Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35
36 static u16 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
46 };
47
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb,
68 bool dequeue);
69
70 enum {
71 MCS_HT20,
72 MCS_HT20_SGI,
73 MCS_HT40,
74 MCS_HT40_SGI,
75 };
76
77 static int ath_max_4ms_framelen[4][32] = {
78 [MCS_HT20] = {
79 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
80 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
81 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
82 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
83 },
84 [MCS_HT20_SGI] = {
85 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
86 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
87 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
88 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
89 },
90 [MCS_HT40] = {
91 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
92 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
93 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
94 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
95 },
96 [MCS_HT40_SGI] = {
97 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
98 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
99 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
100 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
101 }
102 };
103
104 /*********************/
105 /* Aggregation logic */
106 /*********************/
107
108 static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
109 __acquires(&txq->axq_lock)
110 {
111 spin_lock_bh(&txq->axq_lock);
112 }
113
114 static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
115 __releases(&txq->axq_lock)
116 {
117 spin_unlock_bh(&txq->axq_lock);
118 }
119
120 static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
121 __releases(&txq->axq_lock)
122 {
123 struct sk_buff_head q;
124 struct sk_buff *skb;
125
126 __skb_queue_head_init(&q);
127 skb_queue_splice_init(&txq->complete_q, &q);
128 spin_unlock_bh(&txq->axq_lock);
129
130 while ((skb = __skb_dequeue(&q)))
131 ieee80211_tx_status(sc->hw, skb);
132 }
133
134 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
135 {
136 struct ath_atx_ac *ac = tid->ac;
137
138 if (tid->paused)
139 return;
140
141 if (tid->sched)
142 return;
143
144 tid->sched = true;
145 list_add_tail(&tid->list, &ac->tid_q);
146
147 if (ac->sched)
148 return;
149
150 ac->sched = true;
151 list_add_tail(&ac->list, &txq->axq_acq);
152 }
153
154 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
155 {
156 struct ath_txq *txq = tid->ac->txq;
157
158 WARN_ON(!tid->paused);
159
160 ath_txq_lock(sc, txq);
161 tid->paused = false;
162
163 if (skb_queue_empty(&tid->buf_q))
164 goto unlock;
165
166 ath_tx_queue_tid(txq, tid);
167 ath_txq_schedule(sc, txq);
168 unlock:
169 ath_txq_unlock_complete(sc, txq);
170 }
171
172 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
173 {
174 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
175 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
176 sizeof(tx_info->rate_driver_data));
177 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
178 }
179
180 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
181 {
182 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
183 seqno << IEEE80211_SEQ_SEQ_SHIFT);
184 }
185
186 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
187 {
188 struct ath_txq *txq = tid->ac->txq;
189 struct sk_buff *skb;
190 struct ath_buf *bf;
191 struct list_head bf_head;
192 struct ath_tx_status ts;
193 struct ath_frame_info *fi;
194 bool sendbar = false;
195
196 INIT_LIST_HEAD(&bf_head);
197
198 memset(&ts, 0, sizeof(ts));
199
200 while ((skb = __skb_dequeue(&tid->buf_q))) {
201 fi = get_frame_info(skb);
202 bf = fi->bf;
203
204 if (bf && fi->retries) {
205 list_add_tail(&bf->list, &bf_head);
206 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
207 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
208 sendbar = true;
209 } else {
210 ath_tx_send_normal(sc, txq, NULL, skb);
211 }
212 }
213
214 if (tid->baw_head == tid->baw_tail) {
215 tid->state &= ~AGGR_ADDBA_COMPLETE;
216 tid->state &= ~AGGR_CLEANUP;
217 }
218
219 if (sendbar) {
220 ath_txq_unlock(sc, txq);
221 ath_send_bar(tid, tid->seq_start);
222 ath_txq_lock(sc, txq);
223 }
224 }
225
226 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
227 int seqno)
228 {
229 int index, cindex;
230
231 index = ATH_BA_INDEX(tid->seq_start, seqno);
232 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
233
234 __clear_bit(cindex, tid->tx_buf);
235
236 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
237 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
238 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
239 if (tid->bar_index >= 0)
240 tid->bar_index--;
241 }
242 }
243
244 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
245 u16 seqno)
246 {
247 int index, cindex;
248
249 index = ATH_BA_INDEX(tid->seq_start, seqno);
250 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
251 __set_bit(cindex, tid->tx_buf);
252
253 if (index >= ((tid->baw_tail - tid->baw_head) &
254 (ATH_TID_MAX_BUFS - 1))) {
255 tid->baw_tail = cindex;
256 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
257 }
258 }
259
260 /*
261 * TODO: For frame(s) that are in the retry state, we will reuse the
262 * sequence number(s) without setting the retry bit. The
263 * alternative is to give up on these and BAR the receiver's window
264 * forward.
265 */
266 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
267 struct ath_atx_tid *tid)
268
269 {
270 struct sk_buff *skb;
271 struct ath_buf *bf;
272 struct list_head bf_head;
273 struct ath_tx_status ts;
274 struct ath_frame_info *fi;
275
276 memset(&ts, 0, sizeof(ts));
277 INIT_LIST_HEAD(&bf_head);
278
279 while ((skb = __skb_dequeue(&tid->buf_q))) {
280 fi = get_frame_info(skb);
281 bf = fi->bf;
282
283 if (!bf) {
284 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
285 continue;
286 }
287
288 list_add_tail(&bf->list, &bf_head);
289
290 if (fi->retries)
291 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
292
293 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
294 }
295
296 tid->seq_next = tid->seq_start;
297 tid->baw_tail = tid->baw_head;
298 tid->bar_index = -1;
299 }
300
301 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
302 struct sk_buff *skb, int count)
303 {
304 struct ath_frame_info *fi = get_frame_info(skb);
305 struct ath_buf *bf = fi->bf;
306 struct ieee80211_hdr *hdr;
307 int prev = fi->retries;
308
309 TX_STAT_INC(txq->axq_qnum, a_retries);
310 fi->retries += count;
311
312 if (prev > 0)
313 return;
314
315 hdr = (struct ieee80211_hdr *)skb->data;
316 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
317 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
318 sizeof(*hdr), DMA_TO_DEVICE);
319 }
320
321 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
322 {
323 struct ath_buf *bf = NULL;
324
325 spin_lock_bh(&sc->tx.txbuflock);
326
327 if (unlikely(list_empty(&sc->tx.txbuf))) {
328 spin_unlock_bh(&sc->tx.txbuflock);
329 return NULL;
330 }
331
332 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
333 list_del(&bf->list);
334
335 spin_unlock_bh(&sc->tx.txbuflock);
336
337 return bf;
338 }
339
340 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
341 {
342 spin_lock_bh(&sc->tx.txbuflock);
343 list_add_tail(&bf->list, &sc->tx.txbuf);
344 spin_unlock_bh(&sc->tx.txbuflock);
345 }
346
347 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
348 {
349 struct ath_buf *tbf;
350
351 tbf = ath_tx_get_buffer(sc);
352 if (WARN_ON(!tbf))
353 return NULL;
354
355 ATH_TXBUF_RESET(tbf);
356
357 tbf->bf_mpdu = bf->bf_mpdu;
358 tbf->bf_buf_addr = bf->bf_buf_addr;
359 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
360 tbf->bf_state = bf->bf_state;
361
362 return tbf;
363 }
364
365 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
366 struct ath_tx_status *ts, int txok,
367 int *nframes, int *nbad)
368 {
369 struct ath_frame_info *fi;
370 u16 seq_st = 0;
371 u32 ba[WME_BA_BMP_SIZE >> 5];
372 int ba_index;
373 int isaggr = 0;
374
375 *nbad = 0;
376 *nframes = 0;
377
378 isaggr = bf_isaggr(bf);
379 if (isaggr) {
380 seq_st = ts->ts_seqnum;
381 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
382 }
383
384 while (bf) {
385 fi = get_frame_info(bf->bf_mpdu);
386 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
387
388 (*nframes)++;
389 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
390 (*nbad)++;
391
392 bf = bf->bf_next;
393 }
394 }
395
396
397 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
398 struct ath_buf *bf, struct list_head *bf_q,
399 struct ath_tx_status *ts, int txok, bool retry)
400 {
401 struct ath_node *an = NULL;
402 struct sk_buff *skb;
403 struct ieee80211_sta *sta;
404 struct ieee80211_hw *hw = sc->hw;
405 struct ieee80211_hdr *hdr;
406 struct ieee80211_tx_info *tx_info;
407 struct ath_atx_tid *tid = NULL;
408 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
409 struct list_head bf_head;
410 struct sk_buff_head bf_pending;
411 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
412 u32 ba[WME_BA_BMP_SIZE >> 5];
413 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
414 bool rc_update = true;
415 struct ieee80211_tx_rate rates[4];
416 struct ath_frame_info *fi;
417 int nframes;
418 u8 tidno;
419 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
420 int i, retries;
421 int bar_index = -1;
422
423 skb = bf->bf_mpdu;
424 hdr = (struct ieee80211_hdr *)skb->data;
425
426 tx_info = IEEE80211_SKB_CB(skb);
427
428 memcpy(rates, tx_info->control.rates, sizeof(rates));
429
430 retries = ts->ts_longretry + 1;
431 for (i = 0; i < ts->ts_rateindex; i++)
432 retries += rates[i].count;
433
434 rcu_read_lock();
435
436 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
437 if (!sta) {
438 rcu_read_unlock();
439
440 INIT_LIST_HEAD(&bf_head);
441 while (bf) {
442 bf_next = bf->bf_next;
443
444 if (!bf->bf_stale || bf_next != NULL)
445 list_move_tail(&bf->list, &bf_head);
446
447 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
448
449 bf = bf_next;
450 }
451 return;
452 }
453
454 an = (struct ath_node *)sta->drv_priv;
455 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
456 tid = ATH_AN_2_TID(an, tidno);
457 seq_first = tid->seq_start;
458
459 /*
460 * The hardware occasionally sends a tx status for the wrong TID.
461 * In this case, the BA status cannot be considered valid and all
462 * subframes need to be retransmitted
463 */
464 if (tidno != ts->tid)
465 txok = false;
466
467 isaggr = bf_isaggr(bf);
468 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
469
470 if (isaggr && txok) {
471 if (ts->ts_flags & ATH9K_TX_BA) {
472 seq_st = ts->ts_seqnum;
473 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
474 } else {
475 /*
476 * AR5416 can become deaf/mute when BA
477 * issue happens. Chip needs to be reset.
478 * But AP code may have sychronization issues
479 * when perform internal reset in this routine.
480 * Only enable reset in STA mode for now.
481 */
482 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
483 needreset = 1;
484 }
485 }
486
487 __skb_queue_head_init(&bf_pending);
488
489 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
490 while (bf) {
491 u16 seqno = bf->bf_state.seqno;
492
493 txfail = txpending = sendbar = 0;
494 bf_next = bf->bf_next;
495
496 skb = bf->bf_mpdu;
497 tx_info = IEEE80211_SKB_CB(skb);
498 fi = get_frame_info(skb);
499
500 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
501 /* transmit completion, subframe is
502 * acked by block ack */
503 acked_cnt++;
504 } else if (!isaggr && txok) {
505 /* transmit completion */
506 acked_cnt++;
507 } else if ((tid->state & AGGR_CLEANUP) || !retry) {
508 /*
509 * cleanup in progress, just fail
510 * the un-acked sub-frames
511 */
512 txfail = 1;
513 } else if (flush) {
514 txpending = 1;
515 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
516 if (txok || !an->sleeping)
517 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
518 retries);
519
520 txpending = 1;
521 } else {
522 txfail = 1;
523 txfail_cnt++;
524 bar_index = max_t(int, bar_index,
525 ATH_BA_INDEX(seq_first, seqno));
526 }
527
528 /*
529 * Make sure the last desc is reclaimed if it
530 * not a holding desc.
531 */
532 INIT_LIST_HEAD(&bf_head);
533 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
534 bf_next != NULL || !bf_last->bf_stale)
535 list_move_tail(&bf->list, &bf_head);
536
537 if (!txpending || (tid->state & AGGR_CLEANUP)) {
538 /*
539 * complete the acked-ones/xretried ones; update
540 * block-ack window
541 */
542 ath_tx_update_baw(sc, tid, seqno);
543
544 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
545 memcpy(tx_info->control.rates, rates, sizeof(rates));
546 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
547 rc_update = false;
548 }
549
550 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
551 !txfail);
552 } else {
553 /* retry the un-acked ones */
554 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
555 bf->bf_next == NULL && bf_last->bf_stale) {
556 struct ath_buf *tbf;
557
558 tbf = ath_clone_txbuf(sc, bf_last);
559 /*
560 * Update tx baw and complete the
561 * frame with failed status if we
562 * run out of tx buf.
563 */
564 if (!tbf) {
565 ath_tx_update_baw(sc, tid, seqno);
566
567 ath_tx_complete_buf(sc, bf, txq,
568 &bf_head, ts, 0);
569 bar_index = max_t(int, bar_index,
570 ATH_BA_INDEX(seq_first, seqno));
571 break;
572 }
573
574 fi->bf = tbf;
575 }
576
577 /*
578 * Put this buffer to the temporary pending
579 * queue to retain ordering
580 */
581 __skb_queue_tail(&bf_pending, skb);
582 }
583
584 bf = bf_next;
585 }
586
587 /* prepend un-acked frames to the beginning of the pending frame queue */
588 if (!skb_queue_empty(&bf_pending)) {
589 if (an->sleeping)
590 ieee80211_sta_set_buffered(sta, tid->tidno, true);
591
592 skb_queue_splice(&bf_pending, &tid->buf_q);
593 if (!an->sleeping) {
594 ath_tx_queue_tid(txq, tid);
595
596 if (ts->ts_status & ATH9K_TXERR_FILT)
597 tid->ac->clear_ps_filter = true;
598 }
599 }
600
601 if (bar_index >= 0) {
602 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
603
604 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
605 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
606
607 ath_txq_unlock(sc, txq);
608 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
609 ath_txq_lock(sc, txq);
610 }
611
612 if (tid->state & AGGR_CLEANUP)
613 ath_tx_flush_tid(sc, tid);
614
615 rcu_read_unlock();
616
617 if (needreset) {
618 RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
619 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
620 }
621 }
622
623 static bool ath_lookup_legacy(struct ath_buf *bf)
624 {
625 struct sk_buff *skb;
626 struct ieee80211_tx_info *tx_info;
627 struct ieee80211_tx_rate *rates;
628 int i;
629
630 skb = bf->bf_mpdu;
631 tx_info = IEEE80211_SKB_CB(skb);
632 rates = tx_info->control.rates;
633
634 for (i = 0; i < 4; i++) {
635 if (!rates[i].count || rates[i].idx < 0)
636 break;
637
638 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
639 return true;
640 }
641
642 return false;
643 }
644
645 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
646 struct ath_atx_tid *tid)
647 {
648 struct sk_buff *skb;
649 struct ieee80211_tx_info *tx_info;
650 struct ieee80211_tx_rate *rates;
651 u32 max_4ms_framelen, frmlen;
652 u16 aggr_limit, bt_aggr_limit, legacy = 0;
653 int i;
654
655 skb = bf->bf_mpdu;
656 tx_info = IEEE80211_SKB_CB(skb);
657 rates = tx_info->control.rates;
658
659 /*
660 * Find the lowest frame length among the rate series that will have a
661 * 4ms transmit duration.
662 * TODO - TXOP limit needs to be considered.
663 */
664 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
665
666 for (i = 0; i < 4; i++) {
667 int modeidx;
668
669 if (!rates[i].count)
670 continue;
671
672 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
673 legacy = 1;
674 break;
675 }
676
677 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
678 modeidx = MCS_HT40;
679 else
680 modeidx = MCS_HT20;
681
682 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
683 modeidx++;
684
685 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
686 max_4ms_framelen = min(max_4ms_framelen, frmlen);
687 }
688
689 /*
690 * limit aggregate size by the minimum rate if rate selected is
691 * not a probe rate, if rate selected is a probe rate then
692 * avoid aggregation of this packet.
693 */
694 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
695 return 0;
696
697 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
698
699 /*
700 * Override the default aggregation limit for BTCOEX.
701 */
702 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
703 if (bt_aggr_limit)
704 aggr_limit = bt_aggr_limit;
705
706 /*
707 * h/w can accept aggregates up to 16 bit lengths (65535).
708 * The IE, however can hold up to 65536, which shows up here
709 * as zero. Ignore 65536 since we are constrained by hw.
710 */
711 if (tid->an->maxampdu)
712 aggr_limit = min(aggr_limit, tid->an->maxampdu);
713
714 return aggr_limit;
715 }
716
717 /*
718 * Returns the number of delimiters to be added to
719 * meet the minimum required mpdudensity.
720 */
721 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
722 struct ath_buf *bf, u16 frmlen,
723 bool first_subfrm)
724 {
725 #define FIRST_DESC_NDELIMS 60
726 struct sk_buff *skb = bf->bf_mpdu;
727 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
728 u32 nsymbits, nsymbols;
729 u16 minlen;
730 u8 flags, rix;
731 int width, streams, half_gi, ndelim, mindelim;
732 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
733
734 /* Select standard number of delimiters based on frame length alone */
735 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
736
737 /*
738 * If encryption enabled, hardware requires some more padding between
739 * subframes.
740 * TODO - this could be improved to be dependent on the rate.
741 * The hardware can keep up at lower rates, but not higher rates
742 */
743 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
744 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
745 ndelim += ATH_AGGR_ENCRYPTDELIM;
746
747 /*
748 * Add delimiter when using RTS/CTS with aggregation
749 * and non enterprise AR9003 card
750 */
751 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
752 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
753 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
754
755 /*
756 * Convert desired mpdu density from microeconds to bytes based
757 * on highest rate in rate series (i.e. first rate) to determine
758 * required minimum length for subframe. Take into account
759 * whether high rate is 20 or 40Mhz and half or full GI.
760 *
761 * If there is no mpdu density restriction, no further calculation
762 * is needed.
763 */
764
765 if (tid->an->mpdudensity == 0)
766 return ndelim;
767
768 rix = tx_info->control.rates[0].idx;
769 flags = tx_info->control.rates[0].flags;
770 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
771 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
772
773 if (half_gi)
774 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
775 else
776 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
777
778 if (nsymbols == 0)
779 nsymbols = 1;
780
781 streams = HT_RC_2_STREAMS(rix);
782 nsymbits = bits_per_symbol[rix % 8][width] * streams;
783 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
784
785 if (frmlen < minlen) {
786 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
787 ndelim = max(mindelim, ndelim);
788 }
789
790 return ndelim;
791 }
792
793 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
794 struct ath_txq *txq,
795 struct ath_atx_tid *tid,
796 struct list_head *bf_q,
797 int *aggr_len)
798 {
799 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
800 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
801 int rl = 0, nframes = 0, ndelim, prev_al = 0;
802 u16 aggr_limit = 0, al = 0, bpad = 0,
803 al_delta, h_baw = tid->baw_size / 2;
804 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
805 struct ieee80211_tx_info *tx_info;
806 struct ath_frame_info *fi;
807 struct sk_buff *skb;
808 u16 seqno;
809
810 do {
811 skb = skb_peek(&tid->buf_q);
812 fi = get_frame_info(skb);
813 bf = fi->bf;
814 if (!fi->bf)
815 bf = ath_tx_setup_buffer(sc, txq, tid, skb, true);
816
817 if (!bf)
818 continue;
819
820 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
821 seqno = bf->bf_state.seqno;
822
823 /* do not step over block-ack window */
824 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
825 status = ATH_AGGR_BAW_CLOSED;
826 break;
827 }
828
829 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
830 struct ath_tx_status ts = {};
831 struct list_head bf_head;
832
833 INIT_LIST_HEAD(&bf_head);
834 list_add(&bf->list, &bf_head);
835 __skb_unlink(skb, &tid->buf_q);
836 ath_tx_update_baw(sc, tid, seqno);
837 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
838 continue;
839 }
840
841 if (!bf_first)
842 bf_first = bf;
843
844 if (!rl) {
845 aggr_limit = ath_lookup_rate(sc, bf, tid);
846 rl = 1;
847 }
848
849 /* do not exceed aggregation limit */
850 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
851
852 if (nframes &&
853 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
854 ath_lookup_legacy(bf))) {
855 status = ATH_AGGR_LIMITED;
856 break;
857 }
858
859 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
860 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
861 break;
862
863 /* do not exceed subframe limit */
864 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
865 status = ATH_AGGR_LIMITED;
866 break;
867 }
868
869 /* add padding for previous frame to aggregation length */
870 al += bpad + al_delta;
871
872 /*
873 * Get the delimiters needed to meet the MPDU
874 * density for this node.
875 */
876 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
877 !nframes);
878 bpad = PADBYTES(al_delta) + (ndelim << 2);
879
880 nframes++;
881 bf->bf_next = NULL;
882
883 /* link buffers of this frame to the aggregate */
884 if (!fi->retries)
885 ath_tx_addto_baw(sc, tid, seqno);
886 bf->bf_state.ndelim = ndelim;
887
888 __skb_unlink(skb, &tid->buf_q);
889 list_add_tail(&bf->list, bf_q);
890 if (bf_prev)
891 bf_prev->bf_next = bf;
892
893 bf_prev = bf;
894
895 } while (!skb_queue_empty(&tid->buf_q));
896
897 *aggr_len = al;
898
899 return status;
900 #undef PADBYTES
901 }
902
903 /*
904 * rix - rate index
905 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
906 * width - 0 for 20 MHz, 1 for 40 MHz
907 * half_gi - to use 4us v/s 3.6 us for symbol time
908 */
909 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
910 int width, int half_gi, bool shortPreamble)
911 {
912 u32 nbits, nsymbits, duration, nsymbols;
913 int streams;
914
915 /* find number of symbols: PLCP + data */
916 streams = HT_RC_2_STREAMS(rix);
917 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
918 nsymbits = bits_per_symbol[rix % 8][width] * streams;
919 nsymbols = (nbits + nsymbits - 1) / nsymbits;
920
921 if (!half_gi)
922 duration = SYMBOL_TIME(nsymbols);
923 else
924 duration = SYMBOL_TIME_HALFGI(nsymbols);
925
926 /* addup duration for legacy/ht training and signal fields */
927 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
928
929 return duration;
930 }
931
932 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
933 struct ath_tx_info *info, int len)
934 {
935 struct ath_hw *ah = sc->sc_ah;
936 struct sk_buff *skb;
937 struct ieee80211_tx_info *tx_info;
938 struct ieee80211_tx_rate *rates;
939 const struct ieee80211_rate *rate;
940 struct ieee80211_hdr *hdr;
941 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
942 int i;
943 u8 rix = 0;
944
945 skb = bf->bf_mpdu;
946 tx_info = IEEE80211_SKB_CB(skb);
947 rates = tx_info->control.rates;
948 hdr = (struct ieee80211_hdr *)skb->data;
949
950 /* set dur_update_en for l-sig computation except for PS-Poll frames */
951 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
952 info->rtscts_rate = fi->rtscts_rate;
953
954 for (i = 0; i < 4; i++) {
955 bool is_40, is_sgi, is_sp;
956 int phy;
957
958 if (!rates[i].count || (rates[i].idx < 0))
959 continue;
960
961 rix = rates[i].idx;
962 info->rates[i].Tries = rates[i].count;
963
964 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
965 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
966 info->flags |= ATH9K_TXDESC_RTSENA;
967 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
968 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
969 info->flags |= ATH9K_TXDESC_CTSENA;
970 }
971
972 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
973 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
974 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
975 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
976
977 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
978 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
979 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
980
981 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
982 /* MCS rates */
983 info->rates[i].Rate = rix | 0x80;
984 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
985 ah->txchainmask, info->rates[i].Rate);
986 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
987 is_40, is_sgi, is_sp);
988 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
989 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
990 continue;
991 }
992
993 /* legacy rates */
994 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
995 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
996 !(rate->flags & IEEE80211_RATE_ERP_G))
997 phy = WLAN_RC_PHY_CCK;
998 else
999 phy = WLAN_RC_PHY_OFDM;
1000
1001 info->rates[i].Rate = rate->hw_value;
1002 if (rate->hw_value_short) {
1003 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1004 info->rates[i].Rate |= rate->hw_value_short;
1005 } else {
1006 is_sp = false;
1007 }
1008
1009 if (bf->bf_state.bfs_paprd)
1010 info->rates[i].ChSel = ah->txchainmask;
1011 else
1012 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1013 ah->txchainmask, info->rates[i].Rate);
1014
1015 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1016 phy, rate->bitrate * 100, len, rix, is_sp);
1017 }
1018
1019 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1020 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1021 info->flags &= ~ATH9K_TXDESC_RTSENA;
1022
1023 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1024 if (info->flags & ATH9K_TXDESC_RTSENA)
1025 info->flags &= ~ATH9K_TXDESC_CTSENA;
1026 }
1027
1028 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1029 {
1030 struct ieee80211_hdr *hdr;
1031 enum ath9k_pkt_type htype;
1032 __le16 fc;
1033
1034 hdr = (struct ieee80211_hdr *)skb->data;
1035 fc = hdr->frame_control;
1036
1037 if (ieee80211_is_beacon(fc))
1038 htype = ATH9K_PKT_TYPE_BEACON;
1039 else if (ieee80211_is_probe_resp(fc))
1040 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1041 else if (ieee80211_is_atim(fc))
1042 htype = ATH9K_PKT_TYPE_ATIM;
1043 else if (ieee80211_is_pspoll(fc))
1044 htype = ATH9K_PKT_TYPE_PSPOLL;
1045 else
1046 htype = ATH9K_PKT_TYPE_NORMAL;
1047
1048 return htype;
1049 }
1050
1051 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1052 struct ath_txq *txq, int len)
1053 {
1054 struct ath_hw *ah = sc->sc_ah;
1055 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1056 struct ath_buf *bf_first = bf;
1057 struct ath_tx_info info;
1058 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1059
1060 memset(&info, 0, sizeof(info));
1061 info.is_first = true;
1062 info.is_last = true;
1063 info.txpower = MAX_RATE_POWER;
1064 info.qcu = txq->axq_qnum;
1065
1066 info.flags = ATH9K_TXDESC_INTREQ;
1067 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1068 info.flags |= ATH9K_TXDESC_NOACK;
1069 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1070 info.flags |= ATH9K_TXDESC_LDPC;
1071
1072 ath_buf_set_rate(sc, bf, &info, len);
1073
1074 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1075 info.flags |= ATH9K_TXDESC_CLRDMASK;
1076
1077 if (bf->bf_state.bfs_paprd)
1078 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1079
1080
1081 while (bf) {
1082 struct sk_buff *skb = bf->bf_mpdu;
1083 struct ath_frame_info *fi = get_frame_info(skb);
1084
1085 info.type = get_hw_packet_type(skb);
1086 if (bf->bf_next)
1087 info.link = bf->bf_next->bf_daddr;
1088 else
1089 info.link = 0;
1090
1091 info.buf_addr[0] = bf->bf_buf_addr;
1092 info.buf_len[0] = skb->len;
1093 info.pkt_len = fi->framelen;
1094 info.keyix = fi->keyix;
1095 info.keytype = fi->keytype;
1096
1097 if (aggr) {
1098 if (bf == bf_first)
1099 info.aggr = AGGR_BUF_FIRST;
1100 else if (!bf->bf_next)
1101 info.aggr = AGGR_BUF_LAST;
1102 else
1103 info.aggr = AGGR_BUF_MIDDLE;
1104
1105 info.ndelim = bf->bf_state.ndelim;
1106 info.aggr_len = len;
1107 }
1108
1109 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1110 bf = bf->bf_next;
1111 }
1112 }
1113
1114 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1115 struct ath_atx_tid *tid)
1116 {
1117 struct ath_buf *bf;
1118 enum ATH_AGGR_STATUS status;
1119 struct ieee80211_tx_info *tx_info;
1120 struct list_head bf_q;
1121 int aggr_len;
1122
1123 do {
1124 if (skb_queue_empty(&tid->buf_q))
1125 return;
1126
1127 INIT_LIST_HEAD(&bf_q);
1128
1129 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1130
1131 /*
1132 * no frames picked up to be aggregated;
1133 * block-ack window is not open.
1134 */
1135 if (list_empty(&bf_q))
1136 break;
1137
1138 bf = list_first_entry(&bf_q, struct ath_buf, list);
1139 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1140 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1141
1142 if (tid->ac->clear_ps_filter) {
1143 tid->ac->clear_ps_filter = false;
1144 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1145 } else {
1146 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1147 }
1148
1149 /* if only one frame, send as non-aggregate */
1150 if (bf == bf->bf_lastbf) {
1151 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1152 bf->bf_state.bf_type = BUF_AMPDU;
1153 } else {
1154 TX_STAT_INC(txq->axq_qnum, a_aggr);
1155 }
1156
1157 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1158 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1159 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1160 status != ATH_AGGR_BAW_CLOSED);
1161 }
1162
1163 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1164 u16 tid, u16 *ssn)
1165 {
1166 struct ath_atx_tid *txtid;
1167 struct ath_node *an;
1168
1169 an = (struct ath_node *)sta->drv_priv;
1170 txtid = ATH_AN_2_TID(an, tid);
1171
1172 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1173 return -EAGAIN;
1174
1175 txtid->state |= AGGR_ADDBA_PROGRESS;
1176 txtid->paused = true;
1177 *ssn = txtid->seq_start = txtid->seq_next;
1178 txtid->bar_index = -1;
1179
1180 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1181 txtid->baw_head = txtid->baw_tail = 0;
1182
1183 return 0;
1184 }
1185
1186 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1187 {
1188 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1189 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1190 struct ath_txq *txq = txtid->ac->txq;
1191
1192 if (txtid->state & AGGR_CLEANUP)
1193 return;
1194
1195 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1196 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1197 return;
1198 }
1199
1200 ath_txq_lock(sc, txq);
1201 txtid->paused = true;
1202
1203 /*
1204 * If frames are still being transmitted for this TID, they will be
1205 * cleaned up during tx completion. To prevent race conditions, this
1206 * TID can only be reused after all in-progress subframes have been
1207 * completed.
1208 */
1209 if (txtid->baw_head != txtid->baw_tail)
1210 txtid->state |= AGGR_CLEANUP;
1211 else
1212 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1213
1214 ath_tx_flush_tid(sc, txtid);
1215 ath_txq_unlock_complete(sc, txq);
1216 }
1217
1218 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1219 struct ath_node *an)
1220 {
1221 struct ath_atx_tid *tid;
1222 struct ath_atx_ac *ac;
1223 struct ath_txq *txq;
1224 bool buffered;
1225 int tidno;
1226
1227 for (tidno = 0, tid = &an->tid[tidno];
1228 tidno < WME_NUM_TID; tidno++, tid++) {
1229
1230 if (!tid->sched)
1231 continue;
1232
1233 ac = tid->ac;
1234 txq = ac->txq;
1235
1236 ath_txq_lock(sc, txq);
1237
1238 buffered = !skb_queue_empty(&tid->buf_q);
1239
1240 tid->sched = false;
1241 list_del(&tid->list);
1242
1243 if (ac->sched) {
1244 ac->sched = false;
1245 list_del(&ac->list);
1246 }
1247
1248 ath_txq_unlock(sc, txq);
1249
1250 ieee80211_sta_set_buffered(sta, tidno, buffered);
1251 }
1252 }
1253
1254 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1255 {
1256 struct ath_atx_tid *tid;
1257 struct ath_atx_ac *ac;
1258 struct ath_txq *txq;
1259 int tidno;
1260
1261 for (tidno = 0, tid = &an->tid[tidno];
1262 tidno < WME_NUM_TID; tidno++, tid++) {
1263
1264 ac = tid->ac;
1265 txq = ac->txq;
1266
1267 ath_txq_lock(sc, txq);
1268 ac->clear_ps_filter = true;
1269
1270 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1271 ath_tx_queue_tid(txq, tid);
1272 ath_txq_schedule(sc, txq);
1273 }
1274
1275 ath_txq_unlock_complete(sc, txq);
1276 }
1277 }
1278
1279 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1280 {
1281 struct ath_atx_tid *txtid;
1282 struct ath_node *an;
1283
1284 an = (struct ath_node *)sta->drv_priv;
1285
1286 txtid = ATH_AN_2_TID(an, tid);
1287 txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1288 txtid->state |= AGGR_ADDBA_COMPLETE;
1289 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1290 ath_tx_resume_tid(sc, txtid);
1291 }
1292
1293 /********************/
1294 /* Queue Management */
1295 /********************/
1296
1297 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1298 struct ath_txq *txq)
1299 {
1300 struct ath_atx_ac *ac, *ac_tmp;
1301 struct ath_atx_tid *tid, *tid_tmp;
1302
1303 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1304 list_del(&ac->list);
1305 ac->sched = false;
1306 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1307 list_del(&tid->list);
1308 tid->sched = false;
1309 ath_tid_drain(sc, txq, tid);
1310 }
1311 }
1312 }
1313
1314 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1315 {
1316 struct ath_hw *ah = sc->sc_ah;
1317 struct ath9k_tx_queue_info qi;
1318 static const int subtype_txq_to_hwq[] = {
1319 [WME_AC_BE] = ATH_TXQ_AC_BE,
1320 [WME_AC_BK] = ATH_TXQ_AC_BK,
1321 [WME_AC_VI] = ATH_TXQ_AC_VI,
1322 [WME_AC_VO] = ATH_TXQ_AC_VO,
1323 };
1324 int axq_qnum, i;
1325
1326 memset(&qi, 0, sizeof(qi));
1327 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1328 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1329 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1330 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1331 qi.tqi_physCompBuf = 0;
1332
1333 /*
1334 * Enable interrupts only for EOL and DESC conditions.
1335 * We mark tx descriptors to receive a DESC interrupt
1336 * when a tx queue gets deep; otherwise waiting for the
1337 * EOL to reap descriptors. Note that this is done to
1338 * reduce interrupt load and this only defers reaping
1339 * descriptors, never transmitting frames. Aside from
1340 * reducing interrupts this also permits more concurrency.
1341 * The only potential downside is if the tx queue backs
1342 * up in which case the top half of the kernel may backup
1343 * due to a lack of tx descriptors.
1344 *
1345 * The UAPSD queue is an exception, since we take a desc-
1346 * based intr on the EOSP frames.
1347 */
1348 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1349 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1350 } else {
1351 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1352 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1353 else
1354 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1355 TXQ_FLAG_TXDESCINT_ENABLE;
1356 }
1357 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1358 if (axq_qnum == -1) {
1359 /*
1360 * NB: don't print a message, this happens
1361 * normally on parts with too few tx queues
1362 */
1363 return NULL;
1364 }
1365 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1366 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1367
1368 txq->axq_qnum = axq_qnum;
1369 txq->mac80211_qnum = -1;
1370 txq->axq_link = NULL;
1371 __skb_queue_head_init(&txq->complete_q);
1372 INIT_LIST_HEAD(&txq->axq_q);
1373 INIT_LIST_HEAD(&txq->axq_acq);
1374 spin_lock_init(&txq->axq_lock);
1375 txq->axq_depth = 0;
1376 txq->axq_ampdu_depth = 0;
1377 txq->axq_tx_inprogress = false;
1378 sc->tx.txqsetup |= 1<<axq_qnum;
1379
1380 txq->txq_headidx = txq->txq_tailidx = 0;
1381 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1382 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1383 }
1384 return &sc->tx.txq[axq_qnum];
1385 }
1386
1387 int ath_txq_update(struct ath_softc *sc, int qnum,
1388 struct ath9k_tx_queue_info *qinfo)
1389 {
1390 struct ath_hw *ah = sc->sc_ah;
1391 int error = 0;
1392 struct ath9k_tx_queue_info qi;
1393
1394 if (qnum == sc->beacon.beaconq) {
1395 /*
1396 * XXX: for beacon queue, we just save the parameter.
1397 * It will be picked up by ath_beaconq_config when
1398 * it's necessary.
1399 */
1400 sc->beacon.beacon_qi = *qinfo;
1401 return 0;
1402 }
1403
1404 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1405
1406 ath9k_hw_get_txq_props(ah, qnum, &qi);
1407 qi.tqi_aifs = qinfo->tqi_aifs;
1408 qi.tqi_cwmin = qinfo->tqi_cwmin;
1409 qi.tqi_cwmax = qinfo->tqi_cwmax;
1410 qi.tqi_burstTime = qinfo->tqi_burstTime;
1411 qi.tqi_readyTime = qinfo->tqi_readyTime;
1412
1413 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1414 ath_err(ath9k_hw_common(sc->sc_ah),
1415 "Unable to update hardware queue %u!\n", qnum);
1416 error = -EIO;
1417 } else {
1418 ath9k_hw_resettxqueue(ah, qnum);
1419 }
1420
1421 return error;
1422 }
1423
1424 int ath_cabq_update(struct ath_softc *sc)
1425 {
1426 struct ath9k_tx_queue_info qi;
1427 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1428 int qnum = sc->beacon.cabq->axq_qnum;
1429
1430 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1431 /*
1432 * Ensure the readytime % is within the bounds.
1433 */
1434 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1435 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1436 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1437 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1438
1439 qi.tqi_readyTime = (cur_conf->beacon_interval *
1440 sc->config.cabqReadytime) / 100;
1441 ath_txq_update(sc, qnum, &qi);
1442
1443 return 0;
1444 }
1445
1446 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1447 {
1448 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1449 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1450 }
1451
1452 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1453 struct list_head *list, bool retry_tx)
1454 {
1455 struct ath_buf *bf, *lastbf;
1456 struct list_head bf_head;
1457 struct ath_tx_status ts;
1458
1459 memset(&ts, 0, sizeof(ts));
1460 ts.ts_status = ATH9K_TX_FLUSH;
1461 INIT_LIST_HEAD(&bf_head);
1462
1463 while (!list_empty(list)) {
1464 bf = list_first_entry(list, struct ath_buf, list);
1465
1466 if (bf->bf_stale) {
1467 list_del(&bf->list);
1468
1469 ath_tx_return_buffer(sc, bf);
1470 continue;
1471 }
1472
1473 lastbf = bf->bf_lastbf;
1474 list_cut_position(&bf_head, list, &lastbf->list);
1475
1476 txq->axq_depth--;
1477 if (bf_is_ampdu_not_probing(bf))
1478 txq->axq_ampdu_depth--;
1479
1480 if (bf_isampdu(bf))
1481 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1482 retry_tx);
1483 else
1484 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1485 }
1486 }
1487
1488 /*
1489 * Drain a given TX queue (could be Beacon or Data)
1490 *
1491 * This assumes output has been stopped and
1492 * we do not need to block ath_tx_tasklet.
1493 */
1494 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1495 {
1496 ath_txq_lock(sc, txq);
1497
1498 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1499 int idx = txq->txq_tailidx;
1500
1501 while (!list_empty(&txq->txq_fifo[idx])) {
1502 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1503 retry_tx);
1504
1505 INCR(idx, ATH_TXFIFO_DEPTH);
1506 }
1507 txq->txq_tailidx = idx;
1508 }
1509
1510 txq->axq_link = NULL;
1511 txq->axq_tx_inprogress = false;
1512 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1513
1514 /* flush any pending frames if aggregation is enabled */
1515 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1516 ath_txq_drain_pending_buffers(sc, txq);
1517
1518 ath_txq_unlock_complete(sc, txq);
1519 }
1520
1521 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1522 {
1523 struct ath_hw *ah = sc->sc_ah;
1524 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1525 struct ath_txq *txq;
1526 int i;
1527 u32 npend = 0;
1528
1529 if (sc->sc_flags & SC_OP_INVALID)
1530 return true;
1531
1532 ath9k_hw_abort_tx_dma(ah);
1533
1534 /* Check if any queue remains active */
1535 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1536 if (!ATH_TXQ_SETUP(sc, i))
1537 continue;
1538
1539 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1540 npend |= BIT(i);
1541 }
1542
1543 if (npend)
1544 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1545
1546 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1547 if (!ATH_TXQ_SETUP(sc, i))
1548 continue;
1549
1550 /*
1551 * The caller will resume queues with ieee80211_wake_queues.
1552 * Mark the queue as not stopped to prevent ath_tx_complete
1553 * from waking the queue too early.
1554 */
1555 txq = &sc->tx.txq[i];
1556 txq->stopped = false;
1557 ath_draintxq(sc, txq, retry_tx);
1558 }
1559
1560 return !npend;
1561 }
1562
1563 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1564 {
1565 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1566 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1567 }
1568
1569 /* For each axq_acq entry, for each tid, try to schedule packets
1570 * for transmit until ampdu_depth has reached min Q depth.
1571 */
1572 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1573 {
1574 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1575 struct ath_atx_tid *tid, *last_tid;
1576
1577 if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
1578 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1579 return;
1580
1581 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1582 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1583
1584 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1585 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1586 list_del(&ac->list);
1587 ac->sched = false;
1588
1589 while (!list_empty(&ac->tid_q)) {
1590 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1591 list);
1592 list_del(&tid->list);
1593 tid->sched = false;
1594
1595 if (tid->paused)
1596 continue;
1597
1598 ath_tx_sched_aggr(sc, txq, tid);
1599
1600 /*
1601 * add tid to round-robin queue if more frames
1602 * are pending for the tid
1603 */
1604 if (!skb_queue_empty(&tid->buf_q))
1605 ath_tx_queue_tid(txq, tid);
1606
1607 if (tid == last_tid ||
1608 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1609 break;
1610 }
1611
1612 if (!list_empty(&ac->tid_q) && !ac->sched) {
1613 ac->sched = true;
1614 list_add_tail(&ac->list, &txq->axq_acq);
1615 }
1616
1617 if (ac == last_ac ||
1618 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1619 return;
1620 }
1621 }
1622
1623 /***********/
1624 /* TX, DMA */
1625 /***********/
1626
1627 /*
1628 * Insert a chain of ath_buf (descriptors) on a txq and
1629 * assume the descriptors are already chained together by caller.
1630 */
1631 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1632 struct list_head *head, bool internal)
1633 {
1634 struct ath_hw *ah = sc->sc_ah;
1635 struct ath_common *common = ath9k_hw_common(ah);
1636 struct ath_buf *bf, *bf_last;
1637 bool puttxbuf = false;
1638 bool edma;
1639
1640 /*
1641 * Insert the frame on the outbound list and
1642 * pass it on to the hardware.
1643 */
1644
1645 if (list_empty(head))
1646 return;
1647
1648 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1649 bf = list_first_entry(head, struct ath_buf, list);
1650 bf_last = list_entry(head->prev, struct ath_buf, list);
1651
1652 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1653 txq->axq_qnum, txq->axq_depth);
1654
1655 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1656 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1657 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1658 puttxbuf = true;
1659 } else {
1660 list_splice_tail_init(head, &txq->axq_q);
1661
1662 if (txq->axq_link) {
1663 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1664 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1665 txq->axq_qnum, txq->axq_link,
1666 ito64(bf->bf_daddr), bf->bf_desc);
1667 } else if (!edma)
1668 puttxbuf = true;
1669
1670 txq->axq_link = bf_last->bf_desc;
1671 }
1672
1673 if (puttxbuf) {
1674 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1675 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1676 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1677 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1678 }
1679
1680 if (!edma) {
1681 TX_STAT_INC(txq->axq_qnum, txstart);
1682 ath9k_hw_txstart(ah, txq->axq_qnum);
1683 }
1684
1685 if (!internal) {
1686 txq->axq_depth++;
1687 if (bf_is_ampdu_not_probing(bf))
1688 txq->axq_ampdu_depth++;
1689 }
1690 }
1691
1692 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1693 struct sk_buff *skb, struct ath_tx_control *txctl)
1694 {
1695 struct ath_frame_info *fi = get_frame_info(skb);
1696 struct list_head bf_head;
1697 struct ath_buf *bf;
1698
1699 /*
1700 * Do not queue to h/w when any of the following conditions is true:
1701 * - there are pending frames in software queue
1702 * - the TID is currently paused for ADDBA/BAR request
1703 * - seqno is not within block-ack window
1704 * - h/w queue depth exceeds low water mark
1705 */
1706 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1707 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1708 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1709 /*
1710 * Add this frame to software queue for scheduling later
1711 * for aggregation.
1712 */
1713 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1714 __skb_queue_tail(&tid->buf_q, skb);
1715 if (!txctl->an || !txctl->an->sleeping)
1716 ath_tx_queue_tid(txctl->txq, tid);
1717 return;
1718 }
1719
1720 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1721 if (!bf)
1722 return;
1723
1724 bf->bf_state.bf_type = BUF_AMPDU;
1725 INIT_LIST_HEAD(&bf_head);
1726 list_add(&bf->list, &bf_head);
1727
1728 /* Add sub-frame to BAW */
1729 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1730
1731 /* Queue to h/w without aggregation */
1732 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1733 bf->bf_lastbf = bf;
1734 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1735 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1736 }
1737
1738 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1739 struct ath_atx_tid *tid, struct sk_buff *skb)
1740 {
1741 struct ath_frame_info *fi = get_frame_info(skb);
1742 struct list_head bf_head;
1743 struct ath_buf *bf;
1744
1745 bf = fi->bf;
1746 if (!bf)
1747 bf = ath_tx_setup_buffer(sc, txq, tid, skb, false);
1748
1749 if (!bf)
1750 return;
1751
1752 INIT_LIST_HEAD(&bf_head);
1753 list_add_tail(&bf->list, &bf_head);
1754 bf->bf_state.bf_type = 0;
1755
1756 bf->bf_lastbf = bf;
1757 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1758 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1759 TX_STAT_INC(txq->axq_qnum, queued);
1760 }
1761
1762 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1763 int framelen)
1764 {
1765 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1766 struct ieee80211_sta *sta = tx_info->control.sta;
1767 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1768 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1769 const struct ieee80211_rate *rate;
1770 struct ath_frame_info *fi = get_frame_info(skb);
1771 struct ath_node *an = NULL;
1772 enum ath9k_key_type keytype;
1773 bool short_preamble = false;
1774
1775 /*
1776 * We check if Short Preamble is needed for the CTS rate by
1777 * checking the BSS's global flag.
1778 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1779 */
1780 if (tx_info->control.vif &&
1781 tx_info->control.vif->bss_conf.use_short_preamble)
1782 short_preamble = true;
1783
1784 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1785 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1786
1787 if (sta)
1788 an = (struct ath_node *) sta->drv_priv;
1789
1790 memset(fi, 0, sizeof(*fi));
1791 if (hw_key)
1792 fi->keyix = hw_key->hw_key_idx;
1793 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1794 fi->keyix = an->ps_key;
1795 else
1796 fi->keyix = ATH9K_TXKEYIX_INVALID;
1797 fi->keytype = keytype;
1798 fi->framelen = framelen;
1799 fi->rtscts_rate = rate->hw_value;
1800 if (short_preamble)
1801 fi->rtscts_rate |= rate->hw_value_short;
1802 }
1803
1804 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1805 {
1806 struct ath_hw *ah = sc->sc_ah;
1807 struct ath9k_channel *curchan = ah->curchan;
1808 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1809 (curchan->channelFlags & CHANNEL_5GHZ) &&
1810 (chainmask == 0x7) && (rate < 0x90))
1811 return 0x3;
1812 else
1813 return chainmask;
1814 }
1815
1816 /*
1817 * Assign a descriptor (and sequence number if necessary,
1818 * and map buffer for DMA. Frees skb on error
1819 */
1820 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1821 struct ath_txq *txq,
1822 struct ath_atx_tid *tid,
1823 struct sk_buff *skb,
1824 bool dequeue)
1825 {
1826 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1827 struct ath_frame_info *fi = get_frame_info(skb);
1828 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1829 struct ath_buf *bf;
1830 int fragno;
1831 u16 seqno;
1832
1833 bf = ath_tx_get_buffer(sc);
1834 if (!bf) {
1835 ath_dbg(common, XMIT, "TX buffers are full\n");
1836 goto error;
1837 }
1838
1839 ATH_TXBUF_RESET(bf);
1840
1841 if (tid) {
1842 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1843 seqno = tid->seq_next;
1844 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1845
1846 if (fragno)
1847 hdr->seq_ctrl |= cpu_to_le16(fragno);
1848
1849 if (!ieee80211_has_morefrags(hdr->frame_control))
1850 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1851
1852 bf->bf_state.seqno = seqno;
1853 }
1854
1855 bf->bf_mpdu = skb;
1856
1857 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1858 skb->len, DMA_TO_DEVICE);
1859 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1860 bf->bf_mpdu = NULL;
1861 bf->bf_buf_addr = 0;
1862 ath_err(ath9k_hw_common(sc->sc_ah),
1863 "dma_mapping_error() on TX\n");
1864 ath_tx_return_buffer(sc, bf);
1865 goto error;
1866 }
1867
1868 fi->bf = bf;
1869
1870 return bf;
1871
1872 error:
1873 if (dequeue)
1874 __skb_unlink(skb, &tid->buf_q);
1875 dev_kfree_skb_any(skb);
1876 return NULL;
1877 }
1878
1879 /* FIXME: tx power */
1880 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1881 struct ath_tx_control *txctl)
1882 {
1883 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1884 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1885 struct ath_atx_tid *tid = NULL;
1886 struct ath_buf *bf;
1887 u8 tidno;
1888
1889 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1890 ieee80211_is_data_qos(hdr->frame_control)) {
1891 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1892 IEEE80211_QOS_CTL_TID_MASK;
1893 tid = ATH_AN_2_TID(txctl->an, tidno);
1894
1895 WARN_ON(tid->ac->txq != txctl->txq);
1896 }
1897
1898 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1899 /*
1900 * Try aggregation if it's a unicast data frame
1901 * and the destination is HT capable.
1902 */
1903 ath_tx_send_ampdu(sc, tid, skb, txctl);
1904 } else {
1905 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb, false);
1906 if (!bf)
1907 return;
1908
1909 bf->bf_state.bfs_paprd = txctl->paprd;
1910
1911 if (txctl->paprd)
1912 bf->bf_state.bfs_paprd_timestamp = jiffies;
1913
1914 ath_tx_send_normal(sc, txctl->txq, tid, skb);
1915 }
1916 }
1917
1918 /* Upon failure caller should free skb */
1919 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1920 struct ath_tx_control *txctl)
1921 {
1922 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1923 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1924 struct ieee80211_sta *sta = info->control.sta;
1925 struct ieee80211_vif *vif = info->control.vif;
1926 struct ath_softc *sc = hw->priv;
1927 struct ath_txq *txq = txctl->txq;
1928 int padpos, padsize;
1929 int frmlen = skb->len + FCS_LEN;
1930 int q;
1931
1932 /* NOTE: sta can be NULL according to net/mac80211.h */
1933 if (sta)
1934 txctl->an = (struct ath_node *)sta->drv_priv;
1935
1936 if (info->control.hw_key)
1937 frmlen += info->control.hw_key->icv_len;
1938
1939 /*
1940 * As a temporary workaround, assign seq# here; this will likely need
1941 * to be cleaned up to work better with Beacon transmission and virtual
1942 * BSSes.
1943 */
1944 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1945 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1946 sc->tx.seq_no += 0x10;
1947 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1948 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1949 }
1950
1951 /* Add the padding after the header if this is not already done */
1952 padpos = ath9k_cmn_padpos(hdr->frame_control);
1953 padsize = padpos & 3;
1954 if (padsize && skb->len > padpos) {
1955 if (skb_headroom(skb) < padsize)
1956 return -ENOMEM;
1957
1958 skb_push(skb, padsize);
1959 memmove(skb->data, skb->data + padsize, padpos);
1960 hdr = (struct ieee80211_hdr *) skb->data;
1961 }
1962
1963 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1964 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1965 !ieee80211_is_data(hdr->frame_control))
1966 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1967
1968 setup_frame_info(hw, skb, frmlen);
1969
1970 /*
1971 * At this point, the vif, hw_key and sta pointers in the tx control
1972 * info are no longer valid (overwritten by the ath_frame_info data.
1973 */
1974
1975 q = skb_get_queue_mapping(skb);
1976
1977 ath_txq_lock(sc, txq);
1978 if (txq == sc->tx.txq_map[q] &&
1979 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1980 ieee80211_stop_queue(sc->hw, q);
1981 txq->stopped = true;
1982 }
1983
1984 ath_tx_start_dma(sc, skb, txctl);
1985
1986 ath_txq_unlock(sc, txq);
1987
1988 return 0;
1989 }
1990
1991 /*****************/
1992 /* TX Completion */
1993 /*****************/
1994
1995 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1996 int tx_flags, struct ath_txq *txq)
1997 {
1998 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1999 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2000 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2001 int q, padpos, padsize;
2002
2003 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2004
2005 if (!(tx_flags & ATH_TX_ERROR))
2006 /* Frame was ACKed */
2007 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2008
2009 padpos = ath9k_cmn_padpos(hdr->frame_control);
2010 padsize = padpos & 3;
2011 if (padsize && skb->len>padpos+padsize) {
2012 /*
2013 * Remove MAC header padding before giving the frame back to
2014 * mac80211.
2015 */
2016 memmove(skb->data + padsize, skb->data, padpos);
2017 skb_pull(skb, padsize);
2018 }
2019
2020 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2021 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2022 ath_dbg(common, PS,
2023 "Going back to sleep after having received TX status (0x%lx)\n",
2024 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2025 PS_WAIT_FOR_CAB |
2026 PS_WAIT_FOR_PSPOLL_DATA |
2027 PS_WAIT_FOR_TX_ACK));
2028 }
2029
2030 q = skb_get_queue_mapping(skb);
2031 if (txq == sc->tx.txq_map[q]) {
2032 if (WARN_ON(--txq->pending_frames < 0))
2033 txq->pending_frames = 0;
2034
2035 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2036 ieee80211_wake_queue(sc->hw, q);
2037 txq->stopped = false;
2038 }
2039 }
2040
2041 __skb_queue_tail(&txq->complete_q, skb);
2042 }
2043
2044 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2045 struct ath_txq *txq, struct list_head *bf_q,
2046 struct ath_tx_status *ts, int txok)
2047 {
2048 struct sk_buff *skb = bf->bf_mpdu;
2049 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2050 unsigned long flags;
2051 int tx_flags = 0;
2052
2053 if (!txok)
2054 tx_flags |= ATH_TX_ERROR;
2055
2056 if (ts->ts_status & ATH9K_TXERR_FILT)
2057 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2058
2059 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2060 bf->bf_buf_addr = 0;
2061
2062 if (bf->bf_state.bfs_paprd) {
2063 if (time_after(jiffies,
2064 bf->bf_state.bfs_paprd_timestamp +
2065 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2066 dev_kfree_skb_any(skb);
2067 else
2068 complete(&sc->paprd_complete);
2069 } else {
2070 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2071 ath_tx_complete(sc, skb, tx_flags, txq);
2072 }
2073 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2074 * accidentally reference it later.
2075 */
2076 bf->bf_mpdu = NULL;
2077
2078 /*
2079 * Return the list of ath_buf of this mpdu to free queue
2080 */
2081 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2082 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2083 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2084 }
2085
2086 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2087 struct ath_tx_status *ts, int nframes, int nbad,
2088 int txok)
2089 {
2090 struct sk_buff *skb = bf->bf_mpdu;
2091 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2092 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2093 struct ieee80211_hw *hw = sc->hw;
2094 struct ath_hw *ah = sc->sc_ah;
2095 u8 i, tx_rateindex;
2096
2097 if (txok)
2098 tx_info->status.ack_signal = ts->ts_rssi;
2099
2100 tx_rateindex = ts->ts_rateindex;
2101 WARN_ON(tx_rateindex >= hw->max_rates);
2102
2103 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2104 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2105
2106 BUG_ON(nbad > nframes);
2107 }
2108 tx_info->status.ampdu_len = nframes;
2109 tx_info->status.ampdu_ack_len = nframes - nbad;
2110
2111 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2112 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2113 /*
2114 * If an underrun error is seen assume it as an excessive
2115 * retry only if max frame trigger level has been reached
2116 * (2 KB for single stream, and 4 KB for dual stream).
2117 * Adjust the long retry as if the frame was tried
2118 * hw->max_rate_tries times to affect how rate control updates
2119 * PER for the failed rate.
2120 * In case of congestion on the bus penalizing this type of
2121 * underruns should help hardware actually transmit new frames
2122 * successfully by eventually preferring slower rates.
2123 * This itself should also alleviate congestion on the bus.
2124 */
2125 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2126 ATH9K_TX_DELIM_UNDERRUN)) &&
2127 ieee80211_is_data(hdr->frame_control) &&
2128 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2129 tx_info->status.rates[tx_rateindex].count =
2130 hw->max_rate_tries;
2131 }
2132
2133 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2134 tx_info->status.rates[i].count = 0;
2135 tx_info->status.rates[i].idx = -1;
2136 }
2137
2138 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2139 }
2140
2141 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2142 struct ath_tx_status *ts, struct ath_buf *bf,
2143 struct list_head *bf_head)
2144 {
2145 int txok;
2146
2147 txq->axq_depth--;
2148 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2149 txq->axq_tx_inprogress = false;
2150 if (bf_is_ampdu_not_probing(bf))
2151 txq->axq_ampdu_depth--;
2152
2153 if (!bf_isampdu(bf)) {
2154 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2155 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2156 } else
2157 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2158
2159 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2160 ath_txq_schedule(sc, txq);
2161 }
2162
2163 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2164 {
2165 struct ath_hw *ah = sc->sc_ah;
2166 struct ath_common *common = ath9k_hw_common(ah);
2167 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2168 struct list_head bf_head;
2169 struct ath_desc *ds;
2170 struct ath_tx_status ts;
2171 int status;
2172
2173 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2174 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2175 txq->axq_link);
2176
2177 ath_txq_lock(sc, txq);
2178 for (;;) {
2179 if (work_pending(&sc->hw_reset_work))
2180 break;
2181
2182 if (list_empty(&txq->axq_q)) {
2183 txq->axq_link = NULL;
2184 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2185 ath_txq_schedule(sc, txq);
2186 break;
2187 }
2188 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2189
2190 /*
2191 * There is a race condition that a BH gets scheduled
2192 * after sw writes TxE and before hw re-load the last
2193 * descriptor to get the newly chained one.
2194 * Software must keep the last DONE descriptor as a
2195 * holding descriptor - software does so by marking
2196 * it with the STALE flag.
2197 */
2198 bf_held = NULL;
2199 if (bf->bf_stale) {
2200 bf_held = bf;
2201 if (list_is_last(&bf_held->list, &txq->axq_q))
2202 break;
2203
2204 bf = list_entry(bf_held->list.next, struct ath_buf,
2205 list);
2206 }
2207
2208 lastbf = bf->bf_lastbf;
2209 ds = lastbf->bf_desc;
2210
2211 memset(&ts, 0, sizeof(ts));
2212 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2213 if (status == -EINPROGRESS)
2214 break;
2215
2216 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2217
2218 /*
2219 * Remove ath_buf's of the same transmit unit from txq,
2220 * however leave the last descriptor back as the holding
2221 * descriptor for hw.
2222 */
2223 lastbf->bf_stale = true;
2224 INIT_LIST_HEAD(&bf_head);
2225 if (!list_is_singular(&lastbf->list))
2226 list_cut_position(&bf_head,
2227 &txq->axq_q, lastbf->list.prev);
2228
2229 if (bf_held) {
2230 list_del(&bf_held->list);
2231 ath_tx_return_buffer(sc, bf_held);
2232 }
2233
2234 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2235 }
2236 ath_txq_unlock_complete(sc, txq);
2237 }
2238
2239 static void ath_tx_complete_poll_work(struct work_struct *work)
2240 {
2241 struct ath_softc *sc = container_of(work, struct ath_softc,
2242 tx_complete_work.work);
2243 struct ath_txq *txq;
2244 int i;
2245 bool needreset = false;
2246 #ifdef CONFIG_ATH9K_DEBUGFS
2247 sc->tx_complete_poll_work_seen++;
2248 #endif
2249
2250 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2251 if (ATH_TXQ_SETUP(sc, i)) {
2252 txq = &sc->tx.txq[i];
2253 ath_txq_lock(sc, txq);
2254 if (txq->axq_depth) {
2255 if (txq->axq_tx_inprogress) {
2256 needreset = true;
2257 ath_txq_unlock(sc, txq);
2258 break;
2259 } else {
2260 txq->axq_tx_inprogress = true;
2261 }
2262 }
2263 ath_txq_unlock_complete(sc, txq);
2264 }
2265
2266 if (needreset) {
2267 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
2268 "tx hung, resetting the chip\n");
2269 RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
2270 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
2271 }
2272
2273 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2274 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2275 }
2276
2277
2278
2279 void ath_tx_tasklet(struct ath_softc *sc)
2280 {
2281 struct ath_hw *ah = sc->sc_ah;
2282 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2283 int i;
2284
2285 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2286 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2287 ath_tx_processq(sc, &sc->tx.txq[i]);
2288 }
2289 }
2290
2291 void ath_tx_edma_tasklet(struct ath_softc *sc)
2292 {
2293 struct ath_tx_status ts;
2294 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2295 struct ath_hw *ah = sc->sc_ah;
2296 struct ath_txq *txq;
2297 struct ath_buf *bf, *lastbf;
2298 struct list_head bf_head;
2299 int status;
2300
2301 for (;;) {
2302 if (work_pending(&sc->hw_reset_work))
2303 break;
2304
2305 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2306 if (status == -EINPROGRESS)
2307 break;
2308 if (status == -EIO) {
2309 ath_dbg(common, XMIT, "Error processing tx status\n");
2310 break;
2311 }
2312
2313 /* Process beacon completions separately */
2314 if (ts.qid == sc->beacon.beaconq) {
2315 sc->beacon.tx_processed = true;
2316 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2317 continue;
2318 }
2319
2320 txq = &sc->tx.txq[ts.qid];
2321
2322 ath_txq_lock(sc, txq);
2323
2324 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2325 ath_txq_unlock(sc, txq);
2326 return;
2327 }
2328
2329 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2330 struct ath_buf, list);
2331 lastbf = bf->bf_lastbf;
2332
2333 INIT_LIST_HEAD(&bf_head);
2334 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2335 &lastbf->list);
2336
2337 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2338 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2339
2340 if (!list_empty(&txq->axq_q)) {
2341 struct list_head bf_q;
2342
2343 INIT_LIST_HEAD(&bf_q);
2344 txq->axq_link = NULL;
2345 list_splice_tail_init(&txq->axq_q, &bf_q);
2346 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2347 }
2348 }
2349
2350 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2351 ath_txq_unlock_complete(sc, txq);
2352 }
2353 }
2354
2355 /*****************/
2356 /* Init, Cleanup */
2357 /*****************/
2358
2359 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2360 {
2361 struct ath_descdma *dd = &sc->txsdma;
2362 u8 txs_len = sc->sc_ah->caps.txs_len;
2363
2364 dd->dd_desc_len = size * txs_len;
2365 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2366 &dd->dd_desc_paddr, GFP_KERNEL);
2367 if (!dd->dd_desc)
2368 return -ENOMEM;
2369
2370 return 0;
2371 }
2372
2373 static int ath_tx_edma_init(struct ath_softc *sc)
2374 {
2375 int err;
2376
2377 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2378 if (!err)
2379 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2380 sc->txsdma.dd_desc_paddr,
2381 ATH_TXSTATUS_RING_SIZE);
2382
2383 return err;
2384 }
2385
2386 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2387 {
2388 struct ath_descdma *dd = &sc->txsdma;
2389
2390 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2391 dd->dd_desc_paddr);
2392 }
2393
2394 int ath_tx_init(struct ath_softc *sc, int nbufs)
2395 {
2396 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2397 int error = 0;
2398
2399 spin_lock_init(&sc->tx.txbuflock);
2400
2401 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2402 "tx", nbufs, 1, 1);
2403 if (error != 0) {
2404 ath_err(common,
2405 "Failed to allocate tx descriptors: %d\n", error);
2406 goto err;
2407 }
2408
2409 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2410 "beacon", ATH_BCBUF, 1, 1);
2411 if (error != 0) {
2412 ath_err(common,
2413 "Failed to allocate beacon descriptors: %d\n", error);
2414 goto err;
2415 }
2416
2417 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2418
2419 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2420 error = ath_tx_edma_init(sc);
2421 if (error)
2422 goto err;
2423 }
2424
2425 err:
2426 if (error != 0)
2427 ath_tx_cleanup(sc);
2428
2429 return error;
2430 }
2431
2432 void ath_tx_cleanup(struct ath_softc *sc)
2433 {
2434 if (sc->beacon.bdma.dd_desc_len != 0)
2435 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2436
2437 if (sc->tx.txdma.dd_desc_len != 0)
2438 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2439
2440 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2441 ath_tx_edma_cleanup(sc);
2442 }
2443
2444 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2445 {
2446 struct ath_atx_tid *tid;
2447 struct ath_atx_ac *ac;
2448 int tidno, acno;
2449
2450 for (tidno = 0, tid = &an->tid[tidno];
2451 tidno < WME_NUM_TID;
2452 tidno++, tid++) {
2453 tid->an = an;
2454 tid->tidno = tidno;
2455 tid->seq_start = tid->seq_next = 0;
2456 tid->baw_size = WME_MAX_BA;
2457 tid->baw_head = tid->baw_tail = 0;
2458 tid->sched = false;
2459 tid->paused = false;
2460 tid->state &= ~AGGR_CLEANUP;
2461 __skb_queue_head_init(&tid->buf_q);
2462 acno = TID_TO_WME_AC(tidno);
2463 tid->ac = &an->ac[acno];
2464 tid->state &= ~AGGR_ADDBA_COMPLETE;
2465 tid->state &= ~AGGR_ADDBA_PROGRESS;
2466 }
2467
2468 for (acno = 0, ac = &an->ac[acno];
2469 acno < WME_NUM_AC; acno++, ac++) {
2470 ac->sched = false;
2471 ac->txq = sc->tx.txq_map[acno];
2472 INIT_LIST_HEAD(&ac->tid_q);
2473 }
2474 }
2475
2476 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2477 {
2478 struct ath_atx_ac *ac;
2479 struct ath_atx_tid *tid;
2480 struct ath_txq *txq;
2481 int tidno;
2482
2483 for (tidno = 0, tid = &an->tid[tidno];
2484 tidno < WME_NUM_TID; tidno++, tid++) {
2485
2486 ac = tid->ac;
2487 txq = ac->txq;
2488
2489 ath_txq_lock(sc, txq);
2490
2491 if (tid->sched) {
2492 list_del(&tid->list);
2493 tid->sched = false;
2494 }
2495
2496 if (ac->sched) {
2497 list_del(&ac->list);
2498 tid->ac->sched = false;
2499 }
2500
2501 ath_tid_drain(sc, txq, tid);
2502 tid->state &= ~AGGR_ADDBA_COMPLETE;
2503 tid->state &= ~AGGR_CLEANUP;
2504
2505 ath_txq_unlock(sc, txq);
2506 }
2507 }
This page took 0.084651 seconds and 5 git commands to generate.