ath9k: Fix rx of mcast/bcast frames in PS mode with auto sleep
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
21
22 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
23 {
24 return sc->ps_enabled &&
25 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
26 }
27
28 static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
29 struct ieee80211_hdr *hdr)
30 {
31 struct ieee80211_hw *hw = sc->pri_wiphy->hw;
32 int i;
33
34 spin_lock_bh(&sc->wiphy_lock);
35 for (i = 0; i < sc->num_sec_wiphy; i++) {
36 struct ath_wiphy *aphy = sc->sec_wiphy[i];
37 if (aphy == NULL)
38 continue;
39 if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
40 == 0) {
41 hw = aphy->hw;
42 break;
43 }
44 }
45 spin_unlock_bh(&sc->wiphy_lock);
46 return hw;
47 }
48
49 /*
50 * Setup and link descriptors.
51 *
52 * 11N: we can no longer afford to self link the last descriptor.
53 * MAC acknowledges BA status as long as it copies frames to host
54 * buffer (or rx fifo). This can incorrectly acknowledge packets
55 * to a sender if last desc is self-linked.
56 */
57 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
58 {
59 struct ath_hw *ah = sc->sc_ah;
60 struct ath_common *common = ath9k_hw_common(ah);
61 struct ath_desc *ds;
62 struct sk_buff *skb;
63
64 ATH_RXBUF_RESET(bf);
65
66 ds = bf->bf_desc;
67 ds->ds_link = 0; /* link to null */
68 ds->ds_data = bf->bf_buf_addr;
69
70 /* virtual addr of the beginning of the buffer. */
71 skb = bf->bf_mpdu;
72 BUG_ON(skb == NULL);
73 ds->ds_vdata = skb->data;
74
75 /*
76 * setup rx descriptors. The rx_bufsize here tells the hardware
77 * how much data it can DMA to us and that we are prepared
78 * to process
79 */
80 ath9k_hw_setuprxdesc(ah, ds,
81 common->rx_bufsize,
82 0);
83
84 if (sc->rx.rxlink == NULL)
85 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
86 else
87 *sc->rx.rxlink = bf->bf_daddr;
88
89 sc->rx.rxlink = &ds->ds_link;
90 ath9k_hw_rxena(ah);
91 }
92
93 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
94 {
95 /* XXX block beacon interrupts */
96 ath9k_hw_setantenna(sc->sc_ah, antenna);
97 sc->rx.defant = antenna;
98 sc->rx.rxotherant = 0;
99 }
100
101 static void ath_opmode_init(struct ath_softc *sc)
102 {
103 struct ath_hw *ah = sc->sc_ah;
104 struct ath_common *common = ath9k_hw_common(ah);
105
106 u32 rfilt, mfilt[2];
107
108 /* configure rx filter */
109 rfilt = ath_calcrxfilter(sc);
110 ath9k_hw_setrxfilter(ah, rfilt);
111
112 /* configure bssid mask */
113 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
114 ath_hw_setbssidmask(common);
115
116 /* configure operational mode */
117 ath9k_hw_setopmode(ah);
118
119 /* Handle any link-level address change. */
120 ath9k_hw_setmac(ah, common->macaddr);
121
122 /* calculate and install multicast filter */
123 mfilt[0] = mfilt[1] = ~0;
124 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
125 }
126
127 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
128 enum ath9k_rx_qtype qtype)
129 {
130 struct ath_hw *ah = sc->sc_ah;
131 struct ath_rx_edma *rx_edma;
132 struct sk_buff *skb;
133 struct ath_buf *bf;
134
135 rx_edma = &sc->rx.rx_edma[qtype];
136 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
137 return false;
138
139 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
140 list_del_init(&bf->list);
141
142 skb = bf->bf_mpdu;
143
144 ATH_RXBUF_RESET(bf);
145 memset(skb->data, 0, ah->caps.rx_status_len);
146 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
147 ah->caps.rx_status_len, DMA_TO_DEVICE);
148
149 SKB_CB_ATHBUF(skb) = bf;
150 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
151 skb_queue_tail(&rx_edma->rx_fifo, skb);
152
153 return true;
154 }
155
156 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
157 enum ath9k_rx_qtype qtype, int size)
158 {
159 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
160 u32 nbuf = 0;
161
162 if (list_empty(&sc->rx.rxbuf)) {
163 ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
164 return;
165 }
166
167 while (!list_empty(&sc->rx.rxbuf)) {
168 nbuf++;
169
170 if (!ath_rx_edma_buf_link(sc, qtype))
171 break;
172
173 if (nbuf >= size)
174 break;
175 }
176 }
177
178 static void ath_rx_remove_buffer(struct ath_softc *sc,
179 enum ath9k_rx_qtype qtype)
180 {
181 struct ath_buf *bf;
182 struct ath_rx_edma *rx_edma;
183 struct sk_buff *skb;
184
185 rx_edma = &sc->rx.rx_edma[qtype];
186
187 while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
188 bf = SKB_CB_ATHBUF(skb);
189 BUG_ON(!bf);
190 list_add_tail(&bf->list, &sc->rx.rxbuf);
191 }
192 }
193
194 static void ath_rx_edma_cleanup(struct ath_softc *sc)
195 {
196 struct ath_buf *bf;
197
198 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
199 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
200
201 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
202 if (bf->bf_mpdu)
203 dev_kfree_skb_any(bf->bf_mpdu);
204 }
205
206 INIT_LIST_HEAD(&sc->rx.rxbuf);
207
208 kfree(sc->rx.rx_bufptr);
209 sc->rx.rx_bufptr = NULL;
210 }
211
212 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
213 {
214 skb_queue_head_init(&rx_edma->rx_fifo);
215 skb_queue_head_init(&rx_edma->rx_buffers);
216 rx_edma->rx_fifo_hwsize = size;
217 }
218
219 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
220 {
221 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
222 struct ath_hw *ah = sc->sc_ah;
223 struct sk_buff *skb;
224 struct ath_buf *bf;
225 int error = 0, i;
226 u32 size;
227
228
229 common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
230 ah->caps.rx_status_len,
231 min(common->cachelsz, (u16)64));
232
233 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
234 ah->caps.rx_status_len);
235
236 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
237 ah->caps.rx_lp_qdepth);
238 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
239 ah->caps.rx_hp_qdepth);
240
241 size = sizeof(struct ath_buf) * nbufs;
242 bf = kzalloc(size, GFP_KERNEL);
243 if (!bf)
244 return -ENOMEM;
245
246 INIT_LIST_HEAD(&sc->rx.rxbuf);
247 sc->rx.rx_bufptr = bf;
248
249 for (i = 0; i < nbufs; i++, bf++) {
250 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
251 if (!skb) {
252 error = -ENOMEM;
253 goto rx_init_fail;
254 }
255
256 memset(skb->data, 0, common->rx_bufsize);
257 bf->bf_mpdu = skb;
258
259 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
260 common->rx_bufsize,
261 DMA_BIDIRECTIONAL);
262 if (unlikely(dma_mapping_error(sc->dev,
263 bf->bf_buf_addr))) {
264 dev_kfree_skb_any(skb);
265 bf->bf_mpdu = NULL;
266 ath_print(common, ATH_DBG_FATAL,
267 "dma_mapping_error() on RX init\n");
268 error = -ENOMEM;
269 goto rx_init_fail;
270 }
271
272 list_add_tail(&bf->list, &sc->rx.rxbuf);
273 }
274
275 return 0;
276
277 rx_init_fail:
278 ath_rx_edma_cleanup(sc);
279 return error;
280 }
281
282 static void ath_edma_start_recv(struct ath_softc *sc)
283 {
284 spin_lock_bh(&sc->rx.rxbuflock);
285
286 ath9k_hw_rxena(sc->sc_ah);
287
288 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
289 sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
290
291 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
292 sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
293
294 spin_unlock_bh(&sc->rx.rxbuflock);
295
296 ath_opmode_init(sc);
297
298 ath9k_hw_startpcureceive(sc->sc_ah);
299 }
300
301 static void ath_edma_stop_recv(struct ath_softc *sc)
302 {
303 spin_lock_bh(&sc->rx.rxbuflock);
304 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
305 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
306 spin_unlock_bh(&sc->rx.rxbuflock);
307 }
308
309 int ath_rx_init(struct ath_softc *sc, int nbufs)
310 {
311 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
312 struct sk_buff *skb;
313 struct ath_buf *bf;
314 int error = 0;
315
316 spin_lock_init(&sc->rx.rxflushlock);
317 sc->sc_flags &= ~SC_OP_RXFLUSH;
318 spin_lock_init(&sc->rx.rxbuflock);
319
320 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
321 return ath_rx_edma_init(sc, nbufs);
322 } else {
323 common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
324 min(common->cachelsz, (u16)64));
325
326 ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
327 common->cachelsz, common->rx_bufsize);
328
329 /* Initialize rx descriptors */
330
331 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
332 "rx", nbufs, 1, 0);
333 if (error != 0) {
334 ath_print(common, ATH_DBG_FATAL,
335 "failed to allocate rx descriptors: %d\n",
336 error);
337 goto err;
338 }
339
340 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
341 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
342 GFP_KERNEL);
343 if (skb == NULL) {
344 error = -ENOMEM;
345 goto err;
346 }
347
348 bf->bf_mpdu = skb;
349 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
350 common->rx_bufsize,
351 DMA_FROM_DEVICE);
352 if (unlikely(dma_mapping_error(sc->dev,
353 bf->bf_buf_addr))) {
354 dev_kfree_skb_any(skb);
355 bf->bf_mpdu = NULL;
356 ath_print(common, ATH_DBG_FATAL,
357 "dma_mapping_error() on RX init\n");
358 error = -ENOMEM;
359 goto err;
360 }
361 bf->bf_dmacontext = bf->bf_buf_addr;
362 }
363 sc->rx.rxlink = NULL;
364 }
365
366 err:
367 if (error)
368 ath_rx_cleanup(sc);
369
370 return error;
371 }
372
373 void ath_rx_cleanup(struct ath_softc *sc)
374 {
375 struct ath_hw *ah = sc->sc_ah;
376 struct ath_common *common = ath9k_hw_common(ah);
377 struct sk_buff *skb;
378 struct ath_buf *bf;
379
380 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
381 ath_rx_edma_cleanup(sc);
382 return;
383 } else {
384 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
385 skb = bf->bf_mpdu;
386 if (skb) {
387 dma_unmap_single(sc->dev, bf->bf_buf_addr,
388 common->rx_bufsize,
389 DMA_FROM_DEVICE);
390 dev_kfree_skb(skb);
391 }
392 }
393
394 if (sc->rx.rxdma.dd_desc_len != 0)
395 ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
396 }
397 }
398
399 /*
400 * Calculate the receive filter according to the
401 * operating mode and state:
402 *
403 * o always accept unicast, broadcast, and multicast traffic
404 * o maintain current state of phy error reception (the hal
405 * may enable phy error frames for noise immunity work)
406 * o probe request frames are accepted only when operating in
407 * hostap, adhoc, or monitor modes
408 * o enable promiscuous mode according to the interface state
409 * o accept beacons:
410 * - when operating in adhoc mode so the 802.11 layer creates
411 * node table entries for peers,
412 * - when operating in station mode for collecting rssi data when
413 * the station is otherwise quiet, or
414 * - when operating as a repeater so we see repeater-sta beacons
415 * - when scanning
416 */
417
418 u32 ath_calcrxfilter(struct ath_softc *sc)
419 {
420 #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
421
422 u32 rfilt;
423
424 rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
425 | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
426 | ATH9K_RX_FILTER_MCAST;
427
428 /* If not a STA, enable processing of Probe Requests */
429 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
430 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
431
432 /*
433 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
434 * mode interface or when in monitor mode. AP mode does not need this
435 * since it receives all in-BSS frames anyway.
436 */
437 if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
438 (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
439 (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
440 rfilt |= ATH9K_RX_FILTER_PROM;
441
442 if (sc->rx.rxfilter & FIF_CONTROL)
443 rfilt |= ATH9K_RX_FILTER_CONTROL;
444
445 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
446 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
447 rfilt |= ATH9K_RX_FILTER_MYBEACON;
448 else
449 rfilt |= ATH9K_RX_FILTER_BEACON;
450
451 if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
452 AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
453 (sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
454 (sc->rx.rxfilter & FIF_PSPOLL))
455 rfilt |= ATH9K_RX_FILTER_PSPOLL;
456
457 if (conf_is_ht(&sc->hw->conf))
458 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
459
460 if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
461 /* TODO: only needed if more than one BSSID is in use in
462 * station/adhoc mode */
463 /* The following may also be needed for other older chips */
464 if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
465 rfilt |= ATH9K_RX_FILTER_PROM;
466 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
467 }
468
469 return rfilt;
470
471 #undef RX_FILTER_PRESERVE
472 }
473
474 int ath_startrecv(struct ath_softc *sc)
475 {
476 struct ath_hw *ah = sc->sc_ah;
477 struct ath_buf *bf, *tbf;
478
479 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
480 ath_edma_start_recv(sc);
481 return 0;
482 }
483
484 spin_lock_bh(&sc->rx.rxbuflock);
485 if (list_empty(&sc->rx.rxbuf))
486 goto start_recv;
487
488 sc->rx.rxlink = NULL;
489 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
490 ath_rx_buf_link(sc, bf);
491 }
492
493 /* We could have deleted elements so the list may be empty now */
494 if (list_empty(&sc->rx.rxbuf))
495 goto start_recv;
496
497 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
498 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
499 ath9k_hw_rxena(ah);
500
501 start_recv:
502 spin_unlock_bh(&sc->rx.rxbuflock);
503 ath_opmode_init(sc);
504 ath9k_hw_startpcureceive(ah);
505
506 return 0;
507 }
508
509 bool ath_stoprecv(struct ath_softc *sc)
510 {
511 struct ath_hw *ah = sc->sc_ah;
512 bool stopped;
513
514 ath9k_hw_stoppcurecv(ah);
515 ath9k_hw_setrxfilter(ah, 0);
516 stopped = ath9k_hw_stopdmarecv(ah);
517
518 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
519 ath_edma_stop_recv(sc);
520 else
521 sc->rx.rxlink = NULL;
522
523 return stopped;
524 }
525
526 void ath_flushrecv(struct ath_softc *sc)
527 {
528 spin_lock_bh(&sc->rx.rxflushlock);
529 sc->sc_flags |= SC_OP_RXFLUSH;
530 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
531 ath_rx_tasklet(sc, 1, true);
532 ath_rx_tasklet(sc, 1, false);
533 sc->sc_flags &= ~SC_OP_RXFLUSH;
534 spin_unlock_bh(&sc->rx.rxflushlock);
535 }
536
537 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
538 {
539 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
540 struct ieee80211_mgmt *mgmt;
541 u8 *pos, *end, id, elen;
542 struct ieee80211_tim_ie *tim;
543
544 mgmt = (struct ieee80211_mgmt *)skb->data;
545 pos = mgmt->u.beacon.variable;
546 end = skb->data + skb->len;
547
548 while (pos + 2 < end) {
549 id = *pos++;
550 elen = *pos++;
551 if (pos + elen > end)
552 break;
553
554 if (id == WLAN_EID_TIM) {
555 if (elen < sizeof(*tim))
556 break;
557 tim = (struct ieee80211_tim_ie *) pos;
558 if (tim->dtim_count != 0)
559 break;
560 return tim->bitmap_ctrl & 0x01;
561 }
562
563 pos += elen;
564 }
565
566 return false;
567 }
568
569 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
570 {
571 struct ieee80211_mgmt *mgmt;
572 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
573
574 if (skb->len < 24 + 8 + 2 + 2)
575 return;
576
577 mgmt = (struct ieee80211_mgmt *)skb->data;
578 if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
579 return; /* not from our current AP */
580
581 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
582
583 if (sc->ps_flags & PS_BEACON_SYNC) {
584 sc->ps_flags &= ~PS_BEACON_SYNC;
585 ath_print(common, ATH_DBG_PS,
586 "Reconfigure Beacon timers based on "
587 "timestamp from the AP\n");
588 ath_beacon_config(sc, NULL);
589 }
590
591 if (ath_beacon_dtim_pending_cab(skb)) {
592 /*
593 * Remain awake waiting for buffered broadcast/multicast
594 * frames. If the last broadcast/multicast frame is not
595 * received properly, the next beacon frame will work as
596 * a backup trigger for returning into NETWORK SLEEP state,
597 * so we are waiting for it as well.
598 */
599 ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
600 "buffered broadcast/multicast frame(s)\n");
601 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
602 return;
603 }
604
605 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
606 /*
607 * This can happen if a broadcast frame is dropped or the AP
608 * fails to send a frame indicating that all CAB frames have
609 * been delivered.
610 */
611 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
612 ath_print(common, ATH_DBG_PS,
613 "PS wait for CAB frames timed out\n");
614 }
615 }
616
617 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
618 {
619 struct ieee80211_hdr *hdr;
620 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
621
622 hdr = (struct ieee80211_hdr *)skb->data;
623
624 /* Process Beacon and CAB receive in PS state */
625 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
626 && ieee80211_is_beacon(hdr->frame_control))
627 ath_rx_ps_beacon(sc, skb);
628 else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
629 (ieee80211_is_data(hdr->frame_control) ||
630 ieee80211_is_action(hdr->frame_control)) &&
631 is_multicast_ether_addr(hdr->addr1) &&
632 !ieee80211_has_moredata(hdr->frame_control)) {
633 /*
634 * No more broadcast/multicast frames to be received at this
635 * point.
636 */
637 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
638 ath_print(common, ATH_DBG_PS,
639 "All PS CAB frames received, back to sleep\n");
640 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
641 !is_multicast_ether_addr(hdr->addr1) &&
642 !ieee80211_has_morefrags(hdr->frame_control)) {
643 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
644 ath_print(common, ATH_DBG_PS,
645 "Going back to sleep after having received "
646 "PS-Poll data (0x%lx)\n",
647 sc->ps_flags & (PS_WAIT_FOR_BEACON |
648 PS_WAIT_FOR_CAB |
649 PS_WAIT_FOR_PSPOLL_DATA |
650 PS_WAIT_FOR_TX_ACK));
651 }
652 }
653
654 static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
655 struct ath_softc *sc, struct sk_buff *skb,
656 struct ieee80211_rx_status *rxs)
657 {
658 struct ieee80211_hdr *hdr;
659
660 hdr = (struct ieee80211_hdr *)skb->data;
661
662 /* Send the frame to mac80211 */
663 if (is_multicast_ether_addr(hdr->addr1)) {
664 int i;
665 /*
666 * Deliver broadcast/multicast frames to all suitable
667 * virtual wiphys.
668 */
669 /* TODO: filter based on channel configuration */
670 for (i = 0; i < sc->num_sec_wiphy; i++) {
671 struct ath_wiphy *aphy = sc->sec_wiphy[i];
672 struct sk_buff *nskb;
673 if (aphy == NULL)
674 continue;
675 nskb = skb_copy(skb, GFP_ATOMIC);
676 if (!nskb)
677 continue;
678 ieee80211_rx(aphy->hw, nskb);
679 }
680 ieee80211_rx(sc->hw, skb);
681 } else
682 /* Deliver unicast frames based on receiver address */
683 ieee80211_rx(hw, skb);
684 }
685
686 static bool ath_edma_get_buffers(struct ath_softc *sc,
687 enum ath9k_rx_qtype qtype)
688 {
689 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
690 struct ath_hw *ah = sc->sc_ah;
691 struct ath_common *common = ath9k_hw_common(ah);
692 struct sk_buff *skb;
693 struct ath_buf *bf;
694 int ret;
695
696 skb = skb_peek(&rx_edma->rx_fifo);
697 if (!skb)
698 return false;
699
700 bf = SKB_CB_ATHBUF(skb);
701 BUG_ON(!bf);
702
703 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
704 common->rx_bufsize, DMA_FROM_DEVICE);
705
706 ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
707 if (ret == -EINPROGRESS)
708 return false;
709
710 __skb_unlink(skb, &rx_edma->rx_fifo);
711 if (ret == -EINVAL) {
712 /* corrupt descriptor, skip this one and the following one */
713 list_add_tail(&bf->list, &sc->rx.rxbuf);
714 ath_rx_edma_buf_link(sc, qtype);
715 skb = skb_peek(&rx_edma->rx_fifo);
716 if (!skb)
717 return true;
718
719 bf = SKB_CB_ATHBUF(skb);
720 BUG_ON(!bf);
721
722 __skb_unlink(skb, &rx_edma->rx_fifo);
723 list_add_tail(&bf->list, &sc->rx.rxbuf);
724 ath_rx_edma_buf_link(sc, qtype);
725 return true;
726 }
727 skb_queue_tail(&rx_edma->rx_buffers, skb);
728
729 return true;
730 }
731
732 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
733 struct ath_rx_status *rs,
734 enum ath9k_rx_qtype qtype)
735 {
736 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
737 struct sk_buff *skb;
738 struct ath_buf *bf;
739
740 while (ath_edma_get_buffers(sc, qtype));
741 skb = __skb_dequeue(&rx_edma->rx_buffers);
742 if (!skb)
743 return NULL;
744
745 bf = SKB_CB_ATHBUF(skb);
746 ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
747 return bf;
748 }
749
750 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
751 struct ath_rx_status *rs)
752 {
753 struct ath_hw *ah = sc->sc_ah;
754 struct ath_common *common = ath9k_hw_common(ah);
755 struct ath_desc *ds;
756 struct ath_buf *bf;
757 int ret;
758
759 if (list_empty(&sc->rx.rxbuf)) {
760 sc->rx.rxlink = NULL;
761 return NULL;
762 }
763
764 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
765 ds = bf->bf_desc;
766
767 /*
768 * Must provide the virtual address of the current
769 * descriptor, the physical address, and the virtual
770 * address of the next descriptor in the h/w chain.
771 * This allows the HAL to look ahead to see if the
772 * hardware is done with a descriptor by checking the
773 * done bit in the following descriptor and the address
774 * of the current descriptor the DMA engine is working
775 * on. All this is necessary because of our use of
776 * a self-linked list to avoid rx overruns.
777 */
778 ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
779 if (ret == -EINPROGRESS) {
780 struct ath_rx_status trs;
781 struct ath_buf *tbf;
782 struct ath_desc *tds;
783
784 memset(&trs, 0, sizeof(trs));
785 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
786 sc->rx.rxlink = NULL;
787 return NULL;
788 }
789
790 tbf = list_entry(bf->list.next, struct ath_buf, list);
791
792 /*
793 * On some hardware the descriptor status words could
794 * get corrupted, including the done bit. Because of
795 * this, check if the next descriptor's done bit is
796 * set or not.
797 *
798 * If the next descriptor's done bit is set, the current
799 * descriptor has been corrupted. Force s/w to discard
800 * this descriptor and continue...
801 */
802
803 tds = tbf->bf_desc;
804 ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
805 if (ret == -EINPROGRESS)
806 return NULL;
807 }
808
809 if (!bf->bf_mpdu)
810 return bf;
811
812 /*
813 * Synchronize the DMA transfer with CPU before
814 * 1. accessing the frame
815 * 2. requeueing the same buffer to h/w
816 */
817 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
818 common->rx_bufsize,
819 DMA_FROM_DEVICE);
820
821 return bf;
822 }
823
824
825 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
826 {
827 struct ath_buf *bf;
828 struct sk_buff *skb = NULL, *requeue_skb;
829 struct ieee80211_rx_status *rxs;
830 struct ath_hw *ah = sc->sc_ah;
831 struct ath_common *common = ath9k_hw_common(ah);
832 /*
833 * The hw can techncically differ from common->hw when using ath9k
834 * virtual wiphy so to account for that we iterate over the active
835 * wiphys and find the appropriate wiphy and therefore hw.
836 */
837 struct ieee80211_hw *hw = NULL;
838 struct ieee80211_hdr *hdr;
839 int retval;
840 bool decrypt_error = false;
841 struct ath_rx_status rs;
842 enum ath9k_rx_qtype qtype;
843 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
844 int dma_type;
845
846 if (edma)
847 dma_type = DMA_FROM_DEVICE;
848 else
849 dma_type = DMA_BIDIRECTIONAL;
850
851 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
852 spin_lock_bh(&sc->rx.rxbuflock);
853
854 do {
855 /* If handling rx interrupt and flush is in progress => exit */
856 if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
857 break;
858
859 memset(&rs, 0, sizeof(rs));
860 if (edma)
861 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
862 else
863 bf = ath_get_next_rx_buf(sc, &rs);
864
865 if (!bf)
866 break;
867
868 skb = bf->bf_mpdu;
869 if (!skb)
870 continue;
871
872 hdr = (struct ieee80211_hdr *) skb->data;
873 rxs = IEEE80211_SKB_RXCB(skb);
874
875 hw = ath_get_virt_hw(sc, hdr);
876
877 ath_debug_stat_rx(sc, &rs);
878
879 /*
880 * If we're asked to flush receive queue, directly
881 * chain it back at the queue without processing it.
882 */
883 if (flush)
884 goto requeue;
885
886 retval = ath9k_cmn_rx_skb_preprocess(common, hw, skb, &rs,
887 rxs, &decrypt_error);
888 if (retval)
889 goto requeue;
890
891 /* Ensure we always have an skb to requeue once we are done
892 * processing the current buffer's skb */
893 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
894
895 /* If there is no memory we ignore the current RX'd frame,
896 * tell hardware it can give us a new frame using the old
897 * skb and put it at the tail of the sc->rx.rxbuf list for
898 * processing. */
899 if (!requeue_skb)
900 goto requeue;
901
902 /* Unmap the frame */
903 dma_unmap_single(sc->dev, bf->bf_buf_addr,
904 common->rx_bufsize,
905 dma_type);
906
907 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
908 if (ah->caps.rx_status_len)
909 skb_pull(skb, ah->caps.rx_status_len);
910
911 ath9k_cmn_rx_skb_postprocess(common, skb, &rs,
912 rxs, decrypt_error);
913
914 /* We will now give hardware our shiny new allocated skb */
915 bf->bf_mpdu = requeue_skb;
916 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
917 common->rx_bufsize,
918 dma_type);
919 if (unlikely(dma_mapping_error(sc->dev,
920 bf->bf_buf_addr))) {
921 dev_kfree_skb_any(requeue_skb);
922 bf->bf_mpdu = NULL;
923 ath_print(common, ATH_DBG_FATAL,
924 "dma_mapping_error() on RX\n");
925 ath_rx_send_to_mac80211(hw, sc, skb, rxs);
926 break;
927 }
928 bf->bf_dmacontext = bf->bf_buf_addr;
929
930 /*
931 * change the default rx antenna if rx diversity chooses the
932 * other antenna 3 times in a row.
933 */
934 if (sc->rx.defant != rs.rs_antenna) {
935 if (++sc->rx.rxotherant >= 3)
936 ath_setdefantenna(sc, rs.rs_antenna);
937 } else {
938 sc->rx.rxotherant = 0;
939 }
940
941 if (unlikely(ath9k_check_auto_sleep(sc) ||
942 (sc->ps_flags & (PS_WAIT_FOR_BEACON |
943 PS_WAIT_FOR_CAB |
944 PS_WAIT_FOR_PSPOLL_DATA))))
945 ath_rx_ps(sc, skb);
946
947 ath_rx_send_to_mac80211(hw, sc, skb, rxs);
948
949 requeue:
950 if (edma) {
951 list_add_tail(&bf->list, &sc->rx.rxbuf);
952 ath_rx_edma_buf_link(sc, qtype);
953 } else {
954 list_move_tail(&bf->list, &sc->rx.rxbuf);
955 ath_rx_buf_link(sc, bf);
956 }
957 } while (1);
958
959 spin_unlock_bh(&sc->rx.rxbuflock);
960
961 return 0;
962 }
This page took 0.067503 seconds and 5 git commands to generate.