Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
106 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
107 {
108 struct ath_atx_ac *ac = tid->ac;
109
110 if (tid->paused)
111 return;
112
113 if (tid->sched)
114 return;
115
116 tid->sched = true;
117 list_add_tail(&tid->list, &ac->tid_q);
118
119 if (ac->sched)
120 return;
121
122 ac->sched = true;
123 list_add_tail(&ac->list, &txq->axq_acq);
124 }
125
126 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
127 {
128 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
129 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
130 sizeof(tx_info->rate_driver_data));
131 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
132 }
133
134 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
135 {
136 if (!tid->an->sta)
137 return;
138
139 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
140 seqno << IEEE80211_SEQ_SEQ_SHIFT);
141 }
142
143 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
144 struct ath_buf *bf)
145 {
146 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
147 ARRAY_SIZE(bf->rates));
148 }
149
150 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
151 struct sk_buff *skb)
152 {
153 int q;
154
155 q = skb_get_queue_mapping(skb);
156 if (txq == sc->tx.uapsdq)
157 txq = sc->tx.txq_map[q];
158
159 if (txq != sc->tx.txq_map[q])
160 return;
161
162 if (WARN_ON(--txq->pending_frames < 0))
163 txq->pending_frames = 0;
164
165 if (txq->stopped &&
166 txq->pending_frames < sc->tx.txq_max_pending[q]) {
167 ieee80211_wake_queue(sc->hw, q);
168 txq->stopped = false;
169 }
170 }
171
172 static struct ath_atx_tid *
173 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
174 {
175 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
176 return ATH_AN_2_TID(an, tidno);
177 }
178
179 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
180 {
181 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
182 }
183
184 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
185 {
186 struct sk_buff *skb;
187
188 skb = __skb_dequeue(&tid->retry_q);
189 if (!skb)
190 skb = __skb_dequeue(&tid->buf_q);
191
192 return skb;
193 }
194
195 /*
196 * ath_tx_tid_change_state:
197 * - clears a-mpdu flag of previous session
198 * - force sequence number allocation to fix next BlockAck Window
199 */
200 static void
201 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
202 {
203 struct ath_txq *txq = tid->ac->txq;
204 struct ieee80211_tx_info *tx_info;
205 struct sk_buff *skb, *tskb;
206 struct ath_buf *bf;
207 struct ath_frame_info *fi;
208
209 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
210 fi = get_frame_info(skb);
211 bf = fi->bf;
212
213 tx_info = IEEE80211_SKB_CB(skb);
214 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
215
216 if (bf)
217 continue;
218
219 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
220 if (!bf) {
221 __skb_unlink(skb, &tid->buf_q);
222 ath_txq_skb_done(sc, txq, skb);
223 ieee80211_free_txskb(sc->hw, skb);
224 continue;
225 }
226 }
227
228 }
229
230 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
231 {
232 struct ath_txq *txq = tid->ac->txq;
233 struct sk_buff *skb;
234 struct ath_buf *bf;
235 struct list_head bf_head;
236 struct ath_tx_status ts;
237 struct ath_frame_info *fi;
238 bool sendbar = false;
239
240 INIT_LIST_HEAD(&bf_head);
241
242 memset(&ts, 0, sizeof(ts));
243
244 while ((skb = __skb_dequeue(&tid->retry_q))) {
245 fi = get_frame_info(skb);
246 bf = fi->bf;
247 if (!bf) {
248 ath_txq_skb_done(sc, txq, skb);
249 ieee80211_free_txskb(sc->hw, skb);
250 continue;
251 }
252
253 if (fi->baw_tracked) {
254 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
255 sendbar = true;
256 }
257
258 list_add_tail(&bf->list, &bf_head);
259 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
260 }
261
262 if (sendbar) {
263 ath_txq_unlock(sc, txq);
264 ath_send_bar(tid, tid->seq_start);
265 ath_txq_lock(sc, txq);
266 }
267 }
268
269 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
270 int seqno)
271 {
272 int index, cindex;
273
274 index = ATH_BA_INDEX(tid->seq_start, seqno);
275 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
276
277 __clear_bit(cindex, tid->tx_buf);
278
279 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
280 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
281 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
282 if (tid->bar_index >= 0)
283 tid->bar_index--;
284 }
285 }
286
287 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
288 struct ath_buf *bf)
289 {
290 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
291 u16 seqno = bf->bf_state.seqno;
292 int index, cindex;
293
294 index = ATH_BA_INDEX(tid->seq_start, seqno);
295 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
296 __set_bit(cindex, tid->tx_buf);
297 fi->baw_tracked = 1;
298
299 if (index >= ((tid->baw_tail - tid->baw_head) &
300 (ATH_TID_MAX_BUFS - 1))) {
301 tid->baw_tail = cindex;
302 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
303 }
304 }
305
306 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
307 struct ath_atx_tid *tid)
308
309 {
310 struct sk_buff *skb;
311 struct ath_buf *bf;
312 struct list_head bf_head;
313 struct ath_tx_status ts;
314 struct ath_frame_info *fi;
315
316 memset(&ts, 0, sizeof(ts));
317 INIT_LIST_HEAD(&bf_head);
318
319 while ((skb = ath_tid_dequeue(tid))) {
320 fi = get_frame_info(skb);
321 bf = fi->bf;
322
323 if (!bf) {
324 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
325 continue;
326 }
327
328 list_add_tail(&bf->list, &bf_head);
329 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
330 }
331 }
332
333 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
334 struct sk_buff *skb, int count)
335 {
336 struct ath_frame_info *fi = get_frame_info(skb);
337 struct ath_buf *bf = fi->bf;
338 struct ieee80211_hdr *hdr;
339 int prev = fi->retries;
340
341 TX_STAT_INC(txq->axq_qnum, a_retries);
342 fi->retries += count;
343
344 if (prev > 0)
345 return;
346
347 hdr = (struct ieee80211_hdr *)skb->data;
348 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
349 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
350 sizeof(*hdr), DMA_TO_DEVICE);
351 }
352
353 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
354 {
355 struct ath_buf *bf = NULL;
356
357 spin_lock_bh(&sc->tx.txbuflock);
358
359 if (unlikely(list_empty(&sc->tx.txbuf))) {
360 spin_unlock_bh(&sc->tx.txbuflock);
361 return NULL;
362 }
363
364 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
365 list_del(&bf->list);
366
367 spin_unlock_bh(&sc->tx.txbuflock);
368
369 return bf;
370 }
371
372 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
373 {
374 spin_lock_bh(&sc->tx.txbuflock);
375 list_add_tail(&bf->list, &sc->tx.txbuf);
376 spin_unlock_bh(&sc->tx.txbuflock);
377 }
378
379 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
380 {
381 struct ath_buf *tbf;
382
383 tbf = ath_tx_get_buffer(sc);
384 if (WARN_ON(!tbf))
385 return NULL;
386
387 ATH_TXBUF_RESET(tbf);
388
389 tbf->bf_mpdu = bf->bf_mpdu;
390 tbf->bf_buf_addr = bf->bf_buf_addr;
391 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
392 tbf->bf_state = bf->bf_state;
393 tbf->bf_state.stale = false;
394
395 return tbf;
396 }
397
398 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
399 struct ath_tx_status *ts, int txok,
400 int *nframes, int *nbad)
401 {
402 struct ath_frame_info *fi;
403 u16 seq_st = 0;
404 u32 ba[WME_BA_BMP_SIZE >> 5];
405 int ba_index;
406 int isaggr = 0;
407
408 *nbad = 0;
409 *nframes = 0;
410
411 isaggr = bf_isaggr(bf);
412 if (isaggr) {
413 seq_st = ts->ts_seqnum;
414 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
415 }
416
417 while (bf) {
418 fi = get_frame_info(bf->bf_mpdu);
419 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
420
421 (*nframes)++;
422 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
423 (*nbad)++;
424
425 bf = bf->bf_next;
426 }
427 }
428
429
430 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
431 struct ath_buf *bf, struct list_head *bf_q,
432 struct ath_tx_status *ts, int txok)
433 {
434 struct ath_node *an = NULL;
435 struct sk_buff *skb;
436 struct ieee80211_sta *sta;
437 struct ieee80211_hw *hw = sc->hw;
438 struct ieee80211_hdr *hdr;
439 struct ieee80211_tx_info *tx_info;
440 struct ath_atx_tid *tid = NULL;
441 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
442 struct list_head bf_head;
443 struct sk_buff_head bf_pending;
444 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
445 u32 ba[WME_BA_BMP_SIZE >> 5];
446 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
447 bool rc_update = true, isba;
448 struct ieee80211_tx_rate rates[4];
449 struct ath_frame_info *fi;
450 int nframes;
451 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
452 int i, retries;
453 int bar_index = -1;
454
455 skb = bf->bf_mpdu;
456 hdr = (struct ieee80211_hdr *)skb->data;
457
458 tx_info = IEEE80211_SKB_CB(skb);
459
460 memcpy(rates, bf->rates, sizeof(rates));
461
462 retries = ts->ts_longretry + 1;
463 for (i = 0; i < ts->ts_rateindex; i++)
464 retries += rates[i].count;
465
466 rcu_read_lock();
467
468 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
469 if (!sta) {
470 rcu_read_unlock();
471
472 INIT_LIST_HEAD(&bf_head);
473 while (bf) {
474 bf_next = bf->bf_next;
475
476 if (!bf->bf_state.stale || bf_next != NULL)
477 list_move_tail(&bf->list, &bf_head);
478
479 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
480
481 bf = bf_next;
482 }
483 return;
484 }
485
486 an = (struct ath_node *)sta->drv_priv;
487 tid = ath_get_skb_tid(sc, an, skb);
488 seq_first = tid->seq_start;
489 isba = ts->ts_flags & ATH9K_TX_BA;
490
491 /*
492 * The hardware occasionally sends a tx status for the wrong TID.
493 * In this case, the BA status cannot be considered valid and all
494 * subframes need to be retransmitted
495 *
496 * Only BlockAcks have a TID and therefore normal Acks cannot be
497 * checked
498 */
499 if (isba && tid->tidno != ts->tid)
500 txok = false;
501
502 isaggr = bf_isaggr(bf);
503 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
504
505 if (isaggr && txok) {
506 if (ts->ts_flags & ATH9K_TX_BA) {
507 seq_st = ts->ts_seqnum;
508 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
509 } else {
510 /*
511 * AR5416 can become deaf/mute when BA
512 * issue happens. Chip needs to be reset.
513 * But AP code may have sychronization issues
514 * when perform internal reset in this routine.
515 * Only enable reset in STA mode for now.
516 */
517 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
518 needreset = 1;
519 }
520 }
521
522 __skb_queue_head_init(&bf_pending);
523
524 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
525 while (bf) {
526 u16 seqno = bf->bf_state.seqno;
527
528 txfail = txpending = sendbar = 0;
529 bf_next = bf->bf_next;
530
531 skb = bf->bf_mpdu;
532 tx_info = IEEE80211_SKB_CB(skb);
533 fi = get_frame_info(skb);
534
535 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
536 !tid->active) {
537 /*
538 * Outside of the current BlockAck window,
539 * maybe part of a previous session
540 */
541 txfail = 1;
542 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
543 /* transmit completion, subframe is
544 * acked by block ack */
545 acked_cnt++;
546 } else if (!isaggr && txok) {
547 /* transmit completion */
548 acked_cnt++;
549 } else if (flush) {
550 txpending = 1;
551 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
552 if (txok || !an->sleeping)
553 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
554 retries);
555
556 txpending = 1;
557 } else {
558 txfail = 1;
559 txfail_cnt++;
560 bar_index = max_t(int, bar_index,
561 ATH_BA_INDEX(seq_first, seqno));
562 }
563
564 /*
565 * Make sure the last desc is reclaimed if it
566 * not a holding desc.
567 */
568 INIT_LIST_HEAD(&bf_head);
569 if (bf_next != NULL || !bf_last->bf_state.stale)
570 list_move_tail(&bf->list, &bf_head);
571
572 if (!txpending) {
573 /*
574 * complete the acked-ones/xretried ones; update
575 * block-ack window
576 */
577 ath_tx_update_baw(sc, tid, seqno);
578
579 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
580 memcpy(tx_info->control.rates, rates, sizeof(rates));
581 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
582 rc_update = false;
583 }
584
585 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
586 !txfail);
587 } else {
588 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
589 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
590 ieee80211_sta_eosp(sta);
591 }
592 /* retry the un-acked ones */
593 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
594 struct ath_buf *tbf;
595
596 tbf = ath_clone_txbuf(sc, bf_last);
597 /*
598 * Update tx baw and complete the
599 * frame with failed status if we
600 * run out of tx buf.
601 */
602 if (!tbf) {
603 ath_tx_update_baw(sc, tid, seqno);
604
605 ath_tx_complete_buf(sc, bf, txq,
606 &bf_head, ts, 0);
607 bar_index = max_t(int, bar_index,
608 ATH_BA_INDEX(seq_first, seqno));
609 break;
610 }
611
612 fi->bf = tbf;
613 }
614
615 /*
616 * Put this buffer to the temporary pending
617 * queue to retain ordering
618 */
619 __skb_queue_tail(&bf_pending, skb);
620 }
621
622 bf = bf_next;
623 }
624
625 /* prepend un-acked frames to the beginning of the pending frame queue */
626 if (!skb_queue_empty(&bf_pending)) {
627 if (an->sleeping)
628 ieee80211_sta_set_buffered(sta, tid->tidno, true);
629
630 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
631 if (!an->sleeping) {
632 ath_tx_queue_tid(txq, tid);
633
634 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
635 tid->ac->clear_ps_filter = true;
636 }
637 }
638
639 if (bar_index >= 0) {
640 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
641
642 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
643 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
644
645 ath_txq_unlock(sc, txq);
646 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
647 ath_txq_lock(sc, txq);
648 }
649
650 rcu_read_unlock();
651
652 if (needreset)
653 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
654 }
655
656 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
657 {
658 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
659 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
660 }
661
662 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
663 struct ath_tx_status *ts, struct ath_buf *bf,
664 struct list_head *bf_head)
665 {
666 struct ieee80211_tx_info *info;
667 bool txok, flush;
668
669 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
670 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
671 txq->axq_tx_inprogress = false;
672
673 txq->axq_depth--;
674 if (bf_is_ampdu_not_probing(bf))
675 txq->axq_ampdu_depth--;
676
677 if (!bf_isampdu(bf)) {
678 if (!flush) {
679 info = IEEE80211_SKB_CB(bf->bf_mpdu);
680 memcpy(info->control.rates, bf->rates,
681 sizeof(info->control.rates));
682 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
683 }
684 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
685 } else
686 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
687
688 if (!flush)
689 ath_txq_schedule(sc, txq);
690 }
691
692 static bool ath_lookup_legacy(struct ath_buf *bf)
693 {
694 struct sk_buff *skb;
695 struct ieee80211_tx_info *tx_info;
696 struct ieee80211_tx_rate *rates;
697 int i;
698
699 skb = bf->bf_mpdu;
700 tx_info = IEEE80211_SKB_CB(skb);
701 rates = tx_info->control.rates;
702
703 for (i = 0; i < 4; i++) {
704 if (!rates[i].count || rates[i].idx < 0)
705 break;
706
707 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
708 return true;
709 }
710
711 return false;
712 }
713
714 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
715 struct ath_atx_tid *tid)
716 {
717 struct sk_buff *skb;
718 struct ieee80211_tx_info *tx_info;
719 struct ieee80211_tx_rate *rates;
720 u32 max_4ms_framelen, frmlen;
721 u16 aggr_limit, bt_aggr_limit, legacy = 0;
722 int q = tid->ac->txq->mac80211_qnum;
723 int i;
724
725 skb = bf->bf_mpdu;
726 tx_info = IEEE80211_SKB_CB(skb);
727 rates = bf->rates;
728
729 /*
730 * Find the lowest frame length among the rate series that will have a
731 * 4ms (or TXOP limited) transmit duration.
732 */
733 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
734
735 for (i = 0; i < 4; i++) {
736 int modeidx;
737
738 if (!rates[i].count)
739 continue;
740
741 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
742 legacy = 1;
743 break;
744 }
745
746 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
747 modeidx = MCS_HT40;
748 else
749 modeidx = MCS_HT20;
750
751 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
752 modeidx++;
753
754 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
755 max_4ms_framelen = min(max_4ms_framelen, frmlen);
756 }
757
758 /*
759 * limit aggregate size by the minimum rate if rate selected is
760 * not a probe rate, if rate selected is a probe rate then
761 * avoid aggregation of this packet.
762 */
763 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
764 return 0;
765
766 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
767
768 /*
769 * Override the default aggregation limit for BTCOEX.
770 */
771 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
772 if (bt_aggr_limit)
773 aggr_limit = bt_aggr_limit;
774
775 if (tid->an->maxampdu)
776 aggr_limit = min(aggr_limit, tid->an->maxampdu);
777
778 return aggr_limit;
779 }
780
781 /*
782 * Returns the number of delimiters to be added to
783 * meet the minimum required mpdudensity.
784 */
785 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
786 struct ath_buf *bf, u16 frmlen,
787 bool first_subfrm)
788 {
789 #define FIRST_DESC_NDELIMS 60
790 u32 nsymbits, nsymbols;
791 u16 minlen;
792 u8 flags, rix;
793 int width, streams, half_gi, ndelim, mindelim;
794 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
795
796 /* Select standard number of delimiters based on frame length alone */
797 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
798
799 /*
800 * If encryption enabled, hardware requires some more padding between
801 * subframes.
802 * TODO - this could be improved to be dependent on the rate.
803 * The hardware can keep up at lower rates, but not higher rates
804 */
805 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
806 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
807 ndelim += ATH_AGGR_ENCRYPTDELIM;
808
809 /*
810 * Add delimiter when using RTS/CTS with aggregation
811 * and non enterprise AR9003 card
812 */
813 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
814 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
815 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
816
817 /*
818 * Convert desired mpdu density from microeconds to bytes based
819 * on highest rate in rate series (i.e. first rate) to determine
820 * required minimum length for subframe. Take into account
821 * whether high rate is 20 or 40Mhz and half or full GI.
822 *
823 * If there is no mpdu density restriction, no further calculation
824 * is needed.
825 */
826
827 if (tid->an->mpdudensity == 0)
828 return ndelim;
829
830 rix = bf->rates[0].idx;
831 flags = bf->rates[0].flags;
832 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
833 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
834
835 if (half_gi)
836 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
837 else
838 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
839
840 if (nsymbols == 0)
841 nsymbols = 1;
842
843 streams = HT_RC_2_STREAMS(rix);
844 nsymbits = bits_per_symbol[rix % 8][width] * streams;
845 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
846
847 if (frmlen < minlen) {
848 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
849 ndelim = max(mindelim, ndelim);
850 }
851
852 return ndelim;
853 }
854
855 static struct ath_buf *
856 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
857 struct ath_atx_tid *tid, struct sk_buff_head **q)
858 {
859 struct ieee80211_tx_info *tx_info;
860 struct ath_frame_info *fi;
861 struct sk_buff *skb;
862 struct ath_buf *bf;
863 u16 seqno;
864
865 while (1) {
866 *q = &tid->retry_q;
867 if (skb_queue_empty(*q))
868 *q = &tid->buf_q;
869
870 skb = skb_peek(*q);
871 if (!skb)
872 break;
873
874 fi = get_frame_info(skb);
875 bf = fi->bf;
876 if (!fi->bf)
877 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
878 else
879 bf->bf_state.stale = false;
880
881 if (!bf) {
882 __skb_unlink(skb, *q);
883 ath_txq_skb_done(sc, txq, skb);
884 ieee80211_free_txskb(sc->hw, skb);
885 continue;
886 }
887
888 bf->bf_next = NULL;
889 bf->bf_lastbf = bf;
890
891 tx_info = IEEE80211_SKB_CB(skb);
892 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
893 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
894 bf->bf_state.bf_type = 0;
895 return bf;
896 }
897
898 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
899 seqno = bf->bf_state.seqno;
900
901 /* do not step over block-ack window */
902 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
903 break;
904
905 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
906 struct ath_tx_status ts = {};
907 struct list_head bf_head;
908
909 INIT_LIST_HEAD(&bf_head);
910 list_add(&bf->list, &bf_head);
911 __skb_unlink(skb, *q);
912 ath_tx_update_baw(sc, tid, seqno);
913 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
914 continue;
915 }
916
917 return bf;
918 }
919
920 return NULL;
921 }
922
923 static bool
924 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
925 struct ath_atx_tid *tid, struct list_head *bf_q,
926 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
927 int *aggr_len)
928 {
929 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
930 struct ath_buf *bf = bf_first, *bf_prev = NULL;
931 int nframes = 0, ndelim;
932 u16 aggr_limit = 0, al = 0, bpad = 0,
933 al_delta, h_baw = tid->baw_size / 2;
934 struct ieee80211_tx_info *tx_info;
935 struct ath_frame_info *fi;
936 struct sk_buff *skb;
937 bool closed = false;
938
939 bf = bf_first;
940 aggr_limit = ath_lookup_rate(sc, bf, tid);
941
942 do {
943 skb = bf->bf_mpdu;
944 fi = get_frame_info(skb);
945
946 /* do not exceed aggregation limit */
947 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
948 if (nframes) {
949 if (aggr_limit < al + bpad + al_delta ||
950 ath_lookup_legacy(bf) || nframes >= h_baw)
951 break;
952
953 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
954 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
955 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
956 break;
957 }
958
959 /* add padding for previous frame to aggregation length */
960 al += bpad + al_delta;
961
962 /*
963 * Get the delimiters needed to meet the MPDU
964 * density for this node.
965 */
966 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
967 !nframes);
968 bpad = PADBYTES(al_delta) + (ndelim << 2);
969
970 nframes++;
971 bf->bf_next = NULL;
972
973 /* link buffers of this frame to the aggregate */
974 if (!fi->baw_tracked)
975 ath_tx_addto_baw(sc, tid, bf);
976 bf->bf_state.ndelim = ndelim;
977
978 __skb_unlink(skb, tid_q);
979 list_add_tail(&bf->list, bf_q);
980 if (bf_prev)
981 bf_prev->bf_next = bf;
982
983 bf_prev = bf;
984
985 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
986 if (!bf) {
987 closed = true;
988 break;
989 }
990 } while (ath_tid_has_buffered(tid));
991
992 bf = bf_first;
993 bf->bf_lastbf = bf_prev;
994
995 if (bf == bf_prev) {
996 al = get_frame_info(bf->bf_mpdu)->framelen;
997 bf->bf_state.bf_type = BUF_AMPDU;
998 } else {
999 TX_STAT_INC(txq->axq_qnum, a_aggr);
1000 }
1001
1002 *aggr_len = al;
1003
1004 return closed;
1005 #undef PADBYTES
1006 }
1007
1008 /*
1009 * rix - rate index
1010 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1011 * width - 0 for 20 MHz, 1 for 40 MHz
1012 * half_gi - to use 4us v/s 3.6 us for symbol time
1013 */
1014 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1015 int width, int half_gi, bool shortPreamble)
1016 {
1017 u32 nbits, nsymbits, duration, nsymbols;
1018 int streams;
1019
1020 /* find number of symbols: PLCP + data */
1021 streams = HT_RC_2_STREAMS(rix);
1022 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1023 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1024 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1025
1026 if (!half_gi)
1027 duration = SYMBOL_TIME(nsymbols);
1028 else
1029 duration = SYMBOL_TIME_HALFGI(nsymbols);
1030
1031 /* addup duration for legacy/ht training and signal fields */
1032 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1033
1034 return duration;
1035 }
1036
1037 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1038 {
1039 int streams = HT_RC_2_STREAMS(mcs);
1040 int symbols, bits;
1041 int bytes = 0;
1042
1043 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1044 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1045 bits -= OFDM_PLCP_BITS;
1046 bytes = bits / 8;
1047 bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1048 if (bytes > 65532)
1049 bytes = 65532;
1050
1051 return bytes;
1052 }
1053
1054 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1055 {
1056 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1057 int mcs;
1058
1059 /* 4ms is the default (and maximum) duration */
1060 if (!txop || txop > 4096)
1061 txop = 4096;
1062
1063 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1064 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1065 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1066 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1067 for (mcs = 0; mcs < 32; mcs++) {
1068 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1069 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1070 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1071 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1072 }
1073 }
1074
1075 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1076 struct ath_tx_info *info, int len, bool rts)
1077 {
1078 struct ath_hw *ah = sc->sc_ah;
1079 struct sk_buff *skb;
1080 struct ieee80211_tx_info *tx_info;
1081 struct ieee80211_tx_rate *rates;
1082 const struct ieee80211_rate *rate;
1083 struct ieee80211_hdr *hdr;
1084 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1085 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1086 int i;
1087 u8 rix = 0;
1088
1089 skb = bf->bf_mpdu;
1090 tx_info = IEEE80211_SKB_CB(skb);
1091 rates = bf->rates;
1092 hdr = (struct ieee80211_hdr *)skb->data;
1093
1094 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1095 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1096 info->rtscts_rate = fi->rtscts_rate;
1097
1098 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1099 bool is_40, is_sgi, is_sp;
1100 int phy;
1101
1102 if (!rates[i].count || (rates[i].idx < 0))
1103 continue;
1104
1105 rix = rates[i].idx;
1106 info->rates[i].Tries = rates[i].count;
1107
1108 /*
1109 * Handle RTS threshold for unaggregated HT frames.
1110 */
1111 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1112 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1113 unlikely(rts_thresh != (u32) -1)) {
1114 if (!rts_thresh || (len > rts_thresh))
1115 rts = true;
1116 }
1117
1118 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1119 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1120 info->flags |= ATH9K_TXDESC_RTSENA;
1121 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1122 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1123 info->flags |= ATH9K_TXDESC_CTSENA;
1124 }
1125
1126 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1127 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1128 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1129 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1130
1131 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1132 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1133 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1134
1135 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1136 /* MCS rates */
1137 info->rates[i].Rate = rix | 0x80;
1138 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1139 ah->txchainmask, info->rates[i].Rate);
1140 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1141 is_40, is_sgi, is_sp);
1142 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1143 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1144 continue;
1145 }
1146
1147 /* legacy rates */
1148 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1149 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1150 !(rate->flags & IEEE80211_RATE_ERP_G))
1151 phy = WLAN_RC_PHY_CCK;
1152 else
1153 phy = WLAN_RC_PHY_OFDM;
1154
1155 info->rates[i].Rate = rate->hw_value;
1156 if (rate->hw_value_short) {
1157 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1158 info->rates[i].Rate |= rate->hw_value_short;
1159 } else {
1160 is_sp = false;
1161 }
1162
1163 if (bf->bf_state.bfs_paprd)
1164 info->rates[i].ChSel = ah->txchainmask;
1165 else
1166 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1167 ah->txchainmask, info->rates[i].Rate);
1168
1169 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1170 phy, rate->bitrate * 100, len, rix, is_sp);
1171 }
1172
1173 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1174 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1175 info->flags &= ~ATH9K_TXDESC_RTSENA;
1176
1177 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1178 if (info->flags & ATH9K_TXDESC_RTSENA)
1179 info->flags &= ~ATH9K_TXDESC_CTSENA;
1180 }
1181
1182 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1183 {
1184 struct ieee80211_hdr *hdr;
1185 enum ath9k_pkt_type htype;
1186 __le16 fc;
1187
1188 hdr = (struct ieee80211_hdr *)skb->data;
1189 fc = hdr->frame_control;
1190
1191 if (ieee80211_is_beacon(fc))
1192 htype = ATH9K_PKT_TYPE_BEACON;
1193 else if (ieee80211_is_probe_resp(fc))
1194 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1195 else if (ieee80211_is_atim(fc))
1196 htype = ATH9K_PKT_TYPE_ATIM;
1197 else if (ieee80211_is_pspoll(fc))
1198 htype = ATH9K_PKT_TYPE_PSPOLL;
1199 else
1200 htype = ATH9K_PKT_TYPE_NORMAL;
1201
1202 return htype;
1203 }
1204
1205 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1206 struct ath_txq *txq, int len)
1207 {
1208 struct ath_hw *ah = sc->sc_ah;
1209 struct ath_buf *bf_first = NULL;
1210 struct ath_tx_info info;
1211 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1212 bool rts = false;
1213
1214 memset(&info, 0, sizeof(info));
1215 info.is_first = true;
1216 info.is_last = true;
1217 info.txpower = MAX_RATE_POWER;
1218 info.qcu = txq->axq_qnum;
1219
1220 while (bf) {
1221 struct sk_buff *skb = bf->bf_mpdu;
1222 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1223 struct ath_frame_info *fi = get_frame_info(skb);
1224 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1225
1226 info.type = get_hw_packet_type(skb);
1227 if (bf->bf_next)
1228 info.link = bf->bf_next->bf_daddr;
1229 else
1230 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1231
1232 if (!bf_first) {
1233 bf_first = bf;
1234
1235 if (!sc->tx99_state)
1236 info.flags = ATH9K_TXDESC_INTREQ;
1237 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1238 txq == sc->tx.uapsdq)
1239 info.flags |= ATH9K_TXDESC_CLRDMASK;
1240
1241 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1242 info.flags |= ATH9K_TXDESC_NOACK;
1243 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1244 info.flags |= ATH9K_TXDESC_LDPC;
1245
1246 if (bf->bf_state.bfs_paprd)
1247 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1248 ATH9K_TXDESC_PAPRD_S;
1249
1250 /*
1251 * mac80211 doesn't handle RTS threshold for HT because
1252 * the decision has to be taken based on AMPDU length
1253 * and aggregation is done entirely inside ath9k.
1254 * Set the RTS/CTS flag for the first subframe based
1255 * on the threshold.
1256 */
1257 if (aggr && (bf == bf_first) &&
1258 unlikely(rts_thresh != (u32) -1)) {
1259 /*
1260 * "len" is the size of the entire AMPDU.
1261 */
1262 if (!rts_thresh || (len > rts_thresh))
1263 rts = true;
1264 }
1265
1266 if (!aggr)
1267 len = fi->framelen;
1268
1269 ath_buf_set_rate(sc, bf, &info, len, rts);
1270 }
1271
1272 info.buf_addr[0] = bf->bf_buf_addr;
1273 info.buf_len[0] = skb->len;
1274 info.pkt_len = fi->framelen;
1275 info.keyix = fi->keyix;
1276 info.keytype = fi->keytype;
1277
1278 if (aggr) {
1279 if (bf == bf_first)
1280 info.aggr = AGGR_BUF_FIRST;
1281 else if (bf == bf_first->bf_lastbf)
1282 info.aggr = AGGR_BUF_LAST;
1283 else
1284 info.aggr = AGGR_BUF_MIDDLE;
1285
1286 info.ndelim = bf->bf_state.ndelim;
1287 info.aggr_len = len;
1288 }
1289
1290 if (bf == bf_first->bf_lastbf)
1291 bf_first = NULL;
1292
1293 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1294 bf = bf->bf_next;
1295 }
1296 }
1297
1298 static void
1299 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1300 struct ath_atx_tid *tid, struct list_head *bf_q,
1301 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1302 {
1303 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1304 struct sk_buff *skb;
1305 int nframes = 0;
1306
1307 do {
1308 struct ieee80211_tx_info *tx_info;
1309 skb = bf->bf_mpdu;
1310
1311 nframes++;
1312 __skb_unlink(skb, tid_q);
1313 list_add_tail(&bf->list, bf_q);
1314 if (bf_prev)
1315 bf_prev->bf_next = bf;
1316 bf_prev = bf;
1317
1318 if (nframes >= 2)
1319 break;
1320
1321 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1322 if (!bf)
1323 break;
1324
1325 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1326 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1327 break;
1328
1329 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1330 } while (1);
1331 }
1332
1333 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1334 struct ath_atx_tid *tid, bool *stop)
1335 {
1336 struct ath_buf *bf;
1337 struct ieee80211_tx_info *tx_info;
1338 struct sk_buff_head *tid_q;
1339 struct list_head bf_q;
1340 int aggr_len = 0;
1341 bool aggr, last = true;
1342
1343 if (!ath_tid_has_buffered(tid))
1344 return false;
1345
1346 INIT_LIST_HEAD(&bf_q);
1347
1348 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1349 if (!bf)
1350 return false;
1351
1352 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1353 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1354 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1355 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1356 *stop = true;
1357 return false;
1358 }
1359
1360 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1361 if (aggr)
1362 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1363 tid_q, &aggr_len);
1364 else
1365 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1366
1367 if (list_empty(&bf_q))
1368 return false;
1369
1370 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1371 tid->ac->clear_ps_filter = false;
1372 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1373 }
1374
1375 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1376 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1377 return true;
1378 }
1379
1380 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1381 u16 tid, u16 *ssn)
1382 {
1383 struct ath_atx_tid *txtid;
1384 struct ath_txq *txq;
1385 struct ath_node *an;
1386 u8 density;
1387
1388 an = (struct ath_node *)sta->drv_priv;
1389 txtid = ATH_AN_2_TID(an, tid);
1390 txq = txtid->ac->txq;
1391
1392 ath_txq_lock(sc, txq);
1393
1394 /* update ampdu factor/density, they may have changed. This may happen
1395 * in HT IBSS when a beacon with HT-info is received after the station
1396 * has already been added.
1397 */
1398 if (sta->ht_cap.ht_supported) {
1399 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1400 sta->ht_cap.ampdu_factor)) - 1;
1401 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1402 an->mpdudensity = density;
1403 }
1404
1405 /* force sequence number allocation for pending frames */
1406 ath_tx_tid_change_state(sc, txtid);
1407
1408 txtid->active = true;
1409 txtid->paused = true;
1410 *ssn = txtid->seq_start = txtid->seq_next;
1411 txtid->bar_index = -1;
1412
1413 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1414 txtid->baw_head = txtid->baw_tail = 0;
1415
1416 ath_txq_unlock_complete(sc, txq);
1417
1418 return 0;
1419 }
1420
1421 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1422 {
1423 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1424 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1425 struct ath_txq *txq = txtid->ac->txq;
1426
1427 ath_txq_lock(sc, txq);
1428 txtid->active = false;
1429 txtid->paused = false;
1430 ath_tx_flush_tid(sc, txtid);
1431 ath_tx_tid_change_state(sc, txtid);
1432 ath_txq_unlock_complete(sc, txq);
1433 }
1434
1435 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1436 struct ath_node *an)
1437 {
1438 struct ath_atx_tid *tid;
1439 struct ath_atx_ac *ac;
1440 struct ath_txq *txq;
1441 bool buffered;
1442 int tidno;
1443
1444 for (tidno = 0, tid = &an->tid[tidno];
1445 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1446
1447 ac = tid->ac;
1448 txq = ac->txq;
1449
1450 ath_txq_lock(sc, txq);
1451
1452 if (!tid->sched) {
1453 ath_txq_unlock(sc, txq);
1454 continue;
1455 }
1456
1457 buffered = ath_tid_has_buffered(tid);
1458
1459 tid->sched = false;
1460 list_del(&tid->list);
1461
1462 if (ac->sched) {
1463 ac->sched = false;
1464 list_del(&ac->list);
1465 }
1466
1467 ath_txq_unlock(sc, txq);
1468
1469 ieee80211_sta_set_buffered(sta, tidno, buffered);
1470 }
1471 }
1472
1473 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1474 {
1475 struct ath_atx_tid *tid;
1476 struct ath_atx_ac *ac;
1477 struct ath_txq *txq;
1478 int tidno;
1479
1480 for (tidno = 0, tid = &an->tid[tidno];
1481 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1482
1483 ac = tid->ac;
1484 txq = ac->txq;
1485
1486 ath_txq_lock(sc, txq);
1487 ac->clear_ps_filter = true;
1488
1489 if (!tid->paused && ath_tid_has_buffered(tid)) {
1490 ath_tx_queue_tid(txq, tid);
1491 ath_txq_schedule(sc, txq);
1492 }
1493
1494 ath_txq_unlock_complete(sc, txq);
1495 }
1496 }
1497
1498 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1499 u16 tidno)
1500 {
1501 struct ath_atx_tid *tid;
1502 struct ath_node *an;
1503 struct ath_txq *txq;
1504
1505 an = (struct ath_node *)sta->drv_priv;
1506 tid = ATH_AN_2_TID(an, tidno);
1507 txq = tid->ac->txq;
1508
1509 ath_txq_lock(sc, txq);
1510
1511 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1512 tid->paused = false;
1513
1514 if (ath_tid_has_buffered(tid)) {
1515 ath_tx_queue_tid(txq, tid);
1516 ath_txq_schedule(sc, txq);
1517 }
1518
1519 ath_txq_unlock_complete(sc, txq);
1520 }
1521
1522 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1523 struct ieee80211_sta *sta,
1524 u16 tids, int nframes,
1525 enum ieee80211_frame_release_type reason,
1526 bool more_data)
1527 {
1528 struct ath_softc *sc = hw->priv;
1529 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1530 struct ath_txq *txq = sc->tx.uapsdq;
1531 struct ieee80211_tx_info *info;
1532 struct list_head bf_q;
1533 struct ath_buf *bf_tail = NULL, *bf;
1534 struct sk_buff_head *tid_q;
1535 int sent = 0;
1536 int i;
1537
1538 INIT_LIST_HEAD(&bf_q);
1539 for (i = 0; tids && nframes; i++, tids >>= 1) {
1540 struct ath_atx_tid *tid;
1541
1542 if (!(tids & 1))
1543 continue;
1544
1545 tid = ATH_AN_2_TID(an, i);
1546 if (tid->paused)
1547 continue;
1548
1549 ath_txq_lock(sc, tid->ac->txq);
1550 while (nframes > 0) {
1551 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1552 if (!bf)
1553 break;
1554
1555 __skb_unlink(bf->bf_mpdu, tid_q);
1556 list_add_tail(&bf->list, &bf_q);
1557 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1558 if (bf_isampdu(bf)) {
1559 ath_tx_addto_baw(sc, tid, bf);
1560 bf->bf_state.bf_type &= ~BUF_AGGR;
1561 }
1562 if (bf_tail)
1563 bf_tail->bf_next = bf;
1564
1565 bf_tail = bf;
1566 nframes--;
1567 sent++;
1568 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1569
1570 if (an->sta && !ath_tid_has_buffered(tid))
1571 ieee80211_sta_set_buffered(an->sta, i, false);
1572 }
1573 ath_txq_unlock_complete(sc, tid->ac->txq);
1574 }
1575
1576 if (list_empty(&bf_q))
1577 return;
1578
1579 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1580 info->flags |= IEEE80211_TX_STATUS_EOSP;
1581
1582 bf = list_first_entry(&bf_q, struct ath_buf, list);
1583 ath_txq_lock(sc, txq);
1584 ath_tx_fill_desc(sc, bf, txq, 0);
1585 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1586 ath_txq_unlock(sc, txq);
1587 }
1588
1589 /********************/
1590 /* Queue Management */
1591 /********************/
1592
1593 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1594 {
1595 struct ath_hw *ah = sc->sc_ah;
1596 struct ath9k_tx_queue_info qi;
1597 static const int subtype_txq_to_hwq[] = {
1598 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1599 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1600 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1601 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1602 };
1603 int axq_qnum, i;
1604
1605 memset(&qi, 0, sizeof(qi));
1606 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1607 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1608 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1609 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1610 qi.tqi_physCompBuf = 0;
1611
1612 /*
1613 * Enable interrupts only for EOL and DESC conditions.
1614 * We mark tx descriptors to receive a DESC interrupt
1615 * when a tx queue gets deep; otherwise waiting for the
1616 * EOL to reap descriptors. Note that this is done to
1617 * reduce interrupt load and this only defers reaping
1618 * descriptors, never transmitting frames. Aside from
1619 * reducing interrupts this also permits more concurrency.
1620 * The only potential downside is if the tx queue backs
1621 * up in which case the top half of the kernel may backup
1622 * due to a lack of tx descriptors.
1623 *
1624 * The UAPSD queue is an exception, since we take a desc-
1625 * based intr on the EOSP frames.
1626 */
1627 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1628 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1629 } else {
1630 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1631 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1632 else
1633 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1634 TXQ_FLAG_TXDESCINT_ENABLE;
1635 }
1636 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1637 if (axq_qnum == -1) {
1638 /*
1639 * NB: don't print a message, this happens
1640 * normally on parts with too few tx queues
1641 */
1642 return NULL;
1643 }
1644 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1645 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1646
1647 txq->axq_qnum = axq_qnum;
1648 txq->mac80211_qnum = -1;
1649 txq->axq_link = NULL;
1650 __skb_queue_head_init(&txq->complete_q);
1651 INIT_LIST_HEAD(&txq->axq_q);
1652 INIT_LIST_HEAD(&txq->axq_acq);
1653 spin_lock_init(&txq->axq_lock);
1654 txq->axq_depth = 0;
1655 txq->axq_ampdu_depth = 0;
1656 txq->axq_tx_inprogress = false;
1657 sc->tx.txqsetup |= 1<<axq_qnum;
1658
1659 txq->txq_headidx = txq->txq_tailidx = 0;
1660 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1661 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1662 }
1663 return &sc->tx.txq[axq_qnum];
1664 }
1665
1666 int ath_txq_update(struct ath_softc *sc, int qnum,
1667 struct ath9k_tx_queue_info *qinfo)
1668 {
1669 struct ath_hw *ah = sc->sc_ah;
1670 int error = 0;
1671 struct ath9k_tx_queue_info qi;
1672
1673 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1674
1675 ath9k_hw_get_txq_props(ah, qnum, &qi);
1676 qi.tqi_aifs = qinfo->tqi_aifs;
1677 qi.tqi_cwmin = qinfo->tqi_cwmin;
1678 qi.tqi_cwmax = qinfo->tqi_cwmax;
1679 qi.tqi_burstTime = qinfo->tqi_burstTime;
1680 qi.tqi_readyTime = qinfo->tqi_readyTime;
1681
1682 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1683 ath_err(ath9k_hw_common(sc->sc_ah),
1684 "Unable to update hardware queue %u!\n", qnum);
1685 error = -EIO;
1686 } else {
1687 ath9k_hw_resettxqueue(ah, qnum);
1688 }
1689
1690 return error;
1691 }
1692
1693 int ath_cabq_update(struct ath_softc *sc)
1694 {
1695 struct ath9k_tx_queue_info qi;
1696 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1697 int qnum = sc->beacon.cabq->axq_qnum;
1698
1699 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1700
1701 qi.tqi_readyTime = (cur_conf->beacon_interval *
1702 ATH_CABQ_READY_TIME) / 100;
1703 ath_txq_update(sc, qnum, &qi);
1704
1705 return 0;
1706 }
1707
1708 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1709 struct list_head *list)
1710 {
1711 struct ath_buf *bf, *lastbf;
1712 struct list_head bf_head;
1713 struct ath_tx_status ts;
1714
1715 memset(&ts, 0, sizeof(ts));
1716 ts.ts_status = ATH9K_TX_FLUSH;
1717 INIT_LIST_HEAD(&bf_head);
1718
1719 while (!list_empty(list)) {
1720 bf = list_first_entry(list, struct ath_buf, list);
1721
1722 if (bf->bf_state.stale) {
1723 list_del(&bf->list);
1724
1725 ath_tx_return_buffer(sc, bf);
1726 continue;
1727 }
1728
1729 lastbf = bf->bf_lastbf;
1730 list_cut_position(&bf_head, list, &lastbf->list);
1731 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1732 }
1733 }
1734
1735 /*
1736 * Drain a given TX queue (could be Beacon or Data)
1737 *
1738 * This assumes output has been stopped and
1739 * we do not need to block ath_tx_tasklet.
1740 */
1741 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1742 {
1743 ath_txq_lock(sc, txq);
1744
1745 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1746 int idx = txq->txq_tailidx;
1747
1748 while (!list_empty(&txq->txq_fifo[idx])) {
1749 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1750
1751 INCR(idx, ATH_TXFIFO_DEPTH);
1752 }
1753 txq->txq_tailidx = idx;
1754 }
1755
1756 txq->axq_link = NULL;
1757 txq->axq_tx_inprogress = false;
1758 ath_drain_txq_list(sc, txq, &txq->axq_q);
1759
1760 ath_txq_unlock_complete(sc, txq);
1761 }
1762
1763 bool ath_drain_all_txq(struct ath_softc *sc)
1764 {
1765 struct ath_hw *ah = sc->sc_ah;
1766 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1767 struct ath_txq *txq;
1768 int i;
1769 u32 npend = 0;
1770
1771 if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1772 return true;
1773
1774 ath9k_hw_abort_tx_dma(ah);
1775
1776 /* Check if any queue remains active */
1777 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1778 if (!ATH_TXQ_SETUP(sc, i))
1779 continue;
1780
1781 if (!sc->tx.txq[i].axq_depth)
1782 continue;
1783
1784 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1785 npend |= BIT(i);
1786 }
1787
1788 if (npend)
1789 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1790
1791 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1792 if (!ATH_TXQ_SETUP(sc, i))
1793 continue;
1794
1795 /*
1796 * The caller will resume queues with ieee80211_wake_queues.
1797 * Mark the queue as not stopped to prevent ath_tx_complete
1798 * from waking the queue too early.
1799 */
1800 txq = &sc->tx.txq[i];
1801 txq->stopped = false;
1802 ath_draintxq(sc, txq);
1803 }
1804
1805 return !npend;
1806 }
1807
1808 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1809 {
1810 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1811 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1812 }
1813
1814 /* For each axq_acq entry, for each tid, try to schedule packets
1815 * for transmit until ampdu_depth has reached min Q depth.
1816 */
1817 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1818 {
1819 struct ath_atx_ac *ac, *last_ac;
1820 struct ath_atx_tid *tid, *last_tid;
1821 bool sent = false;
1822
1823 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1824 list_empty(&txq->axq_acq))
1825 return;
1826
1827 rcu_read_lock();
1828
1829 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1830 while (!list_empty(&txq->axq_acq)) {
1831 bool stop = false;
1832
1833 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1834 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1835 list_del(&ac->list);
1836 ac->sched = false;
1837
1838 while (!list_empty(&ac->tid_q)) {
1839
1840 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1841 list);
1842 list_del(&tid->list);
1843 tid->sched = false;
1844
1845 if (tid->paused)
1846 continue;
1847
1848 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1849 sent = true;
1850
1851 /*
1852 * add tid to round-robin queue if more frames
1853 * are pending for the tid
1854 */
1855 if (ath_tid_has_buffered(tid))
1856 ath_tx_queue_tid(txq, tid);
1857
1858 if (stop || tid == last_tid)
1859 break;
1860 }
1861
1862 if (!list_empty(&ac->tid_q) && !ac->sched) {
1863 ac->sched = true;
1864 list_add_tail(&ac->list, &txq->axq_acq);
1865 }
1866
1867 if (stop)
1868 break;
1869
1870 if (ac == last_ac) {
1871 if (!sent)
1872 break;
1873
1874 sent = false;
1875 last_ac = list_entry(txq->axq_acq.prev,
1876 struct ath_atx_ac, list);
1877 }
1878 }
1879
1880 rcu_read_unlock();
1881 }
1882
1883 /***********/
1884 /* TX, DMA */
1885 /***********/
1886
1887 /*
1888 * Insert a chain of ath_buf (descriptors) on a txq and
1889 * assume the descriptors are already chained together by caller.
1890 */
1891 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1892 struct list_head *head, bool internal)
1893 {
1894 struct ath_hw *ah = sc->sc_ah;
1895 struct ath_common *common = ath9k_hw_common(ah);
1896 struct ath_buf *bf, *bf_last;
1897 bool puttxbuf = false;
1898 bool edma;
1899
1900 /*
1901 * Insert the frame on the outbound list and
1902 * pass it on to the hardware.
1903 */
1904
1905 if (list_empty(head))
1906 return;
1907
1908 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1909 bf = list_first_entry(head, struct ath_buf, list);
1910 bf_last = list_entry(head->prev, struct ath_buf, list);
1911
1912 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1913 txq->axq_qnum, txq->axq_depth);
1914
1915 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1916 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1917 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1918 puttxbuf = true;
1919 } else {
1920 list_splice_tail_init(head, &txq->axq_q);
1921
1922 if (txq->axq_link) {
1923 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1924 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1925 txq->axq_qnum, txq->axq_link,
1926 ito64(bf->bf_daddr), bf->bf_desc);
1927 } else if (!edma)
1928 puttxbuf = true;
1929
1930 txq->axq_link = bf_last->bf_desc;
1931 }
1932
1933 if (puttxbuf) {
1934 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1935 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1936 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1937 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1938 }
1939
1940 if (!edma || sc->tx99_state) {
1941 TX_STAT_INC(txq->axq_qnum, txstart);
1942 ath9k_hw_txstart(ah, txq->axq_qnum);
1943 }
1944
1945 if (!internal) {
1946 while (bf) {
1947 txq->axq_depth++;
1948 if (bf_is_ampdu_not_probing(bf))
1949 txq->axq_ampdu_depth++;
1950
1951 bf_last = bf->bf_lastbf;
1952 bf = bf_last->bf_next;
1953 bf_last->bf_next = NULL;
1954 }
1955 }
1956 }
1957
1958 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1959 struct ath_atx_tid *tid, struct sk_buff *skb)
1960 {
1961 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1962 struct ath_frame_info *fi = get_frame_info(skb);
1963 struct list_head bf_head;
1964 struct ath_buf *bf = fi->bf;
1965
1966 INIT_LIST_HEAD(&bf_head);
1967 list_add_tail(&bf->list, &bf_head);
1968 bf->bf_state.bf_type = 0;
1969 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
1970 bf->bf_state.bf_type = BUF_AMPDU;
1971 ath_tx_addto_baw(sc, tid, bf);
1972 }
1973
1974 bf->bf_next = NULL;
1975 bf->bf_lastbf = bf;
1976 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1977 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1978 TX_STAT_INC(txq->axq_qnum, queued);
1979 }
1980
1981 static void setup_frame_info(struct ieee80211_hw *hw,
1982 struct ieee80211_sta *sta,
1983 struct sk_buff *skb,
1984 int framelen)
1985 {
1986 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1987 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1988 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1989 const struct ieee80211_rate *rate;
1990 struct ath_frame_info *fi = get_frame_info(skb);
1991 struct ath_node *an = NULL;
1992 enum ath9k_key_type keytype;
1993 bool short_preamble = false;
1994
1995 /*
1996 * We check if Short Preamble is needed for the CTS rate by
1997 * checking the BSS's global flag.
1998 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1999 */
2000 if (tx_info->control.vif &&
2001 tx_info->control.vif->bss_conf.use_short_preamble)
2002 short_preamble = true;
2003
2004 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2005 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2006
2007 if (sta)
2008 an = (struct ath_node *) sta->drv_priv;
2009
2010 memset(fi, 0, sizeof(*fi));
2011 if (hw_key)
2012 fi->keyix = hw_key->hw_key_idx;
2013 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2014 fi->keyix = an->ps_key;
2015 else
2016 fi->keyix = ATH9K_TXKEYIX_INVALID;
2017 fi->keytype = keytype;
2018 fi->framelen = framelen;
2019
2020 if (!rate)
2021 return;
2022 fi->rtscts_rate = rate->hw_value;
2023 if (short_preamble)
2024 fi->rtscts_rate |= rate->hw_value_short;
2025 }
2026
2027 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2028 {
2029 struct ath_hw *ah = sc->sc_ah;
2030 struct ath9k_channel *curchan = ah->curchan;
2031
2032 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2033 (chainmask == 0x7) && (rate < 0x90))
2034 return 0x3;
2035 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2036 IS_CCK_RATE(rate))
2037 return 0x2;
2038 else
2039 return chainmask;
2040 }
2041
2042 /*
2043 * Assign a descriptor (and sequence number if necessary,
2044 * and map buffer for DMA. Frees skb on error
2045 */
2046 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2047 struct ath_txq *txq,
2048 struct ath_atx_tid *tid,
2049 struct sk_buff *skb)
2050 {
2051 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2052 struct ath_frame_info *fi = get_frame_info(skb);
2053 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2054 struct ath_buf *bf;
2055 int fragno;
2056 u16 seqno;
2057
2058 bf = ath_tx_get_buffer(sc);
2059 if (!bf) {
2060 ath_dbg(common, XMIT, "TX buffers are full\n");
2061 return NULL;
2062 }
2063
2064 ATH_TXBUF_RESET(bf);
2065
2066 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2067 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2068 seqno = tid->seq_next;
2069 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2070
2071 if (fragno)
2072 hdr->seq_ctrl |= cpu_to_le16(fragno);
2073
2074 if (!ieee80211_has_morefrags(hdr->frame_control))
2075 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2076
2077 bf->bf_state.seqno = seqno;
2078 }
2079
2080 bf->bf_mpdu = skb;
2081
2082 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2083 skb->len, DMA_TO_DEVICE);
2084 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2085 bf->bf_mpdu = NULL;
2086 bf->bf_buf_addr = 0;
2087 ath_err(ath9k_hw_common(sc->sc_ah),
2088 "dma_mapping_error() on TX\n");
2089 ath_tx_return_buffer(sc, bf);
2090 return NULL;
2091 }
2092
2093 fi->bf = bf;
2094
2095 return bf;
2096 }
2097
2098 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2099 struct ath_tx_control *txctl)
2100 {
2101 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2102 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2103 struct ieee80211_sta *sta = txctl->sta;
2104 struct ieee80211_vif *vif = info->control.vif;
2105 struct ath_vif *avp;
2106 struct ath_softc *sc = hw->priv;
2107 int frmlen = skb->len + FCS_LEN;
2108 int padpos, padsize;
2109
2110 /* NOTE: sta can be NULL according to net/mac80211.h */
2111 if (sta)
2112 txctl->an = (struct ath_node *)sta->drv_priv;
2113 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2114 avp = (void *)vif->drv_priv;
2115 txctl->an = &avp->mcast_node;
2116 }
2117
2118 if (info->control.hw_key)
2119 frmlen += info->control.hw_key->icv_len;
2120
2121 /*
2122 * As a temporary workaround, assign seq# here; this will likely need
2123 * to be cleaned up to work better with Beacon transmission and virtual
2124 * BSSes.
2125 */
2126 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2127 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2128 sc->tx.seq_no += 0x10;
2129 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2130 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2131 }
2132
2133 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2134 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2135 !ieee80211_is_data(hdr->frame_control))
2136 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2137
2138 /* Add the padding after the header if this is not already done */
2139 padpos = ieee80211_hdrlen(hdr->frame_control);
2140 padsize = padpos & 3;
2141 if (padsize && skb->len > padpos) {
2142 if (skb_headroom(skb) < padsize)
2143 return -ENOMEM;
2144
2145 skb_push(skb, padsize);
2146 memmove(skb->data, skb->data + padsize, padpos);
2147 }
2148
2149 setup_frame_info(hw, sta, skb, frmlen);
2150 return 0;
2151 }
2152
2153
2154 /* Upon failure caller should free skb */
2155 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2156 struct ath_tx_control *txctl)
2157 {
2158 struct ieee80211_hdr *hdr;
2159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2160 struct ieee80211_sta *sta = txctl->sta;
2161 struct ieee80211_vif *vif = info->control.vif;
2162 struct ath_softc *sc = hw->priv;
2163 struct ath_txq *txq = txctl->txq;
2164 struct ath_atx_tid *tid = NULL;
2165 struct ath_buf *bf;
2166 int q;
2167 int ret;
2168
2169 ret = ath_tx_prepare(hw, skb, txctl);
2170 if (ret)
2171 return ret;
2172
2173 hdr = (struct ieee80211_hdr *) skb->data;
2174 /*
2175 * At this point, the vif, hw_key and sta pointers in the tx control
2176 * info are no longer valid (overwritten by the ath_frame_info data.
2177 */
2178
2179 q = skb_get_queue_mapping(skb);
2180
2181 ath_txq_lock(sc, txq);
2182 if (txq == sc->tx.txq_map[q] &&
2183 ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2184 !txq->stopped) {
2185 ieee80211_stop_queue(sc->hw, q);
2186 txq->stopped = true;
2187 }
2188
2189 if (txctl->an && ieee80211_is_data_present(hdr->frame_control))
2190 tid = ath_get_skb_tid(sc, txctl->an, skb);
2191
2192 if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
2193 ath_txq_unlock(sc, txq);
2194 txq = sc->tx.uapsdq;
2195 ath_txq_lock(sc, txq);
2196 } else if (txctl->an &&
2197 ieee80211_is_data_present(hdr->frame_control)) {
2198 WARN_ON(tid->ac->txq != txctl->txq);
2199
2200 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2201 tid->ac->clear_ps_filter = true;
2202
2203 /*
2204 * Add this frame to software queue for scheduling later
2205 * for aggregation.
2206 */
2207 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2208 __skb_queue_tail(&tid->buf_q, skb);
2209 if (!txctl->an->sleeping)
2210 ath_tx_queue_tid(txq, tid);
2211
2212 ath_txq_schedule(sc, txq);
2213 goto out;
2214 }
2215
2216 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2217 if (!bf) {
2218 ath_txq_skb_done(sc, txq, skb);
2219 if (txctl->paprd)
2220 dev_kfree_skb_any(skb);
2221 else
2222 ieee80211_free_txskb(sc->hw, skb);
2223 goto out;
2224 }
2225
2226 bf->bf_state.bfs_paprd = txctl->paprd;
2227
2228 if (txctl->paprd)
2229 bf->bf_state.bfs_paprd_timestamp = jiffies;
2230
2231 ath_set_rates(vif, sta, bf);
2232 ath_tx_send_normal(sc, txq, tid, skb);
2233
2234 out:
2235 ath_txq_unlock(sc, txq);
2236
2237 return 0;
2238 }
2239
2240 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2241 struct sk_buff *skb)
2242 {
2243 struct ath_softc *sc = hw->priv;
2244 struct ath_tx_control txctl = {
2245 .txq = sc->beacon.cabq
2246 };
2247 struct ath_tx_info info = {};
2248 struct ieee80211_hdr *hdr;
2249 struct ath_buf *bf_tail = NULL;
2250 struct ath_buf *bf;
2251 LIST_HEAD(bf_q);
2252 int duration = 0;
2253 int max_duration;
2254
2255 max_duration =
2256 sc->cur_beacon_conf.beacon_interval * 1000 *
2257 sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
2258
2259 do {
2260 struct ath_frame_info *fi = get_frame_info(skb);
2261
2262 if (ath_tx_prepare(hw, skb, &txctl))
2263 break;
2264
2265 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2266 if (!bf)
2267 break;
2268
2269 bf->bf_lastbf = bf;
2270 ath_set_rates(vif, NULL, bf);
2271 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2272 duration += info.rates[0].PktDuration;
2273 if (bf_tail)
2274 bf_tail->bf_next = bf;
2275
2276 list_add_tail(&bf->list, &bf_q);
2277 bf_tail = bf;
2278 skb = NULL;
2279
2280 if (duration > max_duration)
2281 break;
2282
2283 skb = ieee80211_get_buffered_bc(hw, vif);
2284 } while(skb);
2285
2286 if (skb)
2287 ieee80211_free_txskb(hw, skb);
2288
2289 if (list_empty(&bf_q))
2290 return;
2291
2292 bf = list_first_entry(&bf_q, struct ath_buf, list);
2293 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2294
2295 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2296 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2297 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2298 sizeof(*hdr), DMA_TO_DEVICE);
2299 }
2300
2301 ath_txq_lock(sc, txctl.txq);
2302 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2303 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2304 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2305 ath_txq_unlock(sc, txctl.txq);
2306 }
2307
2308 /*****************/
2309 /* TX Completion */
2310 /*****************/
2311
2312 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2313 int tx_flags, struct ath_txq *txq)
2314 {
2315 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2316 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2317 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2318 int padpos, padsize;
2319 unsigned long flags;
2320
2321 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2322
2323 if (sc->sc_ah->caldata)
2324 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2325
2326 if (!(tx_flags & ATH_TX_ERROR))
2327 /* Frame was ACKed */
2328 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2329
2330 padpos = ieee80211_hdrlen(hdr->frame_control);
2331 padsize = padpos & 3;
2332 if (padsize && skb->len>padpos+padsize) {
2333 /*
2334 * Remove MAC header padding before giving the frame back to
2335 * mac80211.
2336 */
2337 memmove(skb->data + padsize, skb->data, padpos);
2338 skb_pull(skb, padsize);
2339 }
2340
2341 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2342 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2343 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2344 ath_dbg(common, PS,
2345 "Going back to sleep after having received TX status (0x%lx)\n",
2346 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2347 PS_WAIT_FOR_CAB |
2348 PS_WAIT_FOR_PSPOLL_DATA |
2349 PS_WAIT_FOR_TX_ACK));
2350 }
2351 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2352
2353 __skb_queue_tail(&txq->complete_q, skb);
2354 ath_txq_skb_done(sc, txq, skb);
2355 }
2356
2357 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2358 struct ath_txq *txq, struct list_head *bf_q,
2359 struct ath_tx_status *ts, int txok)
2360 {
2361 struct sk_buff *skb = bf->bf_mpdu;
2362 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2363 unsigned long flags;
2364 int tx_flags = 0;
2365
2366 if (!txok)
2367 tx_flags |= ATH_TX_ERROR;
2368
2369 if (ts->ts_status & ATH9K_TXERR_FILT)
2370 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2371
2372 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2373 bf->bf_buf_addr = 0;
2374 if (sc->tx99_state)
2375 goto skip_tx_complete;
2376
2377 if (bf->bf_state.bfs_paprd) {
2378 if (time_after(jiffies,
2379 bf->bf_state.bfs_paprd_timestamp +
2380 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2381 dev_kfree_skb_any(skb);
2382 else
2383 complete(&sc->paprd_complete);
2384 } else {
2385 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2386 ath_tx_complete(sc, skb, tx_flags, txq);
2387 }
2388 skip_tx_complete:
2389 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2390 * accidentally reference it later.
2391 */
2392 bf->bf_mpdu = NULL;
2393
2394 /*
2395 * Return the list of ath_buf of this mpdu to free queue
2396 */
2397 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2398 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2399 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2400 }
2401
2402 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2403 struct ath_tx_status *ts, int nframes, int nbad,
2404 int txok)
2405 {
2406 struct sk_buff *skb = bf->bf_mpdu;
2407 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2408 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2409 struct ieee80211_hw *hw = sc->hw;
2410 struct ath_hw *ah = sc->sc_ah;
2411 u8 i, tx_rateindex;
2412
2413 if (txok)
2414 tx_info->status.ack_signal = ts->ts_rssi;
2415
2416 tx_rateindex = ts->ts_rateindex;
2417 WARN_ON(tx_rateindex >= hw->max_rates);
2418
2419 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2420 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2421
2422 BUG_ON(nbad > nframes);
2423 }
2424 tx_info->status.ampdu_len = nframes;
2425 tx_info->status.ampdu_ack_len = nframes - nbad;
2426
2427 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2428 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2429 /*
2430 * If an underrun error is seen assume it as an excessive
2431 * retry only if max frame trigger level has been reached
2432 * (2 KB for single stream, and 4 KB for dual stream).
2433 * Adjust the long retry as if the frame was tried
2434 * hw->max_rate_tries times to affect how rate control updates
2435 * PER for the failed rate.
2436 * In case of congestion on the bus penalizing this type of
2437 * underruns should help hardware actually transmit new frames
2438 * successfully by eventually preferring slower rates.
2439 * This itself should also alleviate congestion on the bus.
2440 */
2441 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2442 ATH9K_TX_DELIM_UNDERRUN)) &&
2443 ieee80211_is_data(hdr->frame_control) &&
2444 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2445 tx_info->status.rates[tx_rateindex].count =
2446 hw->max_rate_tries;
2447 }
2448
2449 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2450 tx_info->status.rates[i].count = 0;
2451 tx_info->status.rates[i].idx = -1;
2452 }
2453
2454 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2455 }
2456
2457 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2458 {
2459 struct ath_hw *ah = sc->sc_ah;
2460 struct ath_common *common = ath9k_hw_common(ah);
2461 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2462 struct list_head bf_head;
2463 struct ath_desc *ds;
2464 struct ath_tx_status ts;
2465 int status;
2466
2467 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2468 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2469 txq->axq_link);
2470
2471 ath_txq_lock(sc, txq);
2472 for (;;) {
2473 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2474 break;
2475
2476 if (list_empty(&txq->axq_q)) {
2477 txq->axq_link = NULL;
2478 ath_txq_schedule(sc, txq);
2479 break;
2480 }
2481 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2482
2483 /*
2484 * There is a race condition that a BH gets scheduled
2485 * after sw writes TxE and before hw re-load the last
2486 * descriptor to get the newly chained one.
2487 * Software must keep the last DONE descriptor as a
2488 * holding descriptor - software does so by marking
2489 * it with the STALE flag.
2490 */
2491 bf_held = NULL;
2492 if (bf->bf_state.stale) {
2493 bf_held = bf;
2494 if (list_is_last(&bf_held->list, &txq->axq_q))
2495 break;
2496
2497 bf = list_entry(bf_held->list.next, struct ath_buf,
2498 list);
2499 }
2500
2501 lastbf = bf->bf_lastbf;
2502 ds = lastbf->bf_desc;
2503
2504 memset(&ts, 0, sizeof(ts));
2505 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2506 if (status == -EINPROGRESS)
2507 break;
2508
2509 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2510
2511 /*
2512 * Remove ath_buf's of the same transmit unit from txq,
2513 * however leave the last descriptor back as the holding
2514 * descriptor for hw.
2515 */
2516 lastbf->bf_state.stale = true;
2517 INIT_LIST_HEAD(&bf_head);
2518 if (!list_is_singular(&lastbf->list))
2519 list_cut_position(&bf_head,
2520 &txq->axq_q, lastbf->list.prev);
2521
2522 if (bf_held) {
2523 list_del(&bf_held->list);
2524 ath_tx_return_buffer(sc, bf_held);
2525 }
2526
2527 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2528 }
2529 ath_txq_unlock_complete(sc, txq);
2530 }
2531
2532 void ath_tx_tasklet(struct ath_softc *sc)
2533 {
2534 struct ath_hw *ah = sc->sc_ah;
2535 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2536 int i;
2537
2538 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2539 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2540 ath_tx_processq(sc, &sc->tx.txq[i]);
2541 }
2542 }
2543
2544 void ath_tx_edma_tasklet(struct ath_softc *sc)
2545 {
2546 struct ath_tx_status ts;
2547 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2548 struct ath_hw *ah = sc->sc_ah;
2549 struct ath_txq *txq;
2550 struct ath_buf *bf, *lastbf;
2551 struct list_head bf_head;
2552 struct list_head *fifo_list;
2553 int status;
2554
2555 for (;;) {
2556 if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2557 break;
2558
2559 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2560 if (status == -EINPROGRESS)
2561 break;
2562 if (status == -EIO) {
2563 ath_dbg(common, XMIT, "Error processing tx status\n");
2564 break;
2565 }
2566
2567 /* Process beacon completions separately */
2568 if (ts.qid == sc->beacon.beaconq) {
2569 sc->beacon.tx_processed = true;
2570 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2571
2572 ath9k_csa_is_finished(sc);
2573 continue;
2574 }
2575
2576 txq = &sc->tx.txq[ts.qid];
2577
2578 ath_txq_lock(sc, txq);
2579
2580 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2581
2582 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2583 if (list_empty(fifo_list)) {
2584 ath_txq_unlock(sc, txq);
2585 return;
2586 }
2587
2588 bf = list_first_entry(fifo_list, struct ath_buf, list);
2589 if (bf->bf_state.stale) {
2590 list_del(&bf->list);
2591 ath_tx_return_buffer(sc, bf);
2592 bf = list_first_entry(fifo_list, struct ath_buf, list);
2593 }
2594
2595 lastbf = bf->bf_lastbf;
2596
2597 INIT_LIST_HEAD(&bf_head);
2598 if (list_is_last(&lastbf->list, fifo_list)) {
2599 list_splice_tail_init(fifo_list, &bf_head);
2600 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2601
2602 if (!list_empty(&txq->axq_q)) {
2603 struct list_head bf_q;
2604
2605 INIT_LIST_HEAD(&bf_q);
2606 txq->axq_link = NULL;
2607 list_splice_tail_init(&txq->axq_q, &bf_q);
2608 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2609 }
2610 } else {
2611 lastbf->bf_state.stale = true;
2612 if (bf != lastbf)
2613 list_cut_position(&bf_head, fifo_list,
2614 lastbf->list.prev);
2615 }
2616
2617 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2618 ath_txq_unlock_complete(sc, txq);
2619 }
2620 }
2621
2622 /*****************/
2623 /* Init, Cleanup */
2624 /*****************/
2625
2626 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2627 {
2628 struct ath_descdma *dd = &sc->txsdma;
2629 u8 txs_len = sc->sc_ah->caps.txs_len;
2630
2631 dd->dd_desc_len = size * txs_len;
2632 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2633 &dd->dd_desc_paddr, GFP_KERNEL);
2634 if (!dd->dd_desc)
2635 return -ENOMEM;
2636
2637 return 0;
2638 }
2639
2640 static int ath_tx_edma_init(struct ath_softc *sc)
2641 {
2642 int err;
2643
2644 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2645 if (!err)
2646 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2647 sc->txsdma.dd_desc_paddr,
2648 ATH_TXSTATUS_RING_SIZE);
2649
2650 return err;
2651 }
2652
2653 int ath_tx_init(struct ath_softc *sc, int nbufs)
2654 {
2655 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2656 int error = 0;
2657
2658 spin_lock_init(&sc->tx.txbuflock);
2659
2660 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2661 "tx", nbufs, 1, 1);
2662 if (error != 0) {
2663 ath_err(common,
2664 "Failed to allocate tx descriptors: %d\n", error);
2665 return error;
2666 }
2667
2668 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2669 "beacon", ATH_BCBUF, 1, 1);
2670 if (error != 0) {
2671 ath_err(common,
2672 "Failed to allocate beacon descriptors: %d\n", error);
2673 return error;
2674 }
2675
2676 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2677
2678 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2679 error = ath_tx_edma_init(sc);
2680
2681 return error;
2682 }
2683
2684 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2685 {
2686 struct ath_atx_tid *tid;
2687 struct ath_atx_ac *ac;
2688 int tidno, acno;
2689
2690 for (tidno = 0, tid = &an->tid[tidno];
2691 tidno < IEEE80211_NUM_TIDS;
2692 tidno++, tid++) {
2693 tid->an = an;
2694 tid->tidno = tidno;
2695 tid->seq_start = tid->seq_next = 0;
2696 tid->baw_size = WME_MAX_BA;
2697 tid->baw_head = tid->baw_tail = 0;
2698 tid->sched = false;
2699 tid->paused = false;
2700 tid->active = false;
2701 __skb_queue_head_init(&tid->buf_q);
2702 __skb_queue_head_init(&tid->retry_q);
2703 acno = TID_TO_WME_AC(tidno);
2704 tid->ac = &an->ac[acno];
2705 }
2706
2707 for (acno = 0, ac = &an->ac[acno];
2708 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2709 ac->sched = false;
2710 ac->clear_ps_filter = true;
2711 ac->txq = sc->tx.txq_map[acno];
2712 INIT_LIST_HEAD(&ac->tid_q);
2713 }
2714 }
2715
2716 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2717 {
2718 struct ath_atx_ac *ac;
2719 struct ath_atx_tid *tid;
2720 struct ath_txq *txq;
2721 int tidno;
2722
2723 for (tidno = 0, tid = &an->tid[tidno];
2724 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2725
2726 ac = tid->ac;
2727 txq = ac->txq;
2728
2729 ath_txq_lock(sc, txq);
2730
2731 if (tid->sched) {
2732 list_del(&tid->list);
2733 tid->sched = false;
2734 }
2735
2736 if (ac->sched) {
2737 list_del(&ac->list);
2738 tid->ac->sched = false;
2739 }
2740
2741 ath_tid_drain(sc, txq, tid);
2742 tid->active = false;
2743
2744 ath_txq_unlock(sc, txq);
2745 }
2746 }
2747
2748 #ifdef CONFIG_ATH9K_TX99
2749
2750 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2751 struct ath_tx_control *txctl)
2752 {
2753 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2754 struct ath_frame_info *fi = get_frame_info(skb);
2755 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2756 struct ath_buf *bf;
2757 int padpos, padsize;
2758
2759 padpos = ieee80211_hdrlen(hdr->frame_control);
2760 padsize = padpos & 3;
2761
2762 if (padsize && skb->len > padpos) {
2763 if (skb_headroom(skb) < padsize) {
2764 ath_dbg(common, XMIT,
2765 "tx99 padding failed\n");
2766 return -EINVAL;
2767 }
2768
2769 skb_push(skb, padsize);
2770 memmove(skb->data, skb->data + padsize, padpos);
2771 }
2772
2773 fi->keyix = ATH9K_TXKEYIX_INVALID;
2774 fi->framelen = skb->len + FCS_LEN;
2775 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2776
2777 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2778 if (!bf) {
2779 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2780 return -EINVAL;
2781 }
2782
2783 ath_set_rates(sc->tx99_vif, NULL, bf);
2784
2785 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2786 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2787
2788 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2789
2790 return 0;
2791 }
2792
2793 #endif /* CONFIG_ATH9K_TX99 */
This page took 0.091455 seconds and 5 git commands to generate.