Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / xmit.c
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19
20 #define BITS_PER_BYTE 8
21 #define OFDM_PLCP_BITS 22
22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
34
35 #define OFDM_SIFS_TIME 16
36
37 static u16 bits_per_symbol[][2] = {
38 /* 20MHz 40MHz */
39 { 26, 54 }, /* 0: BPSK */
40 { 52, 108 }, /* 1: QPSK 1/2 */
41 { 78, 162 }, /* 2: QPSK 3/4 */
42 { 104, 216 }, /* 3: 16-QAM 1/2 */
43 { 156, 324 }, /* 4: 16-QAM 3/4 */
44 { 208, 432 }, /* 5: 64-QAM 2/3 */
45 { 234, 486 }, /* 6: 64-QAM 3/4 */
46 { 260, 540 }, /* 7: 64-QAM 5/6 */
47 };
48
49 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50
51 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
52 struct ath_atx_tid *tid,
53 struct list_head *bf_head);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok, int sendbar);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head);
59 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
60 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
61 struct ath_tx_status *ts, int txok);
62 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
63 int nbad, int txok, bool update_rc);
64
65 enum {
66 MCS_HT20,
67 MCS_HT20_SGI,
68 MCS_HT40,
69 MCS_HT40_SGI,
70 };
71
72 static int ath_max_4ms_framelen[4][32] = {
73 [MCS_HT20] = {
74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
78 },
79 [MCS_HT20_SGI] = {
80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
84 },
85 [MCS_HT40] = {
86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
90 },
91 [MCS_HT40_SGI] = {
92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
96 }
97 };
98
99 /*********************/
100 /* Aggregation logic */
101 /*********************/
102
103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
104 {
105 struct ath_atx_ac *ac = tid->ac;
106
107 if (tid->paused)
108 return;
109
110 if (tid->sched)
111 return;
112
113 tid->sched = true;
114 list_add_tail(&tid->list, &ac->tid_q);
115
116 if (ac->sched)
117 return;
118
119 ac->sched = true;
120 list_add_tail(&ac->list, &txq->axq_acq);
121 }
122
123 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
124 {
125 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
126
127 spin_lock_bh(&txq->axq_lock);
128 tid->paused++;
129 spin_unlock_bh(&txq->axq_lock);
130 }
131
132 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
133 {
134 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
135
136 BUG_ON(tid->paused <= 0);
137 spin_lock_bh(&txq->axq_lock);
138
139 tid->paused--;
140
141 if (tid->paused > 0)
142 goto unlock;
143
144 if (list_empty(&tid->buf_q))
145 goto unlock;
146
147 ath_tx_queue_tid(txq, tid);
148 ath_txq_schedule(sc, txq);
149 unlock:
150 spin_unlock_bh(&txq->axq_lock);
151 }
152
153 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
154 {
155 struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
156 struct ath_buf *bf;
157 struct list_head bf_head;
158 INIT_LIST_HEAD(&bf_head);
159
160 BUG_ON(tid->paused <= 0);
161 spin_lock_bh(&txq->axq_lock);
162
163 tid->paused--;
164
165 if (tid->paused > 0) {
166 spin_unlock_bh(&txq->axq_lock);
167 return;
168 }
169
170 while (!list_empty(&tid->buf_q)) {
171 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
172 BUG_ON(bf_isretried(bf));
173 list_move_tail(&bf->list, &bf_head);
174 ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
175 }
176
177 spin_unlock_bh(&txq->axq_lock);
178 }
179
180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
181 int seqno)
182 {
183 int index, cindex;
184
185 index = ATH_BA_INDEX(tid->seq_start, seqno);
186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
187
188 tid->tx_buf[cindex] = NULL;
189
190 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
191 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
192 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
193 }
194 }
195
196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
197 struct ath_buf *bf)
198 {
199 int index, cindex;
200
201 if (bf_isretried(bf))
202 return;
203
204 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
205 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
206
207 BUG_ON(tid->tx_buf[cindex] != NULL);
208 tid->tx_buf[cindex] = bf;
209
210 if (index >= ((tid->baw_tail - tid->baw_head) &
211 (ATH_TID_MAX_BUFS - 1))) {
212 tid->baw_tail = cindex;
213 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
214 }
215 }
216
217 /*
218 * TODO: For frame(s) that are in the retry state, we will reuse the
219 * sequence number(s) without setting the retry bit. The
220 * alternative is to give up on these and BAR the receiver's window
221 * forward.
222 */
223 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
224 struct ath_atx_tid *tid)
225
226 {
227 struct ath_buf *bf;
228 struct list_head bf_head;
229 struct ath_tx_status ts;
230
231 memset(&ts, 0, sizeof(ts));
232 INIT_LIST_HEAD(&bf_head);
233
234 for (;;) {
235 if (list_empty(&tid->buf_q))
236 break;
237
238 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
239 list_move_tail(&bf->list, &bf_head);
240
241 if (bf_isretried(bf))
242 ath_tx_update_baw(sc, tid, bf->bf_seqno);
243
244 spin_unlock(&txq->axq_lock);
245 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
246 spin_lock(&txq->axq_lock);
247 }
248
249 tid->seq_next = tid->seq_start;
250 tid->baw_tail = tid->baw_head;
251 }
252
253 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
254 struct ath_buf *bf)
255 {
256 struct sk_buff *skb;
257 struct ieee80211_hdr *hdr;
258
259 bf->bf_state.bf_type |= BUF_RETRY;
260 bf->bf_retries++;
261 TX_STAT_INC(txq->axq_qnum, a_retries);
262
263 skb = bf->bf_mpdu;
264 hdr = (struct ieee80211_hdr *)skb->data;
265 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
266 }
267
268 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
269 {
270 struct ath_buf *bf = NULL;
271
272 spin_lock_bh(&sc->tx.txbuflock);
273
274 if (unlikely(list_empty(&sc->tx.txbuf))) {
275 spin_unlock_bh(&sc->tx.txbuflock);
276 return NULL;
277 }
278
279 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
280 list_del(&bf->list);
281
282 spin_unlock_bh(&sc->tx.txbuflock);
283
284 return bf;
285 }
286
287 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
288 {
289 spin_lock_bh(&sc->tx.txbuflock);
290 list_add_tail(&bf->list, &sc->tx.txbuf);
291 spin_unlock_bh(&sc->tx.txbuflock);
292 }
293
294 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
295 {
296 struct ath_buf *tbf;
297
298 tbf = ath_tx_get_buffer(sc);
299 if (WARN_ON(!tbf))
300 return NULL;
301
302 ATH_TXBUF_RESET(tbf);
303
304 tbf->aphy = bf->aphy;
305 tbf->bf_mpdu = bf->bf_mpdu;
306 tbf->bf_buf_addr = bf->bf_buf_addr;
307 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
308 tbf->bf_state = bf->bf_state;
309 tbf->bf_dmacontext = bf->bf_dmacontext;
310
311 return tbf;
312 }
313
314 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_buf *bf, struct list_head *bf_q,
316 struct ath_tx_status *ts, int txok)
317 {
318 struct ath_node *an = NULL;
319 struct sk_buff *skb;
320 struct ieee80211_sta *sta;
321 struct ieee80211_hw *hw;
322 struct ieee80211_hdr *hdr;
323 struct ieee80211_tx_info *tx_info;
324 struct ath_atx_tid *tid = NULL;
325 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
326 struct list_head bf_head, bf_pending;
327 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
328 u32 ba[WME_BA_BMP_SIZE >> 5];
329 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
330 bool rc_update = true;
331
332 skb = bf->bf_mpdu;
333 hdr = (struct ieee80211_hdr *)skb->data;
334
335 tx_info = IEEE80211_SKB_CB(skb);
336 hw = bf->aphy->hw;
337
338 rcu_read_lock();
339
340 /* XXX: use ieee80211_find_sta! */
341 sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
342 if (!sta) {
343 rcu_read_unlock();
344 return;
345 }
346
347 an = (struct ath_node *)sta->drv_priv;
348 tid = ATH_AN_2_TID(an, bf->bf_tidno);
349
350 isaggr = bf_isaggr(bf);
351 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
352
353 if (isaggr && txok) {
354 if (ts->ts_flags & ATH9K_TX_BA) {
355 seq_st = ts->ts_seqnum;
356 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
357 } else {
358 /*
359 * AR5416 can become deaf/mute when BA
360 * issue happens. Chip needs to be reset.
361 * But AP code may have sychronization issues
362 * when perform internal reset in this routine.
363 * Only enable reset in STA mode for now.
364 */
365 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
366 needreset = 1;
367 }
368 }
369
370 INIT_LIST_HEAD(&bf_pending);
371 INIT_LIST_HEAD(&bf_head);
372
373 nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
374 while (bf) {
375 txfail = txpending = 0;
376 bf_next = bf->bf_next;
377
378 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
379 /* transmit completion, subframe is
380 * acked by block ack */
381 acked_cnt++;
382 } else if (!isaggr && txok) {
383 /* transmit completion */
384 acked_cnt++;
385 } else {
386 if (!(tid->state & AGGR_CLEANUP) &&
387 !bf_last->bf_tx_aborted) {
388 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
389 ath_tx_set_retry(sc, txq, bf);
390 txpending = 1;
391 } else {
392 bf->bf_state.bf_type |= BUF_XRETRY;
393 txfail = 1;
394 sendbar = 1;
395 txfail_cnt++;
396 }
397 } else {
398 /*
399 * cleanup in progress, just fail
400 * the un-acked sub-frames
401 */
402 txfail = 1;
403 }
404 }
405
406 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
407 bf_next == NULL) {
408 /*
409 * Make sure the last desc is reclaimed if it
410 * not a holding desc.
411 */
412 if (!bf_last->bf_stale)
413 list_move_tail(&bf->list, &bf_head);
414 else
415 INIT_LIST_HEAD(&bf_head);
416 } else {
417 BUG_ON(list_empty(bf_q));
418 list_move_tail(&bf->list, &bf_head);
419 }
420
421 if (!txpending) {
422 /*
423 * complete the acked-ones/xretried ones; update
424 * block-ack window
425 */
426 spin_lock_bh(&txq->axq_lock);
427 ath_tx_update_baw(sc, tid, bf->bf_seqno);
428 spin_unlock_bh(&txq->axq_lock);
429
430 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
431 ath_tx_rc_status(bf, ts, nbad, txok, true);
432 rc_update = false;
433 } else {
434 ath_tx_rc_status(bf, ts, nbad, txok, false);
435 }
436
437 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
438 !txfail, sendbar);
439 } else {
440 /* retry the un-acked ones */
441 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
442 if (bf->bf_next == NULL && bf_last->bf_stale) {
443 struct ath_buf *tbf;
444
445 tbf = ath_clone_txbuf(sc, bf_last);
446 /*
447 * Update tx baw and complete the
448 * frame with failed status if we
449 * run out of tx buf.
450 */
451 if (!tbf) {
452 spin_lock_bh(&txq->axq_lock);
453 ath_tx_update_baw(sc, tid,
454 bf->bf_seqno);
455 spin_unlock_bh(&txq->axq_lock);
456
457 bf->bf_state.bf_type |=
458 BUF_XRETRY;
459 ath_tx_rc_status(bf, ts, nbad,
460 0, false);
461 ath_tx_complete_buf(sc, bf, txq,
462 &bf_head,
463 ts, 0, 0);
464 break;
465 }
466
467 ath9k_hw_cleartxdesc(sc->sc_ah,
468 tbf->bf_desc);
469 list_add_tail(&tbf->list, &bf_head);
470 } else {
471 /*
472 * Clear descriptor status words for
473 * software retry
474 */
475 ath9k_hw_cleartxdesc(sc->sc_ah,
476 bf->bf_desc);
477 }
478 }
479
480 /*
481 * Put this buffer to the temporary pending
482 * queue to retain ordering
483 */
484 list_splice_tail_init(&bf_head, &bf_pending);
485 }
486
487 bf = bf_next;
488 }
489
490 if (tid->state & AGGR_CLEANUP) {
491 if (tid->baw_head == tid->baw_tail) {
492 tid->state &= ~AGGR_ADDBA_COMPLETE;
493 tid->state &= ~AGGR_CLEANUP;
494
495 /* send buffered frames as singles */
496 ath_tx_flush_tid(sc, tid);
497 }
498 rcu_read_unlock();
499 return;
500 }
501
502 /* prepend un-acked frames to the beginning of the pending frame queue */
503 if (!list_empty(&bf_pending)) {
504 spin_lock_bh(&txq->axq_lock);
505 list_splice(&bf_pending, &tid->buf_q);
506 ath_tx_queue_tid(txq, tid);
507 spin_unlock_bh(&txq->axq_lock);
508 }
509
510 rcu_read_unlock();
511
512 if (needreset)
513 ath_reset(sc, false);
514 }
515
516 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
517 struct ath_atx_tid *tid)
518 {
519 struct sk_buff *skb;
520 struct ieee80211_tx_info *tx_info;
521 struct ieee80211_tx_rate *rates;
522 u32 max_4ms_framelen, frmlen;
523 u16 aggr_limit, legacy = 0;
524 int i;
525
526 skb = bf->bf_mpdu;
527 tx_info = IEEE80211_SKB_CB(skb);
528 rates = tx_info->control.rates;
529
530 /*
531 * Find the lowest frame length among the rate series that will have a
532 * 4ms transmit duration.
533 * TODO - TXOP limit needs to be considered.
534 */
535 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
536
537 for (i = 0; i < 4; i++) {
538 if (rates[i].count) {
539 int modeidx;
540 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
541 legacy = 1;
542 break;
543 }
544
545 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
546 modeidx = MCS_HT40;
547 else
548 modeidx = MCS_HT20;
549
550 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
551 modeidx++;
552
553 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
554 max_4ms_framelen = min(max_4ms_framelen, frmlen);
555 }
556 }
557
558 /*
559 * limit aggregate size by the minimum rate if rate selected is
560 * not a probe rate, if rate selected is a probe rate then
561 * avoid aggregation of this packet.
562 */
563 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
564 return 0;
565
566 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
567 aggr_limit = min((max_4ms_framelen * 3) / 8,
568 (u32)ATH_AMPDU_LIMIT_MAX);
569 else
570 aggr_limit = min(max_4ms_framelen,
571 (u32)ATH_AMPDU_LIMIT_MAX);
572
573 /*
574 * h/w can accept aggregates upto 16 bit lengths (65535).
575 * The IE, however can hold upto 65536, which shows up here
576 * as zero. Ignore 65536 since we are constrained by hw.
577 */
578 if (tid->an->maxampdu)
579 aggr_limit = min(aggr_limit, tid->an->maxampdu);
580
581 return aggr_limit;
582 }
583
584 /*
585 * Returns the number of delimiters to be added to
586 * meet the minimum required mpdudensity.
587 */
588 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
589 struct ath_buf *bf, u16 frmlen)
590 {
591 struct sk_buff *skb = bf->bf_mpdu;
592 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
593 u32 nsymbits, nsymbols;
594 u16 minlen;
595 u8 flags, rix;
596 int width, streams, half_gi, ndelim, mindelim;
597
598 /* Select standard number of delimiters based on frame length alone */
599 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
600
601 /*
602 * If encryption enabled, hardware requires some more padding between
603 * subframes.
604 * TODO - this could be improved to be dependent on the rate.
605 * The hardware can keep up at lower rates, but not higher rates
606 */
607 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
608 ndelim += ATH_AGGR_ENCRYPTDELIM;
609
610 /*
611 * Convert desired mpdu density from microeconds to bytes based
612 * on highest rate in rate series (i.e. first rate) to determine
613 * required minimum length for subframe. Take into account
614 * whether high rate is 20 or 40Mhz and half or full GI.
615 *
616 * If there is no mpdu density restriction, no further calculation
617 * is needed.
618 */
619
620 if (tid->an->mpdudensity == 0)
621 return ndelim;
622
623 rix = tx_info->control.rates[0].idx;
624 flags = tx_info->control.rates[0].flags;
625 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
626 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
627
628 if (half_gi)
629 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
630 else
631 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
632
633 if (nsymbols == 0)
634 nsymbols = 1;
635
636 streams = HT_RC_2_STREAMS(rix);
637 nsymbits = bits_per_symbol[rix % 8][width] * streams;
638 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
639
640 if (frmlen < minlen) {
641 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
642 ndelim = max(mindelim, ndelim);
643 }
644
645 return ndelim;
646 }
647
648 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
649 struct ath_txq *txq,
650 struct ath_atx_tid *tid,
651 struct list_head *bf_q)
652 {
653 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
654 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
655 int rl = 0, nframes = 0, ndelim, prev_al = 0;
656 u16 aggr_limit = 0, al = 0, bpad = 0,
657 al_delta, h_baw = tid->baw_size / 2;
658 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
659
660 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
661
662 do {
663 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
664
665 /* do not step over block-ack window */
666 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
667 status = ATH_AGGR_BAW_CLOSED;
668 break;
669 }
670
671 if (!rl) {
672 aggr_limit = ath_lookup_rate(sc, bf, tid);
673 rl = 1;
674 }
675
676 /* do not exceed aggregation limit */
677 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
678
679 if (nframes &&
680 (aggr_limit < (al + bpad + al_delta + prev_al))) {
681 status = ATH_AGGR_LIMITED;
682 break;
683 }
684
685 /* do not exceed subframe limit */
686 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
687 status = ATH_AGGR_LIMITED;
688 break;
689 }
690 nframes++;
691
692 /* add padding for previous frame to aggregation length */
693 al += bpad + al_delta;
694
695 /*
696 * Get the delimiters needed to meet the MPDU
697 * density for this node.
698 */
699 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
700 bpad = PADBYTES(al_delta) + (ndelim << 2);
701
702 bf->bf_next = NULL;
703 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
704
705 /* link buffers of this frame to the aggregate */
706 ath_tx_addto_baw(sc, tid, bf);
707 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
708 list_move_tail(&bf->list, bf_q);
709 if (bf_prev) {
710 bf_prev->bf_next = bf;
711 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
712 bf->bf_daddr);
713 }
714 bf_prev = bf;
715
716 } while (!list_empty(&tid->buf_q));
717
718 bf_first->bf_al = al;
719 bf_first->bf_nframes = nframes;
720
721 return status;
722 #undef PADBYTES
723 }
724
725 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
726 struct ath_atx_tid *tid)
727 {
728 struct ath_buf *bf;
729 enum ATH_AGGR_STATUS status;
730 struct list_head bf_q;
731
732 do {
733 if (list_empty(&tid->buf_q))
734 return;
735
736 INIT_LIST_HEAD(&bf_q);
737
738 status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
739
740 /*
741 * no frames picked up to be aggregated;
742 * block-ack window is not open.
743 */
744 if (list_empty(&bf_q))
745 break;
746
747 bf = list_first_entry(&bf_q, struct ath_buf, list);
748 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
749
750 /* if only one frame, send as non-aggregate */
751 if (bf->bf_nframes == 1) {
752 bf->bf_state.bf_type &= ~BUF_AGGR;
753 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
754 ath_buf_set_rate(sc, bf);
755 ath_tx_txqaddbuf(sc, txq, &bf_q);
756 continue;
757 }
758
759 /* setup first desc of aggregate */
760 bf->bf_state.bf_type |= BUF_AGGR;
761 ath_buf_set_rate(sc, bf);
762 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
763
764 /* anchor last desc of aggregate */
765 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
766
767 ath_tx_txqaddbuf(sc, txq, &bf_q);
768 TX_STAT_INC(txq->axq_qnum, a_aggr);
769
770 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
771 status != ATH_AGGR_BAW_CLOSED);
772 }
773
774 void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
775 u16 tid, u16 *ssn)
776 {
777 struct ath_atx_tid *txtid;
778 struct ath_node *an;
779
780 an = (struct ath_node *)sta->drv_priv;
781 txtid = ATH_AN_2_TID(an, tid);
782 txtid->state |= AGGR_ADDBA_PROGRESS;
783 ath_tx_pause_tid(sc, txtid);
784 *ssn = txtid->seq_start;
785 }
786
787 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
788 {
789 struct ath_node *an = (struct ath_node *)sta->drv_priv;
790 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
791 struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
792 struct ath_tx_status ts;
793 struct ath_buf *bf;
794 struct list_head bf_head;
795
796 memset(&ts, 0, sizeof(ts));
797 INIT_LIST_HEAD(&bf_head);
798
799 if (txtid->state & AGGR_CLEANUP)
800 return;
801
802 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
803 txtid->state &= ~AGGR_ADDBA_PROGRESS;
804 return;
805 }
806
807 ath_tx_pause_tid(sc, txtid);
808
809 /* drop all software retried frames and mark this TID */
810 spin_lock_bh(&txq->axq_lock);
811 while (!list_empty(&txtid->buf_q)) {
812 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
813 if (!bf_isretried(bf)) {
814 /*
815 * NB: it's based on the assumption that
816 * software retried frame will always stay
817 * at the head of software queue.
818 */
819 break;
820 }
821 list_move_tail(&bf->list, &bf_head);
822 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
823 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
824 }
825 spin_unlock_bh(&txq->axq_lock);
826
827 if (txtid->baw_head != txtid->baw_tail) {
828 txtid->state |= AGGR_CLEANUP;
829 } else {
830 txtid->state &= ~AGGR_ADDBA_COMPLETE;
831 ath_tx_flush_tid(sc, txtid);
832 }
833 }
834
835 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
836 {
837 struct ath_atx_tid *txtid;
838 struct ath_node *an;
839
840 an = (struct ath_node *)sta->drv_priv;
841
842 if (sc->sc_flags & SC_OP_TXAGGR) {
843 txtid = ATH_AN_2_TID(an, tid);
844 txtid->baw_size =
845 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
846 txtid->state |= AGGR_ADDBA_COMPLETE;
847 txtid->state &= ~AGGR_ADDBA_PROGRESS;
848 ath_tx_resume_tid(sc, txtid);
849 }
850 }
851
852 bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
853 {
854 struct ath_atx_tid *txtid;
855
856 if (!(sc->sc_flags & SC_OP_TXAGGR))
857 return false;
858
859 txtid = ATH_AN_2_TID(an, tidno);
860
861 if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
862 return true;
863 return false;
864 }
865
866 /********************/
867 /* Queue Management */
868 /********************/
869
870 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
871 struct ath_txq *txq)
872 {
873 struct ath_atx_ac *ac, *ac_tmp;
874 struct ath_atx_tid *tid, *tid_tmp;
875
876 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
877 list_del(&ac->list);
878 ac->sched = false;
879 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
880 list_del(&tid->list);
881 tid->sched = false;
882 ath_tid_drain(sc, txq, tid);
883 }
884 }
885 }
886
887 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
888 {
889 struct ath_hw *ah = sc->sc_ah;
890 struct ath_common *common = ath9k_hw_common(ah);
891 struct ath9k_tx_queue_info qi;
892 int qnum, i;
893
894 memset(&qi, 0, sizeof(qi));
895 qi.tqi_subtype = subtype;
896 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
897 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
898 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
899 qi.tqi_physCompBuf = 0;
900
901 /*
902 * Enable interrupts only for EOL and DESC conditions.
903 * We mark tx descriptors to receive a DESC interrupt
904 * when a tx queue gets deep; otherwise waiting for the
905 * EOL to reap descriptors. Note that this is done to
906 * reduce interrupt load and this only defers reaping
907 * descriptors, never transmitting frames. Aside from
908 * reducing interrupts this also permits more concurrency.
909 * The only potential downside is if the tx queue backs
910 * up in which case the top half of the kernel may backup
911 * due to a lack of tx descriptors.
912 *
913 * The UAPSD queue is an exception, since we take a desc-
914 * based intr on the EOSP frames.
915 */
916 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
917 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
918 TXQ_FLAG_TXERRINT_ENABLE;
919 } else {
920 if (qtype == ATH9K_TX_QUEUE_UAPSD)
921 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
922 else
923 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
924 TXQ_FLAG_TXDESCINT_ENABLE;
925 }
926 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
927 if (qnum == -1) {
928 /*
929 * NB: don't print a message, this happens
930 * normally on parts with too few tx queues
931 */
932 return NULL;
933 }
934 if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
935 ath_print(common, ATH_DBG_FATAL,
936 "qnum %u out of range, max %u!\n",
937 qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
938 ath9k_hw_releasetxqueue(ah, qnum);
939 return NULL;
940 }
941 if (!ATH_TXQ_SETUP(sc, qnum)) {
942 struct ath_txq *txq = &sc->tx.txq[qnum];
943
944 txq->axq_qnum = qnum;
945 txq->axq_link = NULL;
946 INIT_LIST_HEAD(&txq->axq_q);
947 INIT_LIST_HEAD(&txq->axq_acq);
948 spin_lock_init(&txq->axq_lock);
949 txq->axq_depth = 0;
950 txq->axq_tx_inprogress = false;
951 sc->tx.txqsetup |= 1<<qnum;
952
953 txq->txq_headidx = txq->txq_tailidx = 0;
954 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
955 INIT_LIST_HEAD(&txq->txq_fifo[i]);
956 INIT_LIST_HEAD(&txq->txq_fifo_pending);
957 }
958 return &sc->tx.txq[qnum];
959 }
960
961 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
962 {
963 int qnum;
964
965 switch (qtype) {
966 case ATH9K_TX_QUEUE_DATA:
967 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
968 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
969 "HAL AC %u out of range, max %zu!\n",
970 haltype, ARRAY_SIZE(sc->tx.hwq_map));
971 return -1;
972 }
973 qnum = sc->tx.hwq_map[haltype];
974 break;
975 case ATH9K_TX_QUEUE_BEACON:
976 qnum = sc->beacon.beaconq;
977 break;
978 case ATH9K_TX_QUEUE_CAB:
979 qnum = sc->beacon.cabq->axq_qnum;
980 break;
981 default:
982 qnum = -1;
983 }
984 return qnum;
985 }
986
987 int ath_txq_update(struct ath_softc *sc, int qnum,
988 struct ath9k_tx_queue_info *qinfo)
989 {
990 struct ath_hw *ah = sc->sc_ah;
991 int error = 0;
992 struct ath9k_tx_queue_info qi;
993
994 if (qnum == sc->beacon.beaconq) {
995 /*
996 * XXX: for beacon queue, we just save the parameter.
997 * It will be picked up by ath_beaconq_config when
998 * it's necessary.
999 */
1000 sc->beacon.beacon_qi = *qinfo;
1001 return 0;
1002 }
1003
1004 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1005
1006 ath9k_hw_get_txq_props(ah, qnum, &qi);
1007 qi.tqi_aifs = qinfo->tqi_aifs;
1008 qi.tqi_cwmin = qinfo->tqi_cwmin;
1009 qi.tqi_cwmax = qinfo->tqi_cwmax;
1010 qi.tqi_burstTime = qinfo->tqi_burstTime;
1011 qi.tqi_readyTime = qinfo->tqi_readyTime;
1012
1013 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1014 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1015 "Unable to update hardware queue %u!\n", qnum);
1016 error = -EIO;
1017 } else {
1018 ath9k_hw_resettxqueue(ah, qnum);
1019 }
1020
1021 return error;
1022 }
1023
1024 int ath_cabq_update(struct ath_softc *sc)
1025 {
1026 struct ath9k_tx_queue_info qi;
1027 int qnum = sc->beacon.cabq->axq_qnum;
1028
1029 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1030 /*
1031 * Ensure the readytime % is within the bounds.
1032 */
1033 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1034 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1035 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1036 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1037
1038 qi.tqi_readyTime = (sc->beacon_interval *
1039 sc->config.cabqReadytime) / 100;
1040 ath_txq_update(sc, qnum, &qi);
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * Drain a given TX queue (could be Beacon or Data)
1047 *
1048 * This assumes output has been stopped and
1049 * we do not need to block ath_tx_tasklet.
1050 */
1051 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1052 {
1053 struct ath_buf *bf, *lastbf;
1054 struct list_head bf_head;
1055 struct ath_tx_status ts;
1056
1057 memset(&ts, 0, sizeof(ts));
1058 INIT_LIST_HEAD(&bf_head);
1059
1060 for (;;) {
1061 spin_lock_bh(&txq->axq_lock);
1062
1063 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1064 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
1065 txq->txq_headidx = txq->txq_tailidx = 0;
1066 spin_unlock_bh(&txq->axq_lock);
1067 break;
1068 } else {
1069 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
1070 struct ath_buf, list);
1071 }
1072 } else {
1073 if (list_empty(&txq->axq_q)) {
1074 txq->axq_link = NULL;
1075 spin_unlock_bh(&txq->axq_lock);
1076 break;
1077 }
1078 bf = list_first_entry(&txq->axq_q, struct ath_buf,
1079 list);
1080
1081 if (bf->bf_stale) {
1082 list_del(&bf->list);
1083 spin_unlock_bh(&txq->axq_lock);
1084
1085 ath_tx_return_buffer(sc, bf);
1086 continue;
1087 }
1088 }
1089
1090 lastbf = bf->bf_lastbf;
1091 if (!retry_tx)
1092 lastbf->bf_tx_aborted = true;
1093
1094 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1095 list_cut_position(&bf_head,
1096 &txq->txq_fifo[txq->txq_tailidx],
1097 &lastbf->list);
1098 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
1099 } else {
1100 /* remove ath_buf's of the same mpdu from txq */
1101 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
1102 }
1103
1104 txq->axq_depth--;
1105
1106 spin_unlock_bh(&txq->axq_lock);
1107
1108 if (bf_isampdu(bf))
1109 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
1110 else
1111 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
1112 }
1113
1114 spin_lock_bh(&txq->axq_lock);
1115 txq->axq_tx_inprogress = false;
1116 spin_unlock_bh(&txq->axq_lock);
1117
1118 /* flush any pending frames if aggregation is enabled */
1119 if (sc->sc_flags & SC_OP_TXAGGR) {
1120 if (!retry_tx) {
1121 spin_lock_bh(&txq->axq_lock);
1122 ath_txq_drain_pending_buffers(sc, txq);
1123 spin_unlock_bh(&txq->axq_lock);
1124 }
1125 }
1126
1127 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1128 spin_lock_bh(&txq->axq_lock);
1129 while (!list_empty(&txq->txq_fifo_pending)) {
1130 bf = list_first_entry(&txq->txq_fifo_pending,
1131 struct ath_buf, list);
1132 list_cut_position(&bf_head,
1133 &txq->txq_fifo_pending,
1134 &bf->bf_lastbf->list);
1135 spin_unlock_bh(&txq->axq_lock);
1136
1137 if (bf_isampdu(bf))
1138 ath_tx_complete_aggr(sc, txq, bf, &bf_head,
1139 &ts, 0);
1140 else
1141 ath_tx_complete_buf(sc, bf, txq, &bf_head,
1142 &ts, 0, 0);
1143 spin_lock_bh(&txq->axq_lock);
1144 }
1145 spin_unlock_bh(&txq->axq_lock);
1146 }
1147 }
1148
1149 void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1150 {
1151 struct ath_hw *ah = sc->sc_ah;
1152 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1153 struct ath_txq *txq;
1154 int i, npend = 0;
1155
1156 if (sc->sc_flags & SC_OP_INVALID)
1157 return;
1158
1159 /* Stop beacon queue */
1160 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1161
1162 /* Stop data queues */
1163 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1164 if (ATH_TXQ_SETUP(sc, i)) {
1165 txq = &sc->tx.txq[i];
1166 ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1167 npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
1168 }
1169 }
1170
1171 if (npend) {
1172 int r;
1173
1174 ath_print(common, ATH_DBG_FATAL,
1175 "Failed to stop TX DMA. Resetting hardware!\n");
1176
1177 spin_lock_bh(&sc->sc_resetlock);
1178 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1179 if (r)
1180 ath_print(common, ATH_DBG_FATAL,
1181 "Unable to reset hardware; reset status %d\n",
1182 r);
1183 spin_unlock_bh(&sc->sc_resetlock);
1184 }
1185
1186 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1187 if (ATH_TXQ_SETUP(sc, i))
1188 ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
1189 }
1190 }
1191
1192 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1193 {
1194 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1195 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1196 }
1197
1198 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1199 {
1200 struct ath_atx_ac *ac;
1201 struct ath_atx_tid *tid;
1202
1203 if (list_empty(&txq->axq_acq))
1204 return;
1205
1206 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1207 list_del(&ac->list);
1208 ac->sched = false;
1209
1210 do {
1211 if (list_empty(&ac->tid_q))
1212 return;
1213
1214 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
1215 list_del(&tid->list);
1216 tid->sched = false;
1217
1218 if (tid->paused)
1219 continue;
1220
1221 ath_tx_sched_aggr(sc, txq, tid);
1222
1223 /*
1224 * add tid to round-robin queue if more frames
1225 * are pending for the tid
1226 */
1227 if (!list_empty(&tid->buf_q))
1228 ath_tx_queue_tid(txq, tid);
1229
1230 break;
1231 } while (!list_empty(&ac->tid_q));
1232
1233 if (!list_empty(&ac->tid_q)) {
1234 if (!ac->sched) {
1235 ac->sched = true;
1236 list_add_tail(&ac->list, &txq->axq_acq);
1237 }
1238 }
1239 }
1240
1241 int ath_tx_setup(struct ath_softc *sc, int haltype)
1242 {
1243 struct ath_txq *txq;
1244
1245 if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
1246 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1247 "HAL AC %u out of range, max %zu!\n",
1248 haltype, ARRAY_SIZE(sc->tx.hwq_map));
1249 return 0;
1250 }
1251 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1252 if (txq != NULL) {
1253 sc->tx.hwq_map[haltype] = txq->axq_qnum;
1254 return 1;
1255 } else
1256 return 0;
1257 }
1258
1259 /***********/
1260 /* TX, DMA */
1261 /***********/
1262
1263 /*
1264 * Insert a chain of ath_buf (descriptors) on a txq and
1265 * assume the descriptors are already chained together by caller.
1266 */
1267 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1268 struct list_head *head)
1269 {
1270 struct ath_hw *ah = sc->sc_ah;
1271 struct ath_common *common = ath9k_hw_common(ah);
1272 struct ath_buf *bf;
1273
1274 /*
1275 * Insert the frame on the outbound list and
1276 * pass it on to the hardware.
1277 */
1278
1279 if (list_empty(head))
1280 return;
1281
1282 bf = list_first_entry(head, struct ath_buf, list);
1283
1284 ath_print(common, ATH_DBG_QUEUE,
1285 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
1286
1287 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1288 if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
1289 list_splice_tail_init(head, &txq->txq_fifo_pending);
1290 return;
1291 }
1292 if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
1293 ath_print(common, ATH_DBG_XMIT,
1294 "Initializing tx fifo %d which "
1295 "is non-empty\n",
1296 txq->txq_headidx);
1297 INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
1298 list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
1299 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1300 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1301 ath_print(common, ATH_DBG_XMIT,
1302 "TXDP[%u] = %llx (%p)\n",
1303 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1304 } else {
1305 list_splice_tail_init(head, &txq->axq_q);
1306
1307 if (txq->axq_link == NULL) {
1308 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1309 ath_print(common, ATH_DBG_XMIT,
1310 "TXDP[%u] = %llx (%p)\n",
1311 txq->axq_qnum, ito64(bf->bf_daddr),
1312 bf->bf_desc);
1313 } else {
1314 *txq->axq_link = bf->bf_daddr;
1315 ath_print(common, ATH_DBG_XMIT,
1316 "link[%u] (%p)=%llx (%p)\n",
1317 txq->axq_qnum, txq->axq_link,
1318 ito64(bf->bf_daddr), bf->bf_desc);
1319 }
1320 ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
1321 &txq->axq_link);
1322 ath9k_hw_txstart(ah, txq->axq_qnum);
1323 }
1324 txq->axq_depth++;
1325 }
1326
1327 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1328 struct list_head *bf_head,
1329 struct ath_tx_control *txctl)
1330 {
1331 struct ath_buf *bf;
1332
1333 bf = list_first_entry(bf_head, struct ath_buf, list);
1334 bf->bf_state.bf_type |= BUF_AMPDU;
1335 TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
1336
1337 /*
1338 * Do not queue to h/w when any of the following conditions is true:
1339 * - there are pending frames in software queue
1340 * - the TID is currently paused for ADDBA/BAR request
1341 * - seqno is not within block-ack window
1342 * - h/w queue depth exceeds low water mark
1343 */
1344 if (!list_empty(&tid->buf_q) || tid->paused ||
1345 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1346 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1347 /*
1348 * Add this frame to software queue for scheduling later
1349 * for aggregation.
1350 */
1351 list_move_tail(&bf->list, &tid->buf_q);
1352 ath_tx_queue_tid(txctl->txq, tid);
1353 return;
1354 }
1355
1356 /* Add sub-frame to BAW */
1357 ath_tx_addto_baw(sc, tid, bf);
1358
1359 /* Queue to h/w without aggregation */
1360 bf->bf_nframes = 1;
1361 bf->bf_lastbf = bf;
1362 ath_buf_set_rate(sc, bf);
1363 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
1364 }
1365
1366 static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
1367 struct ath_atx_tid *tid,
1368 struct list_head *bf_head)
1369 {
1370 struct ath_buf *bf;
1371
1372 bf = list_first_entry(bf_head, struct ath_buf, list);
1373 bf->bf_state.bf_type &= ~BUF_AMPDU;
1374
1375 /* update starting sequence number for subsequent ADDBA request */
1376 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1377
1378 bf->bf_nframes = 1;
1379 bf->bf_lastbf = bf;
1380 ath_buf_set_rate(sc, bf);
1381 ath_tx_txqaddbuf(sc, txq, bf_head);
1382 TX_STAT_INC(txq->axq_qnum, queued);
1383 }
1384
1385 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1386 struct list_head *bf_head)
1387 {
1388 struct ath_buf *bf;
1389
1390 bf = list_first_entry(bf_head, struct ath_buf, list);
1391
1392 bf->bf_lastbf = bf;
1393 bf->bf_nframes = 1;
1394 ath_buf_set_rate(sc, bf);
1395 ath_tx_txqaddbuf(sc, txq, bf_head);
1396 TX_STAT_INC(txq->axq_qnum, queued);
1397 }
1398
1399 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1400 {
1401 struct ieee80211_hdr *hdr;
1402 enum ath9k_pkt_type htype;
1403 __le16 fc;
1404
1405 hdr = (struct ieee80211_hdr *)skb->data;
1406 fc = hdr->frame_control;
1407
1408 if (ieee80211_is_beacon(fc))
1409 htype = ATH9K_PKT_TYPE_BEACON;
1410 else if (ieee80211_is_probe_resp(fc))
1411 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1412 else if (ieee80211_is_atim(fc))
1413 htype = ATH9K_PKT_TYPE_ATIM;
1414 else if (ieee80211_is_pspoll(fc))
1415 htype = ATH9K_PKT_TYPE_PSPOLL;
1416 else
1417 htype = ATH9K_PKT_TYPE_NORMAL;
1418
1419 return htype;
1420 }
1421
1422 static int get_hw_crypto_keytype(struct sk_buff *skb)
1423 {
1424 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1425
1426 if (tx_info->control.hw_key) {
1427 if (tx_info->control.hw_key->alg == ALG_WEP)
1428 return ATH9K_KEY_TYPE_WEP;
1429 else if (tx_info->control.hw_key->alg == ALG_TKIP)
1430 return ATH9K_KEY_TYPE_TKIP;
1431 else if (tx_info->control.hw_key->alg == ALG_CCMP)
1432 return ATH9K_KEY_TYPE_AES;
1433 }
1434
1435 return ATH9K_KEY_TYPE_CLEAR;
1436 }
1437
1438 static void assign_aggr_tid_seqno(struct sk_buff *skb,
1439 struct ath_buf *bf)
1440 {
1441 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1442 struct ieee80211_hdr *hdr;
1443 struct ath_node *an;
1444 struct ath_atx_tid *tid;
1445 __le16 fc;
1446 u8 *qc;
1447
1448 if (!tx_info->control.sta)
1449 return;
1450
1451 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1452 hdr = (struct ieee80211_hdr *)skb->data;
1453 fc = hdr->frame_control;
1454
1455 if (ieee80211_is_data_qos(fc)) {
1456 qc = ieee80211_get_qos_ctl(hdr);
1457 bf->bf_tidno = qc[0] & 0xf;
1458 }
1459
1460 /*
1461 * For HT capable stations, we save tidno for later use.
1462 * We also override seqno set by upper layer with the one
1463 * in tx aggregation state.
1464 */
1465 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1466 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1467 bf->bf_seqno = tid->seq_next;
1468 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1469 }
1470
1471 static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
1472 {
1473 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1474 int flags = 0;
1475
1476 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1477 flags |= ATH9K_TXDESC_INTREQ;
1478
1479 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1480 flags |= ATH9K_TXDESC_NOACK;
1481
1482 if (use_ldpc)
1483 flags |= ATH9K_TXDESC_LDPC;
1484
1485 return flags;
1486 }
1487
1488 /*
1489 * rix - rate index
1490 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1491 * width - 0 for 20 MHz, 1 for 40 MHz
1492 * half_gi - to use 4us v/s 3.6 us for symbol time
1493 */
1494 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
1495 int width, int half_gi, bool shortPreamble)
1496 {
1497 u32 nbits, nsymbits, duration, nsymbols;
1498 int streams, pktlen;
1499
1500 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1501
1502 /* find number of symbols: PLCP + data */
1503 streams = HT_RC_2_STREAMS(rix);
1504 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1505 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1506 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1507
1508 if (!half_gi)
1509 duration = SYMBOL_TIME(nsymbols);
1510 else
1511 duration = SYMBOL_TIME_HALFGI(nsymbols);
1512
1513 /* addup duration for legacy/ht training and signal fields */
1514 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1515
1516 return duration;
1517 }
1518
1519 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
1520 {
1521 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1522 struct ath9k_11n_rate_series series[4];
1523 struct sk_buff *skb;
1524 struct ieee80211_tx_info *tx_info;
1525 struct ieee80211_tx_rate *rates;
1526 const struct ieee80211_rate *rate;
1527 struct ieee80211_hdr *hdr;
1528 int i, flags = 0;
1529 u8 rix = 0, ctsrate = 0;
1530 bool is_pspoll;
1531
1532 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
1533
1534 skb = bf->bf_mpdu;
1535 tx_info = IEEE80211_SKB_CB(skb);
1536 rates = tx_info->control.rates;
1537 hdr = (struct ieee80211_hdr *)skb->data;
1538 is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
1539
1540 /*
1541 * We check if Short Preamble is needed for the CTS rate by
1542 * checking the BSS's global flag.
1543 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1544 */
1545 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
1546 ctsrate = rate->hw_value;
1547 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
1548 ctsrate |= rate->hw_value_short;
1549
1550 for (i = 0; i < 4; i++) {
1551 bool is_40, is_sgi, is_sp;
1552 int phy;
1553
1554 if (!rates[i].count || (rates[i].idx < 0))
1555 continue;
1556
1557 rix = rates[i].idx;
1558 series[i].Tries = rates[i].count;
1559 series[i].ChSel = common->tx_chainmask;
1560
1561 if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
1562 (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
1563 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1564 flags |= ATH9K_TXDESC_RTSENA;
1565 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1566 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1567 flags |= ATH9K_TXDESC_CTSENA;
1568 }
1569
1570 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1571 series[i].RateFlags |= ATH9K_RATESERIES_2040;
1572 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1573 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1574
1575 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1576 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1577 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1578
1579 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1580 /* MCS rates */
1581 series[i].Rate = rix | 0x80;
1582 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1583 is_40, is_sgi, is_sp);
1584 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1585 series[i].RateFlags |= ATH9K_RATESERIES_STBC;
1586 continue;
1587 }
1588
1589 /* legcay rates */
1590 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1591 !(rate->flags & IEEE80211_RATE_ERP_G))
1592 phy = WLAN_RC_PHY_CCK;
1593 else
1594 phy = WLAN_RC_PHY_OFDM;
1595
1596 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1597 series[i].Rate = rate->hw_value;
1598 if (rate->hw_value_short) {
1599 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1600 series[i].Rate |= rate->hw_value_short;
1601 } else {
1602 is_sp = false;
1603 }
1604
1605 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1606 phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
1607 }
1608
1609 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1610 if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
1611 flags &= ~ATH9K_TXDESC_RTSENA;
1612
1613 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1614 if (flags & ATH9K_TXDESC_RTSENA)
1615 flags &= ~ATH9K_TXDESC_CTSENA;
1616
1617 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1618 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
1619 bf->bf_lastbf->bf_desc,
1620 !is_pspoll, ctsrate,
1621 0, series, 4, flags);
1622
1623 if (sc->config.ath_aggr_prot && flags)
1624 ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
1625 }
1626
1627 static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
1628 struct sk_buff *skb,
1629 struct ath_tx_control *txctl)
1630 {
1631 struct ath_wiphy *aphy = hw->priv;
1632 struct ath_softc *sc = aphy->sc;
1633 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1634 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1635 int hdrlen;
1636 __le16 fc;
1637 int padpos, padsize;
1638 bool use_ldpc = false;
1639
1640 tx_info->pad[0] = 0;
1641 switch (txctl->frame_type) {
1642 case ATH9K_IFT_NOT_INTERNAL:
1643 break;
1644 case ATH9K_IFT_PAUSE:
1645 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
1646 /* fall through */
1647 case ATH9K_IFT_UNPAUSE:
1648 tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
1649 break;
1650 }
1651 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1652 fc = hdr->frame_control;
1653
1654 ATH_TXBUF_RESET(bf);
1655
1656 bf->aphy = aphy;
1657 bf->bf_frmlen = skb->len + FCS_LEN;
1658 /* Remove the padding size from bf_frmlen, if any */
1659 padpos = ath9k_cmn_padpos(hdr->frame_control);
1660 padsize = padpos & 3;
1661 if (padsize && skb->len>padpos+padsize) {
1662 bf->bf_frmlen -= padsize;
1663 }
1664
1665 if (conf_is_ht(&hw->conf)) {
1666 bf->bf_state.bf_type |= BUF_HT;
1667 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1668 use_ldpc = true;
1669 }
1670
1671 bf->bf_flags = setup_tx_flags(skb, use_ldpc);
1672
1673 bf->bf_keytype = get_hw_crypto_keytype(skb);
1674 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1675 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1676 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1677 } else {
1678 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1679 }
1680
1681 if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
1682 (sc->sc_flags & SC_OP_TXAGGR))
1683 assign_aggr_tid_seqno(skb, bf);
1684
1685 bf->bf_mpdu = skb;
1686
1687 bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
1688 skb->len, DMA_TO_DEVICE);
1689 if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
1690 bf->bf_mpdu = NULL;
1691 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
1692 "dma_mapping_error() on TX\n");
1693 return -ENOMEM;
1694 }
1695
1696 bf->bf_buf_addr = bf->bf_dmacontext;
1697
1698 /* tag if this is a nullfunc frame to enable PS when AP acks it */
1699 if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
1700 bf->bf_isnullfunc = true;
1701 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1702 } else
1703 bf->bf_isnullfunc = false;
1704
1705 bf->bf_tx_aborted = false;
1706
1707 return 0;
1708 }
1709
1710 /* FIXME: tx power */
1711 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1712 struct ath_tx_control *txctl)
1713 {
1714 struct sk_buff *skb = bf->bf_mpdu;
1715 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1716 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1717 struct ath_node *an = NULL;
1718 struct list_head bf_head;
1719 struct ath_desc *ds;
1720 struct ath_atx_tid *tid;
1721 struct ath_hw *ah = sc->sc_ah;
1722 int frm_type;
1723 __le16 fc;
1724
1725 frm_type = get_hw_packet_type(skb);
1726 fc = hdr->frame_control;
1727
1728 INIT_LIST_HEAD(&bf_head);
1729 list_add_tail(&bf->list, &bf_head);
1730
1731 ds = bf->bf_desc;
1732 ath9k_hw_set_desc_link(ah, ds, 0);
1733
1734 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1735 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1736
1737 ath9k_hw_filltxdesc(ah, ds,
1738 skb->len, /* segment length */
1739 true, /* first segment */
1740 true, /* last segment */
1741 ds, /* first descriptor */
1742 bf->bf_buf_addr,
1743 txctl->txq->axq_qnum);
1744
1745 spin_lock_bh(&txctl->txq->axq_lock);
1746
1747 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
1748 tx_info->control.sta) {
1749 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1750 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1751
1752 if (!ieee80211_is_data_qos(fc)) {
1753 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1754 goto tx_done;
1755 }
1756
1757 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1758 /*
1759 * Try aggregation if it's a unicast data frame
1760 * and the destination is HT capable.
1761 */
1762 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
1763 } else {
1764 /*
1765 * Send this frame as regular when ADDBA
1766 * exchange is neither complete nor pending.
1767 */
1768 ath_tx_send_ht_normal(sc, txctl->txq,
1769 tid, &bf_head);
1770 }
1771 } else {
1772 ath_tx_send_normal(sc, txctl->txq, &bf_head);
1773 }
1774
1775 tx_done:
1776 spin_unlock_bh(&txctl->txq->axq_lock);
1777 }
1778
1779 /* Upon failure caller should free skb */
1780 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1781 struct ath_tx_control *txctl)
1782 {
1783 struct ath_wiphy *aphy = hw->priv;
1784 struct ath_softc *sc = aphy->sc;
1785 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1786 struct ath_txq *txq = txctl->txq;
1787 struct ath_buf *bf;
1788 int r;
1789
1790 bf = ath_tx_get_buffer(sc);
1791 if (!bf) {
1792 ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
1793 return -1;
1794 }
1795
1796 bf->txq = txctl->txq;
1797 spin_lock_bh(&bf->txq->axq_lock);
1798 if (++bf->txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1799 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1800 txq->stopped = 1;
1801 }
1802 spin_unlock_bh(&bf->txq->axq_lock);
1803
1804 r = ath_tx_setup_buffer(hw, bf, skb, txctl);
1805 if (unlikely(r)) {
1806 ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
1807
1808 /* upon ath_tx_processq() this TX queue will be resumed, we
1809 * guarantee this will happen by knowing beforehand that
1810 * we will at least have to run TX completionon one buffer
1811 * on the queue */
1812 spin_lock_bh(&txq->axq_lock);
1813 if (!txq->stopped && txq->axq_depth > 1) {
1814 ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
1815 txq->stopped = 1;
1816 }
1817 spin_unlock_bh(&txq->axq_lock);
1818
1819 ath_tx_return_buffer(sc, bf);
1820
1821 return r;
1822 }
1823
1824 ath_tx_start_dma(sc, bf, txctl);
1825
1826 return 0;
1827 }
1828
1829 void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
1830 {
1831 struct ath_wiphy *aphy = hw->priv;
1832 struct ath_softc *sc = aphy->sc;
1833 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1834 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1835 int padpos, padsize;
1836 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1837 struct ath_tx_control txctl;
1838
1839 memset(&txctl, 0, sizeof(struct ath_tx_control));
1840
1841 /*
1842 * As a temporary workaround, assign seq# here; this will likely need
1843 * to be cleaned up to work better with Beacon transmission and virtual
1844 * BSSes.
1845 */
1846 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1847 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1848 sc->tx.seq_no += 0x10;
1849 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1850 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1851 }
1852
1853 /* Add the padding after the header if this is not already done */
1854 padpos = ath9k_cmn_padpos(hdr->frame_control);
1855 padsize = padpos & 3;
1856 if (padsize && skb->len>padpos) {
1857 if (skb_headroom(skb) < padsize) {
1858 ath_print(common, ATH_DBG_XMIT,
1859 "TX CABQ padding failed\n");
1860 dev_kfree_skb_any(skb);
1861 return;
1862 }
1863 skb_push(skb, padsize);
1864 memmove(skb->data, skb->data + padsize, padpos);
1865 }
1866
1867 txctl.txq = sc->beacon.cabq;
1868
1869 ath_print(common, ATH_DBG_XMIT,
1870 "transmitting CABQ packet, skb: %p\n", skb);
1871
1872 if (ath_tx_start(hw, skb, &txctl) != 0) {
1873 ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
1874 goto exit;
1875 }
1876
1877 return;
1878 exit:
1879 dev_kfree_skb_any(skb);
1880 }
1881
1882 /*****************/
1883 /* TX Completion */
1884 /*****************/
1885
1886 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1887 struct ath_wiphy *aphy, int tx_flags)
1888 {
1889 struct ieee80211_hw *hw = sc->hw;
1890 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1891 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1892 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1893 int padpos, padsize;
1894
1895 ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
1896
1897 if (aphy)
1898 hw = aphy->hw;
1899
1900 if (tx_flags & ATH_TX_BAR)
1901 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
1902
1903 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
1904 /* Frame was ACKed */
1905 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1906 }
1907
1908 padpos = ath9k_cmn_padpos(hdr->frame_control);
1909 padsize = padpos & 3;
1910 if (padsize && skb->len>padpos+padsize) {
1911 /*
1912 * Remove MAC header padding before giving the frame back to
1913 * mac80211.
1914 */
1915 memmove(skb->data + padsize, skb->data, padpos);
1916 skb_pull(skb, padsize);
1917 }
1918
1919 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
1920 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
1921 ath_print(common, ATH_DBG_PS,
1922 "Going back to sleep after having "
1923 "received TX status (0x%lx)\n",
1924 sc->ps_flags & (PS_WAIT_FOR_BEACON |
1925 PS_WAIT_FOR_CAB |
1926 PS_WAIT_FOR_PSPOLL_DATA |
1927 PS_WAIT_FOR_TX_ACK));
1928 }
1929
1930 if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
1931 ath9k_tx_status(hw, skb);
1932 else
1933 ieee80211_tx_status(hw, skb);
1934 }
1935
1936 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
1937 struct ath_txq *txq, struct list_head *bf_q,
1938 struct ath_tx_status *ts, int txok, int sendbar)
1939 {
1940 struct sk_buff *skb = bf->bf_mpdu;
1941 unsigned long flags;
1942 int tx_flags = 0;
1943
1944 if (sendbar)
1945 tx_flags = ATH_TX_BAR;
1946
1947 if (!txok) {
1948 tx_flags |= ATH_TX_ERROR;
1949
1950 if (bf_isxretried(bf))
1951 tx_flags |= ATH_TX_XRETRY;
1952 }
1953
1954 if (bf->txq) {
1955 spin_lock_bh(&bf->txq->axq_lock);
1956 bf->txq->pending_frames--;
1957 spin_unlock_bh(&bf->txq->axq_lock);
1958 bf->txq = NULL;
1959 }
1960
1961 dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
1962 ath_tx_complete(sc, skb, bf->aphy, tx_flags);
1963 ath_debug_stat_tx(sc, txq, bf, ts);
1964
1965 /*
1966 * Return the list of ath_buf of this mpdu to free queue
1967 */
1968 spin_lock_irqsave(&sc->tx.txbuflock, flags);
1969 list_splice_tail_init(bf_q, &sc->tx.txbuf);
1970 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
1971 }
1972
1973 static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
1974 struct ath_tx_status *ts, int txok)
1975 {
1976 u16 seq_st = 0;
1977 u32 ba[WME_BA_BMP_SIZE >> 5];
1978 int ba_index;
1979 int nbad = 0;
1980 int isaggr = 0;
1981
1982 if (bf->bf_lastbf->bf_tx_aborted)
1983 return 0;
1984
1985 isaggr = bf_isaggr(bf);
1986 if (isaggr) {
1987 seq_st = ts->ts_seqnum;
1988 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
1989 }
1990
1991 while (bf) {
1992 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1993 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1994 nbad++;
1995
1996 bf = bf->bf_next;
1997 }
1998
1999 return nbad;
2000 }
2001
2002 static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
2003 int nbad, int txok, bool update_rc)
2004 {
2005 struct sk_buff *skb = bf->bf_mpdu;
2006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2007 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2008 struct ieee80211_hw *hw = bf->aphy->hw;
2009 u8 i, tx_rateindex;
2010
2011 if (txok)
2012 tx_info->status.ack_signal = ts->ts_rssi;
2013
2014 tx_rateindex = ts->ts_rateindex;
2015 WARN_ON(tx_rateindex >= hw->max_rates);
2016
2017 if (ts->ts_status & ATH9K_TXERR_FILT)
2018 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2019 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
2020 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2021
2022 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2023 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
2024 if (ieee80211_is_data(hdr->frame_control)) {
2025 if (ts->ts_flags &
2026 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
2027 tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
2028 if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
2029 (ts->ts_status & ATH9K_TXERR_FIFO))
2030 tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
2031 tx_info->status.ampdu_len = bf->bf_nframes;
2032 tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
2033 }
2034 }
2035
2036 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2037 tx_info->status.rates[i].count = 0;
2038 tx_info->status.rates[i].idx = -1;
2039 }
2040
2041 tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
2042 }
2043
2044 static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
2045 {
2046 int qnum;
2047
2048 spin_lock_bh(&txq->axq_lock);
2049 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2050 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
2051 if (qnum != -1) {
2052 ath_mac80211_start_queue(sc, qnum);
2053 txq->stopped = 0;
2054 }
2055 }
2056 spin_unlock_bh(&txq->axq_lock);
2057 }
2058
2059 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2060 {
2061 struct ath_hw *ah = sc->sc_ah;
2062 struct ath_common *common = ath9k_hw_common(ah);
2063 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2064 struct list_head bf_head;
2065 struct ath_desc *ds;
2066 struct ath_tx_status ts;
2067 int txok;
2068 int status;
2069
2070 ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
2071 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2072 txq->axq_link);
2073
2074 for (;;) {
2075 spin_lock_bh(&txq->axq_lock);
2076 if (list_empty(&txq->axq_q)) {
2077 txq->axq_link = NULL;
2078 spin_unlock_bh(&txq->axq_lock);
2079 break;
2080 }
2081 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2082
2083 /*
2084 * There is a race condition that a BH gets scheduled
2085 * after sw writes TxE and before hw re-load the last
2086 * descriptor to get the newly chained one.
2087 * Software must keep the last DONE descriptor as a
2088 * holding descriptor - software does so by marking
2089 * it with the STALE flag.
2090 */
2091 bf_held = NULL;
2092 if (bf->bf_stale) {
2093 bf_held = bf;
2094 if (list_is_last(&bf_held->list, &txq->axq_q)) {
2095 spin_unlock_bh(&txq->axq_lock);
2096 break;
2097 } else {
2098 bf = list_entry(bf_held->list.next,
2099 struct ath_buf, list);
2100 }
2101 }
2102
2103 lastbf = bf->bf_lastbf;
2104 ds = lastbf->bf_desc;
2105
2106 memset(&ts, 0, sizeof(ts));
2107 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2108 if (status == -EINPROGRESS) {
2109 spin_unlock_bh(&txq->axq_lock);
2110 break;
2111 }
2112
2113 /*
2114 * We now know the nullfunc frame has been ACKed so we
2115 * can disable RX.
2116 */
2117 if (bf->bf_isnullfunc &&
2118 (ts.ts_status & ATH9K_TX_ACKED)) {
2119 if ((sc->ps_flags & PS_ENABLED))
2120 ath9k_enable_ps(sc);
2121 else
2122 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2123 }
2124
2125 /*
2126 * Remove ath_buf's of the same transmit unit from txq,
2127 * however leave the last descriptor back as the holding
2128 * descriptor for hw.
2129 */
2130 lastbf->bf_stale = true;
2131 INIT_LIST_HEAD(&bf_head);
2132 if (!list_is_singular(&lastbf->list))
2133 list_cut_position(&bf_head,
2134 &txq->axq_q, lastbf->list.prev);
2135
2136 txq->axq_depth--;
2137 txok = !(ts.ts_status & ATH9K_TXERR_MASK);
2138 txq->axq_tx_inprogress = false;
2139 if (bf_held)
2140 list_del(&bf_held->list);
2141 spin_unlock_bh(&txq->axq_lock);
2142
2143 if (bf_held)
2144 ath_tx_return_buffer(sc, bf_held);
2145
2146 if (!bf_isampdu(bf)) {
2147 /*
2148 * This frame is sent out as a single frame.
2149 * Use hardware retry status for this frame.
2150 */
2151 bf->bf_retries = ts.ts_longretry;
2152 if (ts.ts_status & ATH9K_TXERR_XRETRY)
2153 bf->bf_state.bf_type |= BUF_XRETRY;
2154 ath_tx_rc_status(bf, &ts, 0, txok, true);
2155 }
2156
2157 if (bf_isampdu(bf))
2158 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
2159 else
2160 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
2161
2162 ath_wake_mac80211_queue(sc, txq);
2163
2164 spin_lock_bh(&txq->axq_lock);
2165 if (sc->sc_flags & SC_OP_TXAGGR)
2166 ath_txq_schedule(sc, txq);
2167 spin_unlock_bh(&txq->axq_lock);
2168 }
2169 }
2170
2171 static void ath_tx_complete_poll_work(struct work_struct *work)
2172 {
2173 struct ath_softc *sc = container_of(work, struct ath_softc,
2174 tx_complete_work.work);
2175 struct ath_txq *txq;
2176 int i;
2177 bool needreset = false;
2178
2179 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2180 if (ATH_TXQ_SETUP(sc, i)) {
2181 txq = &sc->tx.txq[i];
2182 spin_lock_bh(&txq->axq_lock);
2183 if (txq->axq_depth) {
2184 if (txq->axq_tx_inprogress) {
2185 needreset = true;
2186 spin_unlock_bh(&txq->axq_lock);
2187 break;
2188 } else {
2189 txq->axq_tx_inprogress = true;
2190 }
2191 }
2192 spin_unlock_bh(&txq->axq_lock);
2193 }
2194
2195 if (needreset) {
2196 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
2197 "tx hung, resetting the chip\n");
2198 ath9k_ps_wakeup(sc);
2199 ath_reset(sc, false);
2200 ath9k_ps_restore(sc);
2201 }
2202
2203 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2204 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2205 }
2206
2207
2208
2209 void ath_tx_tasklet(struct ath_softc *sc)
2210 {
2211 int i;
2212 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2213
2214 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2215
2216 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2217 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2218 ath_tx_processq(sc, &sc->tx.txq[i]);
2219 }
2220 }
2221
2222 void ath_tx_edma_tasklet(struct ath_softc *sc)
2223 {
2224 struct ath_tx_status txs;
2225 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2226 struct ath_hw *ah = sc->sc_ah;
2227 struct ath_txq *txq;
2228 struct ath_buf *bf, *lastbf;
2229 struct list_head bf_head;
2230 int status;
2231 int txok;
2232
2233 for (;;) {
2234 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
2235 if (status == -EINPROGRESS)
2236 break;
2237 if (status == -EIO) {
2238 ath_print(common, ATH_DBG_XMIT,
2239 "Error processing tx status\n");
2240 break;
2241 }
2242
2243 /* Skip beacon completions */
2244 if (txs.qid == sc->beacon.beaconq)
2245 continue;
2246
2247 txq = &sc->tx.txq[txs.qid];
2248
2249 spin_lock_bh(&txq->axq_lock);
2250 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2251 spin_unlock_bh(&txq->axq_lock);
2252 return;
2253 }
2254
2255 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2256 struct ath_buf, list);
2257 lastbf = bf->bf_lastbf;
2258
2259 INIT_LIST_HEAD(&bf_head);
2260 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2261 &lastbf->list);
2262 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2263 txq->axq_depth--;
2264 txq->axq_tx_inprogress = false;
2265 spin_unlock_bh(&txq->axq_lock);
2266
2267 txok = !(txs.ts_status & ATH9K_TXERR_MASK);
2268
2269 /*
2270 * Make sure null func frame is acked before configuring
2271 * hw into ps mode.
2272 */
2273 if (bf->bf_isnullfunc && txok) {
2274 if ((sc->ps_flags & PS_ENABLED))
2275 ath9k_enable_ps(sc);
2276 else
2277 sc->ps_flags |= PS_NULLFUNC_COMPLETED;
2278 }
2279
2280 if (!bf_isampdu(bf)) {
2281 bf->bf_retries = txs.ts_longretry;
2282 if (txs.ts_status & ATH9K_TXERR_XRETRY)
2283 bf->bf_state.bf_type |= BUF_XRETRY;
2284 ath_tx_rc_status(bf, &txs, 0, txok, true);
2285 }
2286
2287 if (bf_isampdu(bf))
2288 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
2289 else
2290 ath_tx_complete_buf(sc, bf, txq, &bf_head,
2291 &txs, txok, 0);
2292
2293 ath_wake_mac80211_queue(sc, txq);
2294
2295 spin_lock_bh(&txq->axq_lock);
2296 if (!list_empty(&txq->txq_fifo_pending)) {
2297 INIT_LIST_HEAD(&bf_head);
2298 bf = list_first_entry(&txq->txq_fifo_pending,
2299 struct ath_buf, list);
2300 list_cut_position(&bf_head, &txq->txq_fifo_pending,
2301 &bf->bf_lastbf->list);
2302 ath_tx_txqaddbuf(sc, txq, &bf_head);
2303 } else if (sc->sc_flags & SC_OP_TXAGGR)
2304 ath_txq_schedule(sc, txq);
2305 spin_unlock_bh(&txq->axq_lock);
2306 }
2307 }
2308
2309 /*****************/
2310 /* Init, Cleanup */
2311 /*****************/
2312
2313 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2314 {
2315 struct ath_descdma *dd = &sc->txsdma;
2316 u8 txs_len = sc->sc_ah->caps.txs_len;
2317
2318 dd->dd_desc_len = size * txs_len;
2319 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2320 &dd->dd_desc_paddr, GFP_KERNEL);
2321 if (!dd->dd_desc)
2322 return -ENOMEM;
2323
2324 return 0;
2325 }
2326
2327 static int ath_tx_edma_init(struct ath_softc *sc)
2328 {
2329 int err;
2330
2331 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2332 if (!err)
2333 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2334 sc->txsdma.dd_desc_paddr,
2335 ATH_TXSTATUS_RING_SIZE);
2336
2337 return err;
2338 }
2339
2340 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2341 {
2342 struct ath_descdma *dd = &sc->txsdma;
2343
2344 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2345 dd->dd_desc_paddr);
2346 }
2347
2348 int ath_tx_init(struct ath_softc *sc, int nbufs)
2349 {
2350 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2351 int error = 0;
2352
2353 spin_lock_init(&sc->tx.txbuflock);
2354
2355 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2356 "tx", nbufs, 1, 1);
2357 if (error != 0) {
2358 ath_print(common, ATH_DBG_FATAL,
2359 "Failed to allocate tx descriptors: %d\n", error);
2360 goto err;
2361 }
2362
2363 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2364 "beacon", ATH_BCBUF, 1, 1);
2365 if (error != 0) {
2366 ath_print(common, ATH_DBG_FATAL,
2367 "Failed to allocate beacon descriptors: %d\n", error);
2368 goto err;
2369 }
2370
2371 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2372
2373 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2374 error = ath_tx_edma_init(sc);
2375 if (error)
2376 goto err;
2377 }
2378
2379 err:
2380 if (error != 0)
2381 ath_tx_cleanup(sc);
2382
2383 return error;
2384 }
2385
2386 void ath_tx_cleanup(struct ath_softc *sc)
2387 {
2388 if (sc->beacon.bdma.dd_desc_len != 0)
2389 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2390
2391 if (sc->tx.txdma.dd_desc_len != 0)
2392 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2393
2394 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2395 ath_tx_edma_cleanup(sc);
2396 }
2397
2398 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2399 {
2400 struct ath_atx_tid *tid;
2401 struct ath_atx_ac *ac;
2402 int tidno, acno;
2403
2404 for (tidno = 0, tid = &an->tid[tidno];
2405 tidno < WME_NUM_TID;
2406 tidno++, tid++) {
2407 tid->an = an;
2408 tid->tidno = tidno;
2409 tid->seq_start = tid->seq_next = 0;
2410 tid->baw_size = WME_MAX_BA;
2411 tid->baw_head = tid->baw_tail = 0;
2412 tid->sched = false;
2413 tid->paused = false;
2414 tid->state &= ~AGGR_CLEANUP;
2415 INIT_LIST_HEAD(&tid->buf_q);
2416 acno = TID_TO_WME_AC(tidno);
2417 tid->ac = &an->ac[acno];
2418 tid->state &= ~AGGR_ADDBA_COMPLETE;
2419 tid->state &= ~AGGR_ADDBA_PROGRESS;
2420 }
2421
2422 for (acno = 0, ac = &an->ac[acno];
2423 acno < WME_NUM_AC; acno++, ac++) {
2424 ac->sched = false;
2425 INIT_LIST_HEAD(&ac->tid_q);
2426
2427 switch (acno) {
2428 case WME_AC_BE:
2429 ac->qnum = ath_tx_get_qnum(sc,
2430 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2431 break;
2432 case WME_AC_BK:
2433 ac->qnum = ath_tx_get_qnum(sc,
2434 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2435 break;
2436 case WME_AC_VI:
2437 ac->qnum = ath_tx_get_qnum(sc,
2438 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2439 break;
2440 case WME_AC_VO:
2441 ac->qnum = ath_tx_get_qnum(sc,
2442 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2443 break;
2444 }
2445 }
2446 }
2447
2448 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2449 {
2450 int i;
2451 struct ath_atx_ac *ac, *ac_tmp;
2452 struct ath_atx_tid *tid, *tid_tmp;
2453 struct ath_txq *txq;
2454
2455 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2456 if (ATH_TXQ_SETUP(sc, i)) {
2457 txq = &sc->tx.txq[i];
2458
2459 spin_lock_bh(&txq->axq_lock);
2460
2461 list_for_each_entry_safe(ac,
2462 ac_tmp, &txq->axq_acq, list) {
2463 tid = list_first_entry(&ac->tid_q,
2464 struct ath_atx_tid, list);
2465 if (tid && tid->an != an)
2466 continue;
2467 list_del(&ac->list);
2468 ac->sched = false;
2469
2470 list_for_each_entry_safe(tid,
2471 tid_tmp, &ac->tid_q, list) {
2472 list_del(&tid->list);
2473 tid->sched = false;
2474 ath_tid_drain(sc, txq, tid);
2475 tid->state &= ~AGGR_ADDBA_COMPLETE;
2476 tid->state &= ~AGGR_CLEANUP;
2477 }
2478 }
2479
2480 spin_unlock_bh(&txq->axq_lock);
2481 }
2482 }
2483 }
This page took 0.082092 seconds and 6 git commands to generate.