ath9k: Remove unused rx_edma in ath_rx_addbuffer_edma()
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
21
22 static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
23 struct ieee80211_hdr *hdr)
24 {
25 struct ieee80211_hw *hw = sc->pri_wiphy->hw;
26 int i;
27
28 spin_lock_bh(&sc->wiphy_lock);
29 for (i = 0; i < sc->num_sec_wiphy; i++) {
30 struct ath_wiphy *aphy = sc->sec_wiphy[i];
31 if (aphy == NULL)
32 continue;
33 if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
34 == 0) {
35 hw = aphy->hw;
36 break;
37 }
38 }
39 spin_unlock_bh(&sc->wiphy_lock);
40 return hw;
41 }
42
43 /*
44 * Setup and link descriptors.
45 *
46 * 11N: we can no longer afford to self link the last descriptor.
47 * MAC acknowledges BA status as long as it copies frames to host
48 * buffer (or rx fifo). This can incorrectly acknowledge packets
49 * to a sender if last desc is self-linked.
50 */
51 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
52 {
53 struct ath_hw *ah = sc->sc_ah;
54 struct ath_common *common = ath9k_hw_common(ah);
55 struct ath_desc *ds;
56 struct sk_buff *skb;
57
58 ATH_RXBUF_RESET(bf);
59
60 ds = bf->bf_desc;
61 ds->ds_link = 0; /* link to null */
62 ds->ds_data = bf->bf_buf_addr;
63
64 /* virtual addr of the beginning of the buffer. */
65 skb = bf->bf_mpdu;
66 BUG_ON(skb == NULL);
67 ds->ds_vdata = skb->data;
68
69 /*
70 * setup rx descriptors. The rx_bufsize here tells the hardware
71 * how much data it can DMA to us and that we are prepared
72 * to process
73 */
74 ath9k_hw_setuprxdesc(ah, ds,
75 common->rx_bufsize,
76 0);
77
78 if (sc->rx.rxlink == NULL)
79 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
80 else
81 *sc->rx.rxlink = bf->bf_daddr;
82
83 sc->rx.rxlink = &ds->ds_link;
84 ath9k_hw_rxena(ah);
85 }
86
87 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
88 {
89 /* XXX block beacon interrupts */
90 ath9k_hw_setantenna(sc->sc_ah, antenna);
91 sc->rx.defant = antenna;
92 sc->rx.rxotherant = 0;
93 }
94
95 static void ath_opmode_init(struct ath_softc *sc)
96 {
97 struct ath_hw *ah = sc->sc_ah;
98 struct ath_common *common = ath9k_hw_common(ah);
99
100 u32 rfilt, mfilt[2];
101
102 /* configure rx filter */
103 rfilt = ath_calcrxfilter(sc);
104 ath9k_hw_setrxfilter(ah, rfilt);
105
106 /* configure bssid mask */
107 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
108 ath_hw_setbssidmask(common);
109
110 /* configure operational mode */
111 ath9k_hw_setopmode(ah);
112
113 /* Handle any link-level address change. */
114 ath9k_hw_setmac(ah, common->macaddr);
115
116 /* calculate and install multicast filter */
117 mfilt[0] = mfilt[1] = ~0;
118 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
119 }
120
121 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
122 enum ath9k_rx_qtype qtype)
123 {
124 struct ath_hw *ah = sc->sc_ah;
125 struct ath_rx_edma *rx_edma;
126 struct sk_buff *skb;
127 struct ath_buf *bf;
128
129 rx_edma = &sc->rx.rx_edma[qtype];
130 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
131 return false;
132
133 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
134 list_del_init(&bf->list);
135
136 skb = bf->bf_mpdu;
137
138 ATH_RXBUF_RESET(bf);
139 memset(skb->data, 0, ah->caps.rx_status_len);
140 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
141 ah->caps.rx_status_len, DMA_TO_DEVICE);
142
143 SKB_CB_ATHBUF(skb) = bf;
144 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
145 skb_queue_tail(&rx_edma->rx_fifo, skb);
146
147 return true;
148 }
149
150 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
151 enum ath9k_rx_qtype qtype, int size)
152 {
153 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
154 u32 nbuf = 0;
155
156 if (list_empty(&sc->rx.rxbuf)) {
157 ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
158 return;
159 }
160
161 while (!list_empty(&sc->rx.rxbuf)) {
162 nbuf++;
163
164 if (!ath_rx_edma_buf_link(sc, qtype))
165 break;
166
167 if (nbuf >= size)
168 break;
169 }
170 }
171
172 static void ath_rx_remove_buffer(struct ath_softc *sc,
173 enum ath9k_rx_qtype qtype)
174 {
175 struct ath_buf *bf;
176 struct ath_rx_edma *rx_edma;
177 struct sk_buff *skb;
178
179 rx_edma = &sc->rx.rx_edma[qtype];
180
181 while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
182 bf = SKB_CB_ATHBUF(skb);
183 BUG_ON(!bf);
184 list_add_tail(&bf->list, &sc->rx.rxbuf);
185 }
186 }
187
188 static void ath_rx_edma_cleanup(struct ath_softc *sc)
189 {
190 struct ath_buf *bf;
191
192 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
193 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
194
195 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
196 if (bf->bf_mpdu)
197 dev_kfree_skb_any(bf->bf_mpdu);
198 }
199
200 INIT_LIST_HEAD(&sc->rx.rxbuf);
201
202 kfree(sc->rx.rx_bufptr);
203 sc->rx.rx_bufptr = NULL;
204 }
205
206 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
207 {
208 skb_queue_head_init(&rx_edma->rx_fifo);
209 skb_queue_head_init(&rx_edma->rx_buffers);
210 rx_edma->rx_fifo_hwsize = size;
211 }
212
213 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
214 {
215 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
216 struct ath_hw *ah = sc->sc_ah;
217 struct sk_buff *skb;
218 struct ath_buf *bf;
219 int error = 0, i;
220 u32 size;
221
222
223 common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
224 ah->caps.rx_status_len,
225 min(common->cachelsz, (u16)64));
226
227 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
228 ah->caps.rx_status_len);
229
230 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
231 ah->caps.rx_lp_qdepth);
232 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
233 ah->caps.rx_hp_qdepth);
234
235 size = sizeof(struct ath_buf) * nbufs;
236 bf = kzalloc(size, GFP_KERNEL);
237 if (!bf)
238 return -ENOMEM;
239
240 INIT_LIST_HEAD(&sc->rx.rxbuf);
241 sc->rx.rx_bufptr = bf;
242
243 for (i = 0; i < nbufs; i++, bf++) {
244 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
245 if (!skb) {
246 error = -ENOMEM;
247 goto rx_init_fail;
248 }
249
250 memset(skb->data, 0, common->rx_bufsize);
251 bf->bf_mpdu = skb;
252
253 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
254 common->rx_bufsize,
255 DMA_BIDIRECTIONAL);
256 if (unlikely(dma_mapping_error(sc->dev,
257 bf->bf_buf_addr))) {
258 dev_kfree_skb_any(skb);
259 bf->bf_mpdu = NULL;
260 ath_print(common, ATH_DBG_FATAL,
261 "dma_mapping_error() on RX init\n");
262 error = -ENOMEM;
263 goto rx_init_fail;
264 }
265
266 list_add_tail(&bf->list, &sc->rx.rxbuf);
267 }
268
269 return 0;
270
271 rx_init_fail:
272 ath_rx_edma_cleanup(sc);
273 return error;
274 }
275
276 static void ath_edma_start_recv(struct ath_softc *sc)
277 {
278 spin_lock_bh(&sc->rx.rxbuflock);
279
280 ath9k_hw_rxena(sc->sc_ah);
281
282 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
283 sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
284
285 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
286 sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
287
288 spin_unlock_bh(&sc->rx.rxbuflock);
289
290 ath_opmode_init(sc);
291
292 ath9k_hw_startpcureceive(sc->sc_ah);
293 }
294
295 static void ath_edma_stop_recv(struct ath_softc *sc)
296 {
297 spin_lock_bh(&sc->rx.rxbuflock);
298 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
299 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
300 spin_unlock_bh(&sc->rx.rxbuflock);
301 }
302
303 int ath_rx_init(struct ath_softc *sc, int nbufs)
304 {
305 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
306 struct sk_buff *skb;
307 struct ath_buf *bf;
308 int error = 0;
309
310 spin_lock_init(&sc->rx.rxflushlock);
311 sc->sc_flags &= ~SC_OP_RXFLUSH;
312 spin_lock_init(&sc->rx.rxbuflock);
313
314 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
315 return ath_rx_edma_init(sc, nbufs);
316 } else {
317 common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
318 min(common->cachelsz, (u16)64));
319
320 ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
321 common->cachelsz, common->rx_bufsize);
322
323 /* Initialize rx descriptors */
324
325 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
326 "rx", nbufs, 1, 0);
327 if (error != 0) {
328 ath_print(common, ATH_DBG_FATAL,
329 "failed to allocate rx descriptors: %d\n",
330 error);
331 goto err;
332 }
333
334 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
335 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
336 GFP_KERNEL);
337 if (skb == NULL) {
338 error = -ENOMEM;
339 goto err;
340 }
341
342 bf->bf_mpdu = skb;
343 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
344 common->rx_bufsize,
345 DMA_FROM_DEVICE);
346 if (unlikely(dma_mapping_error(sc->dev,
347 bf->bf_buf_addr))) {
348 dev_kfree_skb_any(skb);
349 bf->bf_mpdu = NULL;
350 ath_print(common, ATH_DBG_FATAL,
351 "dma_mapping_error() on RX init\n");
352 error = -ENOMEM;
353 goto err;
354 }
355 bf->bf_dmacontext = bf->bf_buf_addr;
356 }
357 sc->rx.rxlink = NULL;
358 }
359
360 err:
361 if (error)
362 ath_rx_cleanup(sc);
363
364 return error;
365 }
366
367 void ath_rx_cleanup(struct ath_softc *sc)
368 {
369 struct ath_hw *ah = sc->sc_ah;
370 struct ath_common *common = ath9k_hw_common(ah);
371 struct sk_buff *skb;
372 struct ath_buf *bf;
373
374 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
375 ath_rx_edma_cleanup(sc);
376 return;
377 } else {
378 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
379 skb = bf->bf_mpdu;
380 if (skb) {
381 dma_unmap_single(sc->dev, bf->bf_buf_addr,
382 common->rx_bufsize,
383 DMA_FROM_DEVICE);
384 dev_kfree_skb(skb);
385 }
386 }
387
388 if (sc->rx.rxdma.dd_desc_len != 0)
389 ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
390 }
391 }
392
393 /*
394 * Calculate the receive filter according to the
395 * operating mode and state:
396 *
397 * o always accept unicast, broadcast, and multicast traffic
398 * o maintain current state of phy error reception (the hal
399 * may enable phy error frames for noise immunity work)
400 * o probe request frames are accepted only when operating in
401 * hostap, adhoc, or monitor modes
402 * o enable promiscuous mode according to the interface state
403 * o accept beacons:
404 * - when operating in adhoc mode so the 802.11 layer creates
405 * node table entries for peers,
406 * - when operating in station mode for collecting rssi data when
407 * the station is otherwise quiet, or
408 * - when operating as a repeater so we see repeater-sta beacons
409 * - when scanning
410 */
411
412 u32 ath_calcrxfilter(struct ath_softc *sc)
413 {
414 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
415
416 u32 rfilt;
417
418 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
419 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
420 | ATH9K_RX_FILTER_MCAST;
421
422 /* If not a STA, enable processing of Probe Requests */
423 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
424 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
425
426 /*
427 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
428 * mode interface or when in monitor mode. AP mode does not need this
429 * since it receives all in-BSS frames anyway.
430 */
431 if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
432 (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
433 (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
434 rfilt |= ATH9K_RX_FILTER_PROM;
435
436 if (sc->rx.rxfilter & FIF_CONTROL)
437 rfilt |= ATH9K_RX_FILTER_CONTROL;
438
439 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
440 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
441 rfilt |= ATH9K_RX_FILTER_MYBEACON;
442 else
443 rfilt |= ATH9K_RX_FILTER_BEACON;
444
445 if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
446 AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
447 (sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
448 (sc->rx.rxfilter & FIF_PSPOLL))
449 rfilt |= ATH9K_RX_FILTER_PSPOLL;
450
451 if (conf_is_ht(&sc->hw->conf))
452 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
453
454 if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
455 /* TODO: only needed if more than one BSSID is in use in
456 * station/adhoc mode */
457 /* The following may also be needed for other older chips */
458 if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
459 rfilt |= ATH9K_RX_FILTER_PROM;
460 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
461 }
462
463 return rfilt;
464
465 #undef RX_FILTER_PRESERVE
466 }
467
468 int ath_startrecv(struct ath_softc *sc)
469 {
470 struct ath_hw *ah = sc->sc_ah;
471 struct ath_buf *bf, *tbf;
472
473 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
474 ath_edma_start_recv(sc);
475 return 0;
476 }
477
478 spin_lock_bh(&sc->rx.rxbuflock);
479 if (list_empty(&sc->rx.rxbuf))
480 goto start_recv;
481
482 sc->rx.rxlink = NULL;
483 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
484 ath_rx_buf_link(sc, bf);
485 }
486
487 /* We could have deleted elements so the list may be empty now */
488 if (list_empty(&sc->rx.rxbuf))
489 goto start_recv;
490
491 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
492 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
493 ath9k_hw_rxena(ah);
494
495 start_recv:
496 spin_unlock_bh(&sc->rx.rxbuflock);
497 ath_opmode_init(sc);
498 ath9k_hw_startpcureceive(ah);
499
500 return 0;
501 }
502
503 bool ath_stoprecv(struct ath_softc *sc)
504 {
505 struct ath_hw *ah = sc->sc_ah;
506 bool stopped;
507
508 ath9k_hw_stoppcurecv(ah);
509 ath9k_hw_setrxfilter(ah, 0);
510 stopped = ath9k_hw_stopdmarecv(ah);
511
512 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
513 ath_edma_stop_recv(sc);
514 else
515 sc->rx.rxlink = NULL;
516
517 return stopped;
518 }
519
520 void ath_flushrecv(struct ath_softc *sc)
521 {
522 spin_lock_bh(&sc->rx.rxflushlock);
523 sc->sc_flags |= SC_OP_RXFLUSH;
524 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
525 ath_rx_tasklet(sc, 1, true);
526 ath_rx_tasklet(sc, 1, false);
527 sc->sc_flags &= ~SC_OP_RXFLUSH;
528 spin_unlock_bh(&sc->rx.rxflushlock);
529 }
530
531 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
532 {
533 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
534 struct ieee80211_mgmt *mgmt;
535 u8 *pos, *end, id, elen;
536 struct ieee80211_tim_ie *tim;
537
538 mgmt = (struct ieee80211_mgmt *)skb->data;
539 pos = mgmt->u.beacon.variable;
540 end = skb->data + skb->len;
541
542 while (pos + 2 < end) {
543 id = *pos++;
544 elen = *pos++;
545 if (pos + elen > end)
546 break;
547
548 if (id == WLAN_EID_TIM) {
549 if (elen < sizeof(*tim))
550 break;
551 tim = (struct ieee80211_tim_ie *) pos;
552 if (tim->dtim_count != 0)
553 break;
554 return tim->bitmap_ctrl & 0x01;
555 }
556
557 pos += elen;
558 }
559
560 return false;
561 }
562
563 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
564 {
565 struct ieee80211_mgmt *mgmt;
566 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
567
568 if (skb->len < 24 + 8 + 2 + 2)
569 return;
570
571 mgmt = (struct ieee80211_mgmt *)skb->data;
572 if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
573 return; /* not from our current AP */
574
575 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
576
577 if (sc->ps_flags & PS_BEACON_SYNC) {
578 sc->ps_flags &= ~PS_BEACON_SYNC;
579 ath_print(common, ATH_DBG_PS,
580 "Reconfigure Beacon timers based on "
581 "timestamp from the AP\n");
582 ath_beacon_config(sc, NULL);
583 }
584
585 if (ath_beacon_dtim_pending_cab(skb)) {
586 /*
587 * Remain awake waiting for buffered broadcast/multicast
588 * frames. If the last broadcast/multicast frame is not
589 * received properly, the next beacon frame will work as
590 * a backup trigger for returning into NETWORK SLEEP state,
591 * so we are waiting for it as well.
592 */
593 ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
594 "buffered broadcast/multicast frame(s)\n");
595 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
596 return;
597 }
598
599 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
600 /*
601 * This can happen if a broadcast frame is dropped or the AP
602 * fails to send a frame indicating that all CAB frames have
603 * been delivered.
604 */
605 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
606 ath_print(common, ATH_DBG_PS,
607 "PS wait for CAB frames timed out\n");
608 }
609 }
610
611 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
612 {
613 struct ieee80211_hdr *hdr;
614 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
615
616 hdr = (struct ieee80211_hdr *)skb->data;
617
618 /* Process Beacon and CAB receive in PS state */
619 if ((sc->ps_flags & PS_WAIT_FOR_BEACON) &&
620 ieee80211_is_beacon(hdr->frame_control))
621 ath_rx_ps_beacon(sc, skb);
622 else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
623 (ieee80211_is_data(hdr->frame_control) ||
624 ieee80211_is_action(hdr->frame_control)) &&
625 is_multicast_ether_addr(hdr->addr1) &&
626 !ieee80211_has_moredata(hdr->frame_control)) {
627 /*
628 * No more broadcast/multicast frames to be received at this
629 * point.
630 */
631 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
632 ath_print(common, ATH_DBG_PS,
633 "All PS CAB frames received, back to sleep\n");
634 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
635 !is_multicast_ether_addr(hdr->addr1) &&
636 !ieee80211_has_morefrags(hdr->frame_control)) {
637 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
638 ath_print(common, ATH_DBG_PS,
639 "Going back to sleep after having received "
640 "PS-Poll data (0x%lx)\n",
641 sc->ps_flags & (PS_WAIT_FOR_BEACON |
642 PS_WAIT_FOR_CAB |
643 PS_WAIT_FOR_PSPOLL_DATA |
644 PS_WAIT_FOR_TX_ACK));
645 }
646 }
647
648 static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
649 struct ath_softc *sc, struct sk_buff *skb,
650 struct ieee80211_rx_status *rxs)
651 {
652 struct ieee80211_hdr *hdr;
653
654 hdr = (struct ieee80211_hdr *)skb->data;
655
656 /* Send the frame to mac80211 */
657 if (is_multicast_ether_addr(hdr->addr1)) {
658 int i;
659 /*
660 * Deliver broadcast/multicast frames to all suitable
661 * virtual wiphys.
662 */
663 /* TODO: filter based on channel configuration */
664 for (i = 0; i < sc->num_sec_wiphy; i++) {
665 struct ath_wiphy *aphy = sc->sec_wiphy[i];
666 struct sk_buff *nskb;
667 if (aphy == NULL)
668 continue;
669 nskb = skb_copy(skb, GFP_ATOMIC);
670 if (!nskb)
671 continue;
672 ieee80211_rx(aphy->hw, nskb);
673 }
674 ieee80211_rx(sc->hw, skb);
675 } else
676 /* Deliver unicast frames based on receiver address */
677 ieee80211_rx(hw, skb);
678 }
679
680 static bool ath_edma_get_buffers(struct ath_softc *sc,
681 enum ath9k_rx_qtype qtype)
682 {
683 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
684 struct ath_hw *ah = sc->sc_ah;
685 struct ath_common *common = ath9k_hw_common(ah);
686 struct sk_buff *skb;
687 struct ath_buf *bf;
688 int ret;
689
690 skb = skb_peek(&rx_edma->rx_fifo);
691 if (!skb)
692 return false;
693
694 bf = SKB_CB_ATHBUF(skb);
695 BUG_ON(!bf);
696
697 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
698 common->rx_bufsize, DMA_FROM_DEVICE);
699
700 ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
701 if (ret == -EINPROGRESS)
702 return false;
703
704 __skb_unlink(skb, &rx_edma->rx_fifo);
705 if (ret == -EINVAL) {
706 /* corrupt descriptor, skip this one and the following one */
707 list_add_tail(&bf->list, &sc->rx.rxbuf);
708 ath_rx_edma_buf_link(sc, qtype);
709 skb = skb_peek(&rx_edma->rx_fifo);
710 if (!skb)
711 return true;
712
713 bf = SKB_CB_ATHBUF(skb);
714 BUG_ON(!bf);
715
716 __skb_unlink(skb, &rx_edma->rx_fifo);
717 list_add_tail(&bf->list, &sc->rx.rxbuf);
718 ath_rx_edma_buf_link(sc, qtype);
719 return true;
720 }
721 skb_queue_tail(&rx_edma->rx_buffers, skb);
722
723 return true;
724 }
725
726 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
727 struct ath_rx_status *rs,
728 enum ath9k_rx_qtype qtype)
729 {
730 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
731 struct sk_buff *skb;
732 struct ath_buf *bf;
733
734 while (ath_edma_get_buffers(sc, qtype));
735 skb = __skb_dequeue(&rx_edma->rx_buffers);
736 if (!skb)
737 return NULL;
738
739 bf = SKB_CB_ATHBUF(skb);
740 ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
741 return bf;
742 }
743
744 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
745 struct ath_rx_status *rs)
746 {
747 struct ath_hw *ah = sc->sc_ah;
748 struct ath_common *common = ath9k_hw_common(ah);
749 struct ath_desc *ds;
750 struct ath_buf *bf;
751 int ret;
752
753 if (list_empty(&sc->rx.rxbuf)) {
754 sc->rx.rxlink = NULL;
755 return NULL;
756 }
757
758 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
759 ds = bf->bf_desc;
760
761 /*
762 * Must provide the virtual address of the current
763 * descriptor, the physical address, and the virtual
764 * address of the next descriptor in the h/w chain.
765 * This allows the HAL to look ahead to see if the
766 * hardware is done with a descriptor by checking the
767 * done bit in the following descriptor and the address
768 * of the current descriptor the DMA engine is working
769 * on. All this is necessary because of our use of
770 * a self-linked list to avoid rx overruns.
771 */
772 ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
773 if (ret == -EINPROGRESS) {
774 struct ath_rx_status trs;
775 struct ath_buf *tbf;
776 struct ath_desc *tds;
777
778 memset(&trs, 0, sizeof(trs));
779 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
780 sc->rx.rxlink = NULL;
781 return NULL;
782 }
783
784 tbf = list_entry(bf->list.next, struct ath_buf, list);
785
786 /*
787 * On some hardware the descriptor status words could
788 * get corrupted, including the done bit. Because of
789 * this, check if the next descriptor's done bit is
790 * set or not.
791 *
792 * If the next descriptor's done bit is set, the current
793 * descriptor has been corrupted. Force s/w to discard
794 * this descriptor and continue...
795 */
796
797 tds = tbf->bf_desc;
798 ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
799 if (ret == -EINPROGRESS)
800 return NULL;
801 }
802
803 if (!bf->bf_mpdu)
804 return bf;
805
806 /*
807 * Synchronize the DMA transfer with CPU before
808 * 1. accessing the frame
809 * 2. requeueing the same buffer to h/w
810 */
811 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
812 common->rx_bufsize,
813 DMA_FROM_DEVICE);
814
815 return bf;
816 }
817
818
819 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
820 {
821 struct ath_buf *bf;
822 struct sk_buff *skb = NULL, *requeue_skb;
823 struct ieee80211_rx_status *rxs;
824 struct ath_hw *ah = sc->sc_ah;
825 struct ath_common *common = ath9k_hw_common(ah);
826 /*
827 * The hw can techncically differ from common->hw when using ath9k
828 * virtual wiphy so to account for that we iterate over the active
829 * wiphys and find the appropriate wiphy and therefore hw.
830 */
831 struct ieee80211_hw *hw = NULL;
832 struct ieee80211_hdr *hdr;
833 int retval;
834 bool decrypt_error = false;
835 struct ath_rx_status rs;
836 enum ath9k_rx_qtype qtype;
837 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
838 int dma_type;
839
840 if (edma)
841 dma_type = DMA_FROM_DEVICE;
842 else
843 dma_type = DMA_BIDIRECTIONAL;
844
845 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
846 spin_lock_bh(&sc->rx.rxbuflock);
847
848 do {
849 /* If handling rx interrupt and flush is in progress => exit */
850 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
851 break;
852
853 memset(&rs, 0, sizeof(rs));
854 if (edma)
855 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
856 else
857 bf = ath_get_next_rx_buf(sc, &rs);
858
859 if (!bf)
860 break;
861
862 skb = bf->bf_mpdu;
863 if (!skb)
864 continue;
865
866 hdr = (struct ieee80211_hdr *) skb->data;
867 rxs = IEEE80211_SKB_RXCB(skb);
868
869 hw = ath_get_virt_hw(sc, hdr);
870
871 ath_debug_stat_rx(sc, &rs);
872
873 /*
874 * If we're asked to flush receive queue, directly
875 * chain it back at the queue without processing it.
876 */
877 if (flush)
878 goto requeue;
879
880 retval = ath9k_cmn_rx_skb_preprocess(common, hw, skb, &rs,
881 rxs, &decrypt_error);
882 if (retval)
883 goto requeue;
884
885 /* Ensure we always have an skb to requeue once we are done
886 * processing the current buffer's skb */
887 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
888
889 /* If there is no memory we ignore the current RX'd frame,
890 * tell hardware it can give us a new frame using the old
891 * skb and put it at the tail of the sc->rx.rxbuf list for
892 * processing. */
893 if (!requeue_skb)
894 goto requeue;
895
896 /* Unmap the frame */
897 dma_unmap_single(sc->dev, bf->bf_buf_addr,
898 common->rx_bufsize,
899 dma_type);
900
901 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
902 if (ah->caps.rx_status_len)
903 skb_pull(skb, ah->caps.rx_status_len);
904
905 ath9k_cmn_rx_skb_postprocess(common, skb, &rs,
906 rxs, decrypt_error);
907
908 /* We will now give hardware our shiny new allocated skb */
909 bf->bf_mpdu = requeue_skb;
910 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
911 common->rx_bufsize,
912 dma_type);
913 if (unlikely(dma_mapping_error(sc->dev,
914 bf->bf_buf_addr))) {
915 dev_kfree_skb_any(requeue_skb);
916 bf->bf_mpdu = NULL;
917 ath_print(common, ATH_DBG_FATAL,
918 "dma_mapping_error() on RX\n");
919 ath_rx_send_to_mac80211(hw, sc, skb, rxs);
920 break;
921 }
922 bf->bf_dmacontext = bf->bf_buf_addr;
923
924 /*
925 * change the default rx antenna if rx diversity chooses the
926 * other antenna 3 times in a row.
927 */
928 if (sc->rx.defant != rs.rs_antenna) {
929 if (++sc->rx.rxotherant >= 3)
930 ath_setdefantenna(sc, rs.rs_antenna);
931 } else {
932 sc->rx.rxotherant = 0;
933 }
934
935 if (unlikely(sc->ps_flags & (PS_WAIT_FOR_BEACON |
936 PS_WAIT_FOR_CAB |
937 PS_WAIT_FOR_PSPOLL_DATA)))
938 ath_rx_ps(sc, skb);
939
940 ath_rx_send_to_mac80211(hw, sc, skb, rxs);
941
942 requeue:
943 if (edma) {
944 list_add_tail(&bf->list, &sc->rx.rxbuf);
945 ath_rx_edma_buf_link(sc, qtype);
946 } else {
947 list_move_tail(&bf->list, &sc->rx.rxbuf);
948 ath_rx_buf_link(sc, bf);
949 }
950 } while (1);
951
952 spin_unlock_bh(&sc->rx.rxbuflock);
953
954 return 0;
955 }
This page took 0.178126 seconds and 5 git commands to generate.