Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / recv.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
22
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 return sc->ps_enabled &&
26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28
29 /*
30 * Setup and link descriptors.
31 *
32 * 11N: we can no longer afford to self link the last descriptor.
33 * MAC acknowledges BA status as long as it copies frames to host
34 * buffer (or rx fifo). This can incorrectly acknowledge packets
35 * to a sender if last desc is self-linked.
36 */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
38 {
39 struct ath_hw *ah = sc->sc_ah;
40 struct ath_common *common = ath9k_hw_common(ah);
41 struct ath_desc *ds;
42 struct sk_buff *skb;
43
44 ATH_RXBUF_RESET(bf);
45
46 ds = bf->bf_desc;
47 ds->ds_link = 0; /* link to null */
48 ds->ds_data = bf->bf_buf_addr;
49
50 /* virtual addr of the beginning of the buffer. */
51 skb = bf->bf_mpdu;
52 BUG_ON(skb == NULL);
53 ds->ds_vdata = skb->data;
54
55 /*
56 * setup rx descriptors. The rx_bufsize here tells the hardware
57 * how much data it can DMA to us and that we are prepared
58 * to process
59 */
60 ath9k_hw_setuprxdesc(ah, ds,
61 common->rx_bufsize,
62 0);
63
64 if (sc->rx.rxlink == NULL)
65 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
66 else
67 *sc->rx.rxlink = bf->bf_daddr;
68
69 sc->rx.rxlink = &ds->ds_link;
70 }
71
72 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
73 {
74 /* XXX block beacon interrupts */
75 ath9k_hw_setantenna(sc->sc_ah, antenna);
76 sc->rx.defant = antenna;
77 sc->rx.rxotherant = 0;
78 }
79
80 static void ath_opmode_init(struct ath_softc *sc)
81 {
82 struct ath_hw *ah = sc->sc_ah;
83 struct ath_common *common = ath9k_hw_common(ah);
84
85 u32 rfilt, mfilt[2];
86
87 /* configure rx filter */
88 rfilt = ath_calcrxfilter(sc);
89 ath9k_hw_setrxfilter(ah, rfilt);
90
91 /* configure bssid mask */
92 ath_hw_setbssidmask(common);
93
94 /* configure operational mode */
95 ath9k_hw_setopmode(ah);
96
97 /* calculate and install multicast filter */
98 mfilt[0] = mfilt[1] = ~0;
99 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
100 }
101
102 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
103 enum ath9k_rx_qtype qtype)
104 {
105 struct ath_hw *ah = sc->sc_ah;
106 struct ath_rx_edma *rx_edma;
107 struct sk_buff *skb;
108 struct ath_buf *bf;
109
110 rx_edma = &sc->rx.rx_edma[qtype];
111 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
112 return false;
113
114 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
115 list_del_init(&bf->list);
116
117 skb = bf->bf_mpdu;
118
119 ATH_RXBUF_RESET(bf);
120 memset(skb->data, 0, ah->caps.rx_status_len);
121 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
122 ah->caps.rx_status_len, DMA_TO_DEVICE);
123
124 SKB_CB_ATHBUF(skb) = bf;
125 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
126 skb_queue_tail(&rx_edma->rx_fifo, skb);
127
128 return true;
129 }
130
131 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
132 enum ath9k_rx_qtype qtype, int size)
133 {
134 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
135 struct ath_buf *bf, *tbf;
136
137 if (list_empty(&sc->rx.rxbuf)) {
138 ath_dbg(common, QUEUE, "No free rx buf available\n");
139 return;
140 }
141
142 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
143 if (!ath_rx_edma_buf_link(sc, qtype))
144 break;
145
146 }
147
148 static void ath_rx_remove_buffer(struct ath_softc *sc,
149 enum ath9k_rx_qtype qtype)
150 {
151 struct ath_buf *bf;
152 struct ath_rx_edma *rx_edma;
153 struct sk_buff *skb;
154
155 rx_edma = &sc->rx.rx_edma[qtype];
156
157 while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
158 bf = SKB_CB_ATHBUF(skb);
159 BUG_ON(!bf);
160 list_add_tail(&bf->list, &sc->rx.rxbuf);
161 }
162 }
163
164 static void ath_rx_edma_cleanup(struct ath_softc *sc)
165 {
166 struct ath_hw *ah = sc->sc_ah;
167 struct ath_common *common = ath9k_hw_common(ah);
168 struct ath_buf *bf;
169
170 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
171 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
172
173 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
174 if (bf->bf_mpdu) {
175 dma_unmap_single(sc->dev, bf->bf_buf_addr,
176 common->rx_bufsize,
177 DMA_BIDIRECTIONAL);
178 dev_kfree_skb_any(bf->bf_mpdu);
179 bf->bf_buf_addr = 0;
180 bf->bf_mpdu = NULL;
181 }
182 }
183
184 INIT_LIST_HEAD(&sc->rx.rxbuf);
185
186 kfree(sc->rx.rx_bufptr);
187 sc->rx.rx_bufptr = NULL;
188 }
189
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192 skb_queue_head_init(&rx_edma->rx_fifo);
193 rx_edma->rx_fifo_hwsize = size;
194 }
195
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199 struct ath_hw *ah = sc->sc_ah;
200 struct sk_buff *skb;
201 struct ath_buf *bf;
202 int error = 0, i;
203 u32 size;
204
205 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206 ah->caps.rx_status_len);
207
208 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209 ah->caps.rx_lp_qdepth);
210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211 ah->caps.rx_hp_qdepth);
212
213 size = sizeof(struct ath_buf) * nbufs;
214 bf = kzalloc(size, GFP_KERNEL);
215 if (!bf)
216 return -ENOMEM;
217
218 INIT_LIST_HEAD(&sc->rx.rxbuf);
219 sc->rx.rx_bufptr = bf;
220
221 for (i = 0; i < nbufs; i++, bf++) {
222 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223 if (!skb) {
224 error = -ENOMEM;
225 goto rx_init_fail;
226 }
227
228 memset(skb->data, 0, common->rx_bufsize);
229 bf->bf_mpdu = skb;
230
231 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232 common->rx_bufsize,
233 DMA_BIDIRECTIONAL);
234 if (unlikely(dma_mapping_error(sc->dev,
235 bf->bf_buf_addr))) {
236 dev_kfree_skb_any(skb);
237 bf->bf_mpdu = NULL;
238 bf->bf_buf_addr = 0;
239 ath_err(common,
240 "dma_mapping_error() on RX init\n");
241 error = -ENOMEM;
242 goto rx_init_fail;
243 }
244
245 list_add_tail(&bf->list, &sc->rx.rxbuf);
246 }
247
248 return 0;
249
250 rx_init_fail:
251 ath_rx_edma_cleanup(sc);
252 return error;
253 }
254
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257 spin_lock_bh(&sc->rx.rxbuflock);
258
259 ath9k_hw_rxena(sc->sc_ah);
260
261 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
262 sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
263
264 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
265 sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
266
267 ath_opmode_init(sc);
268
269 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
270
271 spin_unlock_bh(&sc->rx.rxbuflock);
272 }
273
274 static void ath_edma_stop_recv(struct ath_softc *sc)
275 {
276 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
277 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
278 }
279
280 int ath_rx_init(struct ath_softc *sc, int nbufs)
281 {
282 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
283 struct sk_buff *skb;
284 struct ath_buf *bf;
285 int error = 0;
286
287 spin_lock_init(&sc->sc_pcu_lock);
288 spin_lock_init(&sc->rx.rxbuflock);
289 clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
290
291 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
292 sc->sc_ah->caps.rx_status_len;
293
294 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
295 return ath_rx_edma_init(sc, nbufs);
296 } else {
297 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
298 common->cachelsz, common->rx_bufsize);
299
300 /* Initialize rx descriptors */
301
302 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
303 "rx", nbufs, 1, 0);
304 if (error != 0) {
305 ath_err(common,
306 "failed to allocate rx descriptors: %d\n",
307 error);
308 goto err;
309 }
310
311 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
312 skb = ath_rxbuf_alloc(common, common->rx_bufsize,
313 GFP_KERNEL);
314 if (skb == NULL) {
315 error = -ENOMEM;
316 goto err;
317 }
318
319 bf->bf_mpdu = skb;
320 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
321 common->rx_bufsize,
322 DMA_FROM_DEVICE);
323 if (unlikely(dma_mapping_error(sc->dev,
324 bf->bf_buf_addr))) {
325 dev_kfree_skb_any(skb);
326 bf->bf_mpdu = NULL;
327 bf->bf_buf_addr = 0;
328 ath_err(common,
329 "dma_mapping_error() on RX init\n");
330 error = -ENOMEM;
331 goto err;
332 }
333 }
334 sc->rx.rxlink = NULL;
335 }
336
337 err:
338 if (error)
339 ath_rx_cleanup(sc);
340
341 return error;
342 }
343
344 void ath_rx_cleanup(struct ath_softc *sc)
345 {
346 struct ath_hw *ah = sc->sc_ah;
347 struct ath_common *common = ath9k_hw_common(ah);
348 struct sk_buff *skb;
349 struct ath_buf *bf;
350
351 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
352 ath_rx_edma_cleanup(sc);
353 return;
354 } else {
355 list_for_each_entry(bf, &sc->rx.rxbuf, list) {
356 skb = bf->bf_mpdu;
357 if (skb) {
358 dma_unmap_single(sc->dev, bf->bf_buf_addr,
359 common->rx_bufsize,
360 DMA_FROM_DEVICE);
361 dev_kfree_skb(skb);
362 bf->bf_buf_addr = 0;
363 bf->bf_mpdu = NULL;
364 }
365 }
366
367 if (sc->rx.rxdma.dd_desc_len != 0)
368 ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
369 }
370 }
371
372 /*
373 * Calculate the receive filter according to the
374 * operating mode and state:
375 *
376 * o always accept unicast, broadcast, and multicast traffic
377 * o maintain current state of phy error reception (the hal
378 * may enable phy error frames for noise immunity work)
379 * o probe request frames are accepted only when operating in
380 * hostap, adhoc, or monitor modes
381 * o enable promiscuous mode according to the interface state
382 * o accept beacons:
383 * - when operating in adhoc mode so the 802.11 layer creates
384 * node table entries for peers,
385 * - when operating in station mode for collecting rssi data when
386 * the station is otherwise quiet, or
387 * - when operating as a repeater so we see repeater-sta beacons
388 * - when scanning
389 */
390
391 u32 ath_calcrxfilter(struct ath_softc *sc)
392 {
393 u32 rfilt;
394
395 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
396 | ATH9K_RX_FILTER_MCAST;
397
398 if (sc->rx.rxfilter & FIF_PROBE_REQ)
399 rfilt |= ATH9K_RX_FILTER_PROBEREQ;
400
401 /*
402 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
403 * mode interface or when in monitor mode. AP mode does not need this
404 * since it receives all in-BSS frames anyway.
405 */
406 if (sc->sc_ah->is_monitoring)
407 rfilt |= ATH9K_RX_FILTER_PROM;
408
409 if (sc->rx.rxfilter & FIF_CONTROL)
410 rfilt |= ATH9K_RX_FILTER_CONTROL;
411
412 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
413 (sc->nvifs <= 1) &&
414 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
415 rfilt |= ATH9K_RX_FILTER_MYBEACON;
416 else
417 rfilt |= ATH9K_RX_FILTER_BEACON;
418
419 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
420 (sc->rx.rxfilter & FIF_PSPOLL))
421 rfilt |= ATH9K_RX_FILTER_PSPOLL;
422
423 if (conf_is_ht(&sc->hw->conf))
424 rfilt |= ATH9K_RX_FILTER_COMP_BAR;
425
426 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
427 /* This is needed for older chips */
428 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
429 rfilt |= ATH9K_RX_FILTER_PROM;
430 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
431 }
432
433 if (AR_SREV_9550(sc->sc_ah))
434 rfilt |= ATH9K_RX_FILTER_4ADDRESS;
435
436 return rfilt;
437
438 }
439
440 int ath_startrecv(struct ath_softc *sc)
441 {
442 struct ath_hw *ah = sc->sc_ah;
443 struct ath_buf *bf, *tbf;
444
445 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
446 ath_edma_start_recv(sc);
447 return 0;
448 }
449
450 spin_lock_bh(&sc->rx.rxbuflock);
451 if (list_empty(&sc->rx.rxbuf))
452 goto start_recv;
453
454 sc->rx.rxlink = NULL;
455 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
456 ath_rx_buf_link(sc, bf);
457 }
458
459 /* We could have deleted elements so the list may be empty now */
460 if (list_empty(&sc->rx.rxbuf))
461 goto start_recv;
462
463 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
464 ath9k_hw_putrxbuf(ah, bf->bf_daddr);
465 ath9k_hw_rxena(ah);
466
467 start_recv:
468 ath_opmode_init(sc);
469 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
470
471 spin_unlock_bh(&sc->rx.rxbuflock);
472
473 return 0;
474 }
475
476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478 struct ath_hw *ah = sc->sc_ah;
479 bool stopped, reset = false;
480
481 spin_lock_bh(&sc->rx.rxbuflock);
482 ath9k_hw_abortpcurecv(ah);
483 ath9k_hw_setrxfilter(ah, 0);
484 stopped = ath9k_hw_stopdmarecv(ah, &reset);
485
486 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
487 ath_edma_stop_recv(sc);
488 else
489 sc->rx.rxlink = NULL;
490 spin_unlock_bh(&sc->rx.rxbuflock);
491
492 if (!(ah->ah_flags & AH_UNPLUGGED) &&
493 unlikely(!stopped)) {
494 ath_err(ath9k_hw_common(sc->sc_ah),
495 "Could not stop RX, we could be "
496 "confusing the DMA engine when we start RX up\n");
497 ATH_DBG_WARN_ON_ONCE(!stopped);
498 }
499 return stopped && !reset;
500 }
501
502 void ath_flushrecv(struct ath_softc *sc)
503 {
504 set_bit(SC_OP_RXFLUSH, &sc->sc_flags);
505 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
506 ath_rx_tasklet(sc, 1, true);
507 ath_rx_tasklet(sc, 1, false);
508 clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
509 }
510
511 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
512 {
513 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
514 struct ieee80211_mgmt *mgmt;
515 u8 *pos, *end, id, elen;
516 struct ieee80211_tim_ie *tim;
517
518 mgmt = (struct ieee80211_mgmt *)skb->data;
519 pos = mgmt->u.beacon.variable;
520 end = skb->data + skb->len;
521
522 while (pos + 2 < end) {
523 id = *pos++;
524 elen = *pos++;
525 if (pos + elen > end)
526 break;
527
528 if (id == WLAN_EID_TIM) {
529 if (elen < sizeof(*tim))
530 break;
531 tim = (struct ieee80211_tim_ie *) pos;
532 if (tim->dtim_count != 0)
533 break;
534 return tim->bitmap_ctrl & 0x01;
535 }
536
537 pos += elen;
538 }
539
540 return false;
541 }
542
543 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
544 {
545 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
546
547 if (skb->len < 24 + 8 + 2 + 2)
548 return;
549
550 sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
551
552 if (sc->ps_flags & PS_BEACON_SYNC) {
553 sc->ps_flags &= ~PS_BEACON_SYNC;
554 ath_dbg(common, PS,
555 "Reconfigure Beacon timers based on timestamp from the AP\n");
556 ath9k_set_beacon(sc);
557 }
558
559 if (ath_beacon_dtim_pending_cab(skb)) {
560 /*
561 * Remain awake waiting for buffered broadcast/multicast
562 * frames. If the last broadcast/multicast frame is not
563 * received properly, the next beacon frame will work as
564 * a backup trigger for returning into NETWORK SLEEP state,
565 * so we are waiting for it as well.
566 */
567 ath_dbg(common, PS,
568 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
569 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
570 return;
571 }
572
573 if (sc->ps_flags & PS_WAIT_FOR_CAB) {
574 /*
575 * This can happen if a broadcast frame is dropped or the AP
576 * fails to send a frame indicating that all CAB frames have
577 * been delivered.
578 */
579 sc->ps_flags &= ~PS_WAIT_FOR_CAB;
580 ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
581 }
582 }
583
584 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
585 {
586 struct ieee80211_hdr *hdr;
587 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
588
589 hdr = (struct ieee80211_hdr *)skb->data;
590
591 /* Process Beacon and CAB receive in PS state */
592 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
593 && mybeacon) {
594 ath_rx_ps_beacon(sc, skb);
595 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
596 (ieee80211_is_data(hdr->frame_control) ||
597 ieee80211_is_action(hdr->frame_control)) &&
598 is_multicast_ether_addr(hdr->addr1) &&
599 !ieee80211_has_moredata(hdr->frame_control)) {
600 /*
601 * No more broadcast/multicast frames to be received at this
602 * point.
603 */
604 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
605 ath_dbg(common, PS,
606 "All PS CAB frames received, back to sleep\n");
607 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
608 !is_multicast_ether_addr(hdr->addr1) &&
609 !ieee80211_has_morefrags(hdr->frame_control)) {
610 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
611 ath_dbg(common, PS,
612 "Going back to sleep after having received PS-Poll data (0x%lx)\n",
613 sc->ps_flags & (PS_WAIT_FOR_BEACON |
614 PS_WAIT_FOR_CAB |
615 PS_WAIT_FOR_PSPOLL_DATA |
616 PS_WAIT_FOR_TX_ACK));
617 }
618 }
619
620 static bool ath_edma_get_buffers(struct ath_softc *sc,
621 enum ath9k_rx_qtype qtype,
622 struct ath_rx_status *rs,
623 struct ath_buf **dest)
624 {
625 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
626 struct ath_hw *ah = sc->sc_ah;
627 struct ath_common *common = ath9k_hw_common(ah);
628 struct sk_buff *skb;
629 struct ath_buf *bf;
630 int ret;
631
632 skb = skb_peek(&rx_edma->rx_fifo);
633 if (!skb)
634 return false;
635
636 bf = SKB_CB_ATHBUF(skb);
637 BUG_ON(!bf);
638
639 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
640 common->rx_bufsize, DMA_FROM_DEVICE);
641
642 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
643 if (ret == -EINPROGRESS) {
644 /*let device gain the buffer again*/
645 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
646 common->rx_bufsize, DMA_FROM_DEVICE);
647 return false;
648 }
649
650 __skb_unlink(skb, &rx_edma->rx_fifo);
651 if (ret == -EINVAL) {
652 /* corrupt descriptor, skip this one and the following one */
653 list_add_tail(&bf->list, &sc->rx.rxbuf);
654 ath_rx_edma_buf_link(sc, qtype);
655
656 skb = skb_peek(&rx_edma->rx_fifo);
657 if (skb) {
658 bf = SKB_CB_ATHBUF(skb);
659 BUG_ON(!bf);
660
661 __skb_unlink(skb, &rx_edma->rx_fifo);
662 list_add_tail(&bf->list, &sc->rx.rxbuf);
663 ath_rx_edma_buf_link(sc, qtype);
664 }
665
666 bf = NULL;
667 }
668
669 *dest = bf;
670 return true;
671 }
672
673 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
674 struct ath_rx_status *rs,
675 enum ath9k_rx_qtype qtype)
676 {
677 struct ath_buf *bf = NULL;
678
679 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
680 if (!bf)
681 continue;
682
683 return bf;
684 }
685 return NULL;
686 }
687
688 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
689 struct ath_rx_status *rs)
690 {
691 struct ath_hw *ah = sc->sc_ah;
692 struct ath_common *common = ath9k_hw_common(ah);
693 struct ath_desc *ds;
694 struct ath_buf *bf;
695 int ret;
696
697 if (list_empty(&sc->rx.rxbuf)) {
698 sc->rx.rxlink = NULL;
699 return NULL;
700 }
701
702 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
703 ds = bf->bf_desc;
704
705 /*
706 * Must provide the virtual address of the current
707 * descriptor, the physical address, and the virtual
708 * address of the next descriptor in the h/w chain.
709 * This allows the HAL to look ahead to see if the
710 * hardware is done with a descriptor by checking the
711 * done bit in the following descriptor and the address
712 * of the current descriptor the DMA engine is working
713 * on. All this is necessary because of our use of
714 * a self-linked list to avoid rx overruns.
715 */
716 ret = ath9k_hw_rxprocdesc(ah, ds, rs);
717 if (ret == -EINPROGRESS) {
718 struct ath_rx_status trs;
719 struct ath_buf *tbf;
720 struct ath_desc *tds;
721
722 memset(&trs, 0, sizeof(trs));
723 if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
724 sc->rx.rxlink = NULL;
725 return NULL;
726 }
727
728 tbf = list_entry(bf->list.next, struct ath_buf, list);
729
730 /*
731 * On some hardware the descriptor status words could
732 * get corrupted, including the done bit. Because of
733 * this, check if the next descriptor's done bit is
734 * set or not.
735 *
736 * If the next descriptor's done bit is set, the current
737 * descriptor has been corrupted. Force s/w to discard
738 * this descriptor and continue...
739 */
740
741 tds = tbf->bf_desc;
742 ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
743 if (ret == -EINPROGRESS)
744 return NULL;
745 }
746
747 if (!bf->bf_mpdu)
748 return bf;
749
750 /*
751 * Synchronize the DMA transfer with CPU before
752 * 1. accessing the frame
753 * 2. requeueing the same buffer to h/w
754 */
755 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
756 common->rx_bufsize,
757 DMA_FROM_DEVICE);
758
759 return bf;
760 }
761
762 /* Assumes you've already done the endian to CPU conversion */
763 static bool ath9k_rx_accept(struct ath_common *common,
764 struct ieee80211_hdr *hdr,
765 struct ieee80211_rx_status *rxs,
766 struct ath_rx_status *rx_stats,
767 bool *decrypt_error)
768 {
769 struct ath_softc *sc = (struct ath_softc *) common->priv;
770 bool is_mc, is_valid_tkip, strip_mic, mic_error;
771 struct ath_hw *ah = common->ah;
772 __le16 fc;
773 u8 rx_status_len = ah->caps.rx_status_len;
774
775 fc = hdr->frame_control;
776
777 is_mc = !!is_multicast_ether_addr(hdr->addr1);
778 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
779 test_bit(rx_stats->rs_keyix, common->tkip_keymap);
780 strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
781 ieee80211_has_protected(fc) &&
782 !(rx_stats->rs_status &
783 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
784 ATH9K_RXERR_KEYMISS));
785
786 /*
787 * Key miss events are only relevant for pairwise keys where the
788 * descriptor does contain a valid key index. This has been observed
789 * mostly with CCMP encryption.
790 */
791 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
792 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
793 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
794
795 if (!rx_stats->rs_datalen) {
796 RX_STAT_INC(rx_len_err);
797 return false;
798 }
799
800 /*
801 * rs_status follows rs_datalen so if rs_datalen is too large
802 * we can take a hint that hardware corrupted it, so ignore
803 * those frames.
804 */
805 if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
806 RX_STAT_INC(rx_len_err);
807 return false;
808 }
809
810 /* Only use error bits from the last fragment */
811 if (rx_stats->rs_more)
812 return true;
813
814 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
815 !ieee80211_has_morefrags(fc) &&
816 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
817 (rx_stats->rs_status & ATH9K_RXERR_MIC);
818
819 /*
820 * The rx_stats->rs_status will not be set until the end of the
821 * chained descriptors so it can be ignored if rs_more is set. The
822 * rs_more will be false at the last element of the chained
823 * descriptors.
824 */
825 if (rx_stats->rs_status != 0) {
826 u8 status_mask;
827
828 if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
829 rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
830 mic_error = false;
831 }
832 if (rx_stats->rs_status & ATH9K_RXERR_PHY)
833 return false;
834
835 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
836 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
837 *decrypt_error = true;
838 mic_error = false;
839 }
840
841 /*
842 * Reject error frames with the exception of
843 * decryption and MIC failures. For monitor mode,
844 * we also ignore the CRC error.
845 */
846 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
847 ATH9K_RXERR_KEYMISS;
848
849 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
850 status_mask |= ATH9K_RXERR_CRC;
851
852 if (rx_stats->rs_status & ~status_mask)
853 return false;
854 }
855
856 /*
857 * For unicast frames the MIC error bit can have false positives,
858 * so all MIC error reports need to be validated in software.
859 * False negatives are not common, so skip software verification
860 * if the hardware considers the MIC valid.
861 */
862 if (strip_mic)
863 rxs->flag |= RX_FLAG_MMIC_STRIPPED;
864 else if (is_mc && mic_error)
865 rxs->flag |= RX_FLAG_MMIC_ERROR;
866
867 return true;
868 }
869
870 static int ath9k_process_rate(struct ath_common *common,
871 struct ieee80211_hw *hw,
872 struct ath_rx_status *rx_stats,
873 struct ieee80211_rx_status *rxs)
874 {
875 struct ieee80211_supported_band *sband;
876 enum ieee80211_band band;
877 unsigned int i = 0;
878 struct ath_softc __maybe_unused *sc = common->priv;
879
880 band = hw->conf.channel->band;
881 sband = hw->wiphy->bands[band];
882
883 if (rx_stats->rs_rate & 0x80) {
884 /* HT rate */
885 rxs->flag |= RX_FLAG_HT;
886 if (rx_stats->rs_flags & ATH9K_RX_2040)
887 rxs->flag |= RX_FLAG_40MHZ;
888 if (rx_stats->rs_flags & ATH9K_RX_GI)
889 rxs->flag |= RX_FLAG_SHORT_GI;
890 rxs->rate_idx = rx_stats->rs_rate & 0x7f;
891 return 0;
892 }
893
894 for (i = 0; i < sband->n_bitrates; i++) {
895 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
896 rxs->rate_idx = i;
897 return 0;
898 }
899 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
900 rxs->flag |= RX_FLAG_SHORTPRE;
901 rxs->rate_idx = i;
902 return 0;
903 }
904 }
905
906 /*
907 * No valid hardware bitrate found -- we should not get here
908 * because hardware has already validated this frame as OK.
909 */
910 ath_dbg(common, ANY,
911 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
912 rx_stats->rs_rate);
913 RX_STAT_INC(rx_rate_err);
914 return -EINVAL;
915 }
916
917 static void ath9k_process_rssi(struct ath_common *common,
918 struct ieee80211_hw *hw,
919 struct ieee80211_hdr *hdr,
920 struct ath_rx_status *rx_stats)
921 {
922 struct ath_softc *sc = hw->priv;
923 struct ath_hw *ah = common->ah;
924 int last_rssi;
925 int rssi = rx_stats->rs_rssi;
926
927 if (!rx_stats->is_mybeacon ||
928 ((ah->opmode != NL80211_IFTYPE_STATION) &&
929 (ah->opmode != NL80211_IFTYPE_ADHOC)))
930 return;
931
932 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
933 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
934
935 last_rssi = sc->last_rssi;
936 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
937 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
938 if (rssi < 0)
939 rssi = 0;
940
941 /* Update Beacon RSSI, this is used by ANI. */
942 ah->stats.avgbrssi = rssi;
943 }
944
945 /*
946 * For Decrypt or Demic errors, we only mark packet status here and always push
947 * up the frame up to let mac80211 handle the actual error case, be it no
948 * decryption key or real decryption error. This let us keep statistics there.
949 */
950 static int ath9k_rx_skb_preprocess(struct ath_common *common,
951 struct ieee80211_hw *hw,
952 struct ieee80211_hdr *hdr,
953 struct ath_rx_status *rx_stats,
954 struct ieee80211_rx_status *rx_status,
955 bool *decrypt_error)
956 {
957 struct ath_hw *ah = common->ah;
958
959 /*
960 * everything but the rate is checked here, the rate check is done
961 * separately to avoid doing two lookups for a rate for each frame.
962 */
963 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
964 return -EINVAL;
965
966 /* Only use status info from the last fragment */
967 if (rx_stats->rs_more)
968 return 0;
969
970 ath9k_process_rssi(common, hw, hdr, rx_stats);
971
972 if (ath9k_process_rate(common, hw, rx_stats, rx_status))
973 return -EINVAL;
974
975 rx_status->band = hw->conf.channel->band;
976 rx_status->freq = hw->conf.channel->center_freq;
977 rx_status->signal = ah->noise + rx_stats->rs_rssi;
978 rx_status->antenna = rx_stats->rs_antenna;
979 rx_status->flag |= RX_FLAG_MACTIME_END;
980 if (rx_stats->rs_moreaggr)
981 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
982
983 return 0;
984 }
985
986 static void ath9k_rx_skb_postprocess(struct ath_common *common,
987 struct sk_buff *skb,
988 struct ath_rx_status *rx_stats,
989 struct ieee80211_rx_status *rxs,
990 bool decrypt_error)
991 {
992 struct ath_hw *ah = common->ah;
993 struct ieee80211_hdr *hdr;
994 int hdrlen, padpos, padsize;
995 u8 keyix;
996 __le16 fc;
997
998 /* see if any padding is done by the hw and remove it */
999 hdr = (struct ieee80211_hdr *) skb->data;
1000 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1001 fc = hdr->frame_control;
1002 padpos = ath9k_cmn_padpos(hdr->frame_control);
1003
1004 /* The MAC header is padded to have 32-bit boundary if the
1005 * packet payload is non-zero. The general calculation for
1006 * padsize would take into account odd header lengths:
1007 * padsize = (4 - padpos % 4) % 4; However, since only
1008 * even-length headers are used, padding can only be 0 or 2
1009 * bytes and we can optimize this a bit. In addition, we must
1010 * not try to remove padding from short control frames that do
1011 * not have payload. */
1012 padsize = padpos & 3;
1013 if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1014 memmove(skb->data + padsize, skb->data, padpos);
1015 skb_pull(skb, padsize);
1016 }
1017
1018 keyix = rx_stats->rs_keyix;
1019
1020 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1021 ieee80211_has_protected(fc)) {
1022 rxs->flag |= RX_FLAG_DECRYPTED;
1023 } else if (ieee80211_has_protected(fc)
1024 && !decrypt_error && skb->len >= hdrlen + 4) {
1025 keyix = skb->data[hdrlen + 3] >> 6;
1026
1027 if (test_bit(keyix, common->keymap))
1028 rxs->flag |= RX_FLAG_DECRYPTED;
1029 }
1030 if (ah->sw_mgmt_crypto &&
1031 (rxs->flag & RX_FLAG_DECRYPTED) &&
1032 ieee80211_is_mgmt(fc))
1033 /* Use software decrypt for management frames. */
1034 rxs->flag &= ~RX_FLAG_DECRYPTED;
1035 }
1036
1037 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1038 {
1039 struct ath_buf *bf;
1040 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1041 struct ieee80211_rx_status *rxs;
1042 struct ath_hw *ah = sc->sc_ah;
1043 struct ath_common *common = ath9k_hw_common(ah);
1044 struct ieee80211_hw *hw = sc->hw;
1045 struct ieee80211_hdr *hdr;
1046 int retval;
1047 struct ath_rx_status rs;
1048 enum ath9k_rx_qtype qtype;
1049 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1050 int dma_type;
1051 u8 rx_status_len = ah->caps.rx_status_len;
1052 u64 tsf = 0;
1053 u32 tsf_lower = 0;
1054 unsigned long flags;
1055
1056 if (edma)
1057 dma_type = DMA_BIDIRECTIONAL;
1058 else
1059 dma_type = DMA_FROM_DEVICE;
1060
1061 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1062 spin_lock_bh(&sc->rx.rxbuflock);
1063
1064 tsf = ath9k_hw_gettsf64(ah);
1065 tsf_lower = tsf & 0xffffffff;
1066
1067 do {
1068 bool decrypt_error = false;
1069 /* If handling rx interrupt and flush is in progress => exit */
1070 if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags) && (flush == 0))
1071 break;
1072
1073 memset(&rs, 0, sizeof(rs));
1074 if (edma)
1075 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1076 else
1077 bf = ath_get_next_rx_buf(sc, &rs);
1078
1079 if (!bf)
1080 break;
1081
1082 skb = bf->bf_mpdu;
1083 if (!skb)
1084 continue;
1085
1086 /*
1087 * Take frame header from the first fragment and RX status from
1088 * the last one.
1089 */
1090 if (sc->rx.frag)
1091 hdr_skb = sc->rx.frag;
1092 else
1093 hdr_skb = skb;
1094
1095 hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1096 rxs = IEEE80211_SKB_RXCB(hdr_skb);
1097 if (ieee80211_is_beacon(hdr->frame_control)) {
1098 RX_STAT_INC(rx_beacons);
1099 if (!is_zero_ether_addr(common->curbssid) &&
1100 ether_addr_equal(hdr->addr3, common->curbssid))
1101 rs.is_mybeacon = true;
1102 else
1103 rs.is_mybeacon = false;
1104 }
1105 else
1106 rs.is_mybeacon = false;
1107
1108 if (ieee80211_is_data_present(hdr->frame_control) &&
1109 !ieee80211_is_qos_nullfunc(hdr->frame_control))
1110 sc->rx.num_pkts++;
1111
1112 ath_debug_stat_rx(sc, &rs);
1113
1114 /*
1115 * If we're asked to flush receive queue, directly
1116 * chain it back at the queue without processing it.
1117 */
1118 if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags)) {
1119 RX_STAT_INC(rx_drop_rxflush);
1120 goto requeue_drop_frag;
1121 }
1122
1123 memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1124
1125 rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1126 if (rs.rs_tstamp > tsf_lower &&
1127 unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1128 rxs->mactime -= 0x100000000ULL;
1129
1130 if (rs.rs_tstamp < tsf_lower &&
1131 unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1132 rxs->mactime += 0x100000000ULL;
1133
1134 retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1135 rxs, &decrypt_error);
1136 if (retval)
1137 goto requeue_drop_frag;
1138
1139 if (rs.is_mybeacon) {
1140 sc->hw_busy_count = 0;
1141 ath_start_rx_poll(sc, 3);
1142 }
1143 /* Ensure we always have an skb to requeue once we are done
1144 * processing the current buffer's skb */
1145 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1146
1147 /* If there is no memory we ignore the current RX'd frame,
1148 * tell hardware it can give us a new frame using the old
1149 * skb and put it at the tail of the sc->rx.rxbuf list for
1150 * processing. */
1151 if (!requeue_skb) {
1152 RX_STAT_INC(rx_oom_err);
1153 goto requeue_drop_frag;
1154 }
1155
1156 /* Unmap the frame */
1157 dma_unmap_single(sc->dev, bf->bf_buf_addr,
1158 common->rx_bufsize,
1159 dma_type);
1160
1161 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1162 if (ah->caps.rx_status_len)
1163 skb_pull(skb, ah->caps.rx_status_len);
1164
1165 if (!rs.rs_more)
1166 ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1167 rxs, decrypt_error);
1168
1169 /* We will now give hardware our shiny new allocated skb */
1170 bf->bf_mpdu = requeue_skb;
1171 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1172 common->rx_bufsize,
1173 dma_type);
1174 if (unlikely(dma_mapping_error(sc->dev,
1175 bf->bf_buf_addr))) {
1176 dev_kfree_skb_any(requeue_skb);
1177 bf->bf_mpdu = NULL;
1178 bf->bf_buf_addr = 0;
1179 ath_err(common, "dma_mapping_error() on RX\n");
1180 ieee80211_rx(hw, skb);
1181 break;
1182 }
1183
1184 if (rs.rs_more) {
1185 RX_STAT_INC(rx_frags);
1186 /*
1187 * rs_more indicates chained descriptors which can be
1188 * used to link buffers together for a sort of
1189 * scatter-gather operation.
1190 */
1191 if (sc->rx.frag) {
1192 /* too many fragments - cannot handle frame */
1193 dev_kfree_skb_any(sc->rx.frag);
1194 dev_kfree_skb_any(skb);
1195 RX_STAT_INC(rx_too_many_frags_err);
1196 skb = NULL;
1197 }
1198 sc->rx.frag = skb;
1199 goto requeue;
1200 }
1201
1202 if (sc->rx.frag) {
1203 int space = skb->len - skb_tailroom(hdr_skb);
1204
1205 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1206 dev_kfree_skb(skb);
1207 RX_STAT_INC(rx_oom_err);
1208 goto requeue_drop_frag;
1209 }
1210
1211 sc->rx.frag = NULL;
1212
1213 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1214 skb->len);
1215 dev_kfree_skb_any(skb);
1216 skb = hdr_skb;
1217 }
1218
1219
1220 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1221
1222 /*
1223 * change the default rx antenna if rx diversity
1224 * chooses the other antenna 3 times in a row.
1225 */
1226 if (sc->rx.defant != rs.rs_antenna) {
1227 if (++sc->rx.rxotherant >= 3)
1228 ath_setdefantenna(sc, rs.rs_antenna);
1229 } else {
1230 sc->rx.rxotherant = 0;
1231 }
1232
1233 }
1234
1235 if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1236 skb_trim(skb, skb->len - 8);
1237
1238 spin_lock_irqsave(&sc->sc_pm_lock, flags);
1239 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1240 PS_WAIT_FOR_CAB |
1241 PS_WAIT_FOR_PSPOLL_DATA)) ||
1242 ath9k_check_auto_sleep(sc))
1243 ath_rx_ps(sc, skb, rs.is_mybeacon);
1244 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1245
1246 if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1247 ath_ant_comb_scan(sc, &rs);
1248
1249 ieee80211_rx(hw, skb);
1250
1251 requeue_drop_frag:
1252 if (sc->rx.frag) {
1253 dev_kfree_skb_any(sc->rx.frag);
1254 sc->rx.frag = NULL;
1255 }
1256 requeue:
1257 if (edma) {
1258 list_add_tail(&bf->list, &sc->rx.rxbuf);
1259 ath_rx_edma_buf_link(sc, qtype);
1260 } else {
1261 list_move_tail(&bf->list, &sc->rx.rxbuf);
1262 ath_rx_buf_link(sc, bf);
1263 if (!flush)
1264 ath9k_hw_rxena(ah);
1265 }
1266 } while (1);
1267
1268 spin_unlock_bh(&sc->rx.rxbuflock);
1269
1270 if (!(ah->imask & ATH9K_INT_RXEOL)) {
1271 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1272 ath9k_hw_set_interrupts(ah);
1273 }
1274
1275 return 0;
1276 }
This page took 0.057462 seconds and 6 git commands to generate.