simple_open: automatically convert to simple_open()
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / rc.c
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2011 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/slab.h>
19 #include <linux/export.h>
20
21 #include "ath9k.h"
22
23 static const struct ath_rate_table ar5416_11na_ratetable = {
24 68,
25 8, /* MCS start */
26 {
27 [0] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000,
28 5400, 0, 12, 0, 0, 0, 0 }, /* 6 Mb */
29 [1] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000,
30 7800, 1, 18, 0, 1, 1, 1 }, /* 9 Mb */
31 [2] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
32 10000, 2, 24, 2, 2, 2, 2 }, /* 12 Mb */
33 [3] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
34 13900, 3, 36, 2, 3, 3, 3 }, /* 18 Mb */
35 [4] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
36 17300, 4, 48, 4, 4, 4, 4 }, /* 24 Mb */
37 [5] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
38 23000, 5, 72, 4, 5, 5, 5 }, /* 36 Mb */
39 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
40 27400, 6, 96, 4, 6, 6, 6 }, /* 48 Mb */
41 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
42 29300, 7, 108, 4, 7, 7, 7 }, /* 54 Mb */
43 [8] = { RC_HT_SDT_2040, WLAN_RC_PHY_HT_20_SS, 6500,
44 6400, 0, 0, 0, 38, 8, 38 }, /* 6.5 Mb */
45 [9] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
46 12700, 1, 1, 2, 39, 9, 39 }, /* 13 Mb */
47 [10] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
48 18800, 2, 2, 2, 40, 10, 40 }, /* 19.5 Mb */
49 [11] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
50 25000, 3, 3, 4, 41, 11, 41 }, /* 26 Mb */
51 [12] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
52 36700, 4, 4, 4, 42, 12, 42 }, /* 39 Mb */
53 [13] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
54 48100, 5, 5, 4, 43, 13, 43 }, /* 52 Mb */
55 [14] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
56 53500, 6, 6, 4, 44, 14, 44 }, /* 58.5 Mb */
57 [15] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
58 59000, 7, 7, 4, 45, 16, 46 }, /* 65 Mb */
59 [16] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
60 65400, 7, 7, 4, 45, 16, 46 }, /* 75 Mb */
61 [17] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
62 12700, 8, 8, 0, 47, 17, 47 }, /* 13 Mb */
63 [18] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
64 24800, 9, 9, 2, 48, 18, 48 }, /* 26 Mb */
65 [19] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
66 36600, 10, 10, 2, 49, 19, 49 }, /* 39 Mb */
67 [20] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
68 48100, 11, 11, 4, 50, 20, 50 }, /* 52 Mb */
69 [21] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
70 69500, 12, 12, 4, 51, 21, 51 }, /* 78 Mb */
71 [22] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
72 89500, 13, 13, 4, 52, 22, 52 }, /* 104 Mb */
73 [23] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
74 98900, 14, 14, 4, 53, 23, 53 }, /* 117 Mb */
75 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
76 108300, 15, 15, 4, 54, 25, 55 }, /* 130 Mb */
77 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
78 120000, 15, 15, 4, 54, 25, 55 }, /* 144.4 Mb */
79 [26] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
80 17400, 16, 16, 0, 56, 26, 56 }, /* 19.5 Mb */
81 [27] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
82 35100, 17, 17, 2, 57, 27, 57 }, /* 39 Mb */
83 [28] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
84 52600, 18, 18, 2, 58, 28, 58 }, /* 58.5 Mb */
85 [29] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
86 70400, 19, 19, 4, 59, 29, 59 }, /* 78 Mb */
87 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
88 104900, 20, 20, 4, 60, 31, 61 }, /* 117 Mb */
89 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
90 115800, 20, 20, 4, 60, 31, 61 }, /* 130 Mb*/
91 [32] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
92 137200, 21, 21, 4, 62, 33, 63 }, /* 156 Mb */
93 [33] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
94 151100, 21, 21, 4, 62, 33, 63 }, /* 173.3 Mb */
95 [34] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
96 152800, 22, 22, 4, 64, 35, 65 }, /* 175.5 Mb */
97 [35] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
98 168400, 22, 22, 4, 64, 35, 65 }, /* 195 Mb*/
99 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
100 168400, 23, 23, 4, 66, 37, 67 }, /* 195 Mb */
101 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
102 185000, 23, 23, 4, 66, 37, 67 }, /* 216.7 Mb */
103 [38] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
104 13200, 0, 0, 0, 38, 38, 38 }, /* 13.5 Mb*/
105 [39] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
106 25900, 1, 1, 2, 39, 39, 39 }, /* 27.0 Mb*/
107 [40] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
108 38600, 2, 2, 2, 40, 40, 40 }, /* 40.5 Mb*/
109 [41] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
110 49800, 3, 3, 4, 41, 41, 41 }, /* 54 Mb */
111 [42] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
112 72200, 4, 4, 4, 42, 42, 42 }, /* 81 Mb */
113 [43] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 108000,
114 92900, 5, 5, 4, 43, 43, 43 }, /* 108 Mb */
115 [44] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
116 102700, 6, 6, 4, 44, 44, 44 }, /* 121.5 Mb*/
117 [45] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
118 112000, 7, 7, 4, 45, 46, 46 }, /* 135 Mb */
119 [46] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
120 122000, 7, 7, 4, 45, 46, 46 }, /* 150 Mb */
121 [47] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
122 25800, 8, 8, 0, 47, 47, 47 }, /* 27 Mb */
123 [48] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
124 49800, 9, 9, 2, 48, 48, 48 }, /* 54 Mb */
125 [49] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
126 71900, 10, 10, 2, 49, 49, 49 }, /* 81 Mb */
127 [50] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
128 92500, 11, 11, 4, 50, 50, 50 }, /* 108 Mb */
129 [51] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
130 130300, 12, 12, 4, 51, 51, 51 }, /* 162 Mb */
131 [52] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
132 162800, 13, 13, 4, 52, 52, 52 }, /* 216 Mb */
133 [53] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
134 178200, 14, 14, 4, 53, 53, 53 }, /* 243 Mb */
135 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
136 192100, 15, 15, 4, 54, 55, 55 }, /* 270 Mb */
137 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
138 207000, 15, 15, 4, 54, 55, 55 }, /* 300 Mb */
139 [56] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
140 36100, 16, 16, 0, 56, 56, 56 }, /* 40.5 Mb */
141 [57] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
142 72900, 17, 17, 2, 57, 57, 57 }, /* 81 Mb */
143 [58] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
144 108300, 18, 18, 2, 58, 58, 58 }, /* 121.5 Mb */
145 [59] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
146 142000, 19, 19, 4, 59, 59, 59 }, /* 162 Mb */
147 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
148 205100, 20, 20, 4, 60, 61, 61 }, /* 243 Mb */
149 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
150 224700, 20, 20, 4, 60, 61, 61 }, /* 270 Mb */
151 [62] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
152 263100, 21, 21, 4, 62, 63, 63 }, /* 324 Mb */
153 [63] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
154 288000, 21, 21, 4, 62, 63, 63 }, /* 360 Mb */
155 [64] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
156 290700, 22, 22, 4, 64, 65, 65 }, /* 364.5 Mb */
157 [65] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
158 317200, 22, 22, 4, 64, 65, 65 }, /* 405 Mb */
159 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
160 317200, 23, 23, 4, 66, 67, 67 }, /* 405 Mb */
161 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
162 346400, 23, 23, 4, 66, 67, 67 }, /* 450 Mb */
163 },
164 50, /* probe interval */
165 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
166 };
167
168 /* 4ms frame limit not used for NG mode. The values filled
169 * for HT are the 64K max aggregate limit */
170
171 static const struct ath_rate_table ar5416_11ng_ratetable = {
172 72,
173 12, /* MCS start */
174 {
175 [0] = { RC_ALL, WLAN_RC_PHY_CCK, 1000,
176 900, 0, 2, 0, 0, 0, 0 }, /* 1 Mb */
177 [1] = { RC_ALL, WLAN_RC_PHY_CCK, 2000,
178 1900, 1, 4, 1, 1, 1, 1 }, /* 2 Mb */
179 [2] = { RC_ALL, WLAN_RC_PHY_CCK, 5500,
180 4900, 2, 11, 2, 2, 2, 2 }, /* 5.5 Mb */
181 [3] = { RC_ALL, WLAN_RC_PHY_CCK, 11000,
182 8100, 3, 22, 3, 3, 3, 3 }, /* 11 Mb */
183 [4] = { RC_INVALID, WLAN_RC_PHY_OFDM, 6000,
184 5400, 4, 12, 4, 4, 4, 4 }, /* 6 Mb */
185 [5] = { RC_INVALID, WLAN_RC_PHY_OFDM, 9000,
186 7800, 5, 18, 4, 5, 5, 5 }, /* 9 Mb */
187 [6] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000,
188 10100, 6, 24, 6, 6, 6, 6 }, /* 12 Mb */
189 [7] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000,
190 14100, 7, 36, 6, 7, 7, 7 }, /* 18 Mb */
191 [8] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000,
192 17700, 8, 48, 8, 8, 8, 8 }, /* 24 Mb */
193 [9] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000,
194 23700, 9, 72, 8, 9, 9, 9 }, /* 36 Mb */
195 [10] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000,
196 27400, 10, 96, 8, 10, 10, 10 }, /* 48 Mb */
197 [11] = { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000,
198 30900, 11, 108, 8, 11, 11, 11 }, /* 54 Mb */
199 [12] = { RC_INVALID, WLAN_RC_PHY_HT_20_SS, 6500,
200 6400, 0, 0, 4, 42, 12, 42 }, /* 6.5 Mb */
201 [13] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 13000,
202 12700, 1, 1, 6, 43, 13, 43 }, /* 13 Mb */
203 [14] = { RC_HT_SDT_20, WLAN_RC_PHY_HT_20_SS, 19500,
204 18800, 2, 2, 6, 44, 14, 44 }, /* 19.5 Mb*/
205 [15] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 26000,
206 25000, 3, 3, 8, 45, 15, 45 }, /* 26 Mb */
207 [16] = { RC_HT_SD_20, WLAN_RC_PHY_HT_20_SS, 39000,
208 36700, 4, 4, 8, 46, 16, 46 }, /* 39 Mb */
209 [17] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 52000,
210 48100, 5, 5, 8, 47, 17, 47 }, /* 52 Mb */
211 [18] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 58500,
212 53500, 6, 6, 8, 48, 18, 48 }, /* 58.5 Mb */
213 [19] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS, 65000,
214 59000, 7, 7, 8, 49, 20, 50 }, /* 65 Mb */
215 [20] = { RC_HT_S_20, WLAN_RC_PHY_HT_20_SS_HGI, 72200,
216 65400, 7, 7, 8, 49, 20, 50 }, /* 65 Mb*/
217 [21] = { RC_INVALID, WLAN_RC_PHY_HT_20_DS, 13000,
218 12700, 8, 8, 4, 51, 21, 51 }, /* 13 Mb */
219 [22] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 26000,
220 24800, 9, 9, 6, 52, 22, 52 }, /* 26 Mb */
221 [23] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_DS, 39000,
222 36600, 10, 10, 6, 53, 23, 53 }, /* 39 Mb */
223 [24] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 52000,
224 48100, 11, 11, 8, 54, 24, 54 }, /* 52 Mb */
225 [25] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 78000,
226 69500, 12, 12, 8, 55, 25, 55 }, /* 78 Mb */
227 [26] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 104000,
228 89500, 13, 13, 8, 56, 26, 56 }, /* 104 Mb */
229 [27] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 117000,
230 98900, 14, 14, 8, 57, 27, 57 }, /* 117 Mb */
231 [28] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS, 130000,
232 108300, 15, 15, 8, 58, 29, 59 }, /* 130 Mb */
233 [29] = { RC_HT_DT_20, WLAN_RC_PHY_HT_20_DS_HGI, 144400,
234 120000, 15, 15, 8, 58, 29, 59 }, /* 144.4 Mb */
235 [30] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 19500,
236 17400, 16, 16, 4, 60, 30, 60 }, /* 19.5 Mb */
237 [31] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 39000,
238 35100, 17, 17, 6, 61, 31, 61 }, /* 39 Mb */
239 [32] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 58500,
240 52600, 18, 18, 6, 62, 32, 62 }, /* 58.5 Mb */
241 [33] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 78000,
242 70400, 19, 19, 8, 63, 33, 63 }, /* 78 Mb */
243 [34] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS, 117000,
244 104900, 20, 20, 8, 64, 35, 65 }, /* 117 Mb */
245 [35] = { RC_INVALID, WLAN_RC_PHY_HT_20_TS_HGI, 130000,
246 115800, 20, 20, 8, 64, 35, 65 }, /* 130 Mb */
247 [36] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 156000,
248 137200, 21, 21, 8, 66, 37, 67 }, /* 156 Mb */
249 [37] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 173300,
250 151100, 21, 21, 8, 66, 37, 67 }, /* 173.3 Mb */
251 [38] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 175500,
252 152800, 22, 22, 8, 68, 39, 69 }, /* 175.5 Mb */
253 [39] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 195000,
254 168400, 22, 22, 8, 68, 39, 69 }, /* 195 Mb */
255 [40] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS, 195000,
256 168400, 23, 23, 8, 70, 41, 71 }, /* 195 Mb */
257 [41] = { RC_HT_T_20, WLAN_RC_PHY_HT_20_TS_HGI, 216700,
258 185000, 23, 23, 8, 70, 41, 71 }, /* 216.7 Mb */
259 [42] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 13500,
260 13200, 0, 0, 8, 42, 42, 42 }, /* 13.5 Mb */
261 [43] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 27500,
262 25900, 1, 1, 8, 43, 43, 43 }, /* 27.0 Mb */
263 [44] = { RC_HT_SDT_40, WLAN_RC_PHY_HT_40_SS, 40500,
264 38600, 2, 2, 8, 44, 44, 44 }, /* 40.5 Mb */
265 [45] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 54000,
266 49800, 3, 3, 8, 45, 45, 45 }, /* 54 Mb */
267 [46] = { RC_HT_SD_40, WLAN_RC_PHY_HT_40_SS, 81500,
268 72200, 4, 4, 8, 46, 46, 46 }, /* 81 Mb */
269 [47] = { RC_HT_S_40 , WLAN_RC_PHY_HT_40_SS, 108000,
270 92900, 5, 5, 8, 47, 47, 47 }, /* 108 Mb */
271 [48] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 121500,
272 102700, 6, 6, 8, 48, 48, 48 }, /* 121.5 Mb */
273 [49] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS, 135000,
274 112000, 7, 7, 8, 49, 50, 50 }, /* 135 Mb */
275 [50] = { RC_HT_S_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000,
276 122000, 7, 7, 8, 49, 50, 50 }, /* 150 Mb */
277 [51] = { RC_INVALID, WLAN_RC_PHY_HT_40_DS, 27000,
278 25800, 8, 8, 8, 51, 51, 51 }, /* 27 Mb */
279 [52] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 54000,
280 49800, 9, 9, 8, 52, 52, 52 }, /* 54 Mb */
281 [53] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_DS, 81000,
282 71900, 10, 10, 8, 53, 53, 53 }, /* 81 Mb */
283 [54] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 108000,
284 92500, 11, 11, 8, 54, 54, 54 }, /* 108 Mb */
285 [55] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 162000,
286 130300, 12, 12, 8, 55, 55, 55 }, /* 162 Mb */
287 [56] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 216000,
288 162800, 13, 13, 8, 56, 56, 56 }, /* 216 Mb */
289 [57] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 243000,
290 178200, 14, 14, 8, 57, 57, 57 }, /* 243 Mb */
291 [58] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS, 270000,
292 192100, 15, 15, 8, 58, 59, 59 }, /* 270 Mb */
293 [59] = { RC_HT_DT_40, WLAN_RC_PHY_HT_40_DS_HGI, 300000,
294 207000, 15, 15, 8, 58, 59, 59 }, /* 300 Mb */
295 [60] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 40500,
296 36100, 16, 16, 8, 60, 60, 60 }, /* 40.5 Mb */
297 [61] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 81000,
298 72900, 17, 17, 8, 61, 61, 61 }, /* 81 Mb */
299 [62] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 121500,
300 108300, 18, 18, 8, 62, 62, 62 }, /* 121.5 Mb */
301 [63] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 162000,
302 142000, 19, 19, 8, 63, 63, 63 }, /* 162 Mb */
303 [64] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS, 243000,
304 205100, 20, 20, 8, 64, 65, 65 }, /* 243 Mb */
305 [65] = { RC_INVALID, WLAN_RC_PHY_HT_40_TS_HGI, 270000,
306 224700, 20, 20, 8, 64, 65, 65 }, /* 270 Mb */
307 [66] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 324000,
308 263100, 21, 21, 8, 66, 67, 67 }, /* 324 Mb */
309 [67] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 360000,
310 288000, 21, 21, 8, 66, 67, 67 }, /* 360 Mb */
311 [68] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 364500,
312 290700, 22, 22, 8, 68, 69, 69 }, /* 364.5 Mb */
313 [69] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 405000,
314 317200, 22, 22, 8, 68, 69, 69 }, /* 405 Mb */
315 [70] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS, 405000,
316 317200, 23, 23, 8, 70, 71, 71 }, /* 405 Mb */
317 [71] = { RC_HT_T_40, WLAN_RC_PHY_HT_40_TS_HGI, 450000,
318 346400, 23, 23, 8, 70, 71, 71 }, /* 450 Mb */
319 },
320 50, /* probe interval */
321 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
322 };
323
324 static const struct ath_rate_table ar5416_11a_ratetable = {
325 8,
326 0,
327 {
328 { RC_L_SDT, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
329 5400, 0, 12, 0},
330 { RC_L_SDT, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
331 7800, 1, 18, 0},
332 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
333 10000, 2, 24, 2},
334 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
335 13900, 3, 36, 2},
336 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
337 17300, 4, 48, 4},
338 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
339 23000, 5, 72, 4},
340 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
341 27400, 6, 96, 4},
342 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
343 29300, 7, 108, 4},
344 },
345 50, /* probe interval */
346 0, /* Phy rates allowed initially */
347 };
348
349 static const struct ath_rate_table ar5416_11g_ratetable = {
350 12,
351 0,
352 {
353 { RC_L_SDT, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
354 900, 0, 2, 0},
355 { RC_L_SDT, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
356 1900, 1, 4, 1},
357 { RC_L_SDT, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
358 4900, 2, 11, 2},
359 { RC_L_SDT, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
360 8100, 3, 22, 3},
361 { RC_INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
362 5400, 4, 12, 4},
363 { RC_INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
364 7800, 5, 18, 4},
365 { RC_L_SDT, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
366 10000, 6, 24, 6},
367 { RC_L_SDT, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
368 13900, 7, 36, 6},
369 { RC_L_SDT, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
370 17300, 8, 48, 8},
371 { RC_L_SDT, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
372 23000, 9, 72, 8},
373 { RC_L_SDT, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
374 27400, 10, 96, 8},
375 { RC_L_SDT, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
376 29300, 11, 108, 8},
377 },
378 50, /* probe interval */
379 0, /* Phy rates allowed initially */
380 };
381
382 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
383 struct ieee80211_tx_rate *rate)
384 {
385 int rix = 0, i = 0;
386 static const int mcs_rix_off[] = { 7, 15, 20, 21, 22, 23 };
387
388 if (!(rate->flags & IEEE80211_TX_RC_MCS))
389 return rate->idx;
390
391 while (i < ARRAY_SIZE(mcs_rix_off) && rate->idx > mcs_rix_off[i]) {
392 rix++; i++;
393 }
394
395 rix += rate->idx + rate_table->mcs_start;
396
397 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
398 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
399 rix = rate_table->info[rix].ht_index;
400 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
401 rix = rate_table->info[rix].sgi_index;
402 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
403 rix = rate_table->info[rix].cw40index;
404
405 return rix;
406 }
407
408 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
409 struct ath_rate_priv *ath_rc_priv)
410 {
411 u8 i, j, idx, idx_next;
412
413 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
414 for (j = 0; j <= i-1; j++) {
415 idx = ath_rc_priv->valid_rate_index[j];
416 idx_next = ath_rc_priv->valid_rate_index[j+1];
417
418 if (rate_table->info[idx].ratekbps >
419 rate_table->info[idx_next].ratekbps) {
420 ath_rc_priv->valid_rate_index[j] = idx_next;
421 ath_rc_priv->valid_rate_index[j+1] = idx;
422 }
423 }
424 }
425 }
426
427 static void ath_rc_init_valid_rate_idx(struct ath_rate_priv *ath_rc_priv)
428 {
429 u8 i;
430
431 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
432 ath_rc_priv->valid_rate_index[i] = 0;
433 }
434
435 static inline void ath_rc_set_valid_rate_idx(struct ath_rate_priv *ath_rc_priv,
436 u8 index, int valid_tx_rate)
437 {
438 BUG_ON(index > ath_rc_priv->rate_table_size);
439 ath_rc_priv->valid_rate_index[index] = !!valid_tx_rate;
440 }
441
442 static inline
443 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
444 struct ath_rate_priv *ath_rc_priv,
445 u8 cur_valid_txrate,
446 u8 *next_idx)
447 {
448 u8 i;
449
450 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
451 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
452 *next_idx = ath_rc_priv->valid_rate_index[i+1];
453 return 1;
454 }
455 }
456
457 /* No more valid rates */
458 *next_idx = 0;
459
460 return 0;
461 }
462
463 /* Return true only for single stream */
464
465 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
466 {
467 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
468 return 0;
469 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
470 return 0;
471 if (WLAN_RC_PHY_TS(phy) && !(capflag & WLAN_RC_TS_FLAG))
472 return 0;
473 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
474 return 0;
475 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
476 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
477 return 0;
478 return 1;
479 }
480
481 static inline int
482 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
483 struct ath_rate_priv *ath_rc_priv,
484 u8 cur_valid_txrate, u8 *next_idx)
485 {
486 int8_t i;
487
488 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
489 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
490 *next_idx = ath_rc_priv->valid_rate_index[i-1];
491 return 1;
492 }
493 }
494
495 return 0;
496 }
497
498 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
499 const struct ath_rate_table *rate_table,
500 u32 capflag)
501 {
502 u8 i, hi = 0;
503
504 for (i = 0; i < rate_table->rate_cnt; i++) {
505 if (rate_table->info[i].rate_flags & RC_LEGACY) {
506 u32 phy = rate_table->info[i].phy;
507 u8 valid_rate_count = 0;
508
509 if (!ath_rc_valid_phyrate(phy, capflag, 0))
510 continue;
511
512 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
513
514 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
515 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
516 ath_rc_set_valid_rate_idx(ath_rc_priv, i, 1);
517 hi = i;
518 }
519 }
520
521 return hi;
522 }
523
524 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
525 const struct ath_rate_table *rate_table,
526 struct ath_rateset *rateset,
527 u32 capflag)
528 {
529 u8 i, j, hi = 0;
530
531 /* Use intersection of working rates and valid rates */
532 for (i = 0; i < rateset->rs_nrates; i++) {
533 for (j = 0; j < rate_table->rate_cnt; j++) {
534 u32 phy = rate_table->info[j].phy;
535 u16 rate_flags = rate_table->info[j].rate_flags;
536 u8 rate = rateset->rs_rates[i];
537 u8 dot11rate = rate_table->info[j].dot11rate;
538
539 /* We allow a rate only if its valid and the
540 * capflag matches one of the validity
541 * (VALID/VALID_20/VALID_40) flags */
542
543 if ((rate == dot11rate) &&
544 (rate_flags & WLAN_RC_CAP_MODE(capflag)) ==
545 WLAN_RC_CAP_MODE(capflag) &&
546 (rate_flags & WLAN_RC_CAP_STREAM(capflag)) &&
547 !WLAN_RC_PHY_HT(phy)) {
548 u8 valid_rate_count = 0;
549
550 if (!ath_rc_valid_phyrate(phy, capflag, 0))
551 continue;
552
553 valid_rate_count =
554 ath_rc_priv->valid_phy_ratecnt[phy];
555
556 ath_rc_priv->valid_phy_rateidx[phy]
557 [valid_rate_count] = j;
558 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
559 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
560 hi = max(hi, j);
561 }
562 }
563 }
564
565 return hi;
566 }
567
568 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
569 const struct ath_rate_table *rate_table,
570 struct ath_rateset *rateset, u32 capflag)
571 {
572 u8 i, j, hi = 0;
573
574 /* Use intersection of working rates and valid rates */
575 for (i = 0; i < rateset->rs_nrates; i++) {
576 for (j = 0; j < rate_table->rate_cnt; j++) {
577 u32 phy = rate_table->info[j].phy;
578 u16 rate_flags = rate_table->info[j].rate_flags;
579 u8 rate = rateset->rs_rates[i];
580 u8 dot11rate = rate_table->info[j].dot11rate;
581
582 if ((rate != dot11rate) || !WLAN_RC_PHY_HT(phy) ||
583 !(rate_flags & WLAN_RC_CAP_STREAM(capflag)) ||
584 !WLAN_RC_PHY_HT_VALID(rate_flags, capflag))
585 continue;
586
587 if (!ath_rc_valid_phyrate(phy, capflag, 0))
588 continue;
589
590 ath_rc_priv->valid_phy_rateidx[phy]
591 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
592 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
593 ath_rc_set_valid_rate_idx(ath_rc_priv, j, 1);
594 hi = max(hi, j);
595 }
596 }
597
598 return hi;
599 }
600
601 /* Finds the highest rate index we can use */
602 static u8 ath_rc_get_highest_rix(struct ath_softc *sc,
603 struct ath_rate_priv *ath_rc_priv,
604 const struct ath_rate_table *rate_table,
605 int *is_probing,
606 bool legacy)
607 {
608 u32 best_thruput, this_thruput, now_msec;
609 u8 rate, next_rate, best_rate, maxindex, minindex;
610 int8_t index = 0;
611
612 now_msec = jiffies_to_msecs(jiffies);
613 *is_probing = 0;
614 best_thruput = 0;
615 maxindex = ath_rc_priv->max_valid_rate-1;
616 minindex = 0;
617 best_rate = minindex;
618
619 /*
620 * Try the higher rate first. It will reduce memory moving time
621 * if we have very good channel characteristics.
622 */
623 for (index = maxindex; index >= minindex ; index--) {
624 u8 per_thres;
625
626 rate = ath_rc_priv->valid_rate_index[index];
627 if (legacy && !(rate_table->info[rate].rate_flags & RC_LEGACY))
628 continue;
629 if (rate > ath_rc_priv->rate_max_phy)
630 continue;
631
632 /*
633 * For TCP the average collision rate is around 11%,
634 * so we ignore PERs less than this. This is to
635 * prevent the rate we are currently using (whose
636 * PER might be in the 10-15 range because of TCP
637 * collisions) looking worse than the next lower
638 * rate whose PER has decayed close to 0. If we
639 * used to next lower rate, its PER would grow to
640 * 10-15 and we would be worse off then staying
641 * at the current rate.
642 */
643 per_thres = ath_rc_priv->per[rate];
644 if (per_thres < 12)
645 per_thres = 12;
646
647 this_thruput = rate_table->info[rate].user_ratekbps *
648 (100 - per_thres);
649
650 if (best_thruput <= this_thruput) {
651 best_thruput = this_thruput;
652 best_rate = rate;
653 }
654 }
655
656 rate = best_rate;
657
658 /*
659 * Must check the actual rate (ratekbps) to account for
660 * non-monoticity of 11g's rate table
661 */
662
663 if (rate >= ath_rc_priv->rate_max_phy) {
664 rate = ath_rc_priv->rate_max_phy;
665
666 /* Probe the next allowed phy state */
667 if (ath_rc_get_nextvalid_txrate(rate_table,
668 ath_rc_priv, rate, &next_rate) &&
669 (now_msec - ath_rc_priv->probe_time >
670 rate_table->probe_interval) &&
671 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
672 rate = next_rate;
673 ath_rc_priv->probe_rate = rate;
674 ath_rc_priv->probe_time = now_msec;
675 ath_rc_priv->hw_maxretry_pktcnt = 0;
676 *is_probing = 1;
677 }
678 }
679
680 if (rate > (ath_rc_priv->rate_table_size - 1))
681 rate = ath_rc_priv->rate_table_size - 1;
682
683 if (RC_TS_ONLY(rate_table->info[rate].rate_flags) &&
684 (ath_rc_priv->ht_cap & WLAN_RC_TS_FLAG))
685 return rate;
686
687 if (RC_DS_OR_LATER(rate_table->info[rate].rate_flags) &&
688 (ath_rc_priv->ht_cap & (WLAN_RC_DS_FLAG | WLAN_RC_TS_FLAG)))
689 return rate;
690
691 if (RC_SS_OR_LEGACY(rate_table->info[rate].rate_flags))
692 return rate;
693
694 /* This should not happen */
695 WARN_ON_ONCE(1);
696
697 rate = ath_rc_priv->valid_rate_index[0];
698
699 return rate;
700 }
701
702 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
703 struct ieee80211_tx_rate *rate,
704 struct ieee80211_tx_rate_control *txrc,
705 u8 tries, u8 rix, int rtsctsenable)
706 {
707 rate->count = tries;
708 rate->idx = rate_table->info[rix].ratecode;
709
710 if (txrc->short_preamble)
711 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
712 if (txrc->rts || rtsctsenable)
713 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
714
715 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) {
716 rate->flags |= IEEE80211_TX_RC_MCS;
717 if (WLAN_RC_PHY_40(rate_table->info[rix].phy) &&
718 conf_is_ht40(&txrc->hw->conf))
719 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
720 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
721 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
722 }
723 }
724
725 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
726 const struct ath_rate_table *rate_table,
727 struct ieee80211_tx_info *tx_info)
728 {
729 struct ieee80211_tx_rate *rates = tx_info->control.rates;
730 int i = 0, rix = 0, cix, enable_g_protection = 0;
731
732 /* get the cix for the lowest valid rix */
733 for (i = 3; i >= 0; i--) {
734 if (rates[i].count && (rates[i].idx >= 0)) {
735 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
736 break;
737 }
738 }
739 cix = rate_table->info[rix].ctrl_rate;
740
741 /* All protection frames are transmited at 2Mb/s for 802.11g,
742 * otherwise we transmit them at 1Mb/s */
743 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
744 !conf_is_ht(&sc->hw->conf))
745 enable_g_protection = 1;
746
747 /*
748 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
749 * just CTS. Note that this is only done for OFDM/HT unicast frames.
750 */
751 if ((tx_info->control.vif &&
752 tx_info->control.vif->bss_conf.use_cts_prot) &&
753 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
754 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
755 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
756 cix = rate_table->info[enable_g_protection].ctrl_rate;
757 }
758
759 tx_info->control.rts_cts_rate_idx = cix;
760 }
761
762 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
763 struct ieee80211_tx_rate_control *txrc)
764 {
765 struct ath_softc *sc = priv;
766 struct ath_rate_priv *ath_rc_priv = priv_sta;
767 const struct ath_rate_table *rate_table;
768 struct sk_buff *skb = txrc->skb;
769 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
770 struct ieee80211_tx_rate *rates = tx_info->control.rates;
771 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
772 __le16 fc = hdr->frame_control;
773 u8 try_per_rate, i = 0, rix, high_rix;
774 int is_probe = 0;
775
776 if (rate_control_send_low(sta, priv_sta, txrc))
777 return;
778
779 /*
780 * For Multi Rate Retry we use a different number of
781 * retry attempt counts. This ends up looking like this:
782 *
783 * MRR[0] = 4
784 * MRR[1] = 4
785 * MRR[2] = 4
786 * MRR[3] = 8
787 *
788 */
789 try_per_rate = 4;
790
791 rate_table = ath_rc_priv->rate_table;
792 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table,
793 &is_probe, false);
794 high_rix = rix;
795
796 /*
797 * If we're in HT mode and both us and our peer supports LDPC.
798 * We don't need to check our own device's capabilities as our own
799 * ht capabilities would have already been intersected with our peer's.
800 */
801 if (conf_is_ht(&sc->hw->conf) &&
802 (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING))
803 tx_info->flags |= IEEE80211_TX_CTL_LDPC;
804
805 if (conf_is_ht(&sc->hw->conf) &&
806 (sta->ht_cap.cap & IEEE80211_HT_CAP_TX_STBC))
807 tx_info->flags |= (1 << IEEE80211_TX_CTL_STBC_SHIFT);
808
809 if (is_probe) {
810 /* set one try for probe rates. For the
811 * probes don't enable rts */
812 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
813 1, rix, 0);
814
815 /* Get the next tried/allowed rate. No RTS for the next series
816 * after the probe rate
817 */
818 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
819 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
820 try_per_rate, rix, 0);
821
822 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
823 } else {
824 /* Set the chosen rate. No RTS for first series entry. */
825 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
826 try_per_rate, rix, 0);
827 }
828
829 /* Fill in the other rates for multirate retry */
830 for ( ; i < 3; i++) {
831
832 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
833 /* All other rates in the series have RTS enabled */
834 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
835 try_per_rate, rix, 1);
836 }
837
838 /* Use twice the number of tries for the last MRR segment. */
839 try_per_rate = 8;
840
841 /*
842 * Use a legacy rate as last retry to ensure that the frame
843 * is tried in both MCS and legacy rates.
844 */
845 if ((rates[2].flags & IEEE80211_TX_RC_MCS) &&
846 (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) ||
847 (ath_rc_priv->per[high_rix] > 45)))
848 rix = ath_rc_get_highest_rix(sc, ath_rc_priv, rate_table,
849 &is_probe, true);
850 else
851 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &rix);
852
853 /* All other rates in the series have RTS enabled */
854 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
855 try_per_rate, rix, 1);
856 /*
857 * NB:Change rate series to enable aggregation when operating
858 * at lower MCS rates. When first rate in series is MCS2
859 * in HT40 @ 2.4GHz, series should look like:
860 *
861 * {MCS2, MCS1, MCS0, MCS0}.
862 *
863 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
864 * look like:
865 *
866 * {MCS3, MCS2, MCS1, MCS1}
867 *
868 * So, set fourth rate in series to be same as third one for
869 * above conditions.
870 */
871 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
872 (conf_is_ht(&sc->hw->conf))) {
873 u8 dot11rate = rate_table->info[rix].dot11rate;
874 u8 phy = rate_table->info[rix].phy;
875 if (i == 4 &&
876 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
877 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
878 rates[3].idx = rates[2].idx;
879 rates[3].flags = rates[2].flags;
880 }
881 }
882
883 /*
884 * Force hardware to use computed duration for next
885 * fragment by disabling multi-rate retry, which
886 * updates duration based on the multi-rate duration table.
887 *
888 * FIXME: Fix duration
889 */
890 if (ieee80211_has_morefrags(fc) ||
891 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
892 rates[1].count = rates[2].count = rates[3].count = 0;
893 rates[1].idx = rates[2].idx = rates[3].idx = 0;
894 rates[0].count = ATH_TXMAXTRY;
895 }
896
897 /* Setup RTS/CTS */
898 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
899 }
900
901 static void ath_rc_update_per(struct ath_softc *sc,
902 const struct ath_rate_table *rate_table,
903 struct ath_rate_priv *ath_rc_priv,
904 struct ieee80211_tx_info *tx_info,
905 int tx_rate, int xretries, int retries,
906 u32 now_msec)
907 {
908 int count, n_bad_frames;
909 u8 last_per;
910 static const u32 nretry_to_per_lookup[10] = {
911 100 * 0 / 1,
912 100 * 1 / 4,
913 100 * 1 / 2,
914 100 * 3 / 4,
915 100 * 4 / 5,
916 100 * 5 / 6,
917 100 * 6 / 7,
918 100 * 7 / 8,
919 100 * 8 / 9,
920 100 * 9 / 10
921 };
922
923 last_per = ath_rc_priv->per[tx_rate];
924 n_bad_frames = tx_info->status.ampdu_len - tx_info->status.ampdu_ack_len;
925
926 if (xretries) {
927 if (xretries == 1) {
928 ath_rc_priv->per[tx_rate] += 30;
929 if (ath_rc_priv->per[tx_rate] > 100)
930 ath_rc_priv->per[tx_rate] = 100;
931 } else {
932 /* xretries == 2 */
933 count = ARRAY_SIZE(nretry_to_per_lookup);
934 if (retries >= count)
935 retries = count - 1;
936
937 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
938 ath_rc_priv->per[tx_rate] =
939 (u8)(last_per - (last_per >> 3) + (100 >> 3));
940 }
941
942 /* xretries == 1 or 2 */
943
944 if (ath_rc_priv->probe_rate == tx_rate)
945 ath_rc_priv->probe_rate = 0;
946
947 } else { /* xretries == 0 */
948 count = ARRAY_SIZE(nretry_to_per_lookup);
949 if (retries >= count)
950 retries = count - 1;
951
952 if (n_bad_frames) {
953 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
954 * Assuming that n_frames is not 0. The current PER
955 * from the retries is 100 * retries / (retries+1),
956 * since the first retries attempts failed, and the
957 * next one worked. For the one that worked,
958 * n_bad_frames subframes out of n_frames wored,
959 * so the PER for that part is
960 * 100 * n_bad_frames / n_frames, and it contributes
961 * 100 * n_bad_frames / (n_frames * (retries+1)) to
962 * the above PER. The expression below is a
963 * simplified version of the sum of these two terms.
964 */
965 if (tx_info->status.ampdu_len > 0) {
966 int n_frames, n_bad_tries;
967 u8 cur_per, new_per;
968
969 n_bad_tries = retries * tx_info->status.ampdu_len +
970 n_bad_frames;
971 n_frames = tx_info->status.ampdu_len * (retries + 1);
972 cur_per = (100 * n_bad_tries / n_frames) >> 3;
973 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
974 ath_rc_priv->per[tx_rate] = new_per;
975 }
976 } else {
977 ath_rc_priv->per[tx_rate] =
978 (u8)(last_per - (last_per >> 3) +
979 (nretry_to_per_lookup[retries] >> 3));
980 }
981
982
983 /*
984 * If we got at most one retry then increase the max rate if
985 * this was a probe. Otherwise, ignore the probe.
986 */
987 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
988 if (retries > 0 || 2 * n_bad_frames > tx_info->status.ampdu_len) {
989 /*
990 * Since we probed with just a single attempt,
991 * any retries means the probe failed. Also,
992 * if the attempt worked, but more than half
993 * the subframes were bad then also consider
994 * the probe a failure.
995 */
996 ath_rc_priv->probe_rate = 0;
997 } else {
998 u8 probe_rate = 0;
999
1000 ath_rc_priv->rate_max_phy =
1001 ath_rc_priv->probe_rate;
1002 probe_rate = ath_rc_priv->probe_rate;
1003
1004 if (ath_rc_priv->per[probe_rate] > 30)
1005 ath_rc_priv->per[probe_rate] = 20;
1006
1007 ath_rc_priv->probe_rate = 0;
1008
1009 /*
1010 * Since this probe succeeded, we allow the next
1011 * probe twice as soon. This allows the maxRate
1012 * to move up faster if the probes are
1013 * successful.
1014 */
1015 ath_rc_priv->probe_time =
1016 now_msec - rate_table->probe_interval / 2;
1017 }
1018 }
1019
1020 if (retries > 0) {
1021 /*
1022 * Don't update anything. We don't know if
1023 * this was because of collisions or poor signal.
1024 */
1025 ath_rc_priv->hw_maxretry_pktcnt = 0;
1026 } else {
1027 /*
1028 * It worked with no retries. First ignore bogus (small)
1029 * rssi_ack values.
1030 */
1031 if (tx_rate == ath_rc_priv->rate_max_phy &&
1032 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1033 ath_rc_priv->hw_maxretry_pktcnt++;
1034 }
1035
1036 }
1037 }
1038 }
1039
1040 static void ath_debug_stat_retries(struct ath_rate_priv *rc, int rix,
1041 int xretries, int retries, u8 per)
1042 {
1043 struct ath_rc_stats *stats = &rc->rcstats[rix];
1044
1045 stats->xretries += xretries;
1046 stats->retries += retries;
1047 stats->per = per;
1048 }
1049
1050 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1051 If you can make sense of all this, you really need to go out more. */
1052
1053 static void ath_rc_update_ht(struct ath_softc *sc,
1054 struct ath_rate_priv *ath_rc_priv,
1055 struct ieee80211_tx_info *tx_info,
1056 int tx_rate, int xretries, int retries)
1057 {
1058 u32 now_msec = jiffies_to_msecs(jiffies);
1059 int rate;
1060 u8 last_per;
1061 const struct ath_rate_table *rate_table = ath_rc_priv->rate_table;
1062 int size = ath_rc_priv->rate_table_size;
1063
1064 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1065 return;
1066
1067 last_per = ath_rc_priv->per[tx_rate];
1068
1069 /* Update PER first */
1070 ath_rc_update_per(sc, rate_table, ath_rc_priv,
1071 tx_info, tx_rate, xretries,
1072 retries, now_msec);
1073
1074 /*
1075 * If this rate looks bad (high PER) then stop using it for
1076 * a while (except if we are probing).
1077 */
1078 if (ath_rc_priv->per[tx_rate] >= 55 && tx_rate > 0 &&
1079 rate_table->info[tx_rate].ratekbps <=
1080 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1081 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1082 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1083
1084 /* Don't probe for a little while. */
1085 ath_rc_priv->probe_time = now_msec;
1086 }
1087
1088 /* Make sure the rates below this have lower PER */
1089 /* Monotonicity is kept only for rates below the current rate. */
1090 if (ath_rc_priv->per[tx_rate] < last_per) {
1091 for (rate = tx_rate - 1; rate >= 0; rate--) {
1092
1093 if (ath_rc_priv->per[rate] >
1094 ath_rc_priv->per[rate+1]) {
1095 ath_rc_priv->per[rate] =
1096 ath_rc_priv->per[rate+1];
1097 }
1098 }
1099 }
1100
1101 /* Maintain monotonicity for rates above the current rate */
1102 for (rate = tx_rate; rate < size - 1; rate++) {
1103 if (ath_rc_priv->per[rate+1] <
1104 ath_rc_priv->per[rate])
1105 ath_rc_priv->per[rate+1] =
1106 ath_rc_priv->per[rate];
1107 }
1108
1109 /* Every so often, we reduce the thresholds
1110 * and PER (different for CCK and OFDM). */
1111 if (now_msec - ath_rc_priv->per_down_time >=
1112 rate_table->probe_interval) {
1113 for (rate = 0; rate < size; rate++) {
1114 ath_rc_priv->per[rate] =
1115 7 * ath_rc_priv->per[rate] / 8;
1116 }
1117
1118 ath_rc_priv->per_down_time = now_msec;
1119 }
1120
1121 ath_debug_stat_retries(ath_rc_priv, tx_rate, xretries, retries,
1122 ath_rc_priv->per[tx_rate]);
1123
1124 }
1125
1126
1127 static void ath_rc_tx_status(struct ath_softc *sc,
1128 struct ath_rate_priv *ath_rc_priv,
1129 struct ieee80211_tx_info *tx_info,
1130 int final_ts_idx, int xretries, int long_retry)
1131 {
1132 const struct ath_rate_table *rate_table;
1133 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1134 u8 flags;
1135 u32 i = 0, rix;
1136
1137 rate_table = ath_rc_priv->rate_table;
1138
1139 /*
1140 * If the first rate is not the final index, there
1141 * are intermediate rate failures to be processed.
1142 */
1143 if (final_ts_idx != 0) {
1144 /* Process intermediate rates that failed.*/
1145 for (i = 0; i < final_ts_idx ; i++) {
1146 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1147 flags = rates[i].flags;
1148
1149 /* If HT40 and we have switched mode from
1150 * 40 to 20 => don't update */
1151
1152 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1153 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1154 return;
1155
1156 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1157 ath_rc_update_ht(sc, ath_rc_priv, tx_info,
1158 rix, xretries ? 1 : 2,
1159 rates[i].count);
1160 }
1161 }
1162 } else {
1163 /*
1164 * Handle the special case of MIMO PS burst, where the second
1165 * aggregate is sent out with only one rate and one try.
1166 * Treating it as an excessive retry penalizes the rate
1167 * inordinately.
1168 */
1169 if (rates[0].count == 1 && xretries == 1)
1170 xretries = 2;
1171 }
1172
1173 flags = rates[i].flags;
1174
1175 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1176 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1177 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1178 return;
1179
1180 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1181 ath_rc_update_ht(sc, ath_rc_priv, tx_info, rix, xretries, long_retry);
1182 }
1183
1184 static const
1185 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1186 enum ieee80211_band band,
1187 bool is_ht)
1188 {
1189 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1190
1191 switch(band) {
1192 case IEEE80211_BAND_2GHZ:
1193 if (is_ht)
1194 return &ar5416_11ng_ratetable;
1195 return &ar5416_11g_ratetable;
1196 case IEEE80211_BAND_5GHZ:
1197 if (is_ht)
1198 return &ar5416_11na_ratetable;
1199 return &ar5416_11a_ratetable;
1200 default:
1201 ath_dbg(common, CONFIG, "Invalid band\n");
1202 return NULL;
1203 }
1204 }
1205
1206 static void ath_rc_init(struct ath_softc *sc,
1207 struct ath_rate_priv *ath_rc_priv,
1208 struct ieee80211_supported_band *sband,
1209 struct ieee80211_sta *sta,
1210 const struct ath_rate_table *rate_table)
1211 {
1212 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1213 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1214 struct ath_rateset *ht_mcs = &ath_rc_priv->neg_ht_rates;
1215 u8 i, j, k, hi = 0, hthi = 0;
1216
1217 /* Initial rate table size. Will change depending
1218 * on the working rate set */
1219 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1220
1221 /* Initialize thresholds according to the global rate table */
1222 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1223 ath_rc_priv->per[i] = 0;
1224 }
1225
1226 /* Determine the valid rates */
1227 ath_rc_init_valid_rate_idx(ath_rc_priv);
1228
1229 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1230 for (j = 0; j < RATE_TABLE_SIZE; j++)
1231 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1232 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1233 }
1234
1235 if (!rateset->rs_nrates) {
1236 /* No working rate, just initialize valid rates */
1237 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1238 ath_rc_priv->ht_cap);
1239 } else {
1240 /* Use intersection of working rates and valid rates */
1241 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1242 rateset, ath_rc_priv->ht_cap);
1243 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1244 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1245 rate_table,
1246 ht_mcs,
1247 ath_rc_priv->ht_cap);
1248 }
1249 hi = max(hi, hthi);
1250 }
1251
1252 ath_rc_priv->rate_table_size = hi + 1;
1253 ath_rc_priv->rate_max_phy = 0;
1254 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1255
1256 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1257 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1258 ath_rc_priv->valid_rate_index[k++] =
1259 ath_rc_priv->valid_phy_rateidx[i][j];
1260 }
1261
1262 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1263 || !ath_rc_priv->valid_phy_ratecnt[i])
1264 continue;
1265
1266 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1267 }
1268 BUG_ON(ath_rc_priv->rate_table_size > RATE_TABLE_SIZE);
1269 BUG_ON(k > RATE_TABLE_SIZE);
1270
1271 ath_rc_priv->max_valid_rate = k;
1272 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1273 ath_rc_priv->rate_max_phy = (k > 4) ?
1274 ath_rc_priv->valid_rate_index[k-4] :
1275 ath_rc_priv->valid_rate_index[k-1];
1276 ath_rc_priv->rate_table = rate_table;
1277
1278 ath_dbg(common, CONFIG, "RC Initialized with capabilities: 0x%x\n",
1279 ath_rc_priv->ht_cap);
1280 }
1281
1282 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1283 bool is_cw40, bool is_sgi)
1284 {
1285 u8 caps = 0;
1286
1287 if (sta->ht_cap.ht_supported) {
1288 caps = WLAN_RC_HT_FLAG;
1289 if (sta->ht_cap.mcs.rx_mask[1] && sta->ht_cap.mcs.rx_mask[2])
1290 caps |= WLAN_RC_TS_FLAG | WLAN_RC_DS_FLAG;
1291 else if (sta->ht_cap.mcs.rx_mask[1])
1292 caps |= WLAN_RC_DS_FLAG;
1293 if (is_cw40)
1294 caps |= WLAN_RC_40_FLAG;
1295 if (is_sgi)
1296 caps |= WLAN_RC_SGI_FLAG;
1297 }
1298
1299 return caps;
1300 }
1301
1302 static bool ath_tx_aggr_check(struct ath_softc *sc, struct ieee80211_sta *sta,
1303 u8 tidno)
1304 {
1305 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1306 struct ath_atx_tid *txtid;
1307
1308 if (!sta->ht_cap.ht_supported)
1309 return false;
1310
1311 txtid = ATH_AN_2_TID(an, tidno);
1312
1313 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
1314 return true;
1315 return false;
1316 }
1317
1318
1319 /***********************************/
1320 /* mac80211 Rate Control callbacks */
1321 /***********************************/
1322
1323 static void ath_debug_stat_rc(struct ath_rate_priv *rc, int final_rate)
1324 {
1325 struct ath_rc_stats *stats;
1326
1327 stats = &rc->rcstats[final_rate];
1328 stats->success++;
1329 }
1330
1331
1332 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1333 struct ieee80211_sta *sta, void *priv_sta,
1334 struct sk_buff *skb)
1335 {
1336 struct ath_softc *sc = priv;
1337 struct ath_rate_priv *ath_rc_priv = priv_sta;
1338 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1339 struct ieee80211_hdr *hdr;
1340 int final_ts_idx = 0, tx_status = 0;
1341 int long_retry = 0;
1342 __le16 fc;
1343 int i;
1344
1345 hdr = (struct ieee80211_hdr *)skb->data;
1346 fc = hdr->frame_control;
1347 for (i = 0; i < sc->hw->max_rates; i++) {
1348 struct ieee80211_tx_rate *rate = &tx_info->status.rates[i];
1349 if (rate->idx < 0 || !rate->count)
1350 break;
1351
1352 final_ts_idx = i;
1353 long_retry = rate->count - 1;
1354 }
1355
1356 if (!priv_sta || !ieee80211_is_data(fc))
1357 return;
1358
1359 /* This packet was aggregated but doesn't carry status info */
1360 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) &&
1361 !(tx_info->flags & IEEE80211_TX_STAT_AMPDU))
1362 return;
1363
1364 if (tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED)
1365 return;
1366
1367 if (!(tx_info->flags & IEEE80211_TX_STAT_ACK))
1368 tx_status = 1;
1369
1370 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1371 long_retry);
1372
1373 /* Check if aggregation has to be enabled for this tid */
1374 if (conf_is_ht(&sc->hw->conf) &&
1375 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1376 if (ieee80211_is_data_qos(fc) &&
1377 skb_get_queue_mapping(skb) != IEEE80211_AC_VO) {
1378 u8 *qc, tid;
1379
1380 qc = ieee80211_get_qos_ctl(hdr);
1381 tid = qc[0] & 0xf;
1382
1383 if(ath_tx_aggr_check(sc, sta, tid))
1384 ieee80211_start_tx_ba_session(sta, tid, 0);
1385 }
1386 }
1387
1388 ath_debug_stat_rc(ath_rc_priv,
1389 ath_rc_get_rateindex(ath_rc_priv->rate_table,
1390 &tx_info->status.rates[final_ts_idx]));
1391 }
1392
1393 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1394 struct ieee80211_sta *sta, void *priv_sta)
1395 {
1396 struct ath_softc *sc = priv;
1397 struct ath_rate_priv *ath_rc_priv = priv_sta;
1398 const struct ath_rate_table *rate_table;
1399 bool is_cw40, is_sgi = false;
1400 int i, j = 0;
1401
1402 for (i = 0; i < sband->n_bitrates; i++) {
1403 if (sta->supp_rates[sband->band] & BIT(i)) {
1404 ath_rc_priv->neg_rates.rs_rates[j]
1405 = (sband->bitrates[i].bitrate * 2) / 10;
1406 j++;
1407 }
1408 }
1409 ath_rc_priv->neg_rates.rs_nrates = j;
1410
1411 if (sta->ht_cap.ht_supported) {
1412 for (i = 0, j = 0; i < 77; i++) {
1413 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1414 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1415 if (j == ATH_RATE_MAX)
1416 break;
1417 }
1418 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1419 }
1420
1421 is_cw40 = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40);
1422
1423 if (is_cw40)
1424 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1425 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1426 is_sgi = !!(sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1427
1428 /* Choose rate table first */
1429
1430 rate_table = ath_choose_rate_table(sc, sband->band,
1431 sta->ht_cap.ht_supported);
1432
1433 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi);
1434 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1435 }
1436
1437 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1438 struct ieee80211_sta *sta, void *priv_sta,
1439 u32 changed, enum nl80211_channel_type oper_chan_type)
1440 {
1441 struct ath_softc *sc = priv;
1442 struct ath_rate_priv *ath_rc_priv = priv_sta;
1443 const struct ath_rate_table *rate_table = NULL;
1444 bool oper_cw40 = false, oper_sgi;
1445 bool local_cw40 = !!(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG);
1446 bool local_sgi = !!(ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG);
1447
1448 /* FIXME: Handle AP mode later when we support CWM */
1449
1450 if (changed & IEEE80211_RC_HT_CHANGED) {
1451 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1452 return;
1453
1454 if (oper_chan_type == NL80211_CHAN_HT40MINUS ||
1455 oper_chan_type == NL80211_CHAN_HT40PLUS)
1456 oper_cw40 = true;
1457
1458 if (oper_cw40)
1459 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1460 true : false;
1461 else if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
1462 oper_sgi = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1463 true : false;
1464 else
1465 oper_sgi = false;
1466
1467 if ((local_cw40 != oper_cw40) || (local_sgi != oper_sgi)) {
1468 rate_table = ath_choose_rate_table(sc, sband->band,
1469 sta->ht_cap.ht_supported);
1470 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1471 oper_cw40, oper_sgi);
1472 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1473
1474 ath_dbg(ath9k_hw_common(sc->sc_ah), CONFIG,
1475 "Operating HT Bandwidth changed to: %d\n",
1476 sc->hw->conf.channel_type);
1477 }
1478 }
1479 }
1480
1481 #ifdef CONFIG_ATH9K_DEBUGFS
1482
1483 static ssize_t read_file_rcstat(struct file *file, char __user *user_buf,
1484 size_t count, loff_t *ppos)
1485 {
1486 struct ath_rate_priv *rc = file->private_data;
1487 char *buf;
1488 unsigned int len = 0, max;
1489 int i = 0;
1490 ssize_t retval;
1491
1492 if (rc->rate_table == NULL)
1493 return 0;
1494
1495 max = 80 + rc->rate_table_size * 1024 + 1;
1496 buf = kmalloc(max, GFP_KERNEL);
1497 if (buf == NULL)
1498 return -ENOMEM;
1499
1500 len += sprintf(buf, "%6s %6s %6s "
1501 "%10s %10s %10s %10s\n",
1502 "HT", "MCS", "Rate",
1503 "Success", "Retries", "XRetries", "PER");
1504
1505 for (i = 0; i < rc->rate_table_size; i++) {
1506 u32 ratekbps = rc->rate_table->info[i].ratekbps;
1507 struct ath_rc_stats *stats = &rc->rcstats[i];
1508 char mcs[5];
1509 char htmode[5];
1510 int used_mcs = 0, used_htmode = 0;
1511
1512 if (WLAN_RC_PHY_HT(rc->rate_table->info[i].phy)) {
1513 used_mcs = snprintf(mcs, 5, "%d",
1514 rc->rate_table->info[i].ratecode);
1515
1516 if (WLAN_RC_PHY_40(rc->rate_table->info[i].phy))
1517 used_htmode = snprintf(htmode, 5, "HT40");
1518 else if (WLAN_RC_PHY_20(rc->rate_table->info[i].phy))
1519 used_htmode = snprintf(htmode, 5, "HT20");
1520 else
1521 used_htmode = snprintf(htmode, 5, "????");
1522 }
1523
1524 mcs[used_mcs] = '\0';
1525 htmode[used_htmode] = '\0';
1526
1527 len += snprintf(buf + len, max - len,
1528 "%6s %6s %3u.%d: "
1529 "%10u %10u %10u %10u\n",
1530 htmode,
1531 mcs,
1532 ratekbps / 1000,
1533 (ratekbps % 1000) / 100,
1534 stats->success,
1535 stats->retries,
1536 stats->xretries,
1537 stats->per);
1538 }
1539
1540 if (len > max)
1541 len = max;
1542
1543 retval = simple_read_from_buffer(user_buf, count, ppos, buf, len);
1544 kfree(buf);
1545 return retval;
1546 }
1547
1548 static const struct file_operations fops_rcstat = {
1549 .read = read_file_rcstat,
1550 .open = simple_open,
1551 .owner = THIS_MODULE
1552 };
1553
1554 static void ath_rate_add_sta_debugfs(void *priv, void *priv_sta,
1555 struct dentry *dir)
1556 {
1557 struct ath_rate_priv *rc = priv_sta;
1558 debugfs_create_file("rc_stats", S_IRUGO, dir, rc, &fops_rcstat);
1559 }
1560
1561 #endif /* CONFIG_ATH9K_DEBUGFS */
1562
1563 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1564 {
1565 return hw->priv;
1566 }
1567
1568 static void ath_rate_free(void *priv)
1569 {
1570 return;
1571 }
1572
1573 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1574 {
1575 struct ath_softc *sc = priv;
1576 struct ath_rate_priv *rate_priv;
1577
1578 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1579 if (!rate_priv) {
1580 ath_err(ath9k_hw_common(sc->sc_ah),
1581 "Unable to allocate private rc structure\n");
1582 return NULL;
1583 }
1584
1585 return rate_priv;
1586 }
1587
1588 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1589 void *priv_sta)
1590 {
1591 struct ath_rate_priv *rate_priv = priv_sta;
1592 kfree(rate_priv);
1593 }
1594
1595 static struct rate_control_ops ath_rate_ops = {
1596 .module = NULL,
1597 .name = "ath9k_rate_control",
1598 .tx_status = ath_tx_status,
1599 .get_rate = ath_get_rate,
1600 .rate_init = ath_rate_init,
1601 .rate_update = ath_rate_update,
1602 .alloc = ath_rate_alloc,
1603 .free = ath_rate_free,
1604 .alloc_sta = ath_rate_alloc_sta,
1605 .free_sta = ath_rate_free_sta,
1606 #ifdef CONFIG_ATH9K_DEBUGFS
1607 .add_sta_debugfs = ath_rate_add_sta_debugfs,
1608 #endif
1609 };
1610
1611 int ath_rate_control_register(void)
1612 {
1613 return ieee80211_rate_control_register(&ath_rate_ops);
1614 }
1615
1616 void ath_rate_control_unregister(void)
1617 {
1618 ieee80211_rate_control_unregister(&ath_rate_ops);
1619 }
This page took 0.108925 seconds and 5 git commands to generate.