Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb))
22
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 return sc->ps_enabled &&
26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28
29 /*
30 * Setup and link descriptors.
31 *
32 * 11N: we can no longer afford to self link the last descriptor.
33 * MAC acknowledges BA status as long as it copies frames to host
34 * buffer (or rx fifo). This can incorrectly acknowledge packets
35 * to a sender if last desc is self-linked.
36 */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 bool flush)
39 {
40 struct ath_hw *ah = sc->sc_ah;
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath_desc *ds;
43 struct sk_buff *skb;
44
45 ds = bf->bf_desc;
46 ds->ds_link = 0; /* link to null */
47 ds->ds_data = bf->bf_buf_addr;
48
49 /* virtual addr of the beginning of the buffer. */
50 skb = bf->bf_mpdu;
51 BUG_ON(skb == NULL);
52 ds->ds_vdata = skb->data;
53
54 /*
55 * setup rx descriptors. The rx_bufsize here tells the hardware
56 * how much data it can DMA to us and that we are prepared
57 * to process
58 */
59 ath9k_hw_setuprxdesc(ah, ds,
60 common->rx_bufsize,
61 0);
62
63 if (sc->rx.rxlink)
64 *sc->rx.rxlink = bf->bf_daddr;
65 else if (!flush)
66 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67
68 sc->rx.rxlink = &ds->ds_link;
69 }
70
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 bool flush)
73 {
74 if (sc->rx.buf_hold)
75 ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76
77 sc->rx.buf_hold = bf;
78 }
79
80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 /* XXX block beacon interrupts */
83 ath9k_hw_setantenna(sc->sc_ah, antenna);
84 sc->rx.defant = antenna;
85 sc->rx.rxotherant = 0;
86 }
87
88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 struct ath_hw *ah = sc->sc_ah;
91 struct ath_common *common = ath9k_hw_common(ah);
92
93 u32 rfilt, mfilt[2];
94
95 /* configure rx filter */
96 rfilt = ath_calcrxfilter(sc);
97 ath9k_hw_setrxfilter(ah, rfilt);
98
99 /* configure bssid mask */
100 ath_hw_setbssidmask(common);
101
102 /* configure operational mode */
103 ath9k_hw_setopmode(ah);
104
105 /* calculate and install multicast filter */
106 mfilt[0] = mfilt[1] = ~0;
107 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109
110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 enum ath9k_rx_qtype qtype)
112 {
113 struct ath_hw *ah = sc->sc_ah;
114 struct ath_rx_edma *rx_edma;
115 struct sk_buff *skb;
116 struct ath_rxbuf *bf;
117
118 rx_edma = &sc->rx.rx_edma[qtype];
119 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 return false;
121
122 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 list_del_init(&bf->list);
124
125 skb = bf->bf_mpdu;
126
127 memset(skb->data, 0, ah->caps.rx_status_len);
128 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 ah->caps.rx_status_len, DMA_TO_DEVICE);
130
131 SKB_CB_ATHBUF(skb) = bf;
132 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 __skb_queue_tail(&rx_edma->rx_fifo, skb);
134
135 return true;
136 }
137
138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 enum ath9k_rx_qtype qtype)
140 {
141 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 struct ath_rxbuf *bf, *tbf;
143
144 if (list_empty(&sc->rx.rxbuf)) {
145 ath_dbg(common, QUEUE, "No free rx buf available\n");
146 return;
147 }
148
149 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 if (!ath_rx_edma_buf_link(sc, qtype))
151 break;
152
153 }
154
155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 enum ath9k_rx_qtype qtype)
157 {
158 struct ath_rxbuf *bf;
159 struct ath_rx_edma *rx_edma;
160 struct sk_buff *skb;
161
162 rx_edma = &sc->rx.rx_edma[qtype];
163
164 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 bf = SKB_CB_ATHBUF(skb);
166 BUG_ON(!bf);
167 list_add_tail(&bf->list, &sc->rx.rxbuf);
168 }
169 }
170
171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 struct ath_hw *ah = sc->sc_ah;
174 struct ath_common *common = ath9k_hw_common(ah);
175 struct ath_rxbuf *bf;
176
177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179
180 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 if (bf->bf_mpdu) {
182 dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 common->rx_bufsize,
184 DMA_BIDIRECTIONAL);
185 dev_kfree_skb_any(bf->bf_mpdu);
186 bf->bf_buf_addr = 0;
187 bf->bf_mpdu = NULL;
188 }
189 }
190 }
191
192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 __skb_queue_head_init(&rx_edma->rx_fifo);
195 rx_edma->rx_fifo_hwsize = size;
196 }
197
198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 struct ath_hw *ah = sc->sc_ah;
202 struct sk_buff *skb;
203 struct ath_rxbuf *bf;
204 int error = 0, i;
205 u32 size;
206
207 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 ah->caps.rx_status_len);
209
210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 ah->caps.rx_lp_qdepth);
212 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 ah->caps.rx_hp_qdepth);
214
215 size = sizeof(struct ath_rxbuf) * nbufs;
216 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 if (!bf)
218 return -ENOMEM;
219
220 INIT_LIST_HEAD(&sc->rx.rxbuf);
221
222 for (i = 0; i < nbufs; i++, bf++) {
223 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 if (!skb) {
225 error = -ENOMEM;
226 goto rx_init_fail;
227 }
228
229 memset(skb->data, 0, common->rx_bufsize);
230 bf->bf_mpdu = skb;
231
232 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 common->rx_bufsize,
234 DMA_BIDIRECTIONAL);
235 if (unlikely(dma_mapping_error(sc->dev,
236 bf->bf_buf_addr))) {
237 dev_kfree_skb_any(skb);
238 bf->bf_mpdu = NULL;
239 bf->bf_buf_addr = 0;
240 ath_err(common,
241 "dma_mapping_error() on RX init\n");
242 error = -ENOMEM;
243 goto rx_init_fail;
244 }
245
246 list_add_tail(&bf->list, &sc->rx.rxbuf);
247 }
248
249 return 0;
250
251 rx_init_fail:
252 ath_rx_edma_cleanup(sc);
253 return error;
254 }
255
256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 ath9k_hw_rxena(sc->sc_ah);
259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 ath_opmode_init(sc);
262 ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 struct sk_buff *skb;
275 struct ath_rxbuf *bf;
276 int error = 0;
277
278 spin_lock_init(&sc->sc_pcu_lock);
279
280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 sc->sc_ah->caps.rx_status_len;
282
283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 return ath_rx_edma_init(sc, nbufs);
285
286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 common->cachelsz, common->rx_bufsize);
288
289 /* Initialize rx descriptors */
290
291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 "rx", nbufs, 1, 0);
293 if (error != 0) {
294 ath_err(common,
295 "failed to allocate rx descriptors: %d\n",
296 error);
297 goto err;
298 }
299
300 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 GFP_KERNEL);
303 if (skb == NULL) {
304 error = -ENOMEM;
305 goto err;
306 }
307
308 bf->bf_mpdu = skb;
309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 common->rx_bufsize,
311 DMA_FROM_DEVICE);
312 if (unlikely(dma_mapping_error(sc->dev,
313 bf->bf_buf_addr))) {
314 dev_kfree_skb_any(skb);
315 bf->bf_mpdu = NULL;
316 bf->bf_buf_addr = 0;
317 ath_err(common,
318 "dma_mapping_error() on RX init\n");
319 error = -ENOMEM;
320 goto err;
321 }
322 }
323 sc->rx.rxlink = NULL;
324 err:
325 if (error)
326 ath_rx_cleanup(sc);
327
328 return error;
329 }
330
331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 struct ath_hw *ah = sc->sc_ah;
334 struct ath_common *common = ath9k_hw_common(ah);
335 struct sk_buff *skb;
336 struct ath_rxbuf *bf;
337
338 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 ath_rx_edma_cleanup(sc);
340 return;
341 }
342
343 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 skb = bf->bf_mpdu;
345 if (skb) {
346 dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 common->rx_bufsize,
348 DMA_FROM_DEVICE);
349 dev_kfree_skb(skb);
350 bf->bf_buf_addr = 0;
351 bf->bf_mpdu = NULL;
352 }
353 }
354 }
355
356 /*
357 * Calculate the receive filter according to the
358 * operating mode and state:
359 *
360 * o always accept unicast, broadcast, and multicast traffic
361 * o maintain current state of phy error reception (the hal
362 * may enable phy error frames for noise immunity work)
363 * o probe request frames are accepted only when operating in
364 * hostap, adhoc, or monitor modes
365 * o enable promiscuous mode according to the interface state
366 * o accept beacons:
367 * - when operating in adhoc mode so the 802.11 layer creates
368 * node table entries for peers,
369 * - when operating in station mode for collecting rssi data when
370 * the station is otherwise quiet, or
371 * - when operating as a repeater so we see repeater-sta beacons
372 * - when scanning
373 */
374
375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378 u32 rfilt;
379
380 if (config_enabled(CONFIG_ATH9K_TX99))
381 return 0;
382
383 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384 | ATH9K_RX_FILTER_MCAST;
385
386 /* if operating on a DFS channel, enable radar pulse detection */
387 if (sc->hw->conf.radar_enabled)
388 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389
390 spin_lock_bh(&sc->chan_lock);
391
392 if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394
395 if (sc->sc_ah->is_monitoring)
396 rfilt |= ATH9K_RX_FILTER_PROM;
397
398 if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
399 sc->sc_ah->dynack.enabled)
400 rfilt |= ATH9K_RX_FILTER_CONTROL;
401
402 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403 (sc->cur_chan->nvifs <= 1) &&
404 !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
405 rfilt |= ATH9K_RX_FILTER_MYBEACON;
406 else
407 rfilt |= ATH9K_RX_FILTER_BEACON;
408
409 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410 (sc->cur_chan->rxfilter & FIF_PSPOLL))
411 rfilt |= ATH9K_RX_FILTER_PSPOLL;
412
413 if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
414 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415
416 if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
417 /* This is needed for older chips */
418 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
419 rfilt |= ATH9K_RX_FILTER_PROM;
420 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
421 }
422
423 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
424 AR_SREV_9561(sc->sc_ah))
425 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
426
427 if (ath9k_is_chanctx_enabled() &&
428 test_bit(ATH_OP_SCANNING, &common->op_flags))
429 rfilt |= ATH9K_RX_FILTER_BEACON;
430
431 spin_unlock_bh(&sc->chan_lock);
432
433 return rfilt;
434
435 }
436
437 void ath_startrecv(struct ath_softc *sc)
438 {
439 struct ath_hw *ah = sc->sc_ah;
440 struct ath_rxbuf *bf, *tbf;
441
442 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
443 ath_edma_start_recv(sc);
444 return;
445 }
446
447 if (list_empty(&sc->rx.rxbuf))
448 goto start_recv;
449
450 sc->rx.buf_hold = NULL;
451 sc->rx.rxlink = NULL;
452 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
453 ath_rx_buf_link(sc, bf, false);
454 }
455
456 /* We could have deleted elements so the list may be empty now */
457 if (list_empty(&sc->rx.rxbuf))
458 goto start_recv;
459
460 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
461 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
462 ath9k_hw_rxena(ah);
463
464 start_recv:
465 ath_opmode_init(sc);
466 ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
467 }
468
469 static void ath_flushrecv(struct ath_softc *sc)
470 {
471 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
472 ath_rx_tasklet(sc, 1, true);
473 ath_rx_tasklet(sc, 1, false);
474 }
475
476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478 struct ath_hw *ah = sc->sc_ah;
479 bool stopped, reset = false;
480
481 ath9k_hw_abortpcurecv(ah);
482 ath9k_hw_setrxfilter(ah, 0);
483 stopped = ath9k_hw_stopdmarecv(ah, &reset);
484
485 ath_flushrecv(sc);
486
487 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
488 ath_edma_stop_recv(sc);
489 else
490 sc->rx.rxlink = NULL;
491
492 if (!(ah->ah_flags & AH_UNPLUGGED) &&
493 unlikely(!stopped)) {
494 ath_err(ath9k_hw_common(sc->sc_ah),
495 "Could not stop RX, we could be "
496 "confusing the DMA engine when we start RX up\n");
497 ATH_DBG_WARN_ON_ONCE(!stopped);
498 }
499 return stopped && !reset;
500 }
501
502 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
503 {
504 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
505 struct ieee80211_mgmt *mgmt;
506 u8 *pos, *end, id, elen;
507 struct ieee80211_tim_ie *tim;
508
509 mgmt = (struct ieee80211_mgmt *)skb->data;
510 pos = mgmt->u.beacon.variable;
511 end = skb->data + skb->len;
512
513 while (pos + 2 < end) {
514 id = *pos++;
515 elen = *pos++;
516 if (pos + elen > end)
517 break;
518
519 if (id == WLAN_EID_TIM) {
520 if (elen < sizeof(*tim))
521 break;
522 tim = (struct ieee80211_tim_ie *) pos;
523 if (tim->dtim_count != 0)
524 break;
525 return tim->bitmap_ctrl & 0x01;
526 }
527
528 pos += elen;
529 }
530
531 return false;
532 }
533
534 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
535 {
536 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
537 bool skip_beacon = false;
538
539 if (skb->len < 24 + 8 + 2 + 2)
540 return;
541
542 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
543
544 if (sc->ps_flags & PS_BEACON_SYNC) {
545 sc->ps_flags &= ~PS_BEACON_SYNC;
546 ath_dbg(common, PS,
547 "Reconfigure beacon timers based on synchronized timestamp\n");
548
549 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
550 if (ath9k_is_chanctx_enabled()) {
551 if (sc->cur_chan == &sc->offchannel.chan)
552 skip_beacon = true;
553 }
554 #endif
555
556 if (!skip_beacon &&
557 !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
558 ath9k_set_beacon(sc);
559
560 ath9k_p2p_beacon_sync(sc);
561 }
562
563 if (ath_beacon_dtim_pending_cab(skb)) {
564 /*
565 * Remain awake waiting for buffered broadcast/multicast
566 * frames. If the last broadcast/multicast frame is not
567 * received properly, the next beacon frame will work as
568 * a backup trigger for returning into NETWORK SLEEP state,
569 * so we are waiting for it as well.
570 */
571 ath_dbg(common, PS,
572 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
573 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
574 return;
575 }
576
577 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
578 /*
579 * This can happen if a broadcast frame is dropped or the AP
580 * fails to send a frame indicating that all CAB frames have
581 * been delivered.
582 */
583 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
584 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
585 }
586 }
587
588 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
589 {
590 struct ieee80211_hdr *hdr;
591 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
592
593 hdr = (struct ieee80211_hdr *)skb->data;
594
595 /* Process Beacon and CAB receive in PS state */
596 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
597 && mybeacon) {
598 ath_rx_ps_beacon(sc, skb);
599 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
600 (ieee80211_is_data(hdr->frame_control) ||
601 ieee80211_is_action(hdr->frame_control)) &&
602 is_multicast_ether_addr(hdr->addr1) &&
603 !ieee80211_has_moredata(hdr->frame_control)) {
604 /*
605 * No more broadcast/multicast frames to be received at this
606 * point.
607 */
608 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
609 ath_dbg(common, PS,
610 "All PS CAB frames received, back to sleep\n");
611 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
612 !is_multicast_ether_addr(hdr->addr1) &&
613 !ieee80211_has_morefrags(hdr->frame_control)) {
614 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
615 ath_dbg(common, PS,
616 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
617 sc->ps_flags & (PS_WAIT_FOR_BEACON |
618 PS_WAIT_FOR_CAB |
619 PS_WAIT_FOR_PSPOLL_DATA |
620 PS_WAIT_FOR_TX_ACK));
621 }
622 }
623
624 static bool ath_edma_get_buffers(struct ath_softc *sc,
625 enum ath9k_rx_qtype qtype,
626 struct ath_rx_status *rs,
627 struct ath_rxbuf **dest)
628 {
629 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
630 struct ath_hw *ah = sc->sc_ah;
631 struct ath_common *common = ath9k_hw_common(ah);
632 struct sk_buff *skb;
633 struct ath_rxbuf *bf;
634 int ret;
635
636 skb = skb_peek(&rx_edma->rx_fifo);
637 if (!skb)
638 return false;
639
640 bf = SKB_CB_ATHBUF(skb);
641 BUG_ON(!bf);
642
643 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
644 common->rx_bufsize, DMA_FROM_DEVICE);
645
646 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
647 if (ret == -EINPROGRESS) {
648 /*let device gain the buffer again*/
649 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
650 common->rx_bufsize, DMA_FROM_DEVICE);
651 return false;
652 }
653
654 __skb_unlink(skb, &rx_edma->rx_fifo);
655 if (ret == -EINVAL) {
656 /* corrupt descriptor, skip this one and the following one */
657 list_add_tail(&bf->list, &sc->rx.rxbuf);
658 ath_rx_edma_buf_link(sc, qtype);
659
660 skb = skb_peek(&rx_edma->rx_fifo);
661 if (skb) {
662 bf = SKB_CB_ATHBUF(skb);
663 BUG_ON(!bf);
664
665 __skb_unlink(skb, &rx_edma->rx_fifo);
666 list_add_tail(&bf->list, &sc->rx.rxbuf);
667 ath_rx_edma_buf_link(sc, qtype);
668 }
669
670 bf = NULL;
671 }
672
673 *dest = bf;
674 return true;
675 }
676
677 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
678 struct ath_rx_status *rs,
679 enum ath9k_rx_qtype qtype)
680 {
681 struct ath_rxbuf *bf = NULL;
682
683 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
684 if (!bf)
685 continue;
686
687 return bf;
688 }
689 return NULL;
690 }
691
692 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
693 struct ath_rx_status *rs)
694 {
695 struct ath_hw *ah = sc->sc_ah;
696 struct ath_common *common = ath9k_hw_common(ah);
697 struct ath_desc *ds;
698 struct ath_rxbuf *bf;
699 int ret;
700
701 if (list_empty(&sc->rx.rxbuf)) {
702 sc->rx.rxlink = NULL;
703 return NULL;
704 }
705
706 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
707 if (bf == sc->rx.buf_hold)
708 return NULL;
709
710 ds = bf->bf_desc;
711
712 /*
713 * Must provide the virtual address of the current
714 * descriptor, the physical address, and the virtual
715 * address of the next descriptor in the h/w chain.
716 * This allows the HAL to look ahead to see if the
717 * hardware is done with a descriptor by checking the
718 * done bit in the following descriptor and the address
719 * of the current descriptor the DMA engine is working
720 * on. All this is necessary because of our use of
721 * a self-linked list to avoid rx overruns.
722 */
723 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
724 if (ret == -EINPROGRESS) {
725 struct ath_rx_status trs;
726 struct ath_rxbuf *tbf;
727 struct ath_desc *tds;
728
729 memset(&trs, 0, sizeof(trs));
730 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
731 sc->rx.rxlink = NULL;
732 return NULL;
733 }
734
735 tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
736
737 /*
738 * On some hardware the descriptor status words could
739 * get corrupted, including the done bit. Because of
740 * this, check if the next descriptor's done bit is
741 * set or not.
742 *
743 * If the next descriptor's done bit is set, the current
744 * descriptor has been corrupted. Force s/w to discard
745 * this descriptor and continue...
746 */
747
748 tds = tbf->bf_desc;
749 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
750 if (ret == -EINPROGRESS)
751 return NULL;
752
753 /*
754 * Re-check previous descriptor, in case it has been filled
755 * in the mean time.
756 */
757 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
758 if (ret == -EINPROGRESS) {
759 /*
760 * mark descriptor as zero-length and set the 'more'
761 * flag to ensure that both buffers get discarded
762 */
763 rs->rs_datalen = 0;
764 rs->rs_more = true;
765 }
766 }
767
768 list_del(&bf->list);
769 if (!bf->bf_mpdu)
770 return bf;
771
772 /*
773 * Synchronize the DMA transfer with CPU before
774 * 1. accessing the frame
775 * 2. requeueing the same buffer to h/w
776 */
777 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
778 common->rx_bufsize,
779 DMA_FROM_DEVICE);
780
781 return bf;
782 }
783
784 static void ath9k_process_tsf(struct ath_rx_status *rs,
785 struct ieee80211_rx_status *rxs,
786 u64 tsf)
787 {
788 u32 tsf_lower = tsf & 0xffffffff;
789
790 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
791 if (rs->rs_tstamp > tsf_lower &&
792 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
793 rxs->mactime -= 0x100000000ULL;
794
795 if (rs->rs_tstamp < tsf_lower &&
796 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
797 rxs->mactime += 0x100000000ULL;
798 }
799
800 /*
801 * For Decrypt or Demic errors, we only mark packet status here and always push
802 * up the frame up to let mac80211 handle the actual error case, be it no
803 * decryption key or real decryption error. This let us keep statistics there.
804 */
805 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
806 struct sk_buff *skb,
807 struct ath_rx_status *rx_stats,
808 struct ieee80211_rx_status *rx_status,
809 bool *decrypt_error, u64 tsf)
810 {
811 struct ieee80211_hw *hw = sc->hw;
812 struct ath_hw *ah = sc->sc_ah;
813 struct ath_common *common = ath9k_hw_common(ah);
814 struct ieee80211_hdr *hdr;
815 bool discard_current = sc->rx.discard_next;
816
817 /*
818 * Discard corrupt descriptors which are marked in
819 * ath_get_next_rx_buf().
820 */
821 if (discard_current)
822 goto corrupt;
823
824 sc->rx.discard_next = false;
825
826 /*
827 * Discard zero-length packets.
828 */
829 if (!rx_stats->rs_datalen) {
830 RX_STAT_INC(rx_len_err);
831 goto corrupt;
832 }
833
834 /*
835 * rs_status follows rs_datalen so if rs_datalen is too large
836 * we can take a hint that hardware corrupted it, so ignore
837 * those frames.
838 */
839 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
840 RX_STAT_INC(rx_len_err);
841 goto corrupt;
842 }
843
844 /* Only use status info from the last fragment */
845 if (rx_stats->rs_more)
846 return 0;
847
848 /*
849 * Return immediately if the RX descriptor has been marked
850 * as corrupt based on the various error bits.
851 *
852 * This is different from the other corrupt descriptor
853 * condition handled above.
854 */
855 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
856 goto corrupt;
857
858 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
859
860 ath9k_process_tsf(rx_stats, rx_status, tsf);
861 ath_debug_stat_rx(sc, rx_stats);
862
863 /*
864 * Process PHY errors and return so that the packet
865 * can be dropped.
866 */
867 if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
868 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
869 if (ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, rx_status->mactime))
870 RX_STAT_INC(rx_spectral);
871
872 return -EINVAL;
873 }
874
875 /*
876 * everything but the rate is checked here, the rate check is done
877 * separately to avoid doing two lookups for a rate for each frame.
878 */
879 spin_lock_bh(&sc->chan_lock);
880 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
881 sc->cur_chan->rxfilter)) {
882 spin_unlock_bh(&sc->chan_lock);
883 return -EINVAL;
884 }
885 spin_unlock_bh(&sc->chan_lock);
886
887 if (ath_is_mybeacon(common, hdr)) {
888 RX_STAT_INC(rx_beacons);
889 rx_stats->is_mybeacon = true;
890 }
891
892 /*
893 * This shouldn't happen, but have a safety check anyway.
894 */
895 if (WARN_ON(!ah->curchan))
896 return -EINVAL;
897
898 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
899 /*
900 * No valid hardware bitrate found -- we should not get here
901 * because hardware has already validated this frame as OK.
902 */
903 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
904 rx_stats->rs_rate);
905 RX_STAT_INC(rx_rate_err);
906 return -EINVAL;
907 }
908
909 if (ath9k_is_chanctx_enabled()) {
910 if (rx_stats->is_mybeacon)
911 ath_chanctx_beacon_recv_ev(sc,
912 ATH_CHANCTX_EVENT_BEACON_RECEIVED);
913 }
914
915 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
916
917 rx_status->band = ah->curchan->chan->band;
918 rx_status->freq = ah->curchan->chan->center_freq;
919 rx_status->antenna = rx_stats->rs_antenna;
920 rx_status->flag |= RX_FLAG_MACTIME_END;
921
922 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
923 if (ieee80211_is_data_present(hdr->frame_control) &&
924 !ieee80211_is_qos_nullfunc(hdr->frame_control))
925 sc->rx.num_pkts++;
926 #endif
927
928 return 0;
929
930 corrupt:
931 sc->rx.discard_next = rx_stats->rs_more;
932 return -EINVAL;
933 }
934
935 /*
936 * Run the LNA combining algorithm only in these cases:
937 *
938 * Standalone WLAN cards with both LNA/Antenna diversity
939 * enabled in the EEPROM.
940 *
941 * WLAN+BT cards which are in the supported card list
942 * in ath_pci_id_table and the user has loaded the
943 * driver with "bt_ant_diversity" set to true.
944 */
945 static void ath9k_antenna_check(struct ath_softc *sc,
946 struct ath_rx_status *rs)
947 {
948 struct ath_hw *ah = sc->sc_ah;
949 struct ath9k_hw_capabilities *pCap = &ah->caps;
950 struct ath_common *common = ath9k_hw_common(ah);
951
952 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
953 return;
954
955 /*
956 * Change the default rx antenna if rx diversity
957 * chooses the other antenna 3 times in a row.
958 */
959 if (sc->rx.defant != rs->rs_antenna) {
960 if (++sc->rx.rxotherant >= 3)
961 ath_setdefantenna(sc, rs->rs_antenna);
962 } else {
963 sc->rx.rxotherant = 0;
964 }
965
966 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
967 if (common->bt_ant_diversity)
968 ath_ant_comb_scan(sc, rs);
969 } else {
970 ath_ant_comb_scan(sc, rs);
971 }
972 }
973
974 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
975 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
976 {
977 if (rs->rs_isaggr) {
978 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
979
980 rxs->ampdu_reference = sc->rx.ampdu_ref;
981
982 if (!rs->rs_moreaggr) {
983 rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
984 sc->rx.ampdu_ref++;
985 }
986
987 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
988 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
989 }
990 }
991
992 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
993 {
994 struct ath_rxbuf *bf;
995 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
996 struct ieee80211_rx_status *rxs;
997 struct ath_hw *ah = sc->sc_ah;
998 struct ath_common *common = ath9k_hw_common(ah);
999 struct ieee80211_hw *hw = sc->hw;
1000 int retval;
1001 struct ath_rx_status rs;
1002 enum ath9k_rx_qtype qtype;
1003 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1004 int dma_type;
1005 u64 tsf = 0;
1006 unsigned long flags;
1007 dma_addr_t new_buf_addr;
1008 unsigned int budget = 512;
1009 struct ieee80211_hdr *hdr;
1010
1011 if (edma)
1012 dma_type = DMA_BIDIRECTIONAL;
1013 else
1014 dma_type = DMA_FROM_DEVICE;
1015
1016 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1017
1018 tsf = ath9k_hw_gettsf64(ah);
1019
1020 do {
1021 bool decrypt_error = false;
1022
1023 memset(&rs, 0, sizeof(rs));
1024 if (edma)
1025 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1026 else
1027 bf = ath_get_next_rx_buf(sc, &rs);
1028
1029 if (!bf)
1030 break;
1031
1032 skb = bf->bf_mpdu;
1033 if (!skb)
1034 continue;
1035
1036 /*
1037 * Take frame header from the first fragment and RX status from
1038 * the last one.
1039 */
1040 if (sc->rx.frag)
1041 hdr_skb = sc->rx.frag;
1042 else
1043 hdr_skb = skb;
1044
1045 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1046 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1047
1048 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1049 &decrypt_error, tsf);
1050 if (retval)
1051 goto requeue_drop_frag;
1052
1053 /* Ensure we always have an skb to requeue once we are done
1054 * processing the current buffer's skb */
1055 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1056
1057 /* If there is no memory we ignore the current RX'd frame,
1058 * tell hardware it can give us a new frame using the old
1059 * skb and put it at the tail of the sc->rx.rxbuf list for
1060 * processing. */
1061 if (!requeue_skb) {
1062 RX_STAT_INC(rx_oom_err);
1063 goto requeue_drop_frag;
1064 }
1065
1066 /* We will now give hardware our shiny new allocated skb */
1067 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1068 common->rx_bufsize, dma_type);
1069 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1070 dev_kfree_skb_any(requeue_skb);
1071 goto requeue_drop_frag;
1072 }
1073
1074 /* Unmap the frame */
1075 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1076 common->rx_bufsize, dma_type);
1077
1078 bf->bf_mpdu = requeue_skb;
1079 bf->bf_buf_addr = new_buf_addr;
1080
1081 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1082 if (ah->caps.rx_status_len)
1083 skb_pull(skb, ah->caps.rx_status_len);
1084
1085 if (!rs.rs_more)
1086 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1087 rxs, decrypt_error);
1088
1089 if (rs.rs_more) {
1090 RX_STAT_INC(rx_frags);
1091 /*
1092 * rs_more indicates chained descriptors which can be
1093 * used to link buffers together for a sort of
1094 * scatter-gather operation.
1095 */
1096 if (sc->rx.frag) {
1097 /* too many fragments - cannot handle frame */
1098 dev_kfree_skb_any(sc->rx.frag);
1099 dev_kfree_skb_any(skb);
1100 RX_STAT_INC(rx_too_many_frags_err);
1101 skb = NULL;
1102 }
1103 sc->rx.frag = skb;
1104 goto requeue;
1105 }
1106
1107 if (sc->rx.frag) {
1108 int space = skb->len - skb_tailroom(hdr_skb);
1109
1110 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1111 dev_kfree_skb(skb);
1112 RX_STAT_INC(rx_oom_err);
1113 goto requeue_drop_frag;
1114 }
1115
1116 sc->rx.frag = NULL;
1117
1118 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1119 skb->len);
1120 dev_kfree_skb_any(skb);
1121 skb = hdr_skb;
1122 }
1123
1124 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1125 skb_trim(skb, skb->len - 8);
1126
1127 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1128 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1129 PS_WAIT_FOR_CAB |
1130 PS_WAIT_FOR_PSPOLL_DATA)) ||
1131 ath9k_check_auto_sleep(sc))
1132 ath_rx_ps(sc, skb, rs.is_mybeacon);
1133 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1134
1135 ath9k_antenna_check(sc, &rs);
1136 ath9k_apply_ampdu_details(sc, &rs, rxs);
1137 ath_debug_rate_stats(sc, &rs, skb);
1138
1139 hdr = (struct ieee80211_hdr *)skb->data;
1140 if (ieee80211_is_ack(hdr->frame_control))
1141 ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1142
1143 ieee80211_rx(hw, skb);
1144
1145 requeue_drop_frag:
1146 if (sc->rx.frag) {
1147 dev_kfree_skb_any(sc->rx.frag);
1148 sc->rx.frag = NULL;
1149 }
1150 requeue:
1151 list_add_tail(&bf->list, &sc->rx.rxbuf);
1152
1153 if (!edma) {
1154 ath_rx_buf_relink(sc, bf, flush);
1155 if (!flush)
1156 ath9k_hw_rxena(ah);
1157 } else if (!flush) {
1158 ath_rx_edma_buf_link(sc, qtype);
1159 }
1160
1161 if (!budget--)
1162 break;
1163 } while (1);
1164
1165 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1166 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1167 ath9k_hw_set_interrupts(ah);
1168 }
1169
1170 return 0;
1171 }
This page took 0.055817 seconds and 5 git commands to generate.