reg_notifier_apply(wiphy, request, reg);
1293 }
1294
1295 static int ath_init(u16 devid, struct ath_softc *sc)
1296 {
1297 struct ath_hw *ah = NULL;
1298 int r = 0, i;
1299 int csz = 0;
1300
1301 /* XXX: hardware will not be ready until ath_open() being called */
1302 sc->sc_flags |= SC_OP_INVALID;
1303
1304 if (ath9k_init_debug(sc) < 0)
1305 printk(KERN_ERR "Unable to create debugfs files\n");
1306
1307 spin_lock_init(&sc->wiphy_lock);
1308 spin_lock_init(&sc->sc_resetlock);
1309 spin_lock_init(&sc->sc_serial_rw);
1310 spin_lock_init(&sc->ani_lock);
1311 spin_lock_init(&sc->sc_pm_lock);
1312 mutex_init(&sc->mutex);
1313 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1314 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1315 (unsigned long)sc);
1316
1317 /*
1318 * Cache line size is used to size and align various
1319 * structures used to communicate with the hardware.
1320 */
1321 ath_read_cachesize(sc, &csz);
1322 /* XXX assert csz is non-zero */
1323 sc->cachelsz = csz << 2; /* convert to bytes */
1324
1325 ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1326 if (!ah) {
1327 DPRINTF(sc, ATH_DBG_FATAL,
1328 "Cannot allocate memory for state block\n");
1329 r = -ENOMEM;
1330 goto bad_no_ah;
1331 }
1332
1333 ah->ah_sc = sc;
1334 ah->hw_version.devid = devid;
1335 sc->sc_ah = ah;
1336
1337 r = ath9k_hw_attach(ah, sc);
1338 if (r) {
1339 DPRINTF(sc, ATH_DBG_FATAL,
1340 "Unable to attach hardware; "
1341 "initialization status: %d\n", r);
1342 goto bad;
1343 }
1344
1345 /* Get the hardware key cache size. */
1346 sc->keymax = ah->caps.keycache_size;
1347 if (sc->keymax > ATH_KEYMAX) {
1348 DPRINTF(sc, ATH_DBG_ANY,
1349 "Warning, using only %u entries in %u key cache\n",
1350 ATH_KEYMAX, sc->keymax);
1351 sc->keymax = ATH_KEYMAX;
1352 }
1353
1354 /*
1355 * Reset the key cache since some parts do not
1356 * reset the contents on initial power up.
1357 */
1358 for (i = 0; i < sc->keymax; i++)
1359 ath9k_hw_keyreset(ah, (u16) i);
1360
1361 if (r)
1362 goto bad;
1363
1364 /* default to MONITOR mode */
1365 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1366
1367 /* Setup rate tables */
1368
1369 ath_rate_attach(sc);
1370 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1371 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1372
1373 /*
1374 * Allocate hardware transmit queues: one queue for
1375 * beacon frames and one data queue for each QoS
1376 * priority. Note that the hal handles reseting
1377 * these queues at the needed time.
1378 */
1379 sc->beacon.beaconq = ath_beaconq_setup(ah);
1380 if (sc->beacon.beaconq == -1) {
1381 DPRINTF(sc, ATH_DBG_FATAL,
1382 "Unable to setup a beacon xmit queue\n");
1383 r = -EIO;
1384 goto bad2;
1385 }
1386 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1387 if (sc->beacon.cabq == NULL) {
1388 DPRINTF(sc, ATH_DBG_FATAL,
1389 "Unable to setup CAB xmit queue\n");
1390 r = -EIO;
1391 goto bad2;
1392 }
1393
1394 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1395 ath_cabq_update(sc);
1396
1397 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1398 sc->tx.hwq_map[i] = -1;
1399
1400 /* Setup data queues */
1401 /* NB: ensure BK queue is the lowest priority h/w queue */
1402 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1403 DPRINTF(sc, ATH_DBG_FATAL,
1404 "Unable to setup xmit queue for BK traffic\n");
1405 r = -EIO;
1406 goto bad2;
1407 }
1408
1409 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1410 DPRINTF(sc, ATH_DBG_FATAL,
1411 "Unable to setup xmit queue for BE traffic\n");
1412 r = -EIO;
1413 goto bad2;
1414 }
1415 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1416 DPRINTF(sc, ATH_DBG_FATAL,
1417 "Unable to setup xmit queue for VI traffic\n");
1418 r = -EIO;
1419 goto bad2;
1420 }
1421 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1422 DPRINTF(sc, ATH_DBG_FATAL,
1423 "Unable to setup xmit queue for VO traffic\n");
1424 r = -EIO;
1425 goto bad2;
1426 }
1427
1428 /* Initializes the noise floor to a reasonable default value.
1429 * Later on this will be updated during ANI processing. */
1430
1431 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1432 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1433
1434 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1435 ATH9K_CIPHER_TKIP, NULL)) {
1436 /*
1437 * Whether we should enable h/w TKIP MIC.
1438 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1439 * report WMM capable, so it's always safe to turn on
1440 * TKIP MIC in this case.
1441 */
1442 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1443 0, 1, NULL);
1444 }
1445
1446 /*
1447 * Check whether the separate key cache entries
1448 * are required to handle both tx+rx MIC keys.
1449 * With split mic keys the number of stations is limited
1450 * to 27 otherwise 59.
1451 */
1452 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1453 ATH9K_CIPHER_TKIP, NULL)
1454 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1455 ATH9K_CIPHER_MIC, NULL)
1456 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1457 0, NULL))
1458 sc->splitmic = 1;
1459
1460 /* turn on mcast key search if possible */
1461 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1462 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1463 1, NULL);
1464
1465 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1466
1467 /* 11n Capabilities */
1468 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1469 sc->sc_flags |= SC_OP_TXAGGR;
1470 sc->sc_flags |= SC_OP_RXAGGR;
1471 }
1472
1473 sc->tx_chainmask = ah->caps.tx_chainmask;
1474 sc->rx_chainmask = ah->caps.rx_chainmask;
1475
1476 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1477 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1478
1479 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1480 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1481
1482 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1483
1484 /* initialize beacon slots */
1485 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1486 sc->beacon.bslot[i] = NULL;
1487 sc->beacon.bslot_aphy[i] = NULL;
1488 }
1489
1490 /* setup channels and rates */
1491
1492 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1493 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1494 sc->rates[IEEE80211_BAND_2GHZ];
1495 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1496 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1497 ARRAY_SIZE(ath9k_2ghz_chantable);
1498
1499 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1500 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1501 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1502 sc->rates[IEEE80211_BAND_5GHZ];
1503 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1504 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1505 ARRAY_SIZE(ath9k_5ghz_chantable);
1506 }
1507
1508 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1509 ath9k_hw_btcoex_enable(sc->sc_ah);
1510
1511 return 0;
1512 bad2:
1513 /* cleanup tx queues */
1514 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1515 if (ATH_TXQ_SETUP(sc, i))
1516 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1517 bad:
1518 if (ah)
1519 ath9k_hw_detach(ah);
1520 bad_no_ah:
1521 ath9k_exit_debug(sc);
1522
1523 return r;
1524 }
1525
1526 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1527 {
1528 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1529 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1530 IEEE80211_HW_SIGNAL_DBM |
1531 IEEE80211_HW_AMPDU_AGGREGATION |
1532 IEEE80211_HW_SUPPORTS_PS |
1533 IEEE80211_HW_PS_NULLFUNC_STACK |
1534 IEEE80211_HW_SPECTRUM_MGMT;
1535
1536 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1537 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1538
1539 hw->wiphy->interface_modes =
1540 BIT(NL80211_IFTYPE_AP) |
1541 BIT(NL80211_IFTYPE_STATION) |
1542 BIT(NL80211_IFTYPE_ADHOC) |
1543 BIT(NL80211_IFTYPE_MESH_POINT);
1544
1545 hw->queues = 4;
1546 hw->max_rates = 4;
1547 hw->channel_change_time = 5000;
1548 hw->max_listen_interval = 10;
1549 /* Hardware supports 10 but we use 4 */
1550 hw->max_rate_tries = 4;
1551 hw->sta_data_size = sizeof(struct ath_node);
1552 hw->vif_data_size = sizeof(struct ath_vif);
1553
1554 hw->rate_control_algorithm = "ath9k_rate_control";
1555
1556 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1557 &sc->sbands[IEEE80211_BAND_2GHZ];
1558 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1559 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1560 &sc->sbands[IEEE80211_BAND_5GHZ];
1561 }
1562
1563 int ath_attach(u16 devid, struct ath_softc *sc)
1564 {
1565 struct ieee80211_hw *hw = sc->hw;
1566 int error = 0, i;
1567 struct ath_regulatory *reg;
1568
1569 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1570
1571 error = ath_init(devid, sc);
1572 if (error != 0)
1573 return error;
1574
1575 /* get mac address from hardware and set in mac80211 */
1576
1577 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1578
1579 ath_set_hw_capab(sc, hw);
1580
1581 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1582 ath9k_reg_notifier);
1583 if (error)
1584 return error;
1585
1586 reg = &sc->sc_ah->regulatory;
1587
1588 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1589 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1590 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1591 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1592 }
1593
1594 /* initialize tx/rx engine */
1595 error = ath_tx_init(sc, ATH_TXBUF);
1596 if (error != 0)
1597 goto error_attach;
1598
1599 error = ath_rx_init(sc, ATH_RXBUF);
1600 if (error != 0)
1601 goto error_attach;
1602
1603 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1604 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1605 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1606
1607 error = ieee80211_register_hw(hw);
1608
1609 if (!ath_is_world_regd(reg)) {
1610 error = regulatory_hint(hw->wiphy, reg->alpha2);
1611 if (error)
1612 goto error_attach;
1613 }
1614
1615 /* Initialize LED control */
1616 ath_init_leds(sc);
1617
1618 ath_start_rfkill_poll(sc);
1619
1620 return 0;
1621
1622 error_attach:
1623 /* cleanup tx queues */
1624 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1625 if (ATH_TXQ_SETUP(sc, i))
1626 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1627
1628 ath9k_hw_detach(sc->sc_ah);
1629 ath9k_exit_debug(sc);
1630
1631 return error;
1632 }
1633
1634 int ath_reset(struct ath_softc *sc, bool retry_tx)
1635 {
1636 struct ath_hw *ah = sc->sc_ah;
1637 struct ieee80211_hw *hw = sc->hw;
1638 int r;
1639
1640 ath9k_hw_set_interrupts(ah, 0);
1641 ath_drain_all_txq(sc, retry_tx);
1642 ath_stoprecv(sc);
1643 ath_flushrecv(sc);
1644
1645 spin_lock_bh(&sc->sc_resetlock);
1646 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1647 if (r)
1648 DPRINTF(sc, ATH_DBG_FATAL,
1649 "Unable to reset hardware; reset status %d\n", r);
1650 spin_unlock_bh(&sc->sc_resetlock);
1651
1652 if (ath_startrecv(sc) != 0)
1653 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1654
1655 /*
1656 * We may be doing a reset in response to a request
1657 * that changes the channel so update any state that
1658 * might change as a result.
1659 */
1660 ath_cache_conf_rate(sc, &hw->conf);
1661
1662 ath_update_txpow(sc);
1663
1664 if (sc->sc_flags & SC_OP_BEACONS)
1665 ath_beacon_config(sc, NULL); /* restart beacons */
1666
1667 ath9k_hw_set_interrupts(ah, sc->imask);
1668
1669 if (retry_tx) {
1670 int i;
1671 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1672 if (ATH_TXQ_SETUP(sc, i)) {
1673 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1674 ath_txq_schedule(sc, &sc->tx.txq[i]);
1675 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1676 }
1677 }
1678 }
1679
1680 return r;
1681 }
1682
1683 /*
1684 * This function will allocate both the DMA descriptor structure, and the
1685 * buffers it contains. These are used to contain the descriptors used
1686 * by the system.
1687 */
1688 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1689 struct list_head *head, const char *name,
1690 int nbuf, int ndesc)
1691 {
1692 #define DS2PHYS(_dd, _ds) \
1693 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1694 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1695 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1696
1697 struct ath_desc *ds;
1698 struct ath_buf *bf;
1699 int i, bsize, error;
1700
1701 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1702 name, nbuf, ndesc);
1703
1704 INIT_LIST_HEAD(head);
1705 /* ath_desc must be a multiple of DWORDs */
1706 if ((sizeof(struct ath_desc) % 4) != 0) {
1707 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1708 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1709 error = -ENOMEM;
1710 goto fail;
1711 }
1712
1713 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1714
1715 /*
1716 * Need additional DMA memory because we can't use
1717 * descriptors that cross the 4K page boundary. Assume
1718 * one skipped descriptor per 4K page.
1719 */
1720 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1721 u32 ndesc_skipped =
1722 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1723 u32 dma_len;
1724
1725 while (ndesc_skipped) {
1726 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1727 dd->dd_desc_len += dma_len;
1728
1729 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1730 };
1731 }
1732
1733 /* allocate descriptors */
1734 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1735 &dd->dd_desc_paddr, GFP_KERNEL);
1736 if (dd->dd_desc == NULL) {
1737 error = -ENOMEM;
1738 goto fail;
1739 }
1740 ds = dd->dd_desc;
1741 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1742 name, ds, (u32) dd->dd_desc_len,
1743 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1744
1745 /* allocate buffers */
1746 bsize = sizeof(struct ath_buf) * nbuf;
1747 bf = kzalloc(bsize, GFP_KERNEL);
1748 if (bf == NULL) {
1749 error = -ENOMEM;
1750 goto fail2;
1751 }
1752 dd->dd_bufptr = bf;
1753
1754 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1755 bf->bf_desc = ds;
1756 bf->bf_daddr = DS2PHYS(dd, ds);
1757
1758 if (!(sc->sc_ah->caps.hw_caps &
1759 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1760 /*
1761 * Skip descriptor addresses which can cause 4KB
1762 * boundary crossing (addr + length) with a 32 dword
1763 * descriptor fetch.
1764 */
1765 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1766 ASSERT((caddr_t) bf->bf_desc <
1767 ((caddr_t) dd->dd_desc +
1768 dd->dd_desc_len));
1769
1770 ds += ndesc;
1771 bf->bf_desc = ds;
1772 bf->bf_daddr = DS2PHYS(dd, ds);
1773 }
1774 }
1775 list_add_tail(&bf->list, head);
1776 }
1777 return 0;
1778 fail2:
1779 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1780 dd->dd_desc_paddr);
1781 fail:
1782 memset(dd, 0, sizeof(*dd));
1783 return error;
1784 #undef ATH_DESC_4KB_BOUND_CHECK
1785 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1786 #undef DS2PHYS
1787 }
1788
1789 void ath_descdma_cleanup(struct ath_softc *sc,
1790 struct ath_descdma *dd,
1791 struct list_head *head)
1792 {
1793 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1794 dd->dd_desc_paddr);
1795
1796 INIT_LIST_HEAD(head);
1797 kfree(dd->dd_bufptr);
1798 memset(dd, 0, sizeof(*dd));
1799 }
1800
1801 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1802 {
1803 int qnum;
1804
1805 switch (queue) {
1806 case 0:
1807 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1808 break;
1809 case 1:
1810 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1811 break;
1812 case 2:
1813 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1814 break;
1815 case 3:
1816 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1817 break;
1818 default:
1819 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1820 break;
1821 }
1822
1823 return qnum;
1824 }
1825
1826 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1827 {
1828 int qnum;
1829
1830 switch (queue) {
1831 case ATH9K_WME_AC_VO:
1832 qnum = 0;
1833 break;
1834 case ATH9K_WME_AC_VI:
1835 qnum = 1;
1836 break;
1837 case ATH9K_WME_AC_BE:
1838 qnum = 2;
1839 break;
1840 case ATH9K_WME_AC_BK:
1841 qnum = 3;
1842 break;
1843 default:
1844 qnum = -1;
1845 break;
1846 }
1847
1848 return qnum;
1849 }
1850
1851 /* XXX: Remove me once we don't depend on ath9k_channel for all
1852 * this redundant data */
1853 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1854 struct ath9k_channel *ichan)
1855 {
1856 struct ieee80211_channel *chan = hw->conf.channel;
1857 struct ieee80211_conf *conf = &hw->conf;
1858
1859 ichan->channel = chan->center_freq;
1860 ichan->chan = chan;
1861
1862 if (chan->band == IEEE80211_BAND_2GHZ) {
1863 ichan->chanmode = CHANNEL_G;
1864 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1865 } else {
1866 ichan->chanmode = CHANNEL_A;
1867 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1868 }
1869
1870 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1871
1872 if (conf_is_ht(conf)) {
1873 if (conf_is_ht40(conf))
1874 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1875
1876 ichan->chanmode = ath_get_extchanmode(sc, chan,
1877 conf->channel_type);
1878 }
1879 }
1880
1881 /**********************/
1882 /* mac80211 callbacks */
1883 /**********************/
1884
1885 static int ath9k_start(struct ieee80211_hw *hw)
1886 {
1887 struct ath_wiphy *aphy = hw->priv;
1888 struct ath_softc *sc = aphy->sc;
1889 struct ieee80211_channel *curchan = hw->conf.channel;
1890 struct ath9k_channel *init_channel;
1891 int r;
1892
1893 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1894 "initial channel: %d MHz\n", curchan->center_freq);
1895
1896 mutex_lock(&sc->mutex);
1897
1898 if (ath9k_wiphy_started(sc)) {
1899 if (sc->chan_idx == curchan->hw_value) {
1900 /*
1901 * Already on the operational channel, the new wiphy
1902 * can be marked active.
1903 */
1904 aphy->state = ATH_WIPHY_ACTIVE;
1905 ieee80211_wake_queues(hw);
1906 } else {
1907 /*
1908 * Another wiphy is on another channel, start the new
1909 * wiphy in paused state.
1910 */
1911 aphy->state = ATH_WIPHY_PAUSED;
1912 ieee80211_stop_queues(hw);
1913 }
1914 mutex_unlock(&sc->mutex);
1915 return 0;
1916 }
1917 aphy->state = ATH_WIPHY_ACTIVE;
1918
1919 /* setup initial channel */
1920
1921 sc->chan_idx = curchan->hw_value;
1922
1923 init_channel = ath_get_curchannel(sc, hw);
1924
1925 /* Reset SERDES registers */
1926 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1927
1928 /*
1929 * The basic interface to setting the hardware in a good
1930 * state is ``reset''. On return the hardware is known to
1931 * be powered up and with interrupts disabled. This must
1932 * be followed by initialization of the appropriate bits
1933 * and then setup of the interrupt mask.
1934 */
1935 spin_lock_bh(&sc->sc_resetlock);
1936 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1937 if (r) {
1938 DPRINTF(sc, ATH_DBG_FATAL,
1939 "Unable to reset hardware; reset status %d "
1940 "(freq %u MHz)\n", r,
1941 curchan->center_freq);
1942 spin_unlock_bh(&sc->sc_resetlock);
1943 goto mutex_unlock;
1944 }
1945 spin_unlock_bh(&sc->sc_resetlock);
1946
1947 /*
1948 * This is needed only to setup initial state
1949 * but it's best done after a reset.
1950 */
1951 ath_update_txpow(sc);
1952
1953 /*
1954 * Setup the hardware after reset:
1955 * The receive engine is set going.
1956 * Frame transmit is handled entirely
1957 * in the frame output path; there's nothing to do
1958 * here except setup the interrupt mask.
1959 */
1960 if (ath_startrecv(sc) != 0) {
1961 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1962 r = -EIO;
1963 goto mutex_unlock;
1964 }
1965
1966 /* Setup our intr mask. */
1967 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1968 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1969 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1970
1971 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1972 sc->imask |= ATH9K_INT_GTT;
1973
1974 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1975 sc->imask |= ATH9K_INT_CST;
1976
1977 ath_cache_conf_rate(sc, &hw->conf);
1978
1979 sc->sc_flags &= ~SC_OP_INVALID;
1980
1981 /* Disable BMISS interrupt when we're not associated */
1982 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1983 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
1984
1985 ieee80211_wake_queues(hw);
1986
1987 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
1988
1989 mutex_unlock:
1990 mutex_unlock(&sc->mutex);
1991
1992 return r;
1993 }
1994
1995 static int ath9k_tx(struct ieee80211_hw *hw,
1996 struct sk_buff *skb)
1997 {
1998 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1999 struct ath_wiphy *aphy = hw->priv;
2000 struct ath_softc *sc = aphy->sc;
2001 struct ath_tx_control txctl;
2002 int hdrlen, padsize;
2003
2004 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2005 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2006 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2007 goto exit;
2008 }
2009
2010 if (sc->ps_enabled) {
2011 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2012 /*
2013 * mac80211 does not set PM field for normal data frames, so we
2014 * need to update that based on the current PS mode.
2015 */
2016 if (ieee80211_is_data(hdr->frame_control) &&
2017 !ieee80211_is_nullfunc(hdr->frame_control) &&
2018 !ieee80211_has_pm(hdr->frame_control)) {
2019 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2020 "while in PS mode\n");
2021 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2022 }
2023 }
2024
2025 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2026 /*
2027 * We are using PS-Poll and mac80211 can request TX while in
2028 * power save mode. Need to wake up hardware for the TX to be
2029 * completed and if needed, also for RX of buffered frames.
2030 */
2031 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2032 ath9k_ps_wakeup(sc);
2033 ath9k_hw_setrxabort(sc->sc_ah, 0);
2034 if (ieee80211_is_pspoll(hdr->frame_control)) {
2035 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2036 "buffered frame\n");
2037 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2038 } else {
2039 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2040 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2041 }
2042 /*
2043 * The actual restore operation will happen only after
2044 * the sc_flags bit is cleared. We are just dropping
2045 * the ps_usecount here.
2046 */
2047 ath9k_ps_restore(sc);
2048 }
2049
2050 memset(&txctl, 0, sizeof(struct ath_tx_control));
2051
2052 /*
2053 * As a temporary workaround, assign seq# here; this will likely need
2054 * to be cleaned up to work better with Beacon transmission and virtual
2055 * BSSes.
2056 */
2057 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2058 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2059 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2060 sc->tx.seq_no += 0x10;
2061 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2062 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2063 }
2064
2065 /* Add the padding after the header if this is not already done */
2066 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2067 if (hdrlen & 3) {
2068 padsize = hdrlen % 4;
2069 if (skb_headroom(skb) < padsize)
2070 return -1;
2071 skb_push(skb, padsize);
2072 memmove(skb->data, skb->data + padsize, hdrlen);
2073 }
2074
2075 /* Check if a tx queue is available */
2076
2077 txctl.txq = ath_test_get_txq(sc, skb);
2078 if (!txctl.txq)
2079 goto exit;
2080
2081 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2082
2083 if (ath_tx_start(hw, skb, &txctl) != 0) {
2084 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2085 goto exit;
2086 }
2087
2088 return 0;
2089 exit:
2090 dev_kfree_skb_any(skb);
2091 return 0;
2092 }
2093
2094 static void ath9k_stop(struct ieee80211_hw *hw)
2095 {
2096 struct ath_wiphy *aphy = hw->priv;
2097 struct ath_softc *sc = aphy->sc;
2098
2099 aphy->state = ATH_WIPHY_INACTIVE;
2100
2101 cancel_delayed_work_sync(&sc->ath_led_blink_work);
2102 cancel_delayed_work_sync(&sc->tx_complete_work);
2103
2104 if (!sc->num_sec_wiphy) {
2105 cancel_delayed_work_sync(&sc->wiphy_work);
2106 cancel_work_sync(&sc->chan_work);
2107 }
2108
2109 if (sc->sc_flags & SC_OP_INVALID) {
2110 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2111 return;
2112 }
2113
2114 mutex_lock(&sc->mutex);
2115
2116 if (ath9k_wiphy_started(sc)) {
2117 mutex_unlock(&sc->mutex);
2118 return; /* another wiphy still in use */
2119 }
2120
2121 /* make sure h/w will not generate any interrupt
2122 * before setting the invalid flag. */
2123 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2124
2125 if (!(sc->sc_flags & SC_OP_INVALID)) {
2126 ath_drain_all_txq(sc, false);
2127 ath_stoprecv(sc);
2128 ath9k_hw_phy_disable(sc->sc_ah);
2129 } else
2130 sc->rx.rxlink = NULL;
2131
2132 wiphy_rfkill_stop_polling(sc->hw->wiphy);
2133
2134 /* disable HAL and put h/w to sleep */
2135 ath9k_hw_disable(sc->sc_ah);
2136 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2137
2138 sc->sc_flags |= SC_OP_INVALID;
2139
2140 mutex_unlock(&sc->mutex);
2141
2142 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2143 }
2144
2145 static int ath9k_add_interface(struct ieee80211_hw *hw,
2146 struct ieee80211_if_init_conf *conf)
2147 {
2148 struct ath_wiphy *aphy = hw->priv;
2149 struct ath_softc *sc = aphy->sc;
2150 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2151 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2152 int ret = 0;
2153
2154 mutex_lock(&sc->mutex);
2155
2156 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2157 sc->nvifs > 0) {
2158 ret = -ENOBUFS;
2159 goto out;
2160 }
2161
2162 switch (conf->type) {
2163 case NL80211_IFTYPE_STATION:
2164 ic_opmode = NL80211_IFTYPE_STATION;
2165 break;
2166 case NL80211_IFTYPE_ADHOC:
2167 case NL80211_IFTYPE_AP:
2168 case NL80211_IFTYPE_MESH_POINT:
2169 if (sc->nbcnvifs >= ATH_BCBUF) {
2170 ret = -ENOBUFS;
2171 goto out;
2172 }
2173 ic_opmode = conf->type;
2174 break;
2175 default:
2176 DPRINTF(sc, ATH_DBG_FATAL,
2177 "Interface type %d not yet supported\n", conf->type);
2178 ret = -EOPNOTSUPP;
2179 goto out;
2180 }
2181
2182 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2183
2184 /* Set the VIF opmode */
2185 avp->av_opmode = ic_opmode;
2186 avp->av_bslot = -1;
2187
2188 sc->nvifs++;
2189
2190 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2191 ath9k_set_bssid_mask(hw);
2192
2193 if (sc->nvifs > 1)
2194 goto out; /* skip global settings for secondary vif */
2195
2196 if (ic_opmode == NL80211_IFTYPE_AP) {
2197 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2198 sc->sc_flags |= SC_OP_TSF_RESET;
2199 }
2200
2201 /* Set the device opmode */
2202 sc->sc_ah->opmode = ic_opmode;
2203
2204 /*
2205 * Enable MIB interrupts when there are hardware phy counters.
2206 * Note we only do this (at the moment) for station mode.
2207 */
2208 if ((conf->type == NL80211_IFTYPE_STATION) ||
2209 (conf->type == NL80211_IFTYPE_ADHOC) ||
2210 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2211 if (ath9k_hw_phycounters(sc->sc_ah))
2212 sc->imask |= ATH9K_INT_MIB;
2213 sc->imask |= ATH9K_INT_TSFOOR;
2214 }
2215
2216 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2217
2218 if (conf->type == NL80211_IFTYPE_AP ||
2219 conf->type == NL80211_IFTYPE_ADHOC ||
2220 conf->type == NL80211_IFTYPE_MONITOR)
2221 ath_start_ani(sc);
2222
2223 out:
2224 mutex_unlock(&sc->mutex);
2225 return ret;
2226 }
2227
2228 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2229 struct ieee80211_if_init_conf *conf)
2230 {
2231 struct ath_wiphy *aphy = hw->priv;
2232 struct ath_softc *sc = aphy->sc;
2233 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2234 int i;
2235
2236 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2237
2238 mutex_lock(&sc->mutex);
2239
2240 /* Stop ANI */
2241 del_timer_sync(&sc->ani.timer);
2242
2243 /* Reclaim beacon resources */
2244 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2245 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2246 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2247 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2248 ath_beacon_return(sc, avp);
2249 }
2250
2251 sc->sc_flags &= ~SC_OP_BEACONS;
2252
2253 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2254 if (sc->beacon.bslot[i] == conf->vif) {
2255 printk(KERN_DEBUG "%s: vif had allocated beacon "
2256 "slot\n", __func__);
2257 sc->beacon.bslot[i] = NULL;
2258 sc->beacon.bslot_aphy[i] = NULL;
2259 }
2260 }
2261
2262 sc->nvifs--;
2263
2264 mutex_unlock(&sc->mutex);
2265 }
2266
2267 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2268 {
2269 struct ath_wiphy *aphy = hw->priv;
2270 struct ath_softc *sc = aphy->sc;
2271 struct ieee80211_conf *conf = &hw->conf;
2272 struct ath_hw *ah = sc->sc_ah;
2273 bool all_wiphys_idle = false, disable_radio = false;
2274
2275 mutex_lock(&sc->mutex);
2276
2277 /* Leave this as the first check */
2278 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2279
2280 spin_lock_bh(&sc->wiphy_lock);
2281 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2282 spin_unlock_bh(&sc->wiphy_lock);
2283
2284 if (conf->flags & IEEE80211_CONF_IDLE){
2285 if (all_wiphys_idle)
2286 disable_radio = true;
2287 }
2288 else if (all_wiphys_idle) {
2289 ath_radio_enable(sc);
2290 DPRINTF(sc, ATH_DBG_CONFIG,
2291 "not-idle: enabling radio\n");
2292 }
2293 }
2294
2295 if (changed & IEEE80211_CONF_CHANGE_PS) {
2296 if (conf->flags & IEEE80211_CONF_PS) {
2297 if (!(ah->caps.hw_caps &
2298 ATH9K_HW_CAP_AUTOSLEEP)) {
2299 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2300 sc->imask |= ATH9K_INT_TIM_TIMER;
2301 ath9k_hw_set_interrupts(sc->sc_ah,
2302 sc->imask);
2303 }
2304 ath9k_hw_setrxabort(sc->sc_ah, 1);
2305 }
2306 sc->ps_enabled = true;
2307 } else {
2308 sc->ps_enabled = false;
2309 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2310 if (!(ah->caps.hw_caps &
2311 ATH9K_HW_CAP_AUTOSLEEP)) {
2312 ath9k_hw_setrxabort(sc->sc_ah, 0);
2313 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2314 SC_OP_WAIT_FOR_CAB |
2315 SC_OP_WAIT_FOR_PSPOLL_DATA |
2316 SC_OP_WAIT_FOR_TX_ACK);
2317 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2318 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2319 ath9k_hw_set_interrupts(sc->sc_ah,
2320 sc->imask);
2321 }
2322 }
2323 }
2324 }
2325
2326 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2327 struct ieee80211_channel *curchan = hw->conf.channel;
2328 int pos = curchan->hw_value;
2329
2330 aphy->chan_idx = pos;
2331 aphy->chan_is_ht = conf_is_ht(conf);
2332
2333 if (aphy->state == ATH_WIPHY_SCAN ||
2334 aphy->state == ATH_WIPHY_ACTIVE)
2335 ath9k_wiphy_pause_all_forced(sc, aphy);
2336 else {
2337 /*
2338 * Do not change operational channel based on a paused
2339 * wiphy changes.
2340 */
2341 goto skip_chan_change;
2342 }
2343
2344 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2345 curchan->center_freq);
2346
2347 /* XXX: remove me eventualy */
2348 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2349
2350 ath_update_chainmask(sc, conf_is_ht(conf));
2351
2352 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2353 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2354 mutex_unlock(&sc->mutex);
2355 return -EINVAL;
2356 }
2357 }
2358
2359 skip_chan_change:
2360 if (changed & IEEE80211_CONF_CHANGE_POWER)
2361 sc->config.txpowlimit = 2 * conf->power_level;
2362
2363 if (disable_radio) {
2364 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2365 ath_radio_disable(sc);
2366 }
2367
2368 mutex_unlock(&sc->mutex);
2369
2370 return 0;
2371 }
2372
2373 #define SUPPORTED_FILTERS \
2374 (FIF_PROMISC_IN_BSS | \
2375 FIF_ALLMULTI | \
2376 FIF_CONTROL | \
2377 FIF_OTHER_BSS | \
2378 FIF_BCN_PRBRESP_PROMISC | \
2379 FIF_FCSFAIL)
2380
2381 /* FIXME: sc->sc_full_reset ? */
2382 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2383 unsigned int changed_flags,
2384 unsigned int *total_flags,
2385 int mc_count,
2386 struct dev_mc_list *mclist)
2387 {
2388 struct ath_wiphy *aphy = hw->priv;
2389 struct ath_softc *sc = aphy->sc;
2390 u32 rfilt;
2391
2392 changed_flags &= SUPPORTED_FILTERS;
2393 *total_flags &= SUPPORTED_FILTERS;
2394
2395 sc->rx.rxfilter = *total_flags;
2396 ath9k_ps_wakeup(sc);
2397 rfilt = ath_calcrxfilter(sc);
2398 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2399 ath9k_ps_restore(sc);
2400
2401 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2402 }
2403
2404 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2405 struct ieee80211_vif *vif,
2406 enum sta_notify_cmd cmd,
2407 struct ieee80211_sta *sta)
2408 {
2409 struct ath_wiphy *aphy = hw->priv;
2410 struct ath_softc *sc = aphy->sc;
2411
2412 switch (cmd) {
2413 case STA_NOTIFY_ADD:
2414 ath_node_attach(sc, sta);
2415 break;
2416 case STA_NOTIFY_REMOVE:
2417 ath_node_detach(sc, sta);
2418 break;
2419 default:
2420 break;
2421 }
2422 }
2423
2424 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2425 const struct ieee80211_tx_queue_params *params)
2426 {
2427 struct ath_wiphy *aphy = hw->priv;
2428 struct ath_softc *sc = aphy->sc;
2429 struct ath9k_tx_queue_info qi;
2430 int ret = 0, qnum;
2431
2432 if (queue >= WME_NUM_AC)
2433 return 0;
2434
2435 mutex_lock(&sc->mutex);
2436
2437 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2438
2439 qi.tqi_aifs = params->aifs;
2440 qi.tqi_cwmin = params->cw_min;
2441 qi.tqi_cwmax = params->cw_max;
2442 qi.tqi_burstTime = params->txop;
2443 qnum = ath_get_hal_qnum(queue, sc);
2444
2445 DPRINTF(sc, ATH_DBG_CONFIG,
2446 "Configure tx [queue/halq] [%d/%d], "
2447 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2448 queue, qnum, params->aifs, params->cw_min,
2449 params->cw_max, params->txop);
2450
2451 ret = ath_txq_update(sc, qnum, &qi);
2452 if (ret)
2453 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2454
2455 mutex_unlock(&sc->mutex);
2456
2457 return ret;
2458 }
2459
2460 static int ath9k_set_key(struct ieee80211_hw *hw,
2461 enum set_key_cmd cmd,
2462 struct ieee80211_vif *vif,
2463 struct ieee80211_sta *sta,
2464 struct ieee80211_key_conf *key)
2465 {
2466 struct ath_wiphy *aphy = hw->priv;
2467 struct ath_softc *sc = aphy->sc;
2468 int ret = 0;
2469
2470 if (modparam_nohwcrypt)
2471 return -ENOSPC;
2472
2473 mutex_lock(&sc->mutex);
2474 ath9k_ps_wakeup(sc);
2475 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2476
2477 switch (cmd) {
2478 case SET_KEY:
2479 ret = ath_key_config(sc, vif, sta, key);
2480 if (ret >= 0) {
2481 key->hw_key_idx = ret;
2482 /* push IV and Michael MIC generation to stack */
2483 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2484 if (key->alg == ALG_TKIP)
2485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2486 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2487 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2488 ret = 0;
2489 }
2490 break;
2491 case DISABLE_KEY:
2492 ath_key_delete(sc, key);
2493 break;
2494 default:
2495 ret = -EINVAL;
2496 }
2497
2498 ath9k_ps_restore(sc);
2499 mutex_unlock(&sc->mutex);
2500
2501 return ret;
2502 }
2503
2504 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2505 struct ieee80211_vif *vif,
2506 struct ieee80211_bss_conf *bss_conf,
2507 u32 changed)
2508 {
2509 struct ath_wiphy *aphy = hw->priv;
2510 struct ath_softc *sc = aphy->sc;
2511 struct ath_hw *ah = sc->sc_ah;
2512 struct ath_vif *avp = (void *)vif->drv_priv;
2513 u32 rfilt = 0;
2514 int error, i;
2515
2516 mutex_lock(&sc->mutex);
2517
2518 /*
2519 * TODO: Need to decide which hw opmode to use for
2520 * multi-interface cases
2521 * XXX: This belongs into add_interface!
2522 */
2523 if (vif->type == NL80211_IFTYPE_AP &&
2524 ah->opmode != NL80211_IFTYPE_AP) {
2525 ah->opmode = NL80211_IFTYPE_STATION;
2526 ath9k_hw_setopmode(ah);
2527 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2528 sc->curaid = 0;
2529 ath9k_hw_write_associd(sc);
2530 /* Request full reset to get hw opmode changed properly */
2531 sc->sc_flags |= SC_OP_FULL_RESET;
2532 }
2533
2534 if ((changed & BSS_CHANGED_BSSID) &&
2535 !is_zero_ether_addr(bss_conf->bssid)) {
2536 switch (vif->type) {
2537 case NL80211_IFTYPE_STATION:
2538 case NL80211_IFTYPE_ADHOC:
2539 case NL80211_IFTYPE_MESH_POINT:
2540 /* Set BSSID */
2541 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2542 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2543 sc->curaid = 0;
2544 ath9k_hw_write_associd(sc);
2545
2546 /* Set aggregation protection mode parameters */
2547 sc->config.ath_aggr_prot = 0;
2548
2549 DPRINTF(sc, ATH_DBG_CONFIG,
2550 "RX filter 0x%x bssid %pM aid 0x%x\n",
2551 rfilt, sc->curbssid, sc->curaid);
2552
2553 /* need to reconfigure the beacon */
2554 sc->sc_flags &= ~SC_OP_BEACONS ;
2555
2556 break;
2557 default:
2558 break;
2559 }
2560 }
2561
2562 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2563 (vif->type == NL80211_IFTYPE_AP) ||
2564 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2565 if ((changed & BSS_CHANGED_BEACON) ||
2566 (changed & BSS_CHANGED_BEACON_ENABLED &&
2567 bss_conf->enable_beacon)) {
2568 /*
2569 * Allocate and setup the beacon frame.
2570 *
2571 * Stop any previous beacon DMA. This may be
2572 * necessary, for example, when an ibss merge
2573 * causes reconfiguration; we may be called
2574 * with beacon transmission active.
2575 */
2576 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2577
2578 error = ath_beacon_alloc(aphy, vif);
2579 if (!error)
2580 ath_beacon_config(sc, vif);
2581 }
2582 }
2583
2584 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2585 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2586 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2587 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2588 ath9k_hw_keysetmac(sc->sc_ah,
2589 (u16)i,
2590 sc->curbssid);
2591 }
2592
2593 /* Only legacy IBSS for now */
2594 if (vif->type == NL80211_IFTYPE_ADHOC)
2595 ath_update_chainmask(sc, 0);
2596
2597 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2598 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2599 bss_conf->use_short_preamble);
2600 if (bss_conf->use_short_preamble)
2601 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2602 else
2603 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2604 }
2605
2606 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2607 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2608 bss_conf->use_cts_prot);
2609 if (bss_conf->use_cts_prot &&
2610 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2611 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2612 else
2613 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2614 }
2615
2616 if (changed & BSS_CHANGED_ASSOC) {
2617 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2618 bss_conf->assoc);
2619 ath9k_bss_assoc_info(sc, vif, bss_conf);
2620 }
2621
2622 /*
2623 * The HW TSF has to be reset when the beacon interval changes.
2624 * We set the flag here, and ath_beacon_config_ap() would take this
2625 * into account when it gets called through the subsequent
2626 * config_interface() call - with IFCC_BEACON in the changed field.
2627 */
2628
2629 if (changed & BSS_CHANGED_BEACON_INT) {
2630 sc->sc_flags |= SC_OP_TSF_RESET;
2631 sc->beacon_interval = bss_conf->beacon_int;
2632 }
2633
2634 mutex_unlock(&sc->mutex);
2635 }
2636
2637 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2638 {
2639 u64 tsf;
2640 struct ath_wiphy *aphy = hw->priv;
2641 struct ath_softc *sc = aphy->sc;
2642
2643 mutex_lock(&sc->mutex);
2644 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2645 mutex_unlock(&sc->mutex);
2646
2647 return tsf;
2648 }
2649
2650 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2651 {
2652 struct ath_wiphy *aphy = hw->priv;
2653 struct ath_softc *sc = aphy->sc;
2654
2655 mutex_lock(&sc->mutex);
2656 ath9k_hw_settsf64(sc->sc_ah, tsf);
2657 mutex_unlock(&sc->mutex);
2658 }
2659
2660 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2661 {
2662 struct ath_wiphy *aphy = hw->priv;
2663 struct ath_softc *sc = aphy->sc;
2664
2665 mutex_lock(&sc->mutex);
2666 ath9k_hw_reset_tsf(sc->sc_ah);
2667 mutex_unlock(&sc->mutex);
2668 }
2669
2670 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2671 enum ieee80211_ampdu_mlme_action action,
2672 struct ieee80211_sta *sta,
2673 u16 tid, u16 *ssn)
2674 {
2675 struct ath_wiphy *aphy = hw->priv;
2676 struct ath_softc *sc = aphy->sc;
2677 int ret = 0;
2678
2679 switch (action) {
2680 case IEEE80211_AMPDU_RX_START:
2681 if (!(sc->sc_flags & SC_OP_RXAGGR))
2682 ret = -ENOTSUPP;
2683 break;
2684 case IEEE80211_AMPDU_RX_STOP:
2685 break;
2686 case IEEE80211_AMPDU_TX_START:
2687 ath_tx_aggr_start(sc, sta, tid, ssn);
2688 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2689 break;
2690 case IEEE80211_AMPDU_TX_STOP:
2691 ath_tx_aggr_stop(sc, sta, tid);
2692 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2693 break;
2694 case IEEE80211_AMPDU_TX_OPERATIONAL:
2695 ath_tx_aggr_resume(sc, sta, tid);
2696 break;
2697 default:
2698 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2699 }
2700
2701 return ret;
2702 }
2703
2704 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2705 {
2706 struct ath_wiphy *aphy = hw->priv;
2707 struct ath_softc *sc = aphy->sc;
2708
2709 if (ath9k_wiphy_scanning(sc)) {
2710 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2711 "same time\n");
2712 /*
2713 * Do not allow the concurrent scanning state for now. This
2714 * could be improved with scanning control moved into ath9k.
2715 */
2716 return;
2717 }
2718
2719 aphy->state = ATH_WIPHY_SCAN;
2720 ath9k_wiphy_pause_all_forced(sc, aphy);
2721
2722 spin_lock_bh(&sc->ani_lock);
2723 sc->sc_flags |= SC_OP_SCANNING;
2724 spin_unlock_bh(&sc->ani_lock);
2725 }
2726
2727 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2728 {
2729 struct ath_wiphy *aphy = hw->priv;
2730 struct ath_softc *sc = aphy->sc;
2731
2732 spin_lock_bh(&sc->ani_lock);
2733 aphy->state = ATH_WIPHY_ACTIVE;
2734 sc->sc_flags &= ~SC_OP_SCANNING;
2735 sc->sc_flags |= SC_OP_FULL_RESET;
2736 spin_unlock_bh(&sc->ani_lock);
2737 }
2738
2739 struct ieee80211_ops ath9k_ops = {
2740 .tx = ath9k_tx,
2741 .start = ath9k_start,
2742 .stop = ath9k_stop,
2743 .add_interface = ath9k_add_interface,
2744 .remove_interface = ath9k_remove_interface,
2745 .config = ath9k_config,
2746 .configure_filter = ath9k_configure_filter,
2747 .sta_notify = ath9k_sta_notify,
2748 .conf_tx = ath9k_conf_tx,
2749 .bss_info_changed = ath9k_bss_info_changed,
2750 .set_key = ath9k_set_key,
2751 .get_tsf = ath9k_get_tsf,
2752 .set_tsf = ath9k_set_tsf,
2753 .reset_tsf = ath9k_reset_tsf,
2754 .ampdu_action = ath9k_ampdu_action,
2755 .sw_scan_start = ath9k_sw_scan_start,
2756 .sw_scan_complete = ath9k_sw_scan_complete,
2757 .rfkill_poll = ath9k_rfkill_poll_state,
2758 };
2759
2760 static struct {
2761 u32 version;
2762 const char * name;
2763 } ath_mac_bb_names[] = {
2764 { AR_SREV_VERSION_5416_PCI, "5416" },
2765 { AR_SREV_VERSION_5416_PCIE, "5418" },
2766 { AR_SREV_VERSION_9100, "9100" },
2767 { AR_SREV_VERSION_9160, "9160" },
2768 { AR_SREV_VERSION_9280, "9280" },
2769 { AR_SREV_VERSION_9285, "9285" },
2770 { AR_SREV_VERSION_9287, "9287" }
2771 };
2772
2773 static struct {
2774 u16 version;
2775 const char * name;
2776 } ath_rf_names[] = {
2777 { 0, "5133" },
2778 { AR_RAD5133_SREV_MAJOR, "5133" },
2779 { AR_RAD5122_SREV_MAJOR, "5122" },
2780 { AR_RAD2133_SREV_MAJOR, "2133" },
2781 { AR_RAD2122_SREV_MAJOR, "2122" }
2782 };
2783
2784 /*
2785 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2786 */
2787 const char *
2788 ath_mac_bb_name(u32 mac_bb_version)
2789 {
2790 int i;
2791
2792 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2793 if (ath_mac_bb_names[i].version == mac_bb_version) {
2794 return ath_mac_bb_names[i].name;
2795 }
2796 }
2797
2798 return "????";
2799 }
2800
2801 /*
2802 * Return the RF name. "????" is returned if the RF is unknown.
2803 */
2804 const char *
2805 ath_rf_name(u16 rf_version)
2806 {
2807 int i;
2808
2809 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2810 if (ath_rf_names[i].version == rf_version) {
2811 return ath_rf_names[i].name;
2812 }
2813 }
2814
2815 return "????";
2816 }
2817
2818 static int __init ath9k_init(void)
2819 {
2820 int error;
2821
2822 /* Register rate control algorithm */
2823 error = ath_rate_control_register();
2824 if (error != 0) {
2825 printk(KERN_ERR
2826 "ath9k: Unable to register rate control "
2827 "algorithm: %d\n",
2828 error);
2829 goto err_out;
2830 }
2831
2832 error = ath9k_debug_create_root();
2833 if (error) {
2834 printk(KERN_ERR
2835 "ath9k: Unable to create debugfs root: %d\n",
2836 error);
2837 goto err_rate_unregister;
2838 }
2839
2840 error = ath_pci_init();
2841 if (error < 0) {
2842 printk(KERN_ERR
2843 "ath9k: No PCI devices found, driver not installed.\n");
2844 error = -ENODEV;
2845 goto err_remove_root;
2846 }
2847
2848 error = ath_ahb_init();
2849 if (error < 0) {
2850 error = -ENODEV;
2851 goto err_pci_exit;
2852 }
2853
2854 return 0;
2855
2856 err_pci_exit:
2857 ath_pci_exit();
2858
2859 err_remove_root:
2860 ath9k_debug_remove_root();
2861 err_rate_unregister:
2862 ath_rate_control_unregister();
2863 err_out:
2864 return error;
2865 }
2866 module_init(ath9k_init);
2867
2868 static void __exit ath9k_exit(void)
2869 {
2870 ath_ahb_exit();
2871 ath_pci_exit();
2872 ath9k_debug_remove_root();
2873 ath_rate_control_unregister();
2874 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2875 }
2876 module_exit(ath9k_exit);
This page took 0.112444 seconds and 6 git commands to generate.