Merge branch 'pci/resource' into next
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
107 {
108 struct ath_atx_ac *ac = tid->ac;
109
110 if (tid->paused)
111 return;
112
113 if (tid->sched)
114 return;
115
116 tid->sched = true;
117 list_add_tail(&tid->list, &ac->tid_q);
118
119 if (ac->sched)
120 return;
121
122 ac->sched = true;
123 list_add_tail(&ac->list, &txq->axq_acq);
124 }
125
126 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
127 {
128 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
129 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
130 sizeof(tx_info->rate_driver_data));
131 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
132 }
133
134 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
135 {
136 if (!tid->an->sta)
137 return;
138
139 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
140 seqno << IEEE80211_SEQ_SEQ_SHIFT);
141 }
142
143 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
144 struct ath_buf *bf)
145 {
146 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
147 ARRAY_SIZE(bf->rates));
148 }
149
150 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
151 struct sk_buff *skb)
152 {
153 int q;
154
155 q = skb_get_queue_mapping(skb);
156 if (txq == sc->tx.uapsdq)
157 txq = sc->tx.txq_map[q];
158
159 if (txq != sc->tx.txq_map[q])
160 return;
161
162 if (WARN_ON(--txq->pending_frames < 0))
163 txq->pending_frames = 0;
164
165 if (txq->stopped &&
166 txq->pending_frames < sc->tx.txq_max_pending[q]) {
167 ieee80211_wake_queue(sc->hw, q);
168 txq->stopped = false;
169 }
170 }
171
172 static struct ath_atx_tid *
173 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
174 {
175 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
176 return ATH_AN_2_TID(an, tidno);
177 }
178
179 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
180 {
181 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
182 }
183
184 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
185 {
186 struct sk_buff *skb;
187
188 skb = __skb_dequeue(&tid->retry_q);
189 if (!skb)
190 skb = __skb_dequeue(&tid->buf_q);
191
192 return skb;
193 }
194
195 /*
196 * ath_tx_tid_change_state:
197 * - clears a-mpdu flag of previous session
198 * - force sequence number allocation to fix next BlockAck Window
199 */
200 static void
201 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
202 {
203 struct ath_txq *txq = tid->ac->txq;
204 struct ieee80211_tx_info *tx_info;
205 struct sk_buff *skb, *tskb;
206 struct ath_buf *bf;
207 struct ath_frame_info *fi;
208
209 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
210 fi = get_frame_info(skb);
211 bf = fi->bf;
212
213 tx_info = IEEE80211_SKB_CB(skb);
214 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
215
216 if (bf)
217 continue;
218
219 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
220 if (!bf) {
221 __skb_unlink(skb, &tid->buf_q);
222 ath_txq_skb_done(sc, txq, skb);
223 ieee80211_free_txskb(sc->hw, skb);
224 continue;
225 }
226 }
227
228 }
229
230 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
231 {
232 struct ath_txq *txq = tid->ac->txq;
233 struct sk_buff *skb;
234 struct ath_buf *bf;
235 struct list_head bf_head;
236 struct ath_tx_status ts;
237 struct ath_frame_info *fi;
238 bool sendbar = false;
239
240 INIT_LIST_HEAD(&bf_head);
241
242 memset(&ts, 0, sizeof(ts));
243
244 while ((skb = __skb_dequeue(&tid->retry_q))) {
245 fi = get_frame_info(skb);
246 bf = fi->bf;
247 if (!bf) {
248 ath_txq_skb_done(sc, txq, skb);
249 ieee80211_free_txskb(sc->hw, skb);
250 continue;
251 }
252
253 if (fi->baw_tracked) {
254 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
255 sendbar = true;
256 }
257
258 list_add_tail(&bf->list, &bf_head);
259 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
260 }
261
262 if (sendbar) {
263 ath_txq_unlock(sc, txq);
264 ath_send_bar(tid, tid->seq_start);
265 ath_txq_lock(sc, txq);
266 }
267 }
268
269 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
270 int seqno)
271 {
272 int index, cindex;
273
274 index = ATH_BA_INDEX(tid->seq_start, seqno);
275 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
276
277 __clear_bit(cindex, tid->tx_buf);
278
279 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
280 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
281 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
282 if (tid->bar_index >= 0)
283 tid->bar_index--;
284 }
285 }
286
287 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
288 struct ath_buf *bf)
289 {
290 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
291 u16 seqno = bf->bf_state.seqno;
292 int index, cindex;
293
294 index = ATH_BA_INDEX(tid->seq_start, seqno);
295 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
296 __set_bit(cindex, tid->tx_buf);
297 fi->baw_tracked = 1;
298
299 if (index >= ((tid->baw_tail - tid->baw_head) &
300 (ATH_TID_MAX_BUFS - 1))) {
301 tid->baw_tail = cindex;
302 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
303 }
304 }
305
306 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
307 struct ath_atx_tid *tid)
308
309 {
310 struct sk_buff *skb;
311 struct ath_buf *bf;
312 struct list_head bf_head;
313 struct ath_tx_status ts;
314 struct ath_frame_info *fi;
315
316 memset(&ts, 0, sizeof(ts));
317 INIT_LIST_HEAD(&bf_head);
318
319 while ((skb = ath_tid_dequeue(tid))) {
320 fi = get_frame_info(skb);
321 bf = fi->bf;
322
323 if (!bf) {
324 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
325 continue;
326 }
327
328 list_add_tail(&bf->list, &bf_head);
329 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
330 }
331 }
332
333 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
334 struct sk_buff *skb, int count)
335 {
336 struct ath_frame_info *fi = get_frame_info(skb);
337 struct ath_buf *bf = fi->bf;
338 struct ieee80211_hdr *hdr;
339 int prev = fi->retries;
340
341 TX_STAT_INC(txq->axq_qnum, a_retries);
342 fi->retries += count;
343
344 if (prev > 0)
345 return;
346
347 hdr = (struct ieee80211_hdr *)skb->data;
348 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
349 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
350 sizeof(*hdr), DMA_TO_DEVICE);
351 }
352
353 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
354 {
355 struct ath_buf *bf = NULL;
356
357 spin_lock_bh(&sc->tx.txbuflock);
358
359 if (unlikely(list_empty(&sc->tx.txbuf))) {
360 spin_unlock_bh(&sc->tx.txbuflock);
361 return NULL;
362 }
363
364 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
365 list_del(&bf->list);
366
367 spin_unlock_bh(&sc->tx.txbuflock);
368
369 return bf;
370 }
371
372 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
373 {
374 spin_lock_bh(&sc->tx.txbuflock);
375 list_add_tail(&bf->list, &sc->tx.txbuf);
376 spin_unlock_bh(&sc->tx.txbuflock);
377 }
378
379 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
380 {
381 struct ath_buf *tbf;
382
383 tbf = ath_tx_get_buffer(sc);
384 if (WARN_ON(!tbf))
385 return NULL;
386
387 ATH_TXBUF_RESET(tbf);
388
389 tbf->bf_mpdu = bf->bf_mpdu;
390 tbf->bf_buf_addr = bf->bf_buf_addr;
391 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
392 tbf->bf_state = bf->bf_state;
393 tbf->bf_state.stale = false;
394
395 return tbf;
396 }
397
398 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
399 struct ath_tx_status *ts, int txok,
400 int *nframes, int *nbad)
401 {
402 struct ath_frame_info *fi;
403 u16 seq_st = 0;
404 u32 ba[WME_BA_BMP_SIZE >> 5];
405 int ba_index;
406 int isaggr = 0;
407
408 *nbad = 0;
409 *nframes = 0;
410
411 isaggr = bf_isaggr(bf);
412 if (isaggr) {
413 seq_st = ts->ts_seqnum;
414 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
415 }
416
417 while (bf) {
418 fi = get_frame_info(bf->bf_mpdu);
419 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
420
421 (*nframes)++;
422 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
423 (*nbad)++;
424
425 bf = bf->bf_next;
426 }
427 }
428
429
430 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
431 struct ath_buf *bf, struct list_head *bf_q,
432 struct ath_tx_status *ts, int txok)
433 {
434 struct ath_node *an = NULL;
435 struct sk_buff *skb;
436 struct ieee80211_sta *sta;
437 struct ieee80211_hw *hw = sc->hw;
438 struct ieee80211_hdr *hdr;
439 struct ieee80211_tx_info *tx_info;
440 struct ath_atx_tid *tid = NULL;
441 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
442 struct list_head bf_head;
443 struct sk_buff_head bf_pending;
444 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
445 u32 ba[WME_BA_BMP_SIZE >> 5];
446 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
447 bool rc_update = true, isba;
448 struct ieee80211_tx_rate rates[4];
449 struct ath_frame_info *fi;
450 int nframes;
451 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
452 int i, retries;
453 int bar_index = -1;
454
455 skb = bf->bf_mpdu;
456 hdr = (struct ieee80211_hdr *)skb->data;
457
458 tx_info = IEEE80211_SKB_CB(skb);
459
460 memcpy(rates, bf->rates, sizeof(rates));
461
462 retries = ts->ts_longretry + 1;
463 for (i = 0; i < ts->ts_rateindex; i++)
464 retries += rates[i].count;
465
466 rcu_read_lock();
467
468 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
469 if (!sta) {
470 rcu_read_unlock();
471
472 INIT_LIST_HEAD(&bf_head);
473 while (bf) {
474 bf_next = bf->bf_next;
475
476 if (!bf->bf_state.stale || bf_next != NULL)
477 list_move_tail(&bf->list, &bf_head);
478
479 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
480
481 bf = bf_next;
482 }
483 return;
484 }
485
486 an = (struct ath_node *)sta->drv_priv;
487 tid = ath_get_skb_tid(sc, an, skb);
488 seq_first = tid->seq_start;
489 isba = ts->ts_flags & ATH9K_TX_BA;
490
491 /*
492 * The hardware occasionally sends a tx status for the wrong TID.
493 * In this case, the BA status cannot be considered valid and all
494 * subframes need to be retransmitted
495 *
496 * Only BlockAcks have a TID and therefore normal Acks cannot be
497 * checked
498 */
499 if (isba && tid->tidno != ts->tid)
500 txok = false;
501
502 isaggr = bf_isaggr(bf);
503 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
504
505 if (isaggr && txok) {
506 if (ts->ts_flags & ATH9K_TX_BA) {
507 seq_st = ts->ts_seqnum;
508 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
509 } else {
510 /*
511 * AR5416 can become deaf/mute when BA
512 * issue happens. Chip needs to be reset.
513 * But AP code may have sychronization issues
514 * when perform internal reset in this routine.
515 * Only enable reset in STA mode for now.
516 */
517 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
518 needreset = 1;
519 }
520 }
521
522 __skb_queue_head_init(&bf_pending);
523
524 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
525 while (bf) {
526 u16 seqno = bf->bf_state.seqno;
527
528 txfail = txpending = sendbar = 0;
529 bf_next = bf->bf_next;
530
531 skb = bf->bf_mpdu;
532 tx_info = IEEE80211_SKB_CB(skb);
533 fi = get_frame_info(skb);
534
535 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
536 !tid->active) {
537 /*
538 * Outside of the current BlockAck window,
539 * maybe part of a previous session
540 */
541 txfail = 1;
542 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
543 /* transmit completion, subframe is
544 * acked by block ack */
545 acked_cnt++;
546 } else if (!isaggr && txok) {
547 /* transmit completion */
548 acked_cnt++;
549 } else if (flush) {
550 txpending = 1;
551 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
552 if (txok || !an->sleeping)
553 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
554 retries);
555
556 txpending = 1;
557 } else {
558 txfail = 1;
559 txfail_cnt++;
560 bar_index = max_t(int, bar_index,
561 ATH_BA_INDEX(seq_first, seqno));
562 }
563
564 /*
565 * Make sure the last desc is reclaimed if it
566 * not a holding desc.
567 */
568 INIT_LIST_HEAD(&bf_head);
569 if (bf_next != NULL || !bf_last->bf_state.stale)
570 list_move_tail(&bf->list, &bf_head);
571
572 if (!txpending) {
573 /*
574 * complete the acked-ones/xretried ones; update
575 * block-ack window
576 */
577 ath_tx_update_baw(sc, tid, seqno);
578
579 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
580 memcpy(tx_info->control.rates, rates, sizeof(rates));
581 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
582 rc_update = false;
583 }
584
585 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
586 !txfail);
587 } else {
588 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
589 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
590 ieee80211_sta_eosp(sta);
591 }
592 /* retry the un-acked ones */
593 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
594 struct ath_buf *tbf;
595
596 tbf = ath_clone_txbuf(sc, bf_last);
597 /*
598 * Update tx baw and complete the
599 * frame with failed status if we
600 * run out of tx buf.
601 */
602 if (!tbf) {
603 ath_tx_update_baw(sc, tid, seqno);
604
605 ath_tx_complete_buf(sc, bf, txq,
606 &bf_head, ts, 0);
607 bar_index = max_t(int, bar_index,
608 ATH_BA_INDEX(seq_first, seqno));
609 break;
610 }
611
612 fi->bf = tbf;
613 }
614
615 /*
616 * Put this buffer to the temporary pending
617 * queue to retain ordering
618 */
619 __skb_queue_tail(&bf_pending, skb);
620 }
621
622 bf = bf_next;
623 }
624
625 /* prepend un-acked frames to the beginning of the pending frame queue */
626 if (!skb_queue_empty(&bf_pending)) {
627 if (an->sleeping)
628 ieee80211_sta_set_buffered(sta, tid->tidno, true);
629
630 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
631 if (!an->sleeping) {
632 ath_tx_queue_tid(txq, tid);
633
634 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
635 tid->ac->clear_ps_filter = true;
636 }
637 }
638
639 if (bar_index >= 0) {
640 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
641
642 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
643 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
644
645 ath_txq_unlock(sc, txq);
646 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
647 ath_txq_lock(sc, txq);
648 }
649
650 rcu_read_unlock();
651
652 if (needreset)
653 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
654 }
655
656 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
657 {
658 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
659 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
660 }
661
662 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
663 struct ath_tx_status *ts, struct ath_buf *bf,
664 struct list_head *bf_head)
665 {
666 struct ieee80211_tx_info *info;
667 bool txok, flush;
668
669 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
670 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
671 txq->axq_tx_inprogress = false;
672
673 txq->axq_depth--;
674 if (bf_is_ampdu_not_probing(bf))
675 txq->axq_ampdu_depth--;
676
677 if (!bf_isampdu(bf)) {
678 if (!flush) {
679 info = IEEE80211_SKB_CB(bf->bf_mpdu);
680 memcpy(info->control.rates, bf->rates,
681 sizeof(info->control.rates));
682 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
683 }
684 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
685 } else
686 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
687
688 if (!flush)
689 ath_txq_schedule(sc, txq);
690 }
691
692 static bool ath_lookup_legacy(struct ath_buf *bf)
693 {
694 struct sk_buff *skb;
695 struct ieee80211_tx_info *tx_info;
696 struct ieee80211_tx_rate *rates;
697 int i;
698
699 skb = bf->bf_mpdu;
700 tx_info = IEEE80211_SKB_CB(skb);
701 rates = tx_info->control.rates;
702
703 for (i = 0; i < 4; i++) {
704 if (!rates[i].count || rates[i].idx < 0)
705 break;
706
707 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
708 return true;
709 }
710
711 return false;
712 }
713
714 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
715 struct ath_atx_tid *tid)
716 {
717 struct sk_buff *skb;
718 struct ieee80211_tx_info *tx_info;
719 struct ieee80211_tx_rate *rates;
720 u32 max_4ms_framelen, frmlen;
721 u16 aggr_limit, bt_aggr_limit, legacy = 0;
722 int q = tid->ac->txq->mac80211_qnum;
723 int i;
724
725 skb = bf->bf_mpdu;
726 tx_info = IEEE80211_SKB_CB(skb);
727 rates = bf->rates;
728
729 /*
730 * Find the lowest frame length among the rate series that will have a
731 * 4ms (or TXOP limited) transmit duration.
732 */
733 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
734
735 for (i = 0; i < 4; i++) {
736 int modeidx;
737
738 if (!rates[i].count)
739 continue;
740
741 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
742 legacy = 1;
743 break;
744 }
745
746 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
747 modeidx = MCS_HT40;
748 else
749 modeidx = MCS_HT20;
750
751 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
752 modeidx++;
753
754 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
755 max_4ms_framelen = min(max_4ms_framelen, frmlen);
756 }
757
758 /*
759 * limit aggregate size by the minimum rate if rate selected is
760 * not a probe rate, if rate selected is a probe rate then
761 * avoid aggregation of this packet.
762 */
763 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
764 return 0;
765
766 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
767
768 /*
769 * Override the default aggregation limit for BTCOEX.
770 */
771 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
772 if (bt_aggr_limit)
773 aggr_limit = bt_aggr_limit;
774
775 if (tid->an->maxampdu)
776 aggr_limit = min(aggr_limit, tid->an->maxampdu);
777
778 return aggr_limit;
779 }
780
781 /*
782 * Returns the number of delimiters to be added to
783 * meet the minimum required mpdudensity.
784 */
785 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
786 struct ath_buf *bf, u16 frmlen,
787 bool first_subfrm)
788 {
789 #define FIRST_DESC_NDELIMS 60
790 u32 nsymbits, nsymbols;
791 u16 minlen;
792 u8 flags, rix;
793 int width, streams, half_gi, ndelim, mindelim;
794 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
795
796 /* Select standard number of delimiters based on frame length alone */
797 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
798
799 /*
800 * If encryption enabled, hardware requires some more padding between
801 * subframes.
802 * TODO - this could be improved to be dependent on the rate.
803 * The hardware can keep up at lower rates, but not higher rates
804 */
805 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
806 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
807 ndelim += ATH_AGGR_ENCRYPTDELIM;
808
809 /*
810 * Add delimiter when using RTS/CTS with aggregation
811 * and non enterprise AR9003 card
812 */
813 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
814 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
815 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
816
817 /*
818 * Convert desired mpdu density from microeconds to bytes based
819 * on highest rate in rate series (i.e. first rate) to determine
820 * required minimum length for subframe. Take into account
821 * whether high rate is 20 or 40Mhz and half or full GI.
822 *
823 * If there is no mpdu density restriction, no further calculation
824 * is needed.
825 */
826
827 if (tid->an->mpdudensity == 0)
828 return ndelim;
829
830 rix = bf->rates[0].idx;
831 flags = bf->rates[0].flags;
832 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
833 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
834
835 if (half_gi)
836 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
837 else
838 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
839
840 if (nsymbols == 0)
841 nsymbols = 1;
842
843 streams = HT_RC_2_STREAMS(rix);
844 nsymbits = bits_per_symbol[rix % 8][width] * streams;
845 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
846
847 if (frmlen < minlen) {
848 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
849 ndelim = max(mindelim, ndelim);
850 }
851
852 return ndelim;
853 }
854
855 static struct ath_buf *
856 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
857 struct ath_atx_tid *tid, struct sk_buff_head **q)
858 {
859 struct ieee80211_tx_info *tx_info;
860 struct ath_frame_info *fi;
861 struct sk_buff *skb;
862 struct ath_buf *bf;
863 u16 seqno;
864
865 while (1) {
866 *q = &tid->retry_q;
867 if (skb_queue_empty(*q))
868 *q = &tid->buf_q;
869
870 skb = skb_peek(*q);
871 if (!skb)
872 break;
873
874 fi = get_frame_info(skb);
875 bf = fi->bf;
876 if (!fi->bf)
877 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
878 else
879 bf->bf_state.stale = false;
880
881 if (!bf) {
882 __skb_unlink(skb, *q);
883 ath_txq_skb_done(sc, txq, skb);
884 ieee80211_free_txskb(sc->hw, skb);
885 continue;
886 }
887
888 bf->bf_next = NULL;
889 bf->bf_lastbf = bf;
890
891 tx_info = IEEE80211_SKB_CB(skb);
892 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
893 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
894 bf->bf_state.bf_type = 0;
895 return bf;
896 }
897
898 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
899 seqno = bf->bf_state.seqno;
900
901 /* do not step over block-ack window */
902 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
903 break;
904
905 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
906 struct ath_tx_status ts = {};
907 struct list_head bf_head;
908
909 INIT_LIST_HEAD(&bf_head);
910 list_add(&bf->list, &bf_head);
911 __skb_unlink(skb, *q);
912 ath_tx_update_baw(sc, tid, seqno);
913 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
914 continue;
915 }
916
917 return bf;
918 }
919
920 return NULL;
921 }
922
923 static bool
924 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
925 struct ath_atx_tid *tid, struct list_head *bf_q,
926 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
927 int *aggr_len)
928 {
929 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
930 struct ath_buf *bf = bf_first, *bf_prev = NULL;
931 int nframes = 0, ndelim;
932 u16 aggr_limit = 0, al = 0, bpad = 0,
933 al_delta, h_baw = tid->baw_size / 2;
934 struct ieee80211_tx_info *tx_info;
935 struct ath_frame_info *fi;
936 struct sk_buff *skb;
937 bool closed = false;
938
939 bf = bf_first;
940 aggr_limit = ath_lookup_rate(sc, bf, tid);
941
942 do {
943 skb = bf->bf_mpdu;
944 fi = get_frame_info(skb);
945
946 /* do not exceed aggregation limit */
947 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
948 if (nframes) {
949 if (aggr_limit < al + bpad + al_delta ||
950 ath_lookup_legacy(bf) || nframes >= h_baw)
951 break;
952
953 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
954 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
955 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
956 break;
957 }
958
959 /* add padding for previous frame to aggregation length */
960 al += bpad + al_delta;
961
962 /*
963 * Get the delimiters needed to meet the MPDU
964 * density for this node.
965 */
966 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
967 !nframes);
968 bpad = PADBYTES(al_delta) + (ndelim << 2);
969
970 nframes++;
971 bf->bf_next = NULL;
972
973 /* link buffers of this frame to the aggregate */
974 if (!fi->baw_tracked)
975 ath_tx_addto_baw(sc, tid, bf);
976 bf->bf_state.ndelim = ndelim;
977
978 __skb_unlink(skb, tid_q);
979 list_add_tail(&bf->list, bf_q);
980 if (bf_prev)
981 bf_prev->bf_next = bf;
982
983 bf_prev = bf;
984
985 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
986 if (!bf) {
987 closed = true;
988 break;
989 }
990 } while (ath_tid_has_buffered(tid));
991
992 bf = bf_first;
993 bf->bf_lastbf = bf_prev;
994
995 if (bf == bf_prev) {
996 al = get_frame_info(bf->bf_mpdu)->framelen;
997 bf->bf_state.bf_type = BUF_AMPDU;
998 } else {
999 TX_STAT_INC(txq->axq_qnum, a_aggr);
1000 }
1001
1002 *aggr_len = al;
1003
1004 return closed;
1005 #undef PADBYTES
1006 }
1007
1008 /*
1009 * rix - rate index
1010 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1011 * width - 0 for 20 MHz, 1 for 40 MHz
1012 * half_gi - to use 4us v/s 3.6 us for symbol time
1013 */
1014 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1015 int width, int half_gi, bool shortPreamble)
1016 {
1017 u32 nbits, nsymbits, duration, nsymbols;
1018 int streams;
1019
1020 /* find number of symbols: PLCP + data */
1021 streams = HT_RC_2_STREAMS(rix);
1022 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1023 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1024 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1025
1026 if (!half_gi)
1027 duration = SYMBOL_TIME(nsymbols);
1028 else
1029 duration = SYMBOL_TIME_HALFGI(nsymbols);
1030
1031 /* addup duration for legacy/ht training and signal fields */
1032 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1033
1034 return duration;
1035 }
1036
1037 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1038 {
1039 int streams = HT_RC_2_STREAMS(mcs);
1040 int symbols, bits;
1041 int bytes = 0;
1042
1043 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1044 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1045 bits -= OFDM_PLCP_BITS;
1046 bytes = bits / 8;
1047 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1048 if (bytes > 65532)
1049 bytes = 65532;
1050
1051 return bytes;
1052 }
1053
1054 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1055 {
1056 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1057 int mcs;
1058
1059 /* 4ms is the default (and maximum) duration */
1060 if (!txop || txop > 4096)
1061 txop = 4096;
1062
1063 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1064 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1065 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1066 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1067 for (mcs = 0; mcs < 32; mcs++) {
1068 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1069 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1070 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1071 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1072 }
1073 }
1074
1075 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1076 struct ath_tx_info *info, int len, bool rts)
1077 {
1078 struct ath_hw *ah = sc->sc_ah;
1079 struct sk_buff *skb;
1080 struct ieee80211_tx_info *tx_info;
1081 struct ieee80211_tx_rate *rates;
1082 const struct ieee80211_rate *rate;
1083 struct ieee80211_hdr *hdr;
1084 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1085 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1086 int i;
1087 u8 rix = 0;
1088
1089 skb = bf->bf_mpdu;
1090 tx_info = IEEE80211_SKB_CB(skb);
1091 rates = bf->rates;
1092 hdr = (struct ieee80211_hdr *)skb->data;
1093
1094 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1095 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1096 info->rtscts_rate = fi->rtscts_rate;
1097
1098 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1099 bool is_40, is_sgi, is_sp;
1100 int phy;
1101
1102 if (!rates[i].count || (rates[i].idx < 0))
1103 continue;
1104
1105 rix = rates[i].idx;
1106 info->rates[i].Tries = rates[i].count;
1107
1108 /*
1109 * Handle RTS threshold for unaggregated HT frames.
1110 */
1111 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1112 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1113 unlikely(rts_thresh != (u32) -1)) {
1114 if (!rts_thresh || (len > rts_thresh))
1115 rts = true;
1116 }
1117
1118 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1119 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1120 info->flags |= ATH9K_TXDESC_RTSENA;
1121 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1122 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1123 info->flags |= ATH9K_TXDESC_CTSENA;
1124 }
1125
1126 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1127 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1128 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1129 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1130
1131 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1132 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1133 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1134
1135 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1136 /* MCS rates */
1137 info->rates[i].Rate = rix | 0x80;
1138 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1139 ah->txchainmask, info->rates[i].Rate);
1140 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1141 is_40, is_sgi, is_sp);
1142 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1143 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1144 continue;
1145 }
1146
1147 /* legacy rates */
1148 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1149 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1150 !(rate->flags & IEEE80211_RATE_ERP_G))
1151 phy = WLAN_RC_PHY_CCK;
1152 else
1153 phy = WLAN_RC_PHY_OFDM;
1154
1155 info->rates[i].Rate = rate->hw_value;
1156 if (rate->hw_value_short) {
1157 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1158 info->rates[i].Rate |= rate->hw_value_short;
1159 } else {
1160 is_sp = false;
1161 }
1162
1163 if (bf->bf_state.bfs_paprd)
1164 info->rates[i].ChSel = ah->txchainmask;
1165 else
1166 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1167 ah->txchainmask, info->rates[i].Rate);
1168
1169 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1170 phy, rate->bitrate * 100, len, rix, is_sp);
1171 }
1172
1173 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1174 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1175 info->flags &= ~ATH9K_TXDESC_RTSENA;
1176
1177 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1178 if (info->flags & ATH9K_TXDESC_RTSENA)
1179 info->flags &= ~ATH9K_TXDESC_CTSENA;
1180 }
1181
1182 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1183 {
1184 struct ieee80211_hdr *hdr;
1185 enum ath9k_pkt_type htype;
1186 __le16 fc;
1187
1188 hdr = (struct ieee80211_hdr *)skb->data;
1189 fc = hdr->frame_control;
1190
1191 if (ieee80211_is_beacon(fc))
1192 htype = ATH9K_PKT_TYPE_BEACON;
1193 else if (ieee80211_is_probe_resp(fc))
1194 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1195 else if (ieee80211_is_atim(fc))
1196 htype = ATH9K_PKT_TYPE_ATIM;
1197 else if (ieee80211_is_pspoll(fc))
1198 htype = ATH9K_PKT_TYPE_PSPOLL;
1199 else
1200 htype = ATH9K_PKT_TYPE_NORMAL;
1201
1202 return htype;
1203 }
1204
1205 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1206 struct ath_txq *txq, int len)
1207 {
1208 struct ath_hw *ah = sc->sc_ah;
1209 struct ath_buf *bf_first = NULL;
1210 struct ath_tx_info info;
1211 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1212 bool rts = false;
1213
1214 memset(&info, 0, sizeof(info));
1215 info.is_first = true;
1216 info.is_last = true;
1217 info.txpower = MAX_RATE_POWER;
1218 info.qcu = txq->axq_qnum;
1219
1220 while (bf) {
1221 struct sk_buff *skb = bf->bf_mpdu;
1222 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1223 struct ath_frame_info *fi = get_frame_info(skb);
1224 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1225
1226 info.type = get_hw_packet_type(skb);
1227 if (bf->bf_next)
1228 info.link = bf->bf_next->bf_daddr;
1229 else
1230 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1231
1232 if (!bf_first) {
1233 bf_first = bf;
1234
1235 if (!sc->tx99_state)
1236 info.flags = ATH9K_TXDESC_INTREQ;
1237 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1238 txq == sc->tx.uapsdq)
1239 info.flags |= ATH9K_TXDESC_CLRDMASK;
1240
1241 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1242 info.flags |= ATH9K_TXDESC_NOACK;
1243 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1244 info.flags |= ATH9K_TXDESC_LDPC;
1245
1246 if (bf->bf_state.bfs_paprd)
1247 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1248 ATH9K_TXDESC_PAPRD_S;
1249
1250 /*
1251 * mac80211 doesn't handle RTS threshold for HT because
1252 * the decision has to be taken based on AMPDU length
1253 * and aggregation is done entirely inside ath9k.
1254 * Set the RTS/CTS flag for the first subframe based
1255 * on the threshold.
1256 */
1257 if (aggr && (bf == bf_first) &&
1258 unlikely(rts_thresh != (u32) -1)) {
1259 /*
1260 * "len" is the size of the entire AMPDU.
1261 */
1262 if (!rts_thresh || (len > rts_thresh))
1263 rts = true;
1264 }
1265
1266 if (!aggr)
1267 len = fi->framelen;
1268
1269 ath_buf_set_rate(sc, bf, &info, len, rts);
1270 }
1271
1272 info.buf_addr[0] = bf->bf_buf_addr;
1273 info.buf_len[0] = skb->len;
1274 info.pkt_len = fi->framelen;
1275 info.keyix = fi->keyix;
1276 info.keytype = fi->keytype;
1277
1278 if (aggr) {
1279 if (bf == bf_first)
1280 info.aggr = AGGR_BUF_FIRST;
1281 else if (bf == bf_first->bf_lastbf)
1282 info.aggr = AGGR_BUF_LAST;
1283 else
1284 info.aggr = AGGR_BUF_MIDDLE;
1285
1286 info.ndelim = bf->bf_state.ndelim;
1287 info.aggr_len = len;
1288 }
1289
1290 if (bf == bf_first->bf_lastbf)
1291 bf_first = NULL;
1292
1293 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1294 bf = bf->bf_next;
1295 }
1296 }
1297
1298 static void
1299 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1300 struct ath_atx_tid *tid, struct list_head *bf_q,
1301 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1302 {
1303 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1304 struct sk_buff *skb;
1305 int nframes = 0;
1306
1307 do {
1308 struct ieee80211_tx_info *tx_info;
1309 skb = bf->bf_mpdu;
1310
1311 nframes++;
1312 __skb_unlink(skb, tid_q);
1313 list_add_tail(&bf->list, bf_q);
1314 if (bf_prev)
1315 bf_prev->bf_next = bf;
1316 bf_prev = bf;
1317
1318 if (nframes >= 2)
1319 break;
1320
1321 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1322 if (!bf)
1323 break;
1324
1325 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1326 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1327 break;
1328
1329 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1330 } while (1);
1331 }
1332
1333 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1334 struct ath_atx_tid *tid, bool *stop)
1335 {
1336 struct ath_buf *bf;
1337 struct ieee80211_tx_info *tx_info;
1338 struct sk_buff_head *tid_q;
1339 struct list_head bf_q;
1340 int aggr_len = 0;
1341 bool aggr, last = true;
1342
1343 if (!ath_tid_has_buffered(tid))
1344 return false;
1345
1346 INIT_LIST_HEAD(&bf_q);
1347
1348 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1349 if (!bf)
1350 return false;
1351
1352 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1353 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1354 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1355 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1356 *stop = true;
1357 return false;
1358 }
1359
1360 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1361 if (aggr)
1362 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1363 tid_q, &aggr_len);
1364 else
1365 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1366
1367 if (list_empty(&bf_q))
1368 return false;
1369
1370 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1371 tid->ac->clear_ps_filter = false;
1372 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1373 }
1374
1375 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1376 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1377 return true;
1378 }
1379
1380 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1381 u16 tid, u16 *ssn)
1382 {
1383 struct ath_atx_tid *txtid;
1384 struct ath_txq *txq;
1385 struct ath_node *an;
1386 u8 density;
1387
1388 an = (struct ath_node *)sta->drv_priv;
1389 txtid = ATH_AN_2_TID(an, tid);
1390 txq = txtid->ac->txq;
1391
1392 ath_txq_lock(sc, txq);
1393
1394 /* update ampdu factor/density, they may have changed. This may happen
1395 * in HT IBSS when a beacon with HT-info is received after the station
1396 * has already been added.
1397 */
1398 if (sta->ht_cap.ht_supported) {
1399 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1400 sta->ht_cap.ampdu_factor)) - 1;
1401 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1402 an->mpdudensity = density;
1403 }
1404
1405 /* force sequence number allocation for pending frames */
1406 ath_tx_tid_change_state(sc, txtid);
1407
1408 txtid->active = true;
1409 txtid->paused = true;
1410 *ssn = txtid->seq_start = txtid->seq_next;
1411 txtid->bar_index = -1;
1412
1413 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1414 txtid->baw_head = txtid->baw_tail = 0;
1415
1416 ath_txq_unlock_complete(sc, txq);
1417
1418 return 0;
1419 }
1420
1421 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1422 {
1423 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1424 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1425 struct ath_txq *txq = txtid->ac->txq;
1426
1427 ath_txq_lock(sc, txq);
1428 txtid->active = false;
1429 txtid->paused = false;
1430 ath_tx_flush_tid(sc, txtid);
1431 ath_tx_tid_change_state(sc, txtid);
1432 ath_txq_unlock_complete(sc, txq);
1433 }
1434
1435 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1436 struct ath_node *an)
1437 {
1438 struct ath_atx_tid *tid;
1439 struct ath_atx_ac *ac;
1440 struct ath_txq *txq;
1441 bool buffered;
1442 int tidno;
1443
1444 for (tidno = 0, tid = &an->tid[tidno];
1445 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1446
1447 if (!tid->sched)
1448 continue;
1449
1450 ac = tid->ac;
1451 txq = ac->txq;
1452
1453 ath_txq_lock(sc, txq);
1454
1455 buffered = ath_tid_has_buffered(tid);
1456
1457 tid->sched = false;
1458 list_del(&tid->list);
1459
1460 if (ac->sched) {
1461 ac->sched = false;
1462 list_del(&ac->list);
1463 }
1464
1465 ath_txq_unlock(sc, txq);
1466
1467 ieee80211_sta_set_buffered(sta, tidno, buffered);
1468 }
1469 }
1470
1471 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1472 {
1473 struct ath_atx_tid *tid;
1474 struct ath_atx_ac *ac;
1475 struct ath_txq *txq;
1476 int tidno;
1477
1478 for (tidno = 0, tid = &an->tid[tidno];
1479 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1480
1481 ac = tid->ac;
1482 txq = ac->txq;
1483
1484 ath_txq_lock(sc, txq);
1485 ac->clear_ps_filter = true;
1486
1487 if (!tid->paused && ath_tid_has_buffered(tid)) {
1488 ath_tx_queue_tid(txq, tid);
1489 ath_txq_schedule(sc, txq);
1490 }
1491
1492 ath_txq_unlock_complete(sc, txq);
1493 }
1494 }
1495
1496 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1497 u16 tidno)
1498 {
1499 struct ath_atx_tid *tid;
1500 struct ath_node *an;
1501 struct ath_txq *txq;
1502
1503 an = (struct ath_node *)sta->drv_priv;
1504 tid = ATH_AN_2_TID(an, tidno);
1505 txq = tid->ac->txq;
1506
1507 ath_txq_lock(sc, txq);
1508
1509 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1510 tid->paused = false;
1511
1512 if (ath_tid_has_buffered(tid)) {
1513 ath_tx_queue_tid(txq, tid);
1514 ath_txq_schedule(sc, txq);
1515 }
1516
1517 ath_txq_unlock_complete(sc, txq);
1518 }
1519
1520 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1521 struct ieee80211_sta *sta,
1522 u16 tids, int nframes,
1523 enum ieee80211_frame_release_type reason,
1524 bool more_data)
1525 {
1526 struct ath_softc *sc = hw->priv;
1527 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1528 struct ath_txq *txq = sc->tx.uapsdq;
1529 struct ieee80211_tx_info *info;
1530 struct list_head bf_q;
1531 struct ath_buf *bf_tail = NULL, *bf;
1532 struct sk_buff_head *tid_q;
1533 int sent = 0;
1534 int i;
1535
1536 INIT_LIST_HEAD(&bf_q);
1537 for (i = 0; tids && nframes; i++, tids >>= 1) {
1538 struct ath_atx_tid *tid;
1539
1540 if (!(tids & 1))
1541 continue;
1542
1543 tid = ATH_AN_2_TID(an, i);
1544 if (tid->paused)
1545 continue;
1546
1547 ath_txq_lock(sc, tid->ac->txq);
1548 while (nframes > 0) {
1549 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1550 if (!bf)
1551 break;
1552
1553 __skb_unlink(bf->bf_mpdu, tid_q);
1554 list_add_tail(&bf->list, &bf_q);
1555 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1556 if (bf_isampdu(bf)) {
1557 ath_tx_addto_baw(sc, tid, bf);
1558 bf->bf_state.bf_type &= ~BUF_AGGR;
1559 }
1560 if (bf_tail)
1561 bf_tail->bf_next = bf;
1562
1563 bf_tail = bf;
1564 nframes--;
1565 sent++;
1566 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1567
1568 if (an->sta && !ath_tid_has_buffered(tid))
1569 ieee80211_sta_set_buffered(an->sta, i, false);
1570 }
1571 ath_txq_unlock_complete(sc, tid->ac->txq);
1572 }
1573
1574 if (list_empty(&bf_q))
1575 return;
1576
1577 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1578 info->flags |= IEEE80211_TX_STATUS_EOSP;
1579
1580 bf = list_first_entry(&bf_q, struct ath_buf, list);
1581 ath_txq_lock(sc, txq);
1582 ath_tx_fill_desc(sc, bf, txq, 0);
1583 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1584 ath_txq_unlock(sc, txq);
1585 }
1586
1587 /********************/
1588 /* Queue Management */
1589 /********************/
1590
1591 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1592 {
1593 struct ath_hw *ah = sc->sc_ah;
1594 struct ath9k_tx_queue_info qi;
1595 static const int subtype_txq_to_hwq[] = {
1596 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1597 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1598 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1599 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1600 };
1601 int axq_qnum, i;
1602
1603 memset(&qi, 0, sizeof(qi));
1604 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1605 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1606 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1607 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1608 qi.tqi_physCompBuf = 0;
1609
1610 /*
1611 * Enable interrupts only for EOL and DESC conditions.
1612 * We mark tx descriptors to receive a DESC interrupt
1613 * when a tx queue gets deep; otherwise waiting for the
1614 * EOL to reap descriptors. Note that this is done to
1615 * reduce interrupt load and this only defers reaping
1616 * descriptors, never transmitting frames. Aside from
1617 * reducing interrupts this also permits more concurrency.
1618 * The only potential downside is if the tx queue backs
1619 * up in which case the top half of the kernel may backup
1620 * due to a lack of tx descriptors.
1621 *
1622 * The UAPSD queue is an exception, since we take a desc-
1623 * based intr on the EOSP frames.
1624 */
1625 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1626 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1627 } else {
1628 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1629 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1630 else
1631 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1632 TXQ_FLAG_TXDESCINT_ENABLE;
1633 }
1634 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1635 if (axq_qnum == -1) {
1636 /*
1637 * NB: don't print a message, this happens
1638 * normally on parts with too few tx queues
1639 */
1640 return NULL;
1641 }
1642 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1643 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1644
1645 txq->axq_qnum = axq_qnum;
1646 txq->mac80211_qnum = -1;
1647 txq->axq_link = NULL;
1648 __skb_queue_head_init(&txq->complete_q);
1649 INIT_LIST_HEAD(&txq->axq_q);
1650 INIT_LIST_HEAD(&txq->axq_acq);
1651 spin_lock_init(&txq->axq_lock);
1652 txq->axq_depth = 0;
1653 txq->axq_ampdu_depth = 0;
1654 txq->axq_tx_inprogress = false;
1655 sc->tx.txqsetup |= 1<<axq_qnum;
1656
1657 txq->txq_headidx = txq->txq_tailidx = 0;
1658 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1659 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1660 }
1661 return &sc->tx.txq[axq_qnum];
1662 }
1663
1664 int ath_txq_update(struct ath_softc *sc, int qnum,
1665 struct ath9k_tx_queue_info *qinfo)
1666 {
1667 struct ath_hw *ah = sc->sc_ah;
1668 int error = 0;
1669 struct ath9k_tx_queue_info qi;
1670
1671 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1672
1673 ath9k_hw_get_txq_props(ah, qnum, &qi);
1674 qi.tqi_aifs = qinfo->tqi_aifs;
1675 qi.tqi_cwmin = qinfo->tqi_cwmin;
1676 qi.tqi_cwmax = qinfo->tqi_cwmax;
1677 qi.tqi_burstTime = qinfo->tqi_burstTime;
1678 qi.tqi_readyTime = qinfo->tqi_readyTime;
1679
1680 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1681 ath_err(ath9k_hw_common(sc->sc_ah),
1682 "Unable to update hardware queue %u!\n", qnum);
1683 error = -EIO;
1684 } else {
1685 ath9k_hw_resettxqueue(ah, qnum);
1686 }
1687
1688 return error;
1689 }
1690
1691 int ath_cabq_update(struct ath_softc *sc)
1692 {
1693 struct ath9k_tx_queue_info qi;
1694 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1695 int qnum = sc->beacon.cabq->axq_qnum;
1696
1697 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1698
1699 qi.tqi_readyTime = (cur_conf->beacon_interval *
1700 ATH_CABQ_READY_TIME) / 100;
1701 ath_txq_update(sc, qnum, &qi);
1702
1703 return 0;
1704 }
1705
1706 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1707 struct list_head *list)
1708 {
1709 struct ath_buf *bf, *lastbf;
1710 struct list_head bf_head;
1711 struct ath_tx_status ts;
1712
1713 memset(&ts, 0, sizeof(ts));
1714 ts.ts_status = ATH9K_TX_FLUSH;
1715 INIT_LIST_HEAD(&bf_head);
1716
1717 while (!list_empty(list)) {
1718 bf = list_first_entry(list, struct ath_buf, list);
1719
1720 if (bf->bf_state.stale) {
1721 list_del(&bf->list);
1722
1723 ath_tx_return_buffer(sc, bf);
1724 continue;
1725 }
1726
1727 lastbf = bf->bf_lastbf;
1728 list_cut_position(&bf_head, list, &lastbf->list);
1729 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1730 }
1731 }
1732
1733 /*
1734 * Drain a given TX queue (could be Beacon or Data)
1735 *
1736 * This assumes output has been stopped and
1737 * we do not need to block ath_tx_tasklet.
1738 */
1739 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1740 {
1741 ath_txq_lock(sc, txq);
1742
1743 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1744 int idx = txq->txq_tailidx;
1745
1746 while (!list_empty(&txq->txq_fifo[idx])) {
1747 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1748
1749 INCR(idx, ATH_TXFIFO_DEPTH);
1750 }
1751 txq->txq_tailidx = idx;
1752 }
1753
1754 txq->axq_link = NULL;
1755 txq->axq_tx_inprogress = false;
1756 ath_drain_txq_list(sc, txq, &txq->axq_q);
1757
1758 ath_txq_unlock_complete(sc, txq);
1759 }
1760
1761 bool ath_drain_all_txq(struct ath_softc *sc)
1762 {
1763 struct ath_hw *ah = sc->sc_ah;
1764 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1765 struct ath_txq *txq;
1766 int i;
1767 u32 npend = 0;
1768
1769 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1770 return true;
1771
1772 ath9k_hw_abort_tx_dma(ah);
1773
1774 /* Check if any queue remains active */
1775 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1776 if (!ATH_TXQ_SETUP(sc, i))
1777 continue;
1778
1779 if (!sc->tx.txq[i].axq_depth)
1780 continue;
1781
1782 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1783 npend |= BIT(i);
1784 }
1785
1786 if (npend)
1787 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1788
1789 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1790 if (!ATH_TXQ_SETUP(sc, i))
1791 continue;
1792
1793 /*
1794 * The caller will resume queues with ieee80211_wake_queues.
1795 * Mark the queue as not stopped to prevent ath_tx_complete
1796 * from waking the queue too early.
1797 */
1798 txq = &sc->tx.txq[i];
1799 txq->stopped = false;
1800 ath_draintxq(sc, txq);
1801 }
1802
1803 return !npend;
1804 }
1805
1806 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1807 {
1808 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1809 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1810 }
1811
1812 /* For each axq_acq entry, for each tid, try to schedule packets
1813 * for transmit until ampdu_depth has reached min Q depth.
1814 */
1815 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1816 {
1817 struct ath_atx_ac *ac, *last_ac;
1818 struct ath_atx_tid *tid, *last_tid;
1819 bool sent = false;
1820
1821 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1822 list_empty(&txq->axq_acq))
1823 return;
1824
1825 rcu_read_lock();
1826
1827 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1828 while (!list_empty(&txq->axq_acq)) {
1829 bool stop = false;
1830
1831 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1832 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1833 list_del(&ac->list);
1834 ac->sched = false;
1835
1836 while (!list_empty(&ac->tid_q)) {
1837
1838 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1839 list);
1840 list_del(&tid->list);
1841 tid->sched = false;
1842
1843 if (tid->paused)
1844 continue;
1845
1846 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1847 sent = true;
1848
1849 /*
1850 * add tid to round-robin queue if more frames
1851 * are pending for the tid
1852 */
1853 if (ath_tid_has_buffered(tid))
1854 ath_tx_queue_tid(txq, tid);
1855
1856 if (stop || tid == last_tid)
1857 break;
1858 }
1859
1860 if (!list_empty(&ac->tid_q) && !ac->sched) {
1861 ac->sched = true;
1862 list_add_tail(&ac->list, &txq->axq_acq);
1863 }
1864
1865 if (stop)
1866 break;
1867
1868 if (ac == last_ac) {
1869 if (!sent)
1870 break;
1871
1872 sent = false;
1873 last_ac = list_entry(txq->axq_acq.prev,
1874 struct ath_atx_ac, list);
1875 }
1876 }
1877
1878 rcu_read_unlock();
1879 }
1880
1881 /***********/
1882 /* TX, DMA */
1883 /***********/
1884
1885 /*
1886 * Insert a chain of ath_buf (descriptors) on a txq and
1887 * assume the descriptors are already chained together by caller.
1888 */
1889 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1890 struct list_head *head, bool internal)
1891 {
1892 struct ath_hw *ah = sc->sc_ah;
1893 struct ath_common *common = ath9k_hw_common(ah);
1894 struct ath_buf *bf, *bf_last;
1895 bool puttxbuf = false;
1896 bool edma;
1897
1898 /*
1899 * Insert the frame on the outbound list and
1900 * pass it on to the hardware.
1901 */
1902
1903 if (list_empty(head))
1904 return;
1905
1906 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1907 bf = list_first_entry(head, struct ath_buf, list);
1908 bf_last = list_entry(head->prev, struct ath_buf, list);
1909
1910 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1911 txq->axq_qnum, txq->axq_depth);
1912
1913 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1914 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1915 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1916 puttxbuf = true;
1917 } else {
1918 list_splice_tail_init(head, &txq->axq_q);
1919
1920 if (txq->axq_link) {
1921 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1922 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1923 txq->axq_qnum, txq->axq_link,
1924 ito64(bf->bf_daddr), bf->bf_desc);
1925 } else if (!edma)
1926 puttxbuf = true;
1927
1928 txq->axq_link = bf_last->bf_desc;
1929 }
1930
1931 if (puttxbuf) {
1932 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1933 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1934 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1935 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1936 }
1937
1938 if (!edma || sc->tx99_state) {
1939 TX_STAT_INC(txq->axq_qnum, txstart);
1940 ath9k_hw_txstart(ah, txq->axq_qnum);
1941 }
1942
1943 if (!internal) {
1944 while (bf) {
1945 txq->axq_depth++;
1946 if (bf_is_ampdu_not_probing(bf))
1947 txq->axq_ampdu_depth++;
1948
1949 bf_last = bf->bf_lastbf;
1950 bf = bf_last->bf_next;
1951 bf_last->bf_next = NULL;
1952 }
1953 }
1954 }
1955
1956 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1957 struct ath_atx_tid *tid, struct sk_buff *skb)
1958 {
1959 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1960 struct ath_frame_info *fi = get_frame_info(skb);
1961 struct list_head bf_head;
1962 struct ath_buf *bf = fi->bf;
1963
1964 INIT_LIST_HEAD(&bf_head);
1965 list_add_tail(&bf->list, &bf_head);
1966 bf->bf_state.bf_type = 0;
1967 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1968 bf->bf_state.bf_type = BUF_AMPDU;
1969 ath_tx_addto_baw(sc, tid, bf);
1970 }
1971
1972 bf->bf_next = NULL;
1973 bf->bf_lastbf = bf;
1974 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1975 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1976 TX_STAT_INC(txq->axq_qnum, queued);
1977 }
1978
1979 static void setup_frame_info(struct ieee80211_hw *hw,
1980 struct ieee80211_sta *sta,
1981 struct sk_buff *skb,
1982 int framelen)
1983 {
1984 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1985 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1986 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1987 const struct ieee80211_rate *rate;
1988 struct ath_frame_info *fi = get_frame_info(skb);
1989 struct ath_node *an = NULL;
1990 enum ath9k_key_type keytype;
1991 bool short_preamble = false;
1992
1993 /*
1994 * We check if Short Preamble is needed for the CTS rate by
1995 * checking the BSS's global flag.
1996 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1997 */
1998 if (tx_info->control.vif &&
1999 tx_info->control.vif->bss_conf.use_short_preamble)
2000 short_preamble = true;
2001
2002 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2003 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2004
2005 if (sta)
2006 an = (struct ath_node *) sta->drv_priv;
2007
2008 memset(fi, 0, sizeof(*fi));
2009 if (hw_key)
2010 fi->keyix = hw_key->hw_key_idx;
2011 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2012 fi->keyix = an->ps_key;
2013 else
2014 fi->keyix = ATH9K_TXKEYIX_INVALID;
2015 fi->keytype = keytype;
2016 fi->framelen = framelen;
2017
2018 if (!rate)
2019 return;
2020 fi->rtscts_rate = rate->hw_value;
2021 if (short_preamble)
2022 fi->rtscts_rate |= rate->hw_value_short;
2023 }
2024
2025 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2026 {
2027 struct ath_hw *ah = sc->sc_ah;
2028 struct ath9k_channel *curchan = ah->curchan;
2029
2030 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2031 (chainmask == 0x7) && (rate < 0x90))
2032 return 0x3;
2033 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2034 IS_CCK_RATE(rate))
2035 return 0x2;
2036 else
2037 return chainmask;
2038 }
2039
2040 /*
2041 * Assign a descriptor (and sequence number if necessary,
2042 * and map buffer for DMA. Frees skb on error
2043 */
2044 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2045 struct ath_txq *txq,
2046 struct ath_atx_tid *tid,
2047 struct sk_buff *skb)
2048 {
2049 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2050 struct ath_frame_info *fi = get_frame_info(skb);
2051 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2052 struct ath_buf *bf;
2053 int fragno;
2054 u16 seqno;
2055
2056 bf = ath_tx_get_buffer(sc);
2057 if (!bf) {
2058 ath_dbg(common, XMIT, "TX buffers are full\n");
2059 return NULL;
2060 }
2061
2062 ATH_TXBUF_RESET(bf);
2063
2064 if (tid) {
2065 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2066 seqno = tid->seq_next;
2067 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2068
2069 if (fragno)
2070 hdr->seq_ctrl |= cpu_to_le16(fragno);
2071
2072 if (!ieee80211_has_morefrags(hdr->frame_control))
2073 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2074
2075 bf->bf_state.seqno = seqno;
2076 }
2077
2078 bf->bf_mpdu = skb;
2079
2080 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2081 skb->len, DMA_TO_DEVICE);
2082 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2083 bf->bf_mpdu = NULL;
2084 bf->bf_buf_addr = 0;
2085 ath_err(ath9k_hw_common(sc->sc_ah),
2086 "dma_mapping_error() on TX\n");
2087 ath_tx_return_buffer(sc, bf);
2088 return NULL;
2089 }
2090
2091 fi->bf = bf;
2092
2093 return bf;
2094 }
2095
2096 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2097 struct ath_tx_control *txctl)
2098 {
2099 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2100 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2101 struct ieee80211_sta *sta = txctl->sta;
2102 struct ieee80211_vif *vif = info->control.vif;
2103 struct ath_vif *avp;
2104 struct ath_softc *sc = hw->priv;
2105 int frmlen = skb->len + FCS_LEN;
2106 int padpos, padsize;
2107
2108 /* NOTE: sta can be NULL according to net/mac80211.h */
2109 if (sta)
2110 txctl->an = (struct ath_node *)sta->drv_priv;
2111 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2112 avp = (void *)vif->drv_priv;
2113 txctl->an = &avp->mcast_node;
2114 }
2115
2116 if (info->control.hw_key)
2117 frmlen += info->control.hw_key->icv_len;
2118
2119 /*
2120 * As a temporary workaround, assign seq# here; this will likely need
2121 * to be cleaned up to work better with Beacon transmission and virtual
2122 * BSSes.
2123 */
2124 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2125 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2126 sc->tx.seq_no += 0x10;
2127 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2128 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2129 }
2130
2131 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2132 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2133 !ieee80211_is_data(hdr->frame_control))
2134 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2135
2136 /* Add the padding after the header if this is not already done */
2137 padpos = ieee80211_hdrlen(hdr->frame_control);
2138 padsize = padpos & 3;
2139 if (padsize && skb->len > padpos) {
2140 if (skb_headroom(skb) < padsize)
2141 return -ENOMEM;
2142
2143 skb_push(skb, padsize);
2144 memmove(skb->data, skb->data + padsize, padpos);
2145 }
2146
2147 setup_frame_info(hw, sta, skb, frmlen);
2148 return 0;
2149 }
2150
2151
2152 /* Upon failure caller should free skb */
2153 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2154 struct ath_tx_control *txctl)
2155 {
2156 struct ieee80211_hdr *hdr;
2157 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2158 struct ieee80211_sta *sta = txctl->sta;
2159 struct ieee80211_vif *vif = info->control.vif;
2160 struct ath_softc *sc = hw->priv;
2161 struct ath_txq *txq = txctl->txq;
2162 struct ath_atx_tid *tid = NULL;
2163 struct ath_buf *bf;
2164 int q;
2165 int ret;
2166
2167 ret = ath_tx_prepare(hw, skb, txctl);
2168 if (ret)
2169 return ret;
2170
2171 hdr = (struct ieee80211_hdr *) skb->data;
2172 /*
2173 * At this point, the vif, hw_key and sta pointers in the tx control
2174 * info are no longer valid (overwritten by the ath_frame_info data.
2175 */
2176
2177 q = skb_get_queue_mapping(skb);
2178
2179 ath_txq_lock(sc, txq);
2180 if (txq == sc->tx.txq_map[q] &&
2181 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2182 !txq->stopped) {
2183 ieee80211_stop_queue(sc->hw, q);
2184 txq->stopped = true;
2185 }
2186
2187 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2188 ath_txq_unlock(sc, txq);
2189 txq = sc->tx.uapsdq;
2190 ath_txq_lock(sc, txq);
2191 } else if (txctl->an &&
2192 ieee80211_is_data_present(hdr->frame_control)) {
2193 tid = ath_get_skb_tid(sc, txctl->an, skb);
2194
2195 WARN_ON(tid->ac->txq != txctl->txq);
2196
2197 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2198 tid->ac->clear_ps_filter = true;
2199
2200 /*
2201 * Add this frame to software queue for scheduling later
2202 * for aggregation.
2203 */
2204 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2205 __skb_queue_tail(&tid->buf_q, skb);
2206 if (!txctl->an->sleeping)
2207 ath_tx_queue_tid(txq, tid);
2208
2209 ath_txq_schedule(sc, txq);
2210 goto out;
2211 }
2212
2213 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2214 if (!bf) {
2215 ath_txq_skb_done(sc, txq, skb);
2216 if (txctl->paprd)
2217 dev_kfree_skb_any(skb);
2218 else
2219 ieee80211_free_txskb(sc->hw, skb);
2220 goto out;
2221 }
2222
2223 bf->bf_state.bfs_paprd = txctl->paprd;
2224
2225 if (txctl->paprd)
2226 bf->bf_state.bfs_paprd_timestamp = jiffies;
2227
2228 ath_set_rates(vif, sta, bf);
2229 ath_tx_send_normal(sc, txq, tid, skb);
2230
2231 out:
2232 ath_txq_unlock(sc, txq);
2233
2234 return 0;
2235 }
2236
2237 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2238 struct sk_buff *skb)
2239 {
2240 struct ath_softc *sc = hw->priv;
2241 struct ath_tx_control txctl = {
2242 .txq = sc->beacon.cabq
2243 };
2244 struct ath_tx_info info = {};
2245 struct ieee80211_hdr *hdr;
2246 struct ath_buf *bf_tail = NULL;
2247 struct ath_buf *bf;
2248 LIST_HEAD(bf_q);
2249 int duration = 0;
2250 int max_duration;
2251
2252 max_duration =
2253 sc->cur_beacon_conf.beacon_interval * 1000 *
2254 sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2255
2256 do {
2257 struct ath_frame_info *fi = get_frame_info(skb);
2258
2259 if (ath_tx_prepare(hw, skb, &txctl))
2260 break;
2261
2262 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2263 if (!bf)
2264 break;
2265
2266 bf->bf_lastbf = bf;
2267 ath_set_rates(vif, NULL, bf);
2268 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2269 duration += info.rates[0].PktDuration;
2270 if (bf_tail)
2271 bf_tail->bf_next = bf;
2272
2273 list_add_tail(&bf->list, &bf_q);
2274 bf_tail = bf;
2275 skb = NULL;
2276
2277 if (duration > max_duration)
2278 break;
2279
2280 skb = ieee80211_get_buffered_bc(hw, vif);
2281 } while(skb);
2282
2283 if (skb)
2284 ieee80211_free_txskb(hw, skb);
2285
2286 if (list_empty(&bf_q))
2287 return;
2288
2289 bf = list_first_entry(&bf_q, struct ath_buf, list);
2290 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2291
2292 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2293 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2294 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2295 sizeof(*hdr), DMA_TO_DEVICE);
2296 }
2297
2298 ath_txq_lock(sc, txctl.txq);
2299 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2300 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2301 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2302 ath_txq_unlock(sc, txctl.txq);
2303 }
2304
2305 /*****************/
2306 /* TX Completion */
2307 /*****************/
2308
2309 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2310 int tx_flags, struct ath_txq *txq)
2311 {
2312 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2313 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2314 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2315 int padpos, padsize;
2316 unsigned long flags;
2317
2318 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2319
2320 if (sc->sc_ah->caldata)
2321 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2322
2323 if (!(tx_flags & ATH_TX_ERROR))
2324 /* Frame was ACKed */
2325 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2326
2327 padpos = ieee80211_hdrlen(hdr->frame_control);
2328 padsize = padpos & 3;
2329 if (padsize && skb->len>padpos+padsize) {
2330 /*
2331 * Remove MAC header padding before giving the frame back to
2332 * mac80211.
2333 */
2334 memmove(skb->data + padsize, skb->data, padpos);
2335 skb_pull(skb, padsize);
2336 }
2337
2338 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2339 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2340 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2341 ath_dbg(common, PS,
2342 "Going back to sleep after having received TX status (0x%lx)\n",
2343 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2344 PS_WAIT_FOR_CAB |
2345 PS_WAIT_FOR_PSPOLL_DATA |
2346 PS_WAIT_FOR_TX_ACK));
2347 }
2348 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2349
2350 __skb_queue_tail(&txq->complete_q, skb);
2351 ath_txq_skb_done(sc, txq, skb);
2352 }
2353
2354 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2355 struct ath_txq *txq, struct list_head *bf_q,
2356 struct ath_tx_status *ts, int txok)
2357 {
2358 struct sk_buff *skb = bf->bf_mpdu;
2359 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2360 unsigned long flags;
2361 int tx_flags = 0;
2362
2363 if (!txok)
2364 tx_flags |= ATH_TX_ERROR;
2365
2366 if (ts->ts_status & ATH9K_TXERR_FILT)
2367 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2368
2369 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2370 bf->bf_buf_addr = 0;
2371 if (sc->tx99_state)
2372 goto skip_tx_complete;
2373
2374 if (bf->bf_state.bfs_paprd) {
2375 if (time_after(jiffies,
2376 bf->bf_state.bfs_paprd_timestamp +
2377 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2378 dev_kfree_skb_any(skb);
2379 else
2380 complete(&sc->paprd_complete);
2381 } else {
2382 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2383 ath_tx_complete(sc, skb, tx_flags, txq);
2384 }
2385 skip_tx_complete:
2386 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2387 * accidentally reference it later.
2388 */
2389 bf->bf_mpdu = NULL;
2390
2391 /*
2392 * Return the list of ath_buf of this mpdu to free queue
2393 */
2394 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2395 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2396 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2397 }
2398
2399 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2400 struct ath_tx_status *ts, int nframes, int nbad,
2401 int txok)
2402 {
2403 struct sk_buff *skb = bf->bf_mpdu;
2404 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2405 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2406 struct ieee80211_hw *hw = sc->hw;
2407 struct ath_hw *ah = sc->sc_ah;
2408 u8 i, tx_rateindex;
2409
2410 if (txok)
2411 tx_info->status.ack_signal = ts->ts_rssi;
2412
2413 tx_rateindex = ts->ts_rateindex;
2414 WARN_ON(tx_rateindex >= hw->max_rates);
2415
2416 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2417 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2418
2419 BUG_ON(nbad > nframes);
2420 }
2421 tx_info->status.ampdu_len = nframes;
2422 tx_info->status.ampdu_ack_len = nframes - nbad;
2423
2424 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2425 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2426 /*
2427 * If an underrun error is seen assume it as an excessive
2428 * retry only if max frame trigger level has been reached
2429 * (2 KB for single stream, and 4 KB for dual stream).
2430 * Adjust the long retry as if the frame was tried
2431 * hw->max_rate_tries times to affect how rate control updates
2432 * PER for the failed rate.
2433 * In case of congestion on the bus penalizing this type of
2434 * underruns should help hardware actually transmit new frames
2435 * successfully by eventually preferring slower rates.
2436 * This itself should also alleviate congestion on the bus.
2437 */
2438 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2439 ATH9K_TX_DELIM_UNDERRUN)) &&
2440 ieee80211_is_data(hdr->frame_control) &&
2441 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2442 tx_info->status.rates[tx_rateindex].count =
2443 hw->max_rate_tries;
2444 }
2445
2446 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2447 tx_info->status.rates[i].count = 0;
2448 tx_info->status.rates[i].idx = -1;
2449 }
2450
2451 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2452 }
2453
2454 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2455 {
2456 struct ath_hw *ah = sc->sc_ah;
2457 struct ath_common *common = ath9k_hw_common(ah);
2458 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2459 struct list_head bf_head;
2460 struct ath_desc *ds;
2461 struct ath_tx_status ts;
2462 int status;
2463
2464 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2465 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2466 txq->axq_link);
2467
2468 ath_txq_lock(sc, txq);
2469 for (;;) {
2470 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2471 break;
2472
2473 if (list_empty(&txq->axq_q)) {
2474 txq->axq_link = NULL;
2475 ath_txq_schedule(sc, txq);
2476 break;
2477 }
2478 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2479
2480 /*
2481 * There is a race condition that a BH gets scheduled
2482 * after sw writes TxE and before hw re-load the last
2483 * descriptor to get the newly chained one.
2484 * Software must keep the last DONE descriptor as a
2485 * holding descriptor - software does so by marking
2486 * it with the STALE flag.
2487 */
2488 bf_held = NULL;
2489 if (bf->bf_state.stale) {
2490 bf_held = bf;
2491 if (list_is_last(&bf_held->list, &txq->axq_q))
2492 break;
2493
2494 bf = list_entry(bf_held->list.next, struct ath_buf,
2495 list);
2496 }
2497
2498 lastbf = bf->bf_lastbf;
2499 ds = lastbf->bf_desc;
2500
2501 memset(&ts, 0, sizeof(ts));
2502 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2503 if (status == -EINPROGRESS)
2504 break;
2505
2506 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2507
2508 /*
2509 * Remove ath_buf's of the same transmit unit from txq,
2510 * however leave the last descriptor back as the holding
2511 * descriptor for hw.
2512 */
2513 lastbf->bf_state.stale = true;
2514 INIT_LIST_HEAD(&bf_head);
2515 if (!list_is_singular(&lastbf->list))
2516 list_cut_position(&bf_head,
2517 &txq->axq_q, lastbf->list.prev);
2518
2519 if (bf_held) {
2520 list_del(&bf_held->list);
2521 ath_tx_return_buffer(sc, bf_held);
2522 }
2523
2524 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2525 }
2526 ath_txq_unlock_complete(sc, txq);
2527 }
2528
2529 void ath_tx_tasklet(struct ath_softc *sc)
2530 {
2531 struct ath_hw *ah = sc->sc_ah;
2532 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2533 int i;
2534
2535 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2536 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2537 ath_tx_processq(sc, &sc->tx.txq[i]);
2538 }
2539 }
2540
2541 void ath_tx_edma_tasklet(struct ath_softc *sc)
2542 {
2543 struct ath_tx_status ts;
2544 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2545 struct ath_hw *ah = sc->sc_ah;
2546 struct ath_txq *txq;
2547 struct ath_buf *bf, *lastbf;
2548 struct list_head bf_head;
2549 struct list_head *fifo_list;
2550 int status;
2551
2552 for (;;) {
2553 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2554 break;
2555
2556 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2557 if (status == -EINPROGRESS)
2558 break;
2559 if (status == -EIO) {
2560 ath_dbg(common, XMIT, "Error processing tx status\n");
2561 break;
2562 }
2563
2564 /* Process beacon completions separately */
2565 if (ts.qid == sc->beacon.beaconq) {
2566 sc->beacon.tx_processed = true;
2567 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2568
2569 ath9k_csa_is_finished(sc);
2570 continue;
2571 }
2572
2573 txq = &sc->tx.txq[ts.qid];
2574
2575 ath_txq_lock(sc, txq);
2576
2577 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2578
2579 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2580 if (list_empty(fifo_list)) {
2581 ath_txq_unlock(sc, txq);
2582 return;
2583 }
2584
2585 bf = list_first_entry(fifo_list, struct ath_buf, list);
2586 if (bf->bf_state.stale) {
2587 list_del(&bf->list);
2588 ath_tx_return_buffer(sc, bf);
2589 bf = list_first_entry(fifo_list, struct ath_buf, list);
2590 }
2591
2592 lastbf = bf->bf_lastbf;
2593
2594 INIT_LIST_HEAD(&bf_head);
2595 if (list_is_last(&lastbf->list, fifo_list)) {
2596 list_splice_tail_init(fifo_list, &bf_head);
2597 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2598
2599 if (!list_empty(&txq->axq_q)) {
2600 struct list_head bf_q;
2601
2602 INIT_LIST_HEAD(&bf_q);
2603 txq->axq_link = NULL;
2604 list_splice_tail_init(&txq->axq_q, &bf_q);
2605 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2606 }
2607 } else {
2608 lastbf->bf_state.stale = true;
2609 if (bf != lastbf)
2610 list_cut_position(&bf_head, fifo_list,
2611 lastbf->list.prev);
2612 }
2613
2614 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2615 ath_txq_unlock_complete(sc, txq);
2616 }
2617 }
2618
2619 /*****************/
2620 /* Init, Cleanup */
2621 /*****************/
2622
2623 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2624 {
2625 struct ath_descdma *dd = &sc->txsdma;
2626 u8 txs_len = sc->sc_ah->caps.txs_len;
2627
2628 dd->dd_desc_len = size * txs_len;
2629 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2630 &dd->dd_desc_paddr, GFP_KERNEL);
2631 if (!dd->dd_desc)
2632 return -ENOMEM;
2633
2634 return 0;
2635 }
2636
2637 static int ath_tx_edma_init(struct ath_softc *sc)
2638 {
2639 int err;
2640
2641 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2642 if (!err)
2643 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2644 sc->txsdma.dd_desc_paddr,
2645 ATH_TXSTATUS_RING_SIZE);
2646
2647 return err;
2648 }
2649
2650 int ath_tx_init(struct ath_softc *sc, int nbufs)
2651 {
2652 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2653 int error = 0;
2654
2655 spin_lock_init(&sc->tx.txbuflock);
2656
2657 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2658 "tx", nbufs, 1, 1);
2659 if (error != 0) {
2660 ath_err(common,
2661 "Failed to allocate tx descriptors: %d\n", error);
2662 return error;
2663 }
2664
2665 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2666 "beacon", ATH_BCBUF, 1, 1);
2667 if (error != 0) {
2668 ath_err(common,
2669 "Failed to allocate beacon descriptors: %d\n", error);
2670 return error;
2671 }
2672
2673 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2674
2675 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2676 error = ath_tx_edma_init(sc);
2677
2678 return error;
2679 }
2680
2681 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2682 {
2683 struct ath_atx_tid *tid;
2684 struct ath_atx_ac *ac;
2685 int tidno, acno;
2686
2687 for (tidno = 0, tid = &an->tid[tidno];
2688 tidno < IEEE80211_NUM_TIDS;
2689 tidno++, tid++) {
2690 tid->an = an;
2691 tid->tidno = tidno;
2692 tid->seq_start = tid->seq_next = 0;
2693 tid->baw_size = WME_MAX_BA;
2694 tid->baw_head = tid->baw_tail = 0;
2695 tid->sched = false;
2696 tid->paused = false;
2697 tid->active = false;
2698 __skb_queue_head_init(&tid->buf_q);
2699 __skb_queue_head_init(&tid->retry_q);
2700 acno = TID_TO_WME_AC(tidno);
2701 tid->ac = &an->ac[acno];
2702 }
2703
2704 for (acno = 0, ac = &an->ac[acno];
2705 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2706 ac->sched = false;
2707 ac->clear_ps_filter = true;
2708 ac->txq = sc->tx.txq_map[acno];
2709 INIT_LIST_HEAD(&ac->tid_q);
2710 }
2711 }
2712
2713 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2714 {
2715 struct ath_atx_ac *ac;
2716 struct ath_atx_tid *tid;
2717 struct ath_txq *txq;
2718 int tidno;
2719
2720 for (tidno = 0, tid = &an->tid[tidno];
2721 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2722
2723 ac = tid->ac;
2724 txq = ac->txq;
2725
2726 ath_txq_lock(sc, txq);
2727
2728 if (tid->sched) {
2729 list_del(&tid->list);
2730 tid->sched = false;
2731 }
2732
2733 if (ac->sched) {
2734 list_del(&ac->list);
2735 tid->ac->sched = false;
2736 }
2737
2738 ath_tid_drain(sc, txq, tid);
2739 tid->active = false;
2740
2741 ath_txq_unlock(sc, txq);
2742 }
2743 }
2744
2745 #ifdef CONFIG_ATH9K_TX99
2746
2747 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2748 struct ath_tx_control *txctl)
2749 {
2750 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2751 struct ath_frame_info *fi = get_frame_info(skb);
2752 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2753 struct ath_buf *bf;
2754 int padpos, padsize;
2755
2756 padpos = ieee80211_hdrlen(hdr->frame_control);
2757 padsize = padpos & 3;
2758
2759 if (padsize && skb->len > padpos) {
2760 if (skb_headroom(skb) < padsize) {
2761 ath_dbg(common, XMIT,
2762 "tx99 padding failed\n");
2763 return -EINVAL;
2764 }
2765
2766 skb_push(skb, padsize);
2767 memmove(skb->data, skb->data + padsize, padpos);
2768 }
2769
2770 fi->keyix = ATH9K_TXKEYIX_INVALID;
2771 fi->framelen = skb->len + FCS_LEN;
2772 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2773
2774 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2775 if (!bf) {
2776 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2777 return -EINVAL;
2778 }
2779
2780 ath_set_rates(sc->tx99_vif, NULL, bf);
2781
2782 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2783 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2784
2785 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2786
2787 return 0;
2788 }
2789
2790 #endif /* CONFIG_ATH9K_TX99 */
This page took 0.104321 seconds and 5 git commands to generate.