sg_start_req(): use import_iovec()
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 struct ath_atx_tid *tid)
108 {
109 struct ath_atx_ac *ac = tid->ac;
110 struct list_head *list;
111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 struct ath_chanctx *ctx = avp->chanctx;
113
114 if (!ctx)
115 return;
116
117 if (tid->sched)
118 return;
119
120 tid->sched = true;
121 list_add_tail(&tid->list, &ac->tid_q);
122
123 if (ac->sched)
124 return;
125
126 ac->sched = true;
127
128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 list_add_tail(&ac->list, list);
130 }
131
132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 sizeof(tx_info->rate_driver_data));
137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139
140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 if (!tid->an->sta)
143 return;
144
145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148
149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 struct ath_buf *bf)
151 {
152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 ARRAY_SIZE(bf->rates));
154 }
155
156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 struct sk_buff *skb)
158 {
159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 struct ath_frame_info *fi = get_frame_info(skb);
161 int q = fi->txq;
162
163 if (q < 0)
164 return;
165
166 txq = sc->tx.txq_map[q];
167 if (WARN_ON(--txq->pending_frames < 0))
168 txq->pending_frames = 0;
169
170 if (txq->stopped &&
171 txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 if (ath9k_is_chanctx_enabled())
173 ieee80211_wake_queue(sc->hw, info->hw_queue);
174 else
175 ieee80211_wake_queue(sc->hw, q);
176 txq->stopped = false;
177 }
178 }
179
180 static struct ath_atx_tid *
181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182 {
183 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184 return ATH_AN_2_TID(an, tidno);
185 }
186
187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188 {
189 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190 }
191
192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193 {
194 struct sk_buff *skb;
195
196 skb = __skb_dequeue(&tid->retry_q);
197 if (!skb)
198 skb = __skb_dequeue(&tid->buf_q);
199
200 return skb;
201 }
202
203 /*
204 * ath_tx_tid_change_state:
205 * - clears a-mpdu flag of previous session
206 * - force sequence number allocation to fix next BlockAck Window
207 */
208 static void
209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210 {
211 struct ath_txq *txq = tid->ac->txq;
212 struct ieee80211_tx_info *tx_info;
213 struct sk_buff *skb, *tskb;
214 struct ath_buf *bf;
215 struct ath_frame_info *fi;
216
217 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218 fi = get_frame_info(skb);
219 bf = fi->bf;
220
221 tx_info = IEEE80211_SKB_CB(skb);
222 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223
224 if (bf)
225 continue;
226
227 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228 if (!bf) {
229 __skb_unlink(skb, &tid->buf_q);
230 ath_txq_skb_done(sc, txq, skb);
231 ieee80211_free_txskb(sc->hw, skb);
232 continue;
233 }
234 }
235
236 }
237
238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239 {
240 struct ath_txq *txq = tid->ac->txq;
241 struct sk_buff *skb;
242 struct ath_buf *bf;
243 struct list_head bf_head;
244 struct ath_tx_status ts;
245 struct ath_frame_info *fi;
246 bool sendbar = false;
247
248 INIT_LIST_HEAD(&bf_head);
249
250 memset(&ts, 0, sizeof(ts));
251
252 while ((skb = __skb_dequeue(&tid->retry_q))) {
253 fi = get_frame_info(skb);
254 bf = fi->bf;
255 if (!bf) {
256 ath_txq_skb_done(sc, txq, skb);
257 ieee80211_free_txskb(sc->hw, skb);
258 continue;
259 }
260
261 if (fi->baw_tracked) {
262 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263 sendbar = true;
264 }
265
266 list_add_tail(&bf->list, &bf_head);
267 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268 }
269
270 if (sendbar) {
271 ath_txq_unlock(sc, txq);
272 ath_send_bar(tid, tid->seq_start);
273 ath_txq_lock(sc, txq);
274 }
275 }
276
277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278 int seqno)
279 {
280 int index, cindex;
281
282 index = ATH_BA_INDEX(tid->seq_start, seqno);
283 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284
285 __clear_bit(cindex, tid->tx_buf);
286
287 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290 if (tid->bar_index >= 0)
291 tid->bar_index--;
292 }
293 }
294
295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296 struct ath_buf *bf)
297 {
298 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299 u16 seqno = bf->bf_state.seqno;
300 int index, cindex;
301
302 index = ATH_BA_INDEX(tid->seq_start, seqno);
303 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304 __set_bit(cindex, tid->tx_buf);
305 fi->baw_tracked = 1;
306
307 if (index >= ((tid->baw_tail - tid->baw_head) &
308 (ATH_TID_MAX_BUFS - 1))) {
309 tid->baw_tail = cindex;
310 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311 }
312 }
313
314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_atx_tid *tid)
316
317 {
318 struct sk_buff *skb;
319 struct ath_buf *bf;
320 struct list_head bf_head;
321 struct ath_tx_status ts;
322 struct ath_frame_info *fi;
323
324 memset(&ts, 0, sizeof(ts));
325 INIT_LIST_HEAD(&bf_head);
326
327 while ((skb = ath_tid_dequeue(tid))) {
328 fi = get_frame_info(skb);
329 bf = fi->bf;
330
331 if (!bf) {
332 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333 continue;
334 }
335
336 list_add_tail(&bf->list, &bf_head);
337 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338 }
339 }
340
341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342 struct sk_buff *skb, int count)
343 {
344 struct ath_frame_info *fi = get_frame_info(skb);
345 struct ath_buf *bf = fi->bf;
346 struct ieee80211_hdr *hdr;
347 int prev = fi->retries;
348
349 TX_STAT_INC(txq->axq_qnum, a_retries);
350 fi->retries += count;
351
352 if (prev > 0)
353 return;
354
355 hdr = (struct ieee80211_hdr *)skb->data;
356 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358 sizeof(*hdr), DMA_TO_DEVICE);
359 }
360
361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362 {
363 struct ath_buf *bf = NULL;
364
365 spin_lock_bh(&sc->tx.txbuflock);
366
367 if (unlikely(list_empty(&sc->tx.txbuf))) {
368 spin_unlock_bh(&sc->tx.txbuflock);
369 return NULL;
370 }
371
372 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373 list_del(&bf->list);
374
375 spin_unlock_bh(&sc->tx.txbuflock);
376
377 return bf;
378 }
379
380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381 {
382 spin_lock_bh(&sc->tx.txbuflock);
383 list_add_tail(&bf->list, &sc->tx.txbuf);
384 spin_unlock_bh(&sc->tx.txbuflock);
385 }
386
387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388 {
389 struct ath_buf *tbf;
390
391 tbf = ath_tx_get_buffer(sc);
392 if (WARN_ON(!tbf))
393 return NULL;
394
395 ATH_TXBUF_RESET(tbf);
396
397 tbf->bf_mpdu = bf->bf_mpdu;
398 tbf->bf_buf_addr = bf->bf_buf_addr;
399 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400 tbf->bf_state = bf->bf_state;
401 tbf->bf_state.stale = false;
402
403 return tbf;
404 }
405
406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 struct ath_tx_status *ts, int txok,
408 int *nframes, int *nbad)
409 {
410 struct ath_frame_info *fi;
411 u16 seq_st = 0;
412 u32 ba[WME_BA_BMP_SIZE >> 5];
413 int ba_index;
414 int isaggr = 0;
415
416 *nbad = 0;
417 *nframes = 0;
418
419 isaggr = bf_isaggr(bf);
420 if (isaggr) {
421 seq_st = ts->ts_seqnum;
422 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 }
424
425 while (bf) {
426 fi = get_frame_info(bf->bf_mpdu);
427 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428
429 (*nframes)++;
430 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 (*nbad)++;
432
433 bf = bf->bf_next;
434 }
435 }
436
437
438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 struct ath_buf *bf, struct list_head *bf_q,
440 struct ath_tx_status *ts, int txok)
441 {
442 struct ath_node *an = NULL;
443 struct sk_buff *skb;
444 struct ieee80211_sta *sta;
445 struct ieee80211_hw *hw = sc->hw;
446 struct ieee80211_hdr *hdr;
447 struct ieee80211_tx_info *tx_info;
448 struct ath_atx_tid *tid = NULL;
449 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 struct list_head bf_head;
451 struct sk_buff_head bf_pending;
452 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 u32 ba[WME_BA_BMP_SIZE >> 5];
454 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 bool rc_update = true, isba;
456 struct ieee80211_tx_rate rates[4];
457 struct ath_frame_info *fi;
458 int nframes;
459 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 int i, retries;
461 int bar_index = -1;
462
463 skb = bf->bf_mpdu;
464 hdr = (struct ieee80211_hdr *)skb->data;
465
466 tx_info = IEEE80211_SKB_CB(skb);
467
468 memcpy(rates, bf->rates, sizeof(rates));
469
470 retries = ts->ts_longretry + 1;
471 for (i = 0; i < ts->ts_rateindex; i++)
472 retries += rates[i].count;
473
474 rcu_read_lock();
475
476 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 if (!sta) {
478 rcu_read_unlock();
479
480 INIT_LIST_HEAD(&bf_head);
481 while (bf) {
482 bf_next = bf->bf_next;
483
484 if (!bf->bf_state.stale || bf_next != NULL)
485 list_move_tail(&bf->list, &bf_head);
486
487 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488
489 bf = bf_next;
490 }
491 return;
492 }
493
494 an = (struct ath_node *)sta->drv_priv;
495 tid = ath_get_skb_tid(sc, an, skb);
496 seq_first = tid->seq_start;
497 isba = ts->ts_flags & ATH9K_TX_BA;
498
499 /*
500 * The hardware occasionally sends a tx status for the wrong TID.
501 * In this case, the BA status cannot be considered valid and all
502 * subframes need to be retransmitted
503 *
504 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 * checked
506 */
507 if (isba && tid->tidno != ts->tid)
508 txok = false;
509
510 isaggr = bf_isaggr(bf);
511 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512
513 if (isaggr && txok) {
514 if (ts->ts_flags & ATH9K_TX_BA) {
515 seq_st = ts->ts_seqnum;
516 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 } else {
518 /*
519 * AR5416 can become deaf/mute when BA
520 * issue happens. Chip needs to be reset.
521 * But AP code may have sychronization issues
522 * when perform internal reset in this routine.
523 * Only enable reset in STA mode for now.
524 */
525 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 needreset = 1;
527 }
528 }
529
530 __skb_queue_head_init(&bf_pending);
531
532 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 while (bf) {
534 u16 seqno = bf->bf_state.seqno;
535
536 txfail = txpending = sendbar = 0;
537 bf_next = bf->bf_next;
538
539 skb = bf->bf_mpdu;
540 tx_info = IEEE80211_SKB_CB(skb);
541 fi = get_frame_info(skb);
542
543 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 !tid->active) {
545 /*
546 * Outside of the current BlockAck window,
547 * maybe part of a previous session
548 */
549 txfail = 1;
550 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 /* transmit completion, subframe is
552 * acked by block ack */
553 acked_cnt++;
554 } else if (!isaggr && txok) {
555 /* transmit completion */
556 acked_cnt++;
557 } else if (flush) {
558 txpending = 1;
559 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 if (txok || !an->sleeping)
561 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 retries);
563
564 txpending = 1;
565 } else {
566 txfail = 1;
567 txfail_cnt++;
568 bar_index = max_t(int, bar_index,
569 ATH_BA_INDEX(seq_first, seqno));
570 }
571
572 /*
573 * Make sure the last desc is reclaimed if it
574 * not a holding desc.
575 */
576 INIT_LIST_HEAD(&bf_head);
577 if (bf_next != NULL || !bf_last->bf_state.stale)
578 list_move_tail(&bf->list, &bf_head);
579
580 if (!txpending) {
581 /*
582 * complete the acked-ones/xretried ones; update
583 * block-ack window
584 */
585 ath_tx_update_baw(sc, tid, seqno);
586
587 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 memcpy(tx_info->control.rates, rates, sizeof(rates));
589 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 rc_update = false;
591 if (bf == bf->bf_lastbf)
592 ath_dynack_sample_tx_ts(sc->sc_ah,
593 bf->bf_mpdu,
594 ts);
595 }
596
597 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598 !txfail);
599 } else {
600 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602 ieee80211_sta_eosp(sta);
603 }
604 /* retry the un-acked ones */
605 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606 struct ath_buf *tbf;
607
608 tbf = ath_clone_txbuf(sc, bf_last);
609 /*
610 * Update tx baw and complete the
611 * frame with failed status if we
612 * run out of tx buf.
613 */
614 if (!tbf) {
615 ath_tx_update_baw(sc, tid, seqno);
616
617 ath_tx_complete_buf(sc, bf, txq,
618 &bf_head, ts, 0);
619 bar_index = max_t(int, bar_index,
620 ATH_BA_INDEX(seq_first, seqno));
621 break;
622 }
623
624 fi->bf = tbf;
625 }
626
627 /*
628 * Put this buffer to the temporary pending
629 * queue to retain ordering
630 */
631 __skb_queue_tail(&bf_pending, skb);
632 }
633
634 bf = bf_next;
635 }
636
637 /* prepend un-acked frames to the beginning of the pending frame queue */
638 if (!skb_queue_empty(&bf_pending)) {
639 if (an->sleeping)
640 ieee80211_sta_set_buffered(sta, tid->tidno, true);
641
642 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643 if (!an->sleeping) {
644 ath_tx_queue_tid(sc, txq, tid);
645
646 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647 tid->ac->clear_ps_filter = true;
648 }
649 }
650
651 if (bar_index >= 0) {
652 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653
654 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656
657 ath_txq_unlock(sc, txq);
658 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659 ath_txq_lock(sc, txq);
660 }
661
662 rcu_read_unlock();
663
664 if (needreset)
665 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667
668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673
674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 struct ath_tx_status *ts, struct ath_buf *bf,
676 struct list_head *bf_head)
677 {
678 struct ieee80211_tx_info *info;
679 bool txok, flush;
680
681 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683 txq->axq_tx_inprogress = false;
684
685 txq->axq_depth--;
686 if (bf_is_ampdu_not_probing(bf))
687 txq->axq_ampdu_depth--;
688
689 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690 ts->ts_rateindex);
691 if (!bf_isampdu(bf)) {
692 if (!flush) {
693 info = IEEE80211_SKB_CB(bf->bf_mpdu);
694 memcpy(info->control.rates, bf->rates,
695 sizeof(info->control.rates));
696 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698 }
699 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700 } else
701 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702
703 if (!flush)
704 ath_txq_schedule(sc, txq);
705 }
706
707 static bool ath_lookup_legacy(struct ath_buf *bf)
708 {
709 struct sk_buff *skb;
710 struct ieee80211_tx_info *tx_info;
711 struct ieee80211_tx_rate *rates;
712 int i;
713
714 skb = bf->bf_mpdu;
715 tx_info = IEEE80211_SKB_CB(skb);
716 rates = tx_info->control.rates;
717
718 for (i = 0; i < 4; i++) {
719 if (!rates[i].count || rates[i].idx < 0)
720 break;
721
722 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723 return true;
724 }
725
726 return false;
727 }
728
729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730 struct ath_atx_tid *tid)
731 {
732 struct sk_buff *skb;
733 struct ieee80211_tx_info *tx_info;
734 struct ieee80211_tx_rate *rates;
735 u32 max_4ms_framelen, frmlen;
736 u16 aggr_limit, bt_aggr_limit, legacy = 0;
737 int q = tid->ac->txq->mac80211_qnum;
738 int i;
739
740 skb = bf->bf_mpdu;
741 tx_info = IEEE80211_SKB_CB(skb);
742 rates = bf->rates;
743
744 /*
745 * Find the lowest frame length among the rate series that will have a
746 * 4ms (or TXOP limited) transmit duration.
747 */
748 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749
750 for (i = 0; i < 4; i++) {
751 int modeidx;
752
753 if (!rates[i].count)
754 continue;
755
756 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757 legacy = 1;
758 break;
759 }
760
761 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762 modeidx = MCS_HT40;
763 else
764 modeidx = MCS_HT20;
765
766 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767 modeidx++;
768
769 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770 max_4ms_framelen = min(max_4ms_framelen, frmlen);
771 }
772
773 /*
774 * limit aggregate size by the minimum rate if rate selected is
775 * not a probe rate, if rate selected is a probe rate then
776 * avoid aggregation of this packet.
777 */
778 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779 return 0;
780
781 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782
783 /*
784 * Override the default aggregation limit for BTCOEX.
785 */
786 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787 if (bt_aggr_limit)
788 aggr_limit = bt_aggr_limit;
789
790 if (tid->an->maxampdu)
791 aggr_limit = min(aggr_limit, tid->an->maxampdu);
792
793 return aggr_limit;
794 }
795
796 /*
797 * Returns the number of delimiters to be added to
798 * meet the minimum required mpdudensity.
799 */
800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801 struct ath_buf *bf, u16 frmlen,
802 bool first_subfrm)
803 {
804 #define FIRST_DESC_NDELIMS 60
805 u32 nsymbits, nsymbols;
806 u16 minlen;
807 u8 flags, rix;
808 int width, streams, half_gi, ndelim, mindelim;
809 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810
811 /* Select standard number of delimiters based on frame length alone */
812 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813
814 /*
815 * If encryption enabled, hardware requires some more padding between
816 * subframes.
817 * TODO - this could be improved to be dependent on the rate.
818 * The hardware can keep up at lower rates, but not higher rates
819 */
820 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822 ndelim += ATH_AGGR_ENCRYPTDELIM;
823
824 /*
825 * Add delimiter when using RTS/CTS with aggregation
826 * and non enterprise AR9003 card
827 */
828 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831
832 /*
833 * Convert desired mpdu density from microeconds to bytes based
834 * on highest rate in rate series (i.e. first rate) to determine
835 * required minimum length for subframe. Take into account
836 * whether high rate is 20 or 40Mhz and half or full GI.
837 *
838 * If there is no mpdu density restriction, no further calculation
839 * is needed.
840 */
841
842 if (tid->an->mpdudensity == 0)
843 return ndelim;
844
845 rix = bf->rates[0].idx;
846 flags = bf->rates[0].flags;
847 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849
850 if (half_gi)
851 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852 else
853 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854
855 if (nsymbols == 0)
856 nsymbols = 1;
857
858 streams = HT_RC_2_STREAMS(rix);
859 nsymbits = bits_per_symbol[rix % 8][width] * streams;
860 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861
862 if (frmlen < minlen) {
863 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864 ndelim = max(mindelim, ndelim);
865 }
866
867 return ndelim;
868 }
869
870 static struct ath_buf *
871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872 struct ath_atx_tid *tid, struct sk_buff_head **q)
873 {
874 struct ieee80211_tx_info *tx_info;
875 struct ath_frame_info *fi;
876 struct sk_buff *skb;
877 struct ath_buf *bf;
878 u16 seqno;
879
880 while (1) {
881 *q = &tid->retry_q;
882 if (skb_queue_empty(*q))
883 *q = &tid->buf_q;
884
885 skb = skb_peek(*q);
886 if (!skb)
887 break;
888
889 fi = get_frame_info(skb);
890 bf = fi->bf;
891 if (!fi->bf)
892 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893 else
894 bf->bf_state.stale = false;
895
896 if (!bf) {
897 __skb_unlink(skb, *q);
898 ath_txq_skb_done(sc, txq, skb);
899 ieee80211_free_txskb(sc->hw, skb);
900 continue;
901 }
902
903 bf->bf_next = NULL;
904 bf->bf_lastbf = bf;
905
906 tx_info = IEEE80211_SKB_CB(skb);
907 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908
909 /*
910 * No aggregation session is running, but there may be frames
911 * from a previous session or a failed attempt in the queue.
912 * Send them out as normal data frames
913 */
914 if (!tid->active)
915 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916
917 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918 bf->bf_state.bf_type = 0;
919 return bf;
920 }
921
922 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923 seqno = bf->bf_state.seqno;
924
925 /* do not step over block-ack window */
926 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927 break;
928
929 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930 struct ath_tx_status ts = {};
931 struct list_head bf_head;
932
933 INIT_LIST_HEAD(&bf_head);
934 list_add(&bf->list, &bf_head);
935 __skb_unlink(skb, *q);
936 ath_tx_update_baw(sc, tid, seqno);
937 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938 continue;
939 }
940
941 return bf;
942 }
943
944 return NULL;
945 }
946
947 static bool
948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949 struct ath_atx_tid *tid, struct list_head *bf_q,
950 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951 int *aggr_len)
952 {
953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954 struct ath_buf *bf = bf_first, *bf_prev = NULL;
955 int nframes = 0, ndelim;
956 u16 aggr_limit = 0, al = 0, bpad = 0,
957 al_delta, h_baw = tid->baw_size / 2;
958 struct ieee80211_tx_info *tx_info;
959 struct ath_frame_info *fi;
960 struct sk_buff *skb;
961 bool closed = false;
962
963 bf = bf_first;
964 aggr_limit = ath_lookup_rate(sc, bf, tid);
965
966 do {
967 skb = bf->bf_mpdu;
968 fi = get_frame_info(skb);
969
970 /* do not exceed aggregation limit */
971 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972 if (nframes) {
973 if (aggr_limit < al + bpad + al_delta ||
974 ath_lookup_legacy(bf) || nframes >= h_baw)
975 break;
976
977 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980 break;
981 }
982
983 /* add padding for previous frame to aggregation length */
984 al += bpad + al_delta;
985
986 /*
987 * Get the delimiters needed to meet the MPDU
988 * density for this node.
989 */
990 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991 !nframes);
992 bpad = PADBYTES(al_delta) + (ndelim << 2);
993
994 nframes++;
995 bf->bf_next = NULL;
996
997 /* link buffers of this frame to the aggregate */
998 if (!fi->baw_tracked)
999 ath_tx_addto_baw(sc, tid, bf);
1000 bf->bf_state.ndelim = ndelim;
1001
1002 __skb_unlink(skb, tid_q);
1003 list_add_tail(&bf->list, bf_q);
1004 if (bf_prev)
1005 bf_prev->bf_next = bf;
1006
1007 bf_prev = bf;
1008
1009 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010 if (!bf) {
1011 closed = true;
1012 break;
1013 }
1014 } while (ath_tid_has_buffered(tid));
1015
1016 bf = bf_first;
1017 bf->bf_lastbf = bf_prev;
1018
1019 if (bf == bf_prev) {
1020 al = get_frame_info(bf->bf_mpdu)->framelen;
1021 bf->bf_state.bf_type = BUF_AMPDU;
1022 } else {
1023 TX_STAT_INC(txq->axq_qnum, a_aggr);
1024 }
1025
1026 *aggr_len = al;
1027
1028 return closed;
1029 #undef PADBYTES
1030 }
1031
1032 /*
1033 * rix - rate index
1034 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035 * width - 0 for 20 MHz, 1 for 40 MHz
1036 * half_gi - to use 4us v/s 3.6 us for symbol time
1037 */
1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039 int width, int half_gi, bool shortPreamble)
1040 {
1041 u32 nbits, nsymbits, duration, nsymbols;
1042 int streams;
1043
1044 /* find number of symbols: PLCP + data */
1045 streams = HT_RC_2_STREAMS(rix);
1046 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049
1050 if (!half_gi)
1051 duration = SYMBOL_TIME(nsymbols);
1052 else
1053 duration = SYMBOL_TIME_HALFGI(nsymbols);
1054
1055 /* addup duration for legacy/ht training and signal fields */
1056 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057
1058 return duration;
1059 }
1060
1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062 {
1063 int streams = HT_RC_2_STREAMS(mcs);
1064 int symbols, bits;
1065 int bytes = 0;
1066
1067 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070 bits -= OFDM_PLCP_BITS;
1071 bytes = bits / 8;
1072 if (bytes > 65532)
1073 bytes = 65532;
1074
1075 return bytes;
1076 }
1077
1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079 {
1080 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081 int mcs;
1082
1083 /* 4ms is the default (and maximum) duration */
1084 if (!txop || txop > 4096)
1085 txop = 4096;
1086
1087 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091 for (mcs = 0; mcs < 32; mcs++) {
1092 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096 }
1097 }
1098
1099 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1100 u8 rateidx, bool is_40, bool is_cck)
1101 {
1102 u8 max_power;
1103 struct sk_buff *skb;
1104 struct ath_frame_info *fi;
1105 struct ieee80211_tx_info *info;
1106 struct ath_hw *ah = sc->sc_ah;
1107
1108 if (sc->tx99_state || !ah->tpc_enabled)
1109 return MAX_RATE_POWER;
1110
1111 skb = bf->bf_mpdu;
1112 fi = get_frame_info(skb);
1113 info = IEEE80211_SKB_CB(skb);
1114
1115 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1116 int txpower = fi->tx_power;
1117
1118 if (is_40) {
1119 u8 power_ht40delta;
1120 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1121
1122 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1123 bool is_2ghz;
1124 struct modal_eep_header *pmodal;
1125
1126 is_2ghz = info->band == IEEE80211_BAND_2GHZ;
1127 pmodal = &eep->modalHeader[is_2ghz];
1128 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1129 } else {
1130 power_ht40delta = 2;
1131 }
1132 txpower += power_ht40delta;
1133 }
1134
1135 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1136 AR_SREV_9271(ah)) {
1137 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1138 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1139 s8 power_offset;
1140
1141 power_offset = ah->eep_ops->get_eeprom(ah,
1142 EEP_PWR_TABLE_OFFSET);
1143 txpower -= 2 * power_offset;
1144 }
1145
1146 if (OLC_FOR_AR9280_20_LATER && is_cck)
1147 txpower -= 2;
1148
1149 txpower = max(txpower, 0);
1150 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1151
1152 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1153 * max_power is set to 0, frames are transmitted at max
1154 * TX power
1155 */
1156 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1157 max_power = 1;
1158 } else if (!bf->bf_state.bfs_paprd) {
1159 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1160 max_power = min(ah->tx_power_stbc[rateidx],
1161 fi->tx_power);
1162 else
1163 max_power = min(ah->tx_power[rateidx], fi->tx_power);
1164 } else {
1165 max_power = ah->paprd_training_power;
1166 }
1167
1168 return max_power;
1169 }
1170
1171 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1172 struct ath_tx_info *info, int len, bool rts)
1173 {
1174 struct ath_hw *ah = sc->sc_ah;
1175 struct ath_common *common = ath9k_hw_common(ah);
1176 struct sk_buff *skb;
1177 struct ieee80211_tx_info *tx_info;
1178 struct ieee80211_tx_rate *rates;
1179 const struct ieee80211_rate *rate;
1180 struct ieee80211_hdr *hdr;
1181 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1182 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1183 int i;
1184 u8 rix = 0;
1185
1186 skb = bf->bf_mpdu;
1187 tx_info = IEEE80211_SKB_CB(skb);
1188 rates = bf->rates;
1189 hdr = (struct ieee80211_hdr *)skb->data;
1190
1191 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1192 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1193 info->rtscts_rate = fi->rtscts_rate;
1194
1195 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1196 bool is_40, is_sgi, is_sp, is_cck;
1197 int phy;
1198
1199 if (!rates[i].count || (rates[i].idx < 0))
1200 continue;
1201
1202 rix = rates[i].idx;
1203 info->rates[i].Tries = rates[i].count;
1204
1205 /*
1206 * Handle RTS threshold for unaggregated HT frames.
1207 */
1208 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1209 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1210 unlikely(rts_thresh != (u32) -1)) {
1211 if (!rts_thresh || (len > rts_thresh))
1212 rts = true;
1213 }
1214
1215 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1216 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1217 info->flags |= ATH9K_TXDESC_RTSENA;
1218 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1219 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1220 info->flags |= ATH9K_TXDESC_CTSENA;
1221 }
1222
1223 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1224 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1225 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1226 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1227
1228 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1229 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1230 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1231
1232 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1233 /* MCS rates */
1234 info->rates[i].Rate = rix | 0x80;
1235 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1236 ah->txchainmask, info->rates[i].Rate);
1237 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1238 is_40, is_sgi, is_sp);
1239 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1240 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1241
1242 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1243 is_40, false);
1244 continue;
1245 }
1246
1247 /* legacy rates */
1248 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1249 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1250 !(rate->flags & IEEE80211_RATE_ERP_G))
1251 phy = WLAN_RC_PHY_CCK;
1252 else
1253 phy = WLAN_RC_PHY_OFDM;
1254
1255 info->rates[i].Rate = rate->hw_value;
1256 if (rate->hw_value_short) {
1257 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1258 info->rates[i].Rate |= rate->hw_value_short;
1259 } else {
1260 is_sp = false;
1261 }
1262
1263 if (bf->bf_state.bfs_paprd)
1264 info->rates[i].ChSel = ah->txchainmask;
1265 else
1266 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1267 ah->txchainmask, info->rates[i].Rate);
1268
1269 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1270 phy, rate->bitrate * 100, len, rix, is_sp);
1271
1272 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1273 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1274 is_cck);
1275 }
1276
1277 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1278 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1279 info->flags &= ~ATH9K_TXDESC_RTSENA;
1280
1281 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1282 if (info->flags & ATH9K_TXDESC_RTSENA)
1283 info->flags &= ~ATH9K_TXDESC_CTSENA;
1284 }
1285
1286 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1287 {
1288 struct ieee80211_hdr *hdr;
1289 enum ath9k_pkt_type htype;
1290 __le16 fc;
1291
1292 hdr = (struct ieee80211_hdr *)skb->data;
1293 fc = hdr->frame_control;
1294
1295 if (ieee80211_is_beacon(fc))
1296 htype = ATH9K_PKT_TYPE_BEACON;
1297 else if (ieee80211_is_probe_resp(fc))
1298 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1299 else if (ieee80211_is_atim(fc))
1300 htype = ATH9K_PKT_TYPE_ATIM;
1301 else if (ieee80211_is_pspoll(fc))
1302 htype = ATH9K_PKT_TYPE_PSPOLL;
1303 else
1304 htype = ATH9K_PKT_TYPE_NORMAL;
1305
1306 return htype;
1307 }
1308
1309 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1310 struct ath_txq *txq, int len)
1311 {
1312 struct ath_hw *ah = sc->sc_ah;
1313 struct ath_buf *bf_first = NULL;
1314 struct ath_tx_info info;
1315 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1316 bool rts = false;
1317
1318 memset(&info, 0, sizeof(info));
1319 info.is_first = true;
1320 info.is_last = true;
1321 info.qcu = txq->axq_qnum;
1322
1323 while (bf) {
1324 struct sk_buff *skb = bf->bf_mpdu;
1325 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1326 struct ath_frame_info *fi = get_frame_info(skb);
1327 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1328
1329 info.type = get_hw_packet_type(skb);
1330 if (bf->bf_next)
1331 info.link = bf->bf_next->bf_daddr;
1332 else
1333 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1334
1335 if (!bf_first) {
1336 bf_first = bf;
1337
1338 if (!sc->tx99_state)
1339 info.flags = ATH9K_TXDESC_INTREQ;
1340 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1341 txq == sc->tx.uapsdq)
1342 info.flags |= ATH9K_TXDESC_CLRDMASK;
1343
1344 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1345 info.flags |= ATH9K_TXDESC_NOACK;
1346 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1347 info.flags |= ATH9K_TXDESC_LDPC;
1348
1349 if (bf->bf_state.bfs_paprd)
1350 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1351 ATH9K_TXDESC_PAPRD_S;
1352
1353 /*
1354 * mac80211 doesn't handle RTS threshold for HT because
1355 * the decision has to be taken based on AMPDU length
1356 * and aggregation is done entirely inside ath9k.
1357 * Set the RTS/CTS flag for the first subframe based
1358 * on the threshold.
1359 */
1360 if (aggr && (bf == bf_first) &&
1361 unlikely(rts_thresh != (u32) -1)) {
1362 /*
1363 * "len" is the size of the entire AMPDU.
1364 */
1365 if (!rts_thresh || (len > rts_thresh))
1366 rts = true;
1367 }
1368
1369 if (!aggr)
1370 len = fi->framelen;
1371
1372 ath_buf_set_rate(sc, bf, &info, len, rts);
1373 }
1374
1375 info.buf_addr[0] = bf->bf_buf_addr;
1376 info.buf_len[0] = skb->len;
1377 info.pkt_len = fi->framelen;
1378 info.keyix = fi->keyix;
1379 info.keytype = fi->keytype;
1380
1381 if (aggr) {
1382 if (bf == bf_first)
1383 info.aggr = AGGR_BUF_FIRST;
1384 else if (bf == bf_first->bf_lastbf)
1385 info.aggr = AGGR_BUF_LAST;
1386 else
1387 info.aggr = AGGR_BUF_MIDDLE;
1388
1389 info.ndelim = bf->bf_state.ndelim;
1390 info.aggr_len = len;
1391 }
1392
1393 if (bf == bf_first->bf_lastbf)
1394 bf_first = NULL;
1395
1396 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1397 bf = bf->bf_next;
1398 }
1399 }
1400
1401 static void
1402 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1403 struct ath_atx_tid *tid, struct list_head *bf_q,
1404 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1405 {
1406 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1407 struct sk_buff *skb;
1408 int nframes = 0;
1409
1410 do {
1411 struct ieee80211_tx_info *tx_info;
1412 skb = bf->bf_mpdu;
1413
1414 nframes++;
1415 __skb_unlink(skb, tid_q);
1416 list_add_tail(&bf->list, bf_q);
1417 if (bf_prev)
1418 bf_prev->bf_next = bf;
1419 bf_prev = bf;
1420
1421 if (nframes >= 2)
1422 break;
1423
1424 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1425 if (!bf)
1426 break;
1427
1428 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1429 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1430 break;
1431
1432 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1433 } while (1);
1434 }
1435
1436 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1437 struct ath_atx_tid *tid, bool *stop)
1438 {
1439 struct ath_buf *bf;
1440 struct ieee80211_tx_info *tx_info;
1441 struct sk_buff_head *tid_q;
1442 struct list_head bf_q;
1443 int aggr_len = 0;
1444 bool aggr, last = true;
1445
1446 if (!ath_tid_has_buffered(tid))
1447 return false;
1448
1449 INIT_LIST_HEAD(&bf_q);
1450
1451 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1452 if (!bf)
1453 return false;
1454
1455 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1456 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1457 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1458 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1459 *stop = true;
1460 return false;
1461 }
1462
1463 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1464 if (aggr)
1465 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1466 tid_q, &aggr_len);
1467 else
1468 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1469
1470 if (list_empty(&bf_q))
1471 return false;
1472
1473 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1474 tid->ac->clear_ps_filter = false;
1475 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1476 }
1477
1478 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1479 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1480 return true;
1481 }
1482
1483 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1484 u16 tid, u16 *ssn)
1485 {
1486 struct ath_atx_tid *txtid;
1487 struct ath_txq *txq;
1488 struct ath_node *an;
1489 u8 density;
1490
1491 an = (struct ath_node *)sta->drv_priv;
1492 txtid = ATH_AN_2_TID(an, tid);
1493 txq = txtid->ac->txq;
1494
1495 ath_txq_lock(sc, txq);
1496
1497 /* update ampdu factor/density, they may have changed. This may happen
1498 * in HT IBSS when a beacon with HT-info is received after the station
1499 * has already been added.
1500 */
1501 if (sta->ht_cap.ht_supported) {
1502 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1503 sta->ht_cap.ampdu_factor)) - 1;
1504 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1505 an->mpdudensity = density;
1506 }
1507
1508 /* force sequence number allocation for pending frames */
1509 ath_tx_tid_change_state(sc, txtid);
1510
1511 txtid->active = true;
1512 *ssn = txtid->seq_start = txtid->seq_next;
1513 txtid->bar_index = -1;
1514
1515 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1516 txtid->baw_head = txtid->baw_tail = 0;
1517
1518 ath_txq_unlock_complete(sc, txq);
1519
1520 return 0;
1521 }
1522
1523 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1524 {
1525 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1526 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1527 struct ath_txq *txq = txtid->ac->txq;
1528
1529 ath_txq_lock(sc, txq);
1530 txtid->active = false;
1531 ath_tx_flush_tid(sc, txtid);
1532 ath_tx_tid_change_state(sc, txtid);
1533 ath_txq_unlock_complete(sc, txq);
1534 }
1535
1536 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1537 struct ath_node *an)
1538 {
1539 struct ath_atx_tid *tid;
1540 struct ath_atx_ac *ac;
1541 struct ath_txq *txq;
1542 bool buffered;
1543 int tidno;
1544
1545 for (tidno = 0, tid = &an->tid[tidno];
1546 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1547
1548 ac = tid->ac;
1549 txq = ac->txq;
1550
1551 ath_txq_lock(sc, txq);
1552
1553 if (!tid->sched) {
1554 ath_txq_unlock(sc, txq);
1555 continue;
1556 }
1557
1558 buffered = ath_tid_has_buffered(tid);
1559
1560 tid->sched = false;
1561 list_del(&tid->list);
1562
1563 if (ac->sched) {
1564 ac->sched = false;
1565 list_del(&ac->list);
1566 }
1567
1568 ath_txq_unlock(sc, txq);
1569
1570 ieee80211_sta_set_buffered(sta, tidno, buffered);
1571 }
1572 }
1573
1574 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1575 {
1576 struct ath_atx_tid *tid;
1577 struct ath_atx_ac *ac;
1578 struct ath_txq *txq;
1579 int tidno;
1580
1581 for (tidno = 0, tid = &an->tid[tidno];
1582 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1583
1584 ac = tid->ac;
1585 txq = ac->txq;
1586
1587 ath_txq_lock(sc, txq);
1588 ac->clear_ps_filter = true;
1589
1590 if (ath_tid_has_buffered(tid)) {
1591 ath_tx_queue_tid(sc, txq, tid);
1592 ath_txq_schedule(sc, txq);
1593 }
1594
1595 ath_txq_unlock_complete(sc, txq);
1596 }
1597 }
1598
1599 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1600 u16 tidno)
1601 {
1602 struct ath_atx_tid *tid;
1603 struct ath_node *an;
1604 struct ath_txq *txq;
1605
1606 an = (struct ath_node *)sta->drv_priv;
1607 tid = ATH_AN_2_TID(an, tidno);
1608 txq = tid->ac->txq;
1609
1610 ath_txq_lock(sc, txq);
1611
1612 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1613
1614 if (ath_tid_has_buffered(tid)) {
1615 ath_tx_queue_tid(sc, txq, tid);
1616 ath_txq_schedule(sc, txq);
1617 }
1618
1619 ath_txq_unlock_complete(sc, txq);
1620 }
1621
1622 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1623 struct ieee80211_sta *sta,
1624 u16 tids, int nframes,
1625 enum ieee80211_frame_release_type reason,
1626 bool more_data)
1627 {
1628 struct ath_softc *sc = hw->priv;
1629 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1630 struct ath_txq *txq = sc->tx.uapsdq;
1631 struct ieee80211_tx_info *info;
1632 struct list_head bf_q;
1633 struct ath_buf *bf_tail = NULL, *bf;
1634 struct sk_buff_head *tid_q;
1635 int sent = 0;
1636 int i;
1637
1638 INIT_LIST_HEAD(&bf_q);
1639 for (i = 0; tids && nframes; i++, tids >>= 1) {
1640 struct ath_atx_tid *tid;
1641
1642 if (!(tids & 1))
1643 continue;
1644
1645 tid = ATH_AN_2_TID(an, i);
1646
1647 ath_txq_lock(sc, tid->ac->txq);
1648 while (nframes > 0) {
1649 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1650 if (!bf)
1651 break;
1652
1653 __skb_unlink(bf->bf_mpdu, tid_q);
1654 list_add_tail(&bf->list, &bf_q);
1655 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1656 if (bf_isampdu(bf)) {
1657 ath_tx_addto_baw(sc, tid, bf);
1658 bf->bf_state.bf_type &= ~BUF_AGGR;
1659 }
1660 if (bf_tail)
1661 bf_tail->bf_next = bf;
1662
1663 bf_tail = bf;
1664 nframes--;
1665 sent++;
1666 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1667
1668 if (an->sta && !ath_tid_has_buffered(tid))
1669 ieee80211_sta_set_buffered(an->sta, i, false);
1670 }
1671 ath_txq_unlock_complete(sc, tid->ac->txq);
1672 }
1673
1674 if (list_empty(&bf_q))
1675 return;
1676
1677 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1678 info->flags |= IEEE80211_TX_STATUS_EOSP;
1679
1680 bf = list_first_entry(&bf_q, struct ath_buf, list);
1681 ath_txq_lock(sc, txq);
1682 ath_tx_fill_desc(sc, bf, txq, 0);
1683 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1684 ath_txq_unlock(sc, txq);
1685 }
1686
1687 /********************/
1688 /* Queue Management */
1689 /********************/
1690
1691 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1692 {
1693 struct ath_hw *ah = sc->sc_ah;
1694 struct ath9k_tx_queue_info qi;
1695 static const int subtype_txq_to_hwq[] = {
1696 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1697 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1698 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1699 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1700 };
1701 int axq_qnum, i;
1702
1703 memset(&qi, 0, sizeof(qi));
1704 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1705 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1706 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1707 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1708 qi.tqi_physCompBuf = 0;
1709
1710 /*
1711 * Enable interrupts only for EOL and DESC conditions.
1712 * We mark tx descriptors to receive a DESC interrupt
1713 * when a tx queue gets deep; otherwise waiting for the
1714 * EOL to reap descriptors. Note that this is done to
1715 * reduce interrupt load and this only defers reaping
1716 * descriptors, never transmitting frames. Aside from
1717 * reducing interrupts this also permits more concurrency.
1718 * The only potential downside is if the tx queue backs
1719 * up in which case the top half of the kernel may backup
1720 * due to a lack of tx descriptors.
1721 *
1722 * The UAPSD queue is an exception, since we take a desc-
1723 * based intr on the EOSP frames.
1724 */
1725 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1726 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1727 } else {
1728 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1729 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1730 else
1731 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1732 TXQ_FLAG_TXDESCINT_ENABLE;
1733 }
1734 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1735 if (axq_qnum == -1) {
1736 /*
1737 * NB: don't print a message, this happens
1738 * normally on parts with too few tx queues
1739 */
1740 return NULL;
1741 }
1742 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1743 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1744
1745 txq->axq_qnum = axq_qnum;
1746 txq->mac80211_qnum = -1;
1747 txq->axq_link = NULL;
1748 __skb_queue_head_init(&txq->complete_q);
1749 INIT_LIST_HEAD(&txq->axq_q);
1750 spin_lock_init(&txq->axq_lock);
1751 txq->axq_depth = 0;
1752 txq->axq_ampdu_depth = 0;
1753 txq->axq_tx_inprogress = false;
1754 sc->tx.txqsetup |= 1<<axq_qnum;
1755
1756 txq->txq_headidx = txq->txq_tailidx = 0;
1757 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1758 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1759 }
1760 return &sc->tx.txq[axq_qnum];
1761 }
1762
1763 int ath_txq_update(struct ath_softc *sc, int qnum,
1764 struct ath9k_tx_queue_info *qinfo)
1765 {
1766 struct ath_hw *ah = sc->sc_ah;
1767 int error = 0;
1768 struct ath9k_tx_queue_info qi;
1769
1770 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1771
1772 ath9k_hw_get_txq_props(ah, qnum, &qi);
1773 qi.tqi_aifs = qinfo->tqi_aifs;
1774 qi.tqi_cwmin = qinfo->tqi_cwmin;
1775 qi.tqi_cwmax = qinfo->tqi_cwmax;
1776 qi.tqi_burstTime = qinfo->tqi_burstTime;
1777 qi.tqi_readyTime = qinfo->tqi_readyTime;
1778
1779 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1780 ath_err(ath9k_hw_common(sc->sc_ah),
1781 "Unable to update hardware queue %u!\n", qnum);
1782 error = -EIO;
1783 } else {
1784 ath9k_hw_resettxqueue(ah, qnum);
1785 }
1786
1787 return error;
1788 }
1789
1790 int ath_cabq_update(struct ath_softc *sc)
1791 {
1792 struct ath9k_tx_queue_info qi;
1793 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1794 int qnum = sc->beacon.cabq->axq_qnum;
1795
1796 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1797
1798 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1799 ATH_CABQ_READY_TIME) / 100;
1800 ath_txq_update(sc, qnum, &qi);
1801
1802 return 0;
1803 }
1804
1805 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1806 struct list_head *list)
1807 {
1808 struct ath_buf *bf, *lastbf;
1809 struct list_head bf_head;
1810 struct ath_tx_status ts;
1811
1812 memset(&ts, 0, sizeof(ts));
1813 ts.ts_status = ATH9K_TX_FLUSH;
1814 INIT_LIST_HEAD(&bf_head);
1815
1816 while (!list_empty(list)) {
1817 bf = list_first_entry(list, struct ath_buf, list);
1818
1819 if (bf->bf_state.stale) {
1820 list_del(&bf->list);
1821
1822 ath_tx_return_buffer(sc, bf);
1823 continue;
1824 }
1825
1826 lastbf = bf->bf_lastbf;
1827 list_cut_position(&bf_head, list, &lastbf->list);
1828 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1829 }
1830 }
1831
1832 /*
1833 * Drain a given TX queue (could be Beacon or Data)
1834 *
1835 * This assumes output has been stopped and
1836 * we do not need to block ath_tx_tasklet.
1837 */
1838 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1839 {
1840 ath_txq_lock(sc, txq);
1841
1842 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1843 int idx = txq->txq_tailidx;
1844
1845 while (!list_empty(&txq->txq_fifo[idx])) {
1846 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1847
1848 INCR(idx, ATH_TXFIFO_DEPTH);
1849 }
1850 txq->txq_tailidx = idx;
1851 }
1852
1853 txq->axq_link = NULL;
1854 txq->axq_tx_inprogress = false;
1855 ath_drain_txq_list(sc, txq, &txq->axq_q);
1856
1857 ath_txq_unlock_complete(sc, txq);
1858 }
1859
1860 bool ath_drain_all_txq(struct ath_softc *sc)
1861 {
1862 struct ath_hw *ah = sc->sc_ah;
1863 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1864 struct ath_txq *txq;
1865 int i;
1866 u32 npend = 0;
1867
1868 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1869 return true;
1870
1871 ath9k_hw_abort_tx_dma(ah);
1872
1873 /* Check if any queue remains active */
1874 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1875 if (!ATH_TXQ_SETUP(sc, i))
1876 continue;
1877
1878 if (!sc->tx.txq[i].axq_depth)
1879 continue;
1880
1881 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1882 npend |= BIT(i);
1883 }
1884
1885 if (npend)
1886 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1887
1888 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1889 if (!ATH_TXQ_SETUP(sc, i))
1890 continue;
1891
1892 /*
1893 * The caller will resume queues with ieee80211_wake_queues.
1894 * Mark the queue as not stopped to prevent ath_tx_complete
1895 * from waking the queue too early.
1896 */
1897 txq = &sc->tx.txq[i];
1898 txq->stopped = false;
1899 ath_draintxq(sc, txq);
1900 }
1901
1902 return !npend;
1903 }
1904
1905 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1906 {
1907 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1908 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1909 }
1910
1911 /* For each acq entry, for each tid, try to schedule packets
1912 * for transmit until ampdu_depth has reached min Q depth.
1913 */
1914 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1915 {
1916 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1917 struct ath_atx_ac *ac, *last_ac;
1918 struct ath_atx_tid *tid, *last_tid;
1919 struct list_head *ac_list;
1920 bool sent = false;
1921
1922 if (txq->mac80211_qnum < 0)
1923 return;
1924
1925 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1926 return;
1927
1928 spin_lock_bh(&sc->chan_lock);
1929 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1930
1931 if (list_empty(ac_list)) {
1932 spin_unlock_bh(&sc->chan_lock);
1933 return;
1934 }
1935
1936 rcu_read_lock();
1937
1938 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1939 while (!list_empty(ac_list)) {
1940 bool stop = false;
1941
1942 if (sc->cur_chan->stopped)
1943 break;
1944
1945 ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1946 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1947 list_del(&ac->list);
1948 ac->sched = false;
1949
1950 while (!list_empty(&ac->tid_q)) {
1951
1952 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1953 list);
1954 list_del(&tid->list);
1955 tid->sched = false;
1956
1957 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1958 sent = true;
1959
1960 /*
1961 * add tid to round-robin queue if more frames
1962 * are pending for the tid
1963 */
1964 if (ath_tid_has_buffered(tid))
1965 ath_tx_queue_tid(sc, txq, tid);
1966
1967 if (stop || tid == last_tid)
1968 break;
1969 }
1970
1971 if (!list_empty(&ac->tid_q) && !ac->sched) {
1972 ac->sched = true;
1973 list_add_tail(&ac->list, ac_list);
1974 }
1975
1976 if (stop)
1977 break;
1978
1979 if (ac == last_ac) {
1980 if (!sent)
1981 break;
1982
1983 sent = false;
1984 last_ac = list_entry(ac_list->prev,
1985 struct ath_atx_ac, list);
1986 }
1987 }
1988
1989 rcu_read_unlock();
1990 spin_unlock_bh(&sc->chan_lock);
1991 }
1992
1993 void ath_txq_schedule_all(struct ath_softc *sc)
1994 {
1995 struct ath_txq *txq;
1996 int i;
1997
1998 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1999 txq = sc->tx.txq_map[i];
2000
2001 spin_lock_bh(&txq->axq_lock);
2002 ath_txq_schedule(sc, txq);
2003 spin_unlock_bh(&txq->axq_lock);
2004 }
2005 }
2006
2007 /***********/
2008 /* TX, DMA */
2009 /***********/
2010
2011 /*
2012 * Insert a chain of ath_buf (descriptors) on a txq and
2013 * assume the descriptors are already chained together by caller.
2014 */
2015 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2016 struct list_head *head, bool internal)
2017 {
2018 struct ath_hw *ah = sc->sc_ah;
2019 struct ath_common *common = ath9k_hw_common(ah);
2020 struct ath_buf *bf, *bf_last;
2021 bool puttxbuf = false;
2022 bool edma;
2023
2024 /*
2025 * Insert the frame on the outbound list and
2026 * pass it on to the hardware.
2027 */
2028
2029 if (list_empty(head))
2030 return;
2031
2032 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2033 bf = list_first_entry(head, struct ath_buf, list);
2034 bf_last = list_entry(head->prev, struct ath_buf, list);
2035
2036 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2037 txq->axq_qnum, txq->axq_depth);
2038
2039 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2040 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2041 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2042 puttxbuf = true;
2043 } else {
2044 list_splice_tail_init(head, &txq->axq_q);
2045
2046 if (txq->axq_link) {
2047 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2048 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2049 txq->axq_qnum, txq->axq_link,
2050 ito64(bf->bf_daddr), bf->bf_desc);
2051 } else if (!edma)
2052 puttxbuf = true;
2053
2054 txq->axq_link = bf_last->bf_desc;
2055 }
2056
2057 if (puttxbuf) {
2058 TX_STAT_INC(txq->axq_qnum, puttxbuf);
2059 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2060 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2061 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2062 }
2063
2064 if (!edma || sc->tx99_state) {
2065 TX_STAT_INC(txq->axq_qnum, txstart);
2066 ath9k_hw_txstart(ah, txq->axq_qnum);
2067 }
2068
2069 if (!internal) {
2070 while (bf) {
2071 txq->axq_depth++;
2072 if (bf_is_ampdu_not_probing(bf))
2073 txq->axq_ampdu_depth++;
2074
2075 bf_last = bf->bf_lastbf;
2076 bf = bf_last->bf_next;
2077 bf_last->bf_next = NULL;
2078 }
2079 }
2080 }
2081
2082 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2083 struct ath_atx_tid *tid, struct sk_buff *skb)
2084 {
2085 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2086 struct ath_frame_info *fi = get_frame_info(skb);
2087 struct list_head bf_head;
2088 struct ath_buf *bf = fi->bf;
2089
2090 INIT_LIST_HEAD(&bf_head);
2091 list_add_tail(&bf->list, &bf_head);
2092 bf->bf_state.bf_type = 0;
2093 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2094 bf->bf_state.bf_type = BUF_AMPDU;
2095 ath_tx_addto_baw(sc, tid, bf);
2096 }
2097
2098 bf->bf_next = NULL;
2099 bf->bf_lastbf = bf;
2100 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2101 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2102 TX_STAT_INC(txq->axq_qnum, queued);
2103 }
2104
2105 static void setup_frame_info(struct ieee80211_hw *hw,
2106 struct ieee80211_sta *sta,
2107 struct sk_buff *skb,
2108 int framelen)
2109 {
2110 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2111 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2112 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2113 const struct ieee80211_rate *rate;
2114 struct ath_frame_info *fi = get_frame_info(skb);
2115 struct ath_node *an = NULL;
2116 enum ath9k_key_type keytype;
2117 bool short_preamble = false;
2118
2119 /*
2120 * We check if Short Preamble is needed for the CTS rate by
2121 * checking the BSS's global flag.
2122 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2123 */
2124 if (tx_info->control.vif &&
2125 tx_info->control.vif->bss_conf.use_short_preamble)
2126 short_preamble = true;
2127
2128 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2129 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2130
2131 if (sta)
2132 an = (struct ath_node *) sta->drv_priv;
2133
2134 memset(fi, 0, sizeof(*fi));
2135 fi->txq = -1;
2136 if (hw_key)
2137 fi->keyix = hw_key->hw_key_idx;
2138 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2139 fi->keyix = an->ps_key;
2140 else
2141 fi->keyix = ATH9K_TXKEYIX_INVALID;
2142 fi->keytype = keytype;
2143 fi->framelen = framelen;
2144 fi->tx_power = MAX_RATE_POWER;
2145
2146 if (!rate)
2147 return;
2148 fi->rtscts_rate = rate->hw_value;
2149 if (short_preamble)
2150 fi->rtscts_rate |= rate->hw_value_short;
2151 }
2152
2153 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2154 {
2155 struct ath_hw *ah = sc->sc_ah;
2156 struct ath9k_channel *curchan = ah->curchan;
2157
2158 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2159 (chainmask == 0x7) && (rate < 0x90))
2160 return 0x3;
2161 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2162 IS_CCK_RATE(rate))
2163 return 0x2;
2164 else
2165 return chainmask;
2166 }
2167
2168 /*
2169 * Assign a descriptor (and sequence number if necessary,
2170 * and map buffer for DMA. Frees skb on error
2171 */
2172 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2173 struct ath_txq *txq,
2174 struct ath_atx_tid *tid,
2175 struct sk_buff *skb)
2176 {
2177 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2178 struct ath_frame_info *fi = get_frame_info(skb);
2179 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2180 struct ath_buf *bf;
2181 int fragno;
2182 u16 seqno;
2183
2184 bf = ath_tx_get_buffer(sc);
2185 if (!bf) {
2186 ath_dbg(common, XMIT, "TX buffers are full\n");
2187 return NULL;
2188 }
2189
2190 ATH_TXBUF_RESET(bf);
2191
2192 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2193 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2194 seqno = tid->seq_next;
2195 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2196
2197 if (fragno)
2198 hdr->seq_ctrl |= cpu_to_le16(fragno);
2199
2200 if (!ieee80211_has_morefrags(hdr->frame_control))
2201 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2202
2203 bf->bf_state.seqno = seqno;
2204 }
2205
2206 bf->bf_mpdu = skb;
2207
2208 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2209 skb->len, DMA_TO_DEVICE);
2210 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2211 bf->bf_mpdu = NULL;
2212 bf->bf_buf_addr = 0;
2213 ath_err(ath9k_hw_common(sc->sc_ah),
2214 "dma_mapping_error() on TX\n");
2215 ath_tx_return_buffer(sc, bf);
2216 return NULL;
2217 }
2218
2219 fi->bf = bf;
2220
2221 return bf;
2222 }
2223
2224 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2225 {
2226 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2227 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2228 struct ieee80211_vif *vif = info->control.vif;
2229 struct ath_vif *avp;
2230
2231 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2232 return;
2233
2234 if (!vif)
2235 return;
2236
2237 avp = (struct ath_vif *)vif->drv_priv;
2238
2239 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2240 avp->seq_no += 0x10;
2241
2242 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2243 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2244 }
2245
2246 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2247 struct ath_tx_control *txctl)
2248 {
2249 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2250 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2251 struct ieee80211_sta *sta = txctl->sta;
2252 struct ieee80211_vif *vif = info->control.vif;
2253 struct ath_vif *avp;
2254 struct ath_softc *sc = hw->priv;
2255 int frmlen = skb->len + FCS_LEN;
2256 int padpos, padsize;
2257
2258 /* NOTE: sta can be NULL according to net/mac80211.h */
2259 if (sta)
2260 txctl->an = (struct ath_node *)sta->drv_priv;
2261 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2262 avp = (void *)vif->drv_priv;
2263 txctl->an = &avp->mcast_node;
2264 }
2265
2266 if (info->control.hw_key)
2267 frmlen += info->control.hw_key->icv_len;
2268
2269 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2270
2271 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2272 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2273 !ieee80211_is_data(hdr->frame_control))
2274 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2275
2276 /* Add the padding after the header if this is not already done */
2277 padpos = ieee80211_hdrlen(hdr->frame_control);
2278 padsize = padpos & 3;
2279 if (padsize && skb->len > padpos) {
2280 if (skb_headroom(skb) < padsize)
2281 return -ENOMEM;
2282
2283 skb_push(skb, padsize);
2284 memmove(skb->data, skb->data + padsize, padpos);
2285 }
2286
2287 setup_frame_info(hw, sta, skb, frmlen);
2288 return 0;
2289 }
2290
2291
2292 /* Upon failure caller should free skb */
2293 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2294 struct ath_tx_control *txctl)
2295 {
2296 struct ieee80211_hdr *hdr;
2297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2298 struct ieee80211_sta *sta = txctl->sta;
2299 struct ieee80211_vif *vif = info->control.vif;
2300 struct ath_frame_info *fi = get_frame_info(skb);
2301 struct ath_vif *avp = NULL;
2302 struct ath_softc *sc = hw->priv;
2303 struct ath_txq *txq = txctl->txq;
2304 struct ath_atx_tid *tid = NULL;
2305 struct ath_buf *bf;
2306 bool queue, skip_uapsd = false, ps_resp;
2307 int q, ret;
2308
2309 if (vif)
2310 avp = (void *)vif->drv_priv;
2311
2312 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2313 txctl->force_channel = true;
2314
2315 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2316
2317 ret = ath_tx_prepare(hw, skb, txctl);
2318 if (ret)
2319 return ret;
2320
2321 hdr = (struct ieee80211_hdr *) skb->data;
2322 /*
2323 * At this point, the vif, hw_key and sta pointers in the tx control
2324 * info are no longer valid (overwritten by the ath_frame_info data.
2325 */
2326
2327 q = skb_get_queue_mapping(skb);
2328
2329 ath_txq_lock(sc, txq);
2330 if (txq == sc->tx.txq_map[q]) {
2331 fi->txq = q;
2332 if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2333 !txq->stopped) {
2334 if (ath9k_is_chanctx_enabled())
2335 ieee80211_stop_queue(sc->hw, info->hw_queue);
2336 else
2337 ieee80211_stop_queue(sc->hw, q);
2338 txq->stopped = true;
2339 }
2340 }
2341
2342 queue = ieee80211_is_data_present(hdr->frame_control);
2343
2344 /* Force queueing of all frames that belong to a virtual interface on
2345 * a different channel context, to ensure that they are sent on the
2346 * correct channel.
2347 */
2348 if (((avp && avp->chanctx != sc->cur_chan) ||
2349 sc->cur_chan->stopped) && !txctl->force_channel) {
2350 if (!txctl->an)
2351 txctl->an = &avp->mcast_node;
2352 queue = true;
2353 skip_uapsd = true;
2354 }
2355
2356 if (txctl->an && queue)
2357 tid = ath_get_skb_tid(sc, txctl->an, skb);
2358
2359 if (!skip_uapsd && ps_resp) {
2360 ath_txq_unlock(sc, txq);
2361 txq = sc->tx.uapsdq;
2362 ath_txq_lock(sc, txq);
2363 } else if (txctl->an && queue) {
2364 WARN_ON(tid->ac->txq != txctl->txq);
2365
2366 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2367 tid->ac->clear_ps_filter = true;
2368
2369 /*
2370 * Add this frame to software queue for scheduling later
2371 * for aggregation.
2372 */
2373 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2374 __skb_queue_tail(&tid->buf_q, skb);
2375 if (!txctl->an->sleeping)
2376 ath_tx_queue_tid(sc, txq, tid);
2377
2378 ath_txq_schedule(sc, txq);
2379 goto out;
2380 }
2381
2382 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2383 if (!bf) {
2384 ath_txq_skb_done(sc, txq, skb);
2385 if (txctl->paprd)
2386 dev_kfree_skb_any(skb);
2387 else
2388 ieee80211_free_txskb(sc->hw, skb);
2389 goto out;
2390 }
2391
2392 bf->bf_state.bfs_paprd = txctl->paprd;
2393
2394 if (txctl->paprd)
2395 bf->bf_state.bfs_paprd_timestamp = jiffies;
2396
2397 ath_set_rates(vif, sta, bf);
2398 ath_tx_send_normal(sc, txq, tid, skb);
2399
2400 out:
2401 ath_txq_unlock(sc, txq);
2402
2403 return 0;
2404 }
2405
2406 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2407 struct sk_buff *skb)
2408 {
2409 struct ath_softc *sc = hw->priv;
2410 struct ath_tx_control txctl = {
2411 .txq = sc->beacon.cabq
2412 };
2413 struct ath_tx_info info = {};
2414 struct ieee80211_hdr *hdr;
2415 struct ath_buf *bf_tail = NULL;
2416 struct ath_buf *bf;
2417 LIST_HEAD(bf_q);
2418 int duration = 0;
2419 int max_duration;
2420
2421 max_duration =
2422 sc->cur_chan->beacon.beacon_interval * 1000 *
2423 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2424
2425 do {
2426 struct ath_frame_info *fi = get_frame_info(skb);
2427
2428 if (ath_tx_prepare(hw, skb, &txctl))
2429 break;
2430
2431 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2432 if (!bf)
2433 break;
2434
2435 bf->bf_lastbf = bf;
2436 ath_set_rates(vif, NULL, bf);
2437 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2438 duration += info.rates[0].PktDuration;
2439 if (bf_tail)
2440 bf_tail->bf_next = bf;
2441
2442 list_add_tail(&bf->list, &bf_q);
2443 bf_tail = bf;
2444 skb = NULL;
2445
2446 if (duration > max_duration)
2447 break;
2448
2449 skb = ieee80211_get_buffered_bc(hw, vif);
2450 } while(skb);
2451
2452 if (skb)
2453 ieee80211_free_txskb(hw, skb);
2454
2455 if (list_empty(&bf_q))
2456 return;
2457
2458 bf = list_first_entry(&bf_q, struct ath_buf, list);
2459 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2460
2461 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2462 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2463 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2464 sizeof(*hdr), DMA_TO_DEVICE);
2465 }
2466
2467 ath_txq_lock(sc, txctl.txq);
2468 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2469 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2470 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2471 ath_txq_unlock(sc, txctl.txq);
2472 }
2473
2474 /*****************/
2475 /* TX Completion */
2476 /*****************/
2477
2478 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2479 int tx_flags, struct ath_txq *txq)
2480 {
2481 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2482 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2483 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2484 int padpos, padsize;
2485 unsigned long flags;
2486
2487 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2488
2489 if (sc->sc_ah->caldata)
2490 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2491
2492 if (!(tx_flags & ATH_TX_ERROR)) {
2493 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2494 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2495 else
2496 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2497 }
2498
2499 padpos = ieee80211_hdrlen(hdr->frame_control);
2500 padsize = padpos & 3;
2501 if (padsize && skb->len>padpos+padsize) {
2502 /*
2503 * Remove MAC header padding before giving the frame back to
2504 * mac80211.
2505 */
2506 memmove(skb->data + padsize, skb->data, padpos);
2507 skb_pull(skb, padsize);
2508 }
2509
2510 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2511 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2512 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2513 ath_dbg(common, PS,
2514 "Going back to sleep after having received TX status (0x%lx)\n",
2515 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2516 PS_WAIT_FOR_CAB |
2517 PS_WAIT_FOR_PSPOLL_DATA |
2518 PS_WAIT_FOR_TX_ACK));
2519 }
2520 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2521
2522 __skb_queue_tail(&txq->complete_q, skb);
2523 ath_txq_skb_done(sc, txq, skb);
2524 }
2525
2526 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2527 struct ath_txq *txq, struct list_head *bf_q,
2528 struct ath_tx_status *ts, int txok)
2529 {
2530 struct sk_buff *skb = bf->bf_mpdu;
2531 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2532 unsigned long flags;
2533 int tx_flags = 0;
2534
2535 if (!txok)
2536 tx_flags |= ATH_TX_ERROR;
2537
2538 if (ts->ts_status & ATH9K_TXERR_FILT)
2539 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2540
2541 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2542 bf->bf_buf_addr = 0;
2543 if (sc->tx99_state)
2544 goto skip_tx_complete;
2545
2546 if (bf->bf_state.bfs_paprd) {
2547 if (time_after(jiffies,
2548 bf->bf_state.bfs_paprd_timestamp +
2549 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2550 dev_kfree_skb_any(skb);
2551 else
2552 complete(&sc->paprd_complete);
2553 } else {
2554 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2555 ath_tx_complete(sc, skb, tx_flags, txq);
2556 }
2557 skip_tx_complete:
2558 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2559 * accidentally reference it later.
2560 */
2561 bf->bf_mpdu = NULL;
2562
2563 /*
2564 * Return the list of ath_buf of this mpdu to free queue
2565 */
2566 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2567 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2568 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2569 }
2570
2571 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2572 struct ath_tx_status *ts, int nframes, int nbad,
2573 int txok)
2574 {
2575 struct sk_buff *skb = bf->bf_mpdu;
2576 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2577 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2578 struct ieee80211_hw *hw = sc->hw;
2579 struct ath_hw *ah = sc->sc_ah;
2580 u8 i, tx_rateindex;
2581
2582 if (txok)
2583 tx_info->status.ack_signal = ts->ts_rssi;
2584
2585 tx_rateindex = ts->ts_rateindex;
2586 WARN_ON(tx_rateindex >= hw->max_rates);
2587
2588 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2589 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2590
2591 BUG_ON(nbad > nframes);
2592 }
2593 tx_info->status.ampdu_len = nframes;
2594 tx_info->status.ampdu_ack_len = nframes - nbad;
2595
2596 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2597 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2598 /*
2599 * If an underrun error is seen assume it as an excessive
2600 * retry only if max frame trigger level has been reached
2601 * (2 KB for single stream, and 4 KB for dual stream).
2602 * Adjust the long retry as if the frame was tried
2603 * hw->max_rate_tries times to affect how rate control updates
2604 * PER for the failed rate.
2605 * In case of congestion on the bus penalizing this type of
2606 * underruns should help hardware actually transmit new frames
2607 * successfully by eventually preferring slower rates.
2608 * This itself should also alleviate congestion on the bus.
2609 */
2610 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2611 ATH9K_TX_DELIM_UNDERRUN)) &&
2612 ieee80211_is_data(hdr->frame_control) &&
2613 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2614 tx_info->status.rates[tx_rateindex].count =
2615 hw->max_rate_tries;
2616 }
2617
2618 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2619 tx_info->status.rates[i].count = 0;
2620 tx_info->status.rates[i].idx = -1;
2621 }
2622
2623 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2624 }
2625
2626 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2627 {
2628 struct ath_hw *ah = sc->sc_ah;
2629 struct ath_common *common = ath9k_hw_common(ah);
2630 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2631 struct list_head bf_head;
2632 struct ath_desc *ds;
2633 struct ath_tx_status ts;
2634 int status;
2635
2636 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2637 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2638 txq->axq_link);
2639
2640 ath_txq_lock(sc, txq);
2641 for (;;) {
2642 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2643 break;
2644
2645 if (list_empty(&txq->axq_q)) {
2646 txq->axq_link = NULL;
2647 ath_txq_schedule(sc, txq);
2648 break;
2649 }
2650 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2651
2652 /*
2653 * There is a race condition that a BH gets scheduled
2654 * after sw writes TxE and before hw re-load the last
2655 * descriptor to get the newly chained one.
2656 * Software must keep the last DONE descriptor as a
2657 * holding descriptor - software does so by marking
2658 * it with the STALE flag.
2659 */
2660 bf_held = NULL;
2661 if (bf->bf_state.stale) {
2662 bf_held = bf;
2663 if (list_is_last(&bf_held->list, &txq->axq_q))
2664 break;
2665
2666 bf = list_entry(bf_held->list.next, struct ath_buf,
2667 list);
2668 }
2669
2670 lastbf = bf->bf_lastbf;
2671 ds = lastbf->bf_desc;
2672
2673 memset(&ts, 0, sizeof(ts));
2674 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2675 if (status == -EINPROGRESS)
2676 break;
2677
2678 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2679
2680 /*
2681 * Remove ath_buf's of the same transmit unit from txq,
2682 * however leave the last descriptor back as the holding
2683 * descriptor for hw.
2684 */
2685 lastbf->bf_state.stale = true;
2686 INIT_LIST_HEAD(&bf_head);
2687 if (!list_is_singular(&lastbf->list))
2688 list_cut_position(&bf_head,
2689 &txq->axq_q, lastbf->list.prev);
2690
2691 if (bf_held) {
2692 list_del(&bf_held->list);
2693 ath_tx_return_buffer(sc, bf_held);
2694 }
2695
2696 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2697 }
2698 ath_txq_unlock_complete(sc, txq);
2699 }
2700
2701 void ath_tx_tasklet(struct ath_softc *sc)
2702 {
2703 struct ath_hw *ah = sc->sc_ah;
2704 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2705 int i;
2706
2707 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2708 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2709 ath_tx_processq(sc, &sc->tx.txq[i]);
2710 }
2711 }
2712
2713 void ath_tx_edma_tasklet(struct ath_softc *sc)
2714 {
2715 struct ath_tx_status ts;
2716 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2717 struct ath_hw *ah = sc->sc_ah;
2718 struct ath_txq *txq;
2719 struct ath_buf *bf, *lastbf;
2720 struct list_head bf_head;
2721 struct list_head *fifo_list;
2722 int status;
2723
2724 for (;;) {
2725 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2726 break;
2727
2728 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2729 if (status == -EINPROGRESS)
2730 break;
2731 if (status == -EIO) {
2732 ath_dbg(common, XMIT, "Error processing tx status\n");
2733 break;
2734 }
2735
2736 /* Process beacon completions separately */
2737 if (ts.qid == sc->beacon.beaconq) {
2738 sc->beacon.tx_processed = true;
2739 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2740
2741 if (ath9k_is_chanctx_enabled()) {
2742 ath_chanctx_event(sc, NULL,
2743 ATH_CHANCTX_EVENT_BEACON_SENT);
2744 }
2745
2746 ath9k_csa_update(sc);
2747 continue;
2748 }
2749
2750 txq = &sc->tx.txq[ts.qid];
2751
2752 ath_txq_lock(sc, txq);
2753
2754 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2755
2756 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2757 if (list_empty(fifo_list)) {
2758 ath_txq_unlock(sc, txq);
2759 return;
2760 }
2761
2762 bf = list_first_entry(fifo_list, struct ath_buf, list);
2763 if (bf->bf_state.stale) {
2764 list_del(&bf->list);
2765 ath_tx_return_buffer(sc, bf);
2766 bf = list_first_entry(fifo_list, struct ath_buf, list);
2767 }
2768
2769 lastbf = bf->bf_lastbf;
2770
2771 INIT_LIST_HEAD(&bf_head);
2772 if (list_is_last(&lastbf->list, fifo_list)) {
2773 list_splice_tail_init(fifo_list, &bf_head);
2774 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2775
2776 if (!list_empty(&txq->axq_q)) {
2777 struct list_head bf_q;
2778
2779 INIT_LIST_HEAD(&bf_q);
2780 txq->axq_link = NULL;
2781 list_splice_tail_init(&txq->axq_q, &bf_q);
2782 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2783 }
2784 } else {
2785 lastbf->bf_state.stale = true;
2786 if (bf != lastbf)
2787 list_cut_position(&bf_head, fifo_list,
2788 lastbf->list.prev);
2789 }
2790
2791 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2792 ath_txq_unlock_complete(sc, txq);
2793 }
2794 }
2795
2796 /*****************/
2797 /* Init, Cleanup */
2798 /*****************/
2799
2800 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2801 {
2802 struct ath_descdma *dd = &sc->txsdma;
2803 u8 txs_len = sc->sc_ah->caps.txs_len;
2804
2805 dd->dd_desc_len = size * txs_len;
2806 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2807 &dd->dd_desc_paddr, GFP_KERNEL);
2808 if (!dd->dd_desc)
2809 return -ENOMEM;
2810
2811 return 0;
2812 }
2813
2814 static int ath_tx_edma_init(struct ath_softc *sc)
2815 {
2816 int err;
2817
2818 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2819 if (!err)
2820 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2821 sc->txsdma.dd_desc_paddr,
2822 ATH_TXSTATUS_RING_SIZE);
2823
2824 return err;
2825 }
2826
2827 int ath_tx_init(struct ath_softc *sc, int nbufs)
2828 {
2829 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2830 int error = 0;
2831
2832 spin_lock_init(&sc->tx.txbuflock);
2833
2834 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2835 "tx", nbufs, 1, 1);
2836 if (error != 0) {
2837 ath_err(common,
2838 "Failed to allocate tx descriptors: %d\n", error);
2839 return error;
2840 }
2841
2842 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2843 "beacon", ATH_BCBUF, 1, 1);
2844 if (error != 0) {
2845 ath_err(common,
2846 "Failed to allocate beacon descriptors: %d\n", error);
2847 return error;
2848 }
2849
2850 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2851
2852 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2853 error = ath_tx_edma_init(sc);
2854
2855 return error;
2856 }
2857
2858 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2859 {
2860 struct ath_atx_tid *tid;
2861 struct ath_atx_ac *ac;
2862 int tidno, acno;
2863
2864 for (tidno = 0, tid = &an->tid[tidno];
2865 tidno < IEEE80211_NUM_TIDS;
2866 tidno++, tid++) {
2867 tid->an = an;
2868 tid->tidno = tidno;
2869 tid->seq_start = tid->seq_next = 0;
2870 tid->baw_size = WME_MAX_BA;
2871 tid->baw_head = tid->baw_tail = 0;
2872 tid->sched = false;
2873 tid->active = false;
2874 __skb_queue_head_init(&tid->buf_q);
2875 __skb_queue_head_init(&tid->retry_q);
2876 acno = TID_TO_WME_AC(tidno);
2877 tid->ac = &an->ac[acno];
2878 }
2879
2880 for (acno = 0, ac = &an->ac[acno];
2881 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2882 ac->sched = false;
2883 ac->clear_ps_filter = true;
2884 ac->txq = sc->tx.txq_map[acno];
2885 INIT_LIST_HEAD(&ac->tid_q);
2886 }
2887 }
2888
2889 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2890 {
2891 struct ath_atx_ac *ac;
2892 struct ath_atx_tid *tid;
2893 struct ath_txq *txq;
2894 int tidno;
2895
2896 for (tidno = 0, tid = &an->tid[tidno];
2897 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2898
2899 ac = tid->ac;
2900 txq = ac->txq;
2901
2902 ath_txq_lock(sc, txq);
2903
2904 if (tid->sched) {
2905 list_del(&tid->list);
2906 tid->sched = false;
2907 }
2908
2909 if (ac->sched) {
2910 list_del(&ac->list);
2911 tid->ac->sched = false;
2912 }
2913
2914 ath_tid_drain(sc, txq, tid);
2915 tid->active = false;
2916
2917 ath_txq_unlock(sc, txq);
2918 }
2919 }
2920
2921 #ifdef CONFIG_ATH9K_TX99
2922
2923 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2924 struct ath_tx_control *txctl)
2925 {
2926 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2927 struct ath_frame_info *fi = get_frame_info(skb);
2928 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2929 struct ath_buf *bf;
2930 int padpos, padsize;
2931
2932 padpos = ieee80211_hdrlen(hdr->frame_control);
2933 padsize = padpos & 3;
2934
2935 if (padsize && skb->len > padpos) {
2936 if (skb_headroom(skb) < padsize) {
2937 ath_dbg(common, XMIT,
2938 "tx99 padding failed\n");
2939 return -EINVAL;
2940 }
2941
2942 skb_push(skb, padsize);
2943 memmove(skb->data, skb->data + padsize, padpos);
2944 }
2945
2946 fi->keyix = ATH9K_TXKEYIX_INVALID;
2947 fi->framelen = skb->len + FCS_LEN;
2948 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2949
2950 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2951 if (!bf) {
2952 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2953 return -EINVAL;
2954 }
2955
2956 ath_set_rates(sc->tx99_vif, NULL, bf);
2957
2958 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2959 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2960
2961 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2962
2963 return 0;
2964 }
2965
2966 #endif /* CONFIG_ATH9K_TX99 */
This page took 0.181116 seconds and 5 git commands to generate.